JP4173707B2 - 有機ハロゲン化合物除去用触媒および有機ハロゲン化合物除去方法 - Google Patents

有機ハロゲン化合物除去用触媒および有機ハロゲン化合物除去方法 Download PDF

Info

Publication number
JP4173707B2
JP4173707B2 JP2002262062A JP2002262062A JP4173707B2 JP 4173707 B2 JP4173707 B2 JP 4173707B2 JP 2002262062 A JP2002262062 A JP 2002262062A JP 2002262062 A JP2002262062 A JP 2002262062A JP 4173707 B2 JP4173707 B2 JP 4173707B2
Authority
JP
Japan
Prior art keywords
catalyst
organic halogen
titanium
halogen compound
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002262062A
Other languages
English (en)
Other versions
JP2004097914A (ja
Inventor
信之 正木
昇 杉島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Priority to JP2002262062A priority Critical patent/JP4173707B2/ja
Publication of JP2004097914A publication Critical patent/JP2004097914A/ja
Application granted granted Critical
Publication of JP4173707B2 publication Critical patent/JP4173707B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、有機ハロゲン化合物除去用触媒、および、それを用いた有機ハロゲン化合物除去方法とに関する。特に、排ガス中のダイオキシン類などの毒性有機ハロゲン化合物を除去するための有機ハロゲン化合物除去用触媒、および、それを用いた有機ハロゲン化合物除去方法とに関する。
【0002】
【従来の技術】
また、産業廃棄物や都市廃棄物を処理する焼却施設から発生する排ガス中にはダイオキシン類、PCB、クロロフェノールなどの極微量の毒性有機ハロゲン化合物が含まれており、特にダイオキシン類は微量であってもきわめて有毒であり、人体に重大な影響を及ぼすため、その除去技術が早急に求められている。有機ハロゲン化合物の除去に関しては、触媒分解法は最も有効な技術のひとつであり、一般的にチタン、バナジウム、タングステンおよびモリブデンなどの酸化物を含有する触媒が用いられている。
【0003】
このような触媒は優れた除去性能を有するが、排ガス条件によっては充分な性能とはいえないこともあるため、さらに高い性能を有する有機ハロゲン化合物除去用触媒が望まれている。
【0004】
【発明が解決しようとする課題】
したがって、本発明の課題は、排ガス中のダイオキシン類等の有機ハロゲン化合物を効率良く除去することのできる有機ハロゲン化合物除去用触媒、および、それを用いた有機ハロゲン化合物除去方法を提供することにある。
【0005】
【課題を解決するための手段】
本発明者は、上記課題を解決するべく鋭意検討を行い、種々の推測および実験繰り返した。その結果、チタン系酸化物を含有する有機ハロゲン化合物除去用触媒において、さらに硫黄化合物、アルカリ金属またはリン化合物が特定の含有割合で含まれていれば、有機ハロゲン化合物の分解性能および触媒自身の耐久性などといった面で、従来にない優れた触媒性能を有する有機ハロゲン化合物除去用触媒となることを見出した。
具体的には、本発明者は、チタン系酸化物を含有する有機ハロゲン化合物除去用触媒において、該触媒に含まれる硫黄分(SOやSOなどの硫黄酸化物)が、排ガス中の有機ハロゲン化合物の分解活性に影響を与えることを見出した。つまり、通常、チタン系酸化物を含有する触媒はそれ自体で特有の固体酸性を示すが、硫黄分が存在する場合は該硫黄分に起因する強い固体酸性(固体超強酸性)も合わせて発現される。そして、この触媒由来の固体酸性と硫黄分由来の固体超強酸性の両物性の相互作用により触媒の酸性質を最適化すれば、有機ハロゲン化合物の分解をより促進させることができるのではないかと考えたのである。かかる知見に基づき、硫黄分の含有量について実験および検討を繰り返した結果、特定量の硫黄分を含むようにすれば、有機ハロゲン化合物の分解活性をより向上させることができることを確認した
【0006】
同様に、具体的には、本発明者は、チタン系酸化物を含有する有機ハロゲン化合物除去用触媒において、該触媒に含まれるアルカリ金属が、排ガス中の有機ハロゲン化合物の分解活性に影響を与えることを見出した。つまり、アルカリ金属は、通常、バナジウム、タングステン、モリブデンなどの各種触媒活性成分を汚染し、失活させてしまう被毒成分であると考えられていたが、アルカリ金属の含有量を特定範囲に制御すれば、特に、高い分解活性を長期にわたり維持することのできる、いわゆる分解活性の耐久性に優れることを見出したのである。よって、例えば、焼却炉排ガスなどにはSOやHClなどの酸性ガスが多く含まれており、その影響により特に低温域での触媒の劣化が著しいが、上述した知見に基づき、特定量のアルカリ金属を含むようにすれば、アルカリ金属が酸性ガスを適度に吸収し、触媒の経時的劣化を効果的に防止することができ、ひいては分解活性の耐久性を飛躍的に向上させることができることを確認した
【0007】
同様に、具体的には、本発明者は、チタン系酸化物を含有する有機ハロゲン化合物除去用触媒において、該触媒に含まれるリン(リン化合物)が、排ガス中の有機ハロゲン化合物の分解活性に影響を与えることを見出した。通常、触媒の製造においては、担体に活性成分を担持して焼成したり、担体となる成分と活性成分との混合物を所望の形状に成形して焼成する、などというように、焼成する工程が含まれる。この焼成工程は、原料物質を分解や反応により活性を有するよう変化させたり、成形時に有機バインダーなどの成形助剤を使用している場合はそれらの成形助剤を分解除去させたり、また、機械的強度が必要な場合は触媒を焼き締めて機械的強度を向上させたりするために必要な工程である。しかし、焼成によって、触媒の比表面積が低下したり、活性成分が凝集するなどの不具合が生じていた。特に、チタン酸化物を含有し、活性成分としてバナジウムを用いる触媒では、チタンの状態としてアナターゼ結晶型もしくは非晶質な形態のものが高活性・高比表面積であるため好適に用いられているが、バナジウムの存在下で熱を加えることにより、チタンの結晶化が進行し易くなり、そのため比表面積の低下・活性成分の凝集が生じ、最終的に得られる触媒の活性が低いものとなっていた。そこで、かかる知見に基づき、触媒中に特定量のリン化合物を含むようにすれば、焼成による触媒の比表面積の低下や活性成分の凝集を効果的に防止し、ひいては高い分解活性を発揮させることができることを確認した
【0008】
さらに、これら有機ハロゲン化合物除去用触媒を用いて有機ハロゲン化合物を含む排ガスを処理する方法であれば、上述したような優れた触媒性能により効果的に有機ハロゲン化合物を除去できることを確認し本発明を完成した。
すなわち、本発明にかかる有機ハロゲン化合物除去用触媒は、排ガス中の有機ハロゲン化合物を除去する際に用いる触媒であって、Ti−Si−Mo複合酸化物を主成分とし、硫黄化合物が硫黄原子換算百分率で0.01〜2重量%含まれているとともにバナジウムの酸化物が0.1〜20重量%含まれていることを特徴とする
【0009】
本発明にかかる有機ハロゲン化合物除去用触媒は、また、上記において、前記硫黄化合物が、Ti−Si−Mo複合酸化物の出発原料としてチタンの硫酸塩を用いたことによって含まれるものであり、かつ、複合酸化物の調製時の洗浄工程における洗浄水量および/または洗浄回数の制御により硫黄化合物の含有量が前記範囲となっていることができる。
本発明にかかる有機ハロゲン化合物除去方法は、上記本発明にかかる有機ハロゲン化合物除去用触媒を用いて排ガス中の有機ハロゲン化合物を除去することを特徴とする。
【0010】
【発明の実施の形態】
以下、本発明にかかる有機ハロゲン化合物除去用触媒およびこれを用いた有機ハロゲン化合物除去方法について詳しく説明するが、本発明の範囲はこれらの説明に拘束されることはなく、以下の例示以外についても、本発明の趣旨を損なわない範囲で適宜実施し得る。
本発明にかかる有機ハロゲン化合物除去用触媒(以下、本発明の有機ハロゲン化合物除去用触媒と称することがある。)においては、主成分であるチタン系酸化物は、酸化チタンのみであってもよいし、Si、W、およびMoなどからなる群より選ばれる少なくとも1種の元素とTiとを複合化させてなる複合酸化物であってもよい。チタン系酸化物が上記複合酸化物を含む場合、高比表面積であるため活性成分の分散性が増し、触媒活性が向上する又は耐熱性が向上するので好ましい。また、チタン系酸化物としては、このような複合酸化物と上記酸化チタンとを混合したものであってもよい。すなわち、本発明でいうチタン系酸化物は、Tiを必須含有金属元素とする金属酸化物である。
【0011】
上記複合酸化物においては、Tiの含有量は、該複合酸化物全体中のTiと他の金属元素との合計重量に対して酸化物換算で5〜95重量%であることが好ましく、より好ましくは、20〜95重量%である。
チタン系酸化物の製造に関しては、特に限定はなく、通常公知の製造技術が適用される。具体的には、酸化チタンとしては、一般に市販されている塩素法や硫酸法などにより製造されたものや、可溶性チタン化合物から沈殿やスラリーを得、乾燥、焼成したものを用いることができる。複合酸化物については、沈殿法、酸化物混合法、混練法などの製法が適用でき、例えば、チタン化合物を含む水溶液またはスラリーと、モリブデン化合物および/またはタングステン化合物と、必要に応じてケイ素化合物と、を混合した後、水を除去する工程を含む製法により製造することが好ましい。チタン化合物を含む水溶液またはスラリーから水を除去する前(すなわち酸化チタンの結晶が生成する前)に、モリブデン化合物および/またはタングステン化合物と、必要に応じてケイ素化合物と、を加えることで、Ti−Mo複合酸化物、Ti−W複合酸化物、Ti−Si−W複合酸化物、Ti−Si−Mo複合酸化物、Ti−W−Mo複合酸化物、Ti−Si−W−Mo複合酸化物を容易に得ることができる。具体的には、以下の(1)〜(3)の調製方法を好ましく挙げることができるが、特にこれらに限定はされない。
【0012】
(1)パラモリブデン酸アンモニウムやモリブデン酸等のモリブデンの化合物および/またはパラタングステン酸アンモニウムやメタタングステン酸アンモニウム等のタングステンの化合物を水中に分散させ、アンモニア水を加える。得られたモリブデンおよび/またはタングステンの水溶液を撹拌しつつ、四塩化チタン、硫酸チタン、テトラアルコキシチタンなどの水溶性チタン化合物の液または水溶液を徐々に滴下し、スラリーを得る。これを濾過、洗浄し、さらに乾燥した後に高温で、好ましくは300〜600℃で、焼成させることによりTi−Mo複合酸化物、Ti−W複合酸化物、Ti−W−Mo複合酸化物が得られる。また、Ti−Si−W複合酸化物、Ti−Si−Mo複合酸化物、Ti−Si−W−Mo複合酸化物を得る場合は、モリブデンおよび/またはタングステンとアンモニアとの水溶液に予めシリカゾルを加えればよい。
【0013】
(2)水溶性チタン化合物の水溶液にアンモニア水、水等を加え加水分解してチタンの水酸化物を得る。これにモリブデンおよび/またはタングステンの水溶液を加え、混練しつつ水分を蒸発させて乾燥し、さらに高温で、好ましくは300〜600℃で、焼成させることによりTi−Mo複合酸化物、Ti−W複合酸化物、Ti−W−Mo複合酸化物が得られる。また、Ti−Si−W複合酸化物、Ti−Si−Mo複合酸化物、Ti−Si−W−Mo複合酸化物を得る場合は、上記チタン水酸化物へのモリブデンおよび/またはタングステンの水溶液の添加と同時にまたは順次、シリカゾルを上記チタン水酸化物に加えればよい。
【0014】
(3)メタチタン酸スラリーに、モリブデンおよび/またはタングステンの化合物を加え、混練しつつ水分を蒸発させて乾燥し、さらに高温で、好ましくは300〜600℃で、焼成させることによりTi−Mo複合酸化物、Ti−W複合酸化物、Ti−W−Mo複合酸化物が得られる。また、Ti−Si−W複合酸化物、Ti−Si−Mo複合酸化物、Ti−Si−W−Mo複合酸化物を得る場合は、上記メタチタン酸スラリーへのモリブデンおよび/またはタングステンの化合物の添加と際にシリカゾルを上記メタチタン酸スラリーに加えればよい。
これら(1)〜(3)の調製方法の中では、(1)の方法がより好ましい。
【0015】
金属酸化物を供給する原料として、予め用意された金属酸化物をそのまま使用するほかに、焼成によって酸化物を生成し得る材料が使用できる。具体的には、無機および有機のいずれの化合物でもよく、例えば、チタンやその他上記列挙した金属元素を含む水酸化物、アンモニウム塩、アンミン錯体、シュウ酸塩、ハロゲン化物、硫酸塩、硝酸塩、炭酸塩、アルコキシドなどを用いることができる。具体的には、チタン源としては、特に限定はされないが、例えば、四塩化チタン、硫酸チタンなどの無機チタン化合物や、シュウ酸チタン、テトライソプロピルチタネートなどの有機チタン化合物などを用いることができる。また、チタン源以外についても例示すると、ケイ素源としては、例えば、コロイド状シリカ、水ガラス、微粒子ケイ素、四塩化ケイ素、シリカゲル、シリカゾルなどの無機ケイ素化合物や、テトラエチルシリケートなどの有機ケイ素化合物などを用いることができる。モリブデン源としては、例えば、酸化モリブデン、パラモリブデン酸アンモニウム、モリブデン酸などを用いることができる。タングステン源としては、例えば、酸化タングステン、パラタングステン酸アンモニウム、メタタングステン酸アンモニウムなどを用いることができる。バナジウム源としては、例えば、酸化バナジウム、メタバナジン酸アンモニウム、硫酸バナジル、シュウ酸バナジウムなどを用いることができる。
【0016】
以下、本発明の有機ハロゲン化合物除去用触媒それぞれにおいて、有効成分として含むようにしている硫黄化合物、アルカリ金属含有化合物またはリン化合物について説明する。
機ハロゲン化合物除去用触媒では、硫黄化合物が硫黄原子換算百分率で0.01〜2重量%含まれていることを特徴とするが、好ましくは0.05〜2重量%、より好ましくは0.05〜1.0重量%である。0.01重量%未満の場合は、固体超強酸性の効果が得られないおそれがあり、2重量%を超える場合は、活性成分を被毒し触媒活性を低下させることとなるおそれがある。
【0017】
機ハロゲン化合物除去用触媒中に含まれる硫黄化合物は、硫酸根および亜硫酸根である。硫黄化合物は、触媒中に1種のみ含まれていても2種以上含まれていてもよい。硫黄化合物の供給原料としては、例えば、硫酸、亜硫酸、硫酸アンモニウム、亜硫酸アンモニウム、硫酸水素アンモニウム、亜硫酸水素アンモニウムなどを挙げることができる。
機ハロゲン化合物除去用触媒の調製方法としては、上記列挙した特定のチタン系酸化物を含有し、触媒中の硫黄化合物の含有量が上記範囲内となるようにすることのできる方法であればどのような方法であってもよく、例えば、チタン系酸化物を任意の形状に成形する工程において硫黄化合物を適当量添加して成形するようにしたり、チタン系酸化物を調製する際に硫酸塩などの出発原料を使用して所望量の硫黄化合物を含むようにしたり、また、通常の触媒製造に用いられている手段と同様にチタン系酸化物を硫黄化合物を含む液(好ましくは水溶液)に浸漬して所望量の硫黄化合物を含むようにする方法などが挙げられる。具体的には、(i)チタン系酸化物に硫酸や硫酸アンモニウム等の硫黄化合物を適当量添加して焼成する方法、(ii)硫酸チタンをチタン源に用いるとともに調製時の洗浄工程での洗浄水量や洗浄回数を適当に制御して得る方法などが好ましく、なかでも(ii)の方法がより好ましい。
【0023】
上記本発明の有機ハロゲン化合物除去用触媒においては、チタン系酸化物に活性成分としてバナジウムの酸化物、モリブデンの酸化物、タングステンの酸化物の金属酸化物から選ばれる少なくとも1種を用いることができる。
バナジウムの酸化物、タングステンの酸化物、モリブデンの酸化物を含める場合、本発明の触媒全体中において0.1〜25重量%であることが好ましく、より好ましくは0.1〜20重量%、さらに好ましくは0.1〜15重量%である。上記含有量が0.1重量%未満であると、活性成分としての効果が得られないおそれがあり、25重量%を超える場合は、コストが高くなる上、添加しただけの効果が得られないおそれがある。
【0024】
本発明の有機ハロゲン化合物除去用触媒に、バナジウムの酸化物を含める場合、その方法は、特に限定はされないが、具体的には、例えば、チタン系酸化物の粉末に、バナジウム源を含む水溶液を、一般にこの種の成形を行う際に用いられる有機または無機の成形助剤と共に加え、混合、混錬しつつ加熱して水分を蒸発させ、押出し可能なペースト状とし、これを押出し成形機でハニカム状等に成形し、その後、乾燥し空気中にて高温で焼成する方法が挙げられる。また、別の方法として、チタン系酸化物を、予め、球状、円柱状のペレット、格子状のハニカムなどの形に成形、焼成した後、バナジウム源を含む水溶液を含浸担持させる方法も挙げられる。また、チタン系酸化物の粉体と酸化バナジウムの粉体とを直接混練する方法も挙げられる。
【0025】
モリブデンの酸化物やタングステンの酸化物を含める場合の方法についても、上記バナジウムの酸化物と同様の方法であることが好ましい。
本発明の有機ハロゲン化合物除去用触媒においては、上記硫黄化合物、アルカリ金属含有化合物およびリン化合物といったいわゆる有効成分を、本発明の触媒の効果を妨げない範囲で、複数組み合わせて含むようにすることができ、さらには、例えば、硫黄化合物とアルカリ金属含有化合物との反応化合物なども本発明の触媒の効果を妨げない範囲で含むことができる。また、一般的には、微量の硫黄原子、リン原、アルカリ金属原子およびそれらの化合物ならびにそれら化合物同士の反応物などは、もともと触媒の材料成分にわずかに含まれていたり、触媒調製過程において若干含有されたりするため、触媒自身の不純物として極微量含まれ得るのが通常である。
【0026】
本発明の有機ハロゲン化合物除去用触媒の形状については、特に制限はなく、例えば、ハニカム状、板状、網状、円柱状、円筒状、波状(コルゲート)状、パイプ状、ドーナツ状等多様な形状にて使用できる。なお、上記のように多様な形状を有する触媒体は、例えば、押出し成形機などを用いて所望の形状とし焼成したような触媒組成物のみからなる一体成形体であってもよいし、また、所望の形状を有する耐熱基材上にチタン系酸化物を塗布して、コートし、焼成したようなものであってもよい。耐熱基材としては、例えば、ステンレス鋼などの金属やコージェライト、ムライト、SiC等のセラミックス、繊維状セラミックスを紙状素材に抄造したセラミックペーパーなどを、ハニカム状、板状、網状、円柱状、円筒状、波板(コルゲート)状、パイプ状、ドーナツ状、格子状、プレート状(波状プレートを複数積み重ねて隣り合うプレート同士の間に空間を設けるようにしてなる形状)、波状等の形状に加工したものを例示することができる。
【0027】
触媒は、通常、金属などで構成された容器状の触媒反応器に収容して使用される。触媒反応器には、排ガスの導入口と排出口が設けられ、内部に収容された触媒に排ガスが効率的に接触できるような構造を備えておくことが好ましい。
本発明の有機ハロゲン化合物除去用触媒は、有機ハロゲン化合物を含む各種排ガスの処理に好適に用いられる。具体的には、本発明の触媒は、産業廃棄物や都市廃棄物を処理する焼却施設から発生する、ダイオキシン等の有機ハロゲン化合物を含有する排ガスの処理に好適に用いられる。
本発明にかかる有機ハロゲン化合物除去方法(以下、本発明の有機ハロゲン化合物除去方法と称することがある。)は、上記本発明の有機ハロゲン化合物除去用触媒を用いてダイオキシン等の有機ハロゲン化合物を含む排ガスを処理する方法である
【0028】
本発明の触媒を用いて有機ハロゲン化合物の除去処理を行うには、本発明の触媒を、有機ハロゲン化合物を含む排ガスと接触させ、該排ガス中の有機ハロゲン化合物を分解除去する。中でも、有機ハロゲン化合物として、例えば、ポリハロゲン化ジベンゾダイオキシン、ポリハロゲン化ジベンゾフランおよびポリハロゲン化ビフェニルのうちの少なくとも1種(いわゆるダイオキシン類)を含む排ガスの処理に特に有用である。この際の条件については、特に制限がなく、この種の反応に一般的に用いられている条件で実施することができる。具体的には、排ガスの種類、性状、要求される有機ハロゲン化合物の分解率などを考慮して適宜決定すればよい。
【0029】
なお、本発明の触媒を用いて有機ハロゲン化合物の除去処理を行う場合の排ガスの空間速度は、通常、100〜100000Hr-1(STP)であり、好ましくは200〜50000Hr-1(STP)である。100Hr-1未満では、処理装置が大きくなりすぎるため非効率となり、一方100000Hr-1を超えると分解効率が低下する。また、その際の温度は、130〜500℃であることが好ましく、より好ましくは150〜400℃である。
【0030】
【実施例】
以下に、実施例により、本発明をさらに具体的に説明するが、本発明はこれらにより何ら限定されるものではない。なお、以下では、便宜上、「重量部」を単に「部」と記すことがある。また、「重量%」を単に「wt%」と記すことがある。
「硫黄化合物を含む有機ハロゲン化合物除去用触媒」
参考例1−1
酸化チタンを次のように調製した。工業用アンモニア水(25wt%NH含有)121kgと水86リットルの混合溶液に硫酸チタニル硫酸溶液(テイカ社製、TiOとして70g/リットル、HSOとして287g/リットル含有)257リットルを、撹拌しながら徐々に滴下し、沈殿を生成させた。このスラリーを約24時間静置したのち、スラリー液量と3倍量の水で洗浄した後、濾過し、100℃で1時間乾燥させた。さらに、空気雰囲気下、550℃で4時間焼成し、更にハンマーミルを用いて粉砕し、分級機で分級し平均粒子径10μmの粉体を得た。このようにして調製した酸化チタンの組成は、TiO:S=99.5:0.5(重量比)であった。
【0031】
次に、8リットルの水にメタバナジン酸アンモニウム1.29Kgとシュウ酸1.67kgさらにモノエタノールアミン0.4kgを混合し、溶解させ、均一溶液を調製した。先に調製した酸化チタン粉体19kgをニーダーに投入後、成形助剤とともにバナジウム含有溶液を加え、よく撹拌した。さらに適量の水を加えつつブレンダーでよく混合した後、連続ニーダーで十分混錬りし、外形80mm、目開き4mm、肉厚1mm、長さ500mmのハニカム状に押出し成形した。得られた成形物を60℃で乾燥後、空気雰囲気下、450℃で5時間焼成して触媒Aを得た。この触媒の組成は、TiO2:S:V25=94.55:0.45:5(重量比)であった。
【0032】
なお、酸化物の分析および触媒組成の分析は、蛍光X線分析により行った。具体的には下記条件にて行った。また、以下のすべての実施例、参考例および参考比較例においても同様の分析方法を採用した。
分析装置:(株)リガク製のRIX2000
分析時の試料雰囲気:真空
試料スピン速度:60rpm
X線源:Rh管球
参考例1−2
参考例1−1おいて、スラリー液量に対して5倍量の洗浄水量で洗浄するようにした以外は参考例1−1と同様の方法で調製して、触媒Bを得た。
【0033】
得られた触媒Bの硫黄分は、0.05重量%であった。
参考例1−3
参考例1−1おいて、スラリー液量に対して2倍量の洗浄水量で洗浄するようにした以外は参考例1−1と同様の方法で調製して、触媒Cを得た。
得られた触媒Cの硫黄分は、1.2重量%であった。
参考例1−4
チタン−モリブデン複合酸化物を次のように調製した。工業用アンモニア水(25wt%NH含有)97kgと水110リットルの混合溶液に、モリブデン酸粉末2.25kgを加え、よく撹拌し、モリブデン酸を完全に溶解させ、均一溶液を調製した。この溶液に硫酸チタニル硫酸溶液(テイカ社製、TiOとして70g/リットル、HSOとして287g/リットル含有)257リットルを、撹拌しながら徐々に滴下し、沈殿を生成させた。この共沈スラリーを約24時間静置したのち、共沈スラリー液量と3倍量の水で洗浄した後、濾過し、100℃で1時間乾燥させた。さらに、空気雰囲気下、550℃で4時間焼成し、更にハンマーミルを用いて粉砕し、分級機で分級し平均粒子径10μmの粉体を得た。このようにして調製したチタン−モリブデン複合酸化物の組成は、TiO:MoO:S=89.2:10:0.8(重量比)であった。
【0034】
次に、8リットルの水にメタバナジン酸アンモニウム1.29kgとシュウ酸1.67kgさらにモノエタノールアミン0.4kgを混合し、溶解させ、均一溶液を調製した。先に調製したチタン−モリブデン複合酸化物粉体19kgをニーダーに投入後、成形助剤とともにバナジウム含有溶液を加え、よく撹拌した。さらに適量の水を加えつつブレンダーでよく混合した後、連続ニーダーで十分混錬りし、外形80mm、目開き4mm、肉厚1mm、長さ500mmのハニカム状に押出し成形した。得られた成形物を60℃で乾燥後、空気雰囲気下、450℃で5時間焼成して触媒Dを得た。この触媒の組成は、TiO2:MoO3:S:V25=84.8:9.5:0.7:5(重量比)であった。
【0035】
参考例1−5
参考例1−において、モリブデン酸の代わりにパラタングステン酸アンモニウム粉末2.33kgを添加し、チタン−タングステン複合酸化物を調製し、それ以外は同様の方法で触媒Eを調製した。この触媒の組成は、TiO:WO:S:V=84.9:9.5:0.6:5(重量比)であった。
実施例1−
チタン−シリカ−モリブデン複合酸化物を次のように調製した。シリカゾル(スノーテックス−30、日産化学社製、SiO換算30wt%含有)6.67kgと工業用アンモニア水(25wt%NH含有)89kgと水105リットルの混合溶液に、モリブデン酸粉末2.25kgを加え、よく撹拌し、モリブデン酸を完全に溶解させ、均一溶液を調製した。この溶液に硫酸チタニル硫酸溶液(テイカ社製、TiOとして70g/リットル、HSOとして287g/リットル含有)229リットルを、撹拌しながら徐々に滴下し、沈殿を生成させた。この共沈スラリーを約24時間静置したのち、共沈スラリー液量と3倍量の水で洗浄した後、濾過し、100℃で1時間乾燥させた。さらに、空気雰囲気下、550℃で4時間焼成し、更にハンマーミルを用いて粉砕し、分級機で分級し平均粒子径10μmの粉体を得た。このようにして調製したチタン−シリカ−モリブデン複合酸化物の組成は、TiO:SiO:MoO:S=79.3:10:10:0.7(重量比)であった。
【0036】
チタン−シリカ−モリブデン複合酸化物を用いた以外は、参考例1−1と同様の調製方法で触媒Fを調製した。この触媒の組成は、TiO:SiO:MoO:S:V=75.3:9.5:9.5:0.7:5(重量比)であった。
参考例1−
実施例1−において、モリブデン酸の代わりにパラタングステン酸アンモニウム粉末2.33kgを添加し、チタン−シリカ−タングステン複合酸化物を調製し、それ以外は同様の方法で触媒Gを調製した。この触媒の組成は、TiO:SiO:WO:S:V=75.4:9.5:9.5:0.6:5(重量比)であった。
【0037】
参考比較例1−1
参考例1−1で調製した触媒について、洗浄水の温度を60℃とし、スラリー液量に対して10倍量の洗浄水量で洗浄した以外は同様の方法で調製して、触媒A−1を調製した。この触媒の硫黄分は、0.002重量%であった。
参考比較例1−2
参考例1−1で調製した触媒について、スラリー液量に対して同量の洗浄水量で洗浄した以外は同様の方法で調製して、それぞれ触媒A−2を調製した。この触媒の硫黄分は、2.5重量%であった。
〔有機塩素化合物の分解除去処理〕
触媒A〜触媒G、触媒A−1および触媒A−2を用いて下記の条件で有機ハロゲン化合物の分解除去処理を行った。処理対象となる有機ハロゲン化合物としてはクロロトエルエン(以下、CTと略す)を用いた。
【0038】
CT分解率は下記の式に従って求めた。
CT分解率(%)=[(反応器入口CT濃度)−(反応器出口CT濃度)]÷(反応器入口CT濃度)×100
<CT分解反応ガス組成、反応条件>
CT:30ppm、NOx:200ppm、SO2:5ppm、NH3:140ppm、O2:10%、H2O:15%、N2:バランス、ガス温度180℃、空間速度:3000Hr-1
得られたCT分解率を表1に示す。
【0039】
【表1】
Figure 0004173707
【0040】
「アルカリ金属含有化合物を含む有機ハロゲン化合物除去用触媒」
参考例2−1
酸化チタンを次のように調製した。工業用アンモニア水(25wt%NH含有)121kgと水86リットルの混合溶液に硫酸チタニル硫酸溶液(テイカ社製、TiOとして70g/リットル、HSOとして287g/リットル含有)257リットルを、撹拌しながら徐々に滴下し、沈殿を生成させた。このスラリーを約24時間静置したのち、洗浄、濾過し、100℃で1時間乾燥させた。さらに、空気雰囲気下、550℃で4時間焼成し、更にハンマーミルを用いて粉砕し、分級機で分級し平均粒子径10μmの粉体を得た。
【0041】
次に、8リットルの水にメタバナジン酸アンモニウム1.29kgとシュウ酸1.67kgさらにモノエタノールアミン0.4kgを混合し、溶解させ、均一溶液を調製した。先に調製した酸化チタン粉体19kgをニーダーに投入後、成形助剤とともにバナジウム含有溶液を加え、よく混練りした。次に0.072kgの炭酸ナトリウムと適量の水を加えつつブレンダーでよく混合した後、連続ニーダーで十分混錬りし、外形80mm、目開き4mm、肉厚1mm、長さ500mmのハニカム状に押出し成形した。得られた成形物を60℃で乾燥後、空気雰囲気下、450℃で5時間焼成して触媒Hを得た。この触媒の組成は、TiO2:V25:Na=94.9:5:0.1(重量比)であった。
【0042】
参考例2−2
参考例2−1において、炭酸ナトリウムを0.036kg添加するようにした以外は参考−1と同様に調製して、触媒Iを得た。
得られた触媒IのNa含有量は、0.05重量%であった。
参考例2−3
参考例2−1において、炭酸ナトリウムを0.18kg添加するようにした以外は参考−1と同様に調製して、触媒Jを得た。
得られた触媒JのNa含有量は、0.25重量%であった。
【0043】
参考例2−4
参考例2−1において、炭酸ナトリウムを0.36kg添加するようにした以外は参考−1と同様に調製して、触媒Kを得た。
得られた触媒KのNa含有量は、0.5重量%であった。
参考例2−5
チタン−モリブデン複合酸化物を次のように調製した。工業用アンモニア水(25wt%NH含有)97kgと水110リットルの混合溶液に、モリブデン酸粉末2.25kgを加え、よく撹拌し、モリブデン酸を完全に溶解させ、均一溶液を調製した。この溶液に硫酸チタニル硫酸溶液(テイカ社製、TiOとして70g/リットル、HSOとして287g/リットル含有)257リットルを、撹拌しながら徐々に滴下し、沈殿を生成させた。この共沈スラリーを約24時間静置したのち、洗浄、濾過し、100℃で1時間乾燥させた。さらに、空気雰囲気下、550℃で4時間焼成し、更にハンマーミルを用いて粉砕し、分級機で分級し平均粒子径10μmの粉体を得た。このようにして調製したチタン−モリブデン複合酸化物の組成は、TiO:MoO=90:10(重量比)であった。
【0044】
次に、8リットルの水にメタバナジン酸アンモニウム1.29kgとシュウ酸1.67kgさらにモノエタノールアミン0.4kgを混合し、溶解させ、均一溶液を調製した。先に調製したチタン−モリブデン複合酸化物粉体19kgをニーダーに投入後、成形助剤とともにバナジウム含有溶液を加え、よく混練りした。次に0.072kgの炭酸ナトリウムと適量の水を加えつつブレンダーでよく混合した後、連続ニーダーで十分混錬りし、外形80mm、目開き4mm、肉厚1mm、長さ500mmのハニカム状に押出し成形した。得られた成形物を60℃で乾燥後、空気雰囲気下、450℃で5時間焼成して触媒Lを得た。この触媒の組成は、TiO2:MoO3:V25:Na=85.4:9.5:5:0.1(重量比)であった。
【0045】
参考例2−6
参考例2−において、モリブデン酸の代わりにパラタングステン酸アンモニウム粉末2.33kgを添加し、チタン−タングステン複合酸化物を調製し、それ以外は同様の方法で触媒Mを調製した。この触媒の組成は、TiO:WO:V:Na=85.4:9.5:5:0.1(重量比)であった。
参考例2−7
チタン−シリカ−モリブデン複合酸化物を次のように調製した。シリカゾル(スノーテックス−30、日産化学社製、SiO換算30wt%含有)6.67kgと工業用アンモニア水(25wt%NH含有)89kgと水105リットルの混合溶液に、モリブデン酸粉末2.25kgを加え、よく撹拌し、モリブデン酸を完全に溶解させ、均一溶液を調製した。この溶液に硫酸チタニル硫酸溶液(テイカ社製、TiOとして70g/リットル、HSOとして287g/リットル含有)229リットルを、撹拌しながら徐々に滴下し、沈殿を生成させた。この共沈スラリーを約24時間静置したのち、洗浄、濾過し、100℃で1時間乾燥させた。さらに、空気雰囲気下、550℃で4時間焼成し、更にハンマーミルを用いて粉砕し、分級機で分級し平均粒子径10μmの粉体を得た。このようにして調製したチタン−シリカ−モリブデン複合酸化物の組成は、TiO:SiO:MoO=80:10:10(重量比)であった。
【0046】
チタン−シリカ−モリブデン複合酸化物を用いた以外は、参考例2−1と同様の調製方法で触媒Nを調製した。この触媒の組成は、TiO:SiO:MoO:V:Na=75.9:9.5:9.5:5:0.1(重量比)であった。
参考例2−8
参考例2−において、モリブデン酸の代わりにパラタングステン酸アンモニウム粉末2.33kgを添加し、チタン−シリカ−タングステン複合酸化物を調製し、それ以外は同様の方法で触媒Oを調製した。この触媒の組成は、TiO:SiO:WO:V:Na=75.9:9.5:9.5:5:0.1(重量比)であった。
【0047】
参考例2−9
参考例2−4において、炭酸ナトリウムの代わりに炭酸カリウムを用いた以外は同様の方法で触媒Pを調製した。この触媒の組成は、TiO:SiO:WO:V:K=75.9:9.5:9.5:5:0.1(重量比)であった。
参考比較例2−1
参考例2−1で調製した触媒について、炭酸ナトリウムを添加しないこと以外は同様の方法で、触媒H−1を調製した。この触媒のNaとKの合計含有量は、0.007重量%であった。
【0048】
参考比較例2−2
参考例2−1で調製した触媒について、炭酸ナトリウムを2.16kg添加するようにした以外は同様の方法で、触媒H−2を調製した。この触媒のNaの含有量は3重量%であった。
〔有機塩素化合物の分解除去処理〕
触媒H〜触媒P、触媒H−1および触媒H−2を用いて下記の条件で有機ハロゲン化合物の分解除去処理を行った。また、同様の条件で連続してガスを流通し、1000時間後、2000時間後の有機ハロゲン化合物分解活性を測定した。処理対象となる有機ハロゲン化合物としてはクロロトエルエン(以下、CTと略す)を用いた。
【0049】
CT分解率は下記の式に従って求めた。
CT分解率(%)=[(反応器入口CT濃度)−(反応器出口CT濃度)]÷(反応器入口CT濃度)×100
<CT分解反応ガス組成、反応条件>
CT:30ppm、NOx:200ppm、SO2:5ppm、NH3:140ppm、O2:10%、H2O:15%、N2:バランス、ガス温度185℃、空間速度:3000Hr-1
得られたCT分解率を表2に示した。
【0050】
【表2】
Figure 0004173707
【0051】
「リン化合物を含む有機ハロゲン化合物除去用触媒」
参考例3−1
酸化チタンを次のように調製した。工業用アンモニア水(25wt%NH含有)121kgと水86リットルの混合溶液に硫酸チタニル硫酸溶液(テイカ社製、TiOとして70g/リットル、HSOとして287g/リットル含有)257リットルを、撹拌しながら徐々に滴下し、沈殿を生成させた。このスラリーを約24時間静置したのち、洗浄、濾過し、100℃で1時間乾燥させた。さらに、空気雰囲気下、550℃で4時間焼成し、更にハンマーミルを用いて粉砕し、分級機で分級し平均粒子径10μmの粉体を得た。
【0052】
次に、8リットルの水にメタバナジン酸アンモニウム1.29kgとシュウ酸1.67kgさらにモノエタノールアミン0.4kgを混合し、溶解させ、均一溶液を調製した。先に調製した酸化チタン粉体19kgをニーダーに投入後、成形助剤とともにバナジウム含有溶液を加え、よく混練りした。次に0.017kgのオルトリン酸(H3PO4として75wt%含有)と適量の水を加えつつブレンダーでよく混合した後、連続ニーダーで十分混錬りし、外形80mm、目開き4mm、肉厚1mm、長さ500mmのハニカム状に押出し成形した。得られた成形物を60℃で乾燥後、空気雰囲気下、480℃で5時間焼成して触媒Qを得た。この触媒の組成は、TiO2:V25:P=94.99:98.5:0.02(重量比)であった。
【0053】
参考例3−2
参考例3−1において、オルトリン酸を0.068kg添加するようにした以外は同様の方法で調製して、触媒Rを得た。
得られた触媒RのP含有量は、0.08重量%であった。
参考例3−3
参考例3−1において、オルトリン酸を0.128kg添加するようにした以外は同様の方法で調製して、触媒Sを得た。
得られた触媒SのP含有量は、0.15重量%であった。
【0054】
参考例3−4
参考例3−1において、オルトリン酸を0.149kg添加するようにした以外は同様の方法で調製して、触媒Tを得た。
得られた触媒SのP含有量は、0.175重量%であった。
参考例3−5
チタン−モリブデン複合酸化物を次のように調製した。工業用アンモニア水(25wt%NH含有)97kgと水110リットルの混合溶液に、モリブデン酸粉末2.25kgを加え、よく撹拌し、モリブデン酸を完全に溶解させ、均一溶液を調製した。この溶液に硫酸チタニル硫酸溶液(テイカ社製、TiOとして70g/リットル、HSOとして287g/リットル含有)257リットルを、撹拌しながら徐々に滴下し、沈殿を生成させた。この共沈スラリーを約24時間静置したのち、洗浄、濾過し、100℃で1時間乾燥させた。さらに、空気雰囲気下、550℃で4時間焼成し、更にハンマーミルを用いて粉砕し、分級機で分級し平均粒子径10μmの粉体を得た。このようにして調製したチタン−モリブデン複合酸化物の組成は、TiO:MoO=90:10(重量比)であった。
【0055】
次に、8リットルの水にメタバナジン酸アンモニウム1.29kgとシュウ酸1.67kgさらにモノエタノールアミン0.4kgを混合し、溶解させ、均一溶液を調製した。先に調製したチタン−モリブデン複合酸化物粉体19kgをニーダーに投入後、成形助剤とともにバナジウム含有溶液を加え、よく混練りした。次に0.017kgのオルトリン酸(H3PO4として75wt%含有)と適量の水を加えつつブレンダーでよく混合した後、連続ニーダーで十分混錬りし、外形80mm、目開き4mm、肉厚1mm、長さ500mmのハニカム状に押出し成形した。得られた成形物を60℃で乾燥後、空気雰囲気下、480℃で5時間焼成して触媒Uを得た。この触媒の組成は、TiO2:MoO3:V25:P=85.48:9.5:5:0.02(重量比)であった。
【0056】
参考例3−6
参考例3−において、モリブデン酸の代わりにパラタングステン酸アンモニウム粉末2.33kgを添加し、チタン−タングステン複合酸化物を調製し、それ以外は同様の方法で触媒Vを調製した。この触媒の組成は、TiO:WO:V:P=85.48:9.5:5:0.02(重量比)であった。
参考例3−7
チタン−シリカ−モリブデン複合酸化物を次のように調製した。シリカゾル(スノーテックス−30、日産化学社製、SiO換算30wt%含有)6.67kgと工業用アンモニア水(25wt%NH含有)89kgと水105リットルの混合溶液に、モリブデン酸粉末2.25kgを加え、よく撹拌し、モリブデン酸を完全に溶解させ、均一溶液を調製した。この溶液に硫酸チタニル硫酸溶液(テイカ社製、TiOとして70g/リットル、HSOとして287g/リットル含有)229リットルを、撹拌しながら徐々に滴下し、沈殿を生成させた。この共沈スラリーを約24時間静置したのち、洗浄、濾過し、100℃で1時間乾燥させた。さらに、空気雰囲気下、550℃で4時間焼成し、更にハンマーミルを用いて粉砕し、分級機で分級し平均粒子径10μmの粉体を得た。このようにして調製したチタン−シリカ−モリブデン複合酸化物の組成は、TiO:SiO:MoO=80:10:10(重量比)であった。
【0057】
チタン−シリカ−モリブデン複合酸化物を用いた以外は、参考例3−1と同様の調製方法で触媒Wを調製した。この触媒の組成は、TiO:SiO:MoO:V:P=75.98:9.5:9.5:5:0.02(重量比)であった。
参考例3−8
参考例3−において、モリブデン酸の代わりにパラタングステン酸アンモニウム粉末2.33kgを添加し、チタン−シリカ−タングステン複合酸化物を調製し、それ以外は同様の方法で触媒Xを調製した。この触媒の組成は、TiO:SiO:WO:V:P=75.98:9.5:9.5:5:0.02(重量比)であった。
【0058】
参考比較例3−1
参考例3−1で調製した触媒について、オルトリン酸を添加しないこと以外は同様の方法で、触媒Q−1を調製した。この触媒のPの含有量は、0.001、重量%であった。
参考比較例3−2
参考例3−1で調製した触媒について、オルトリン酸を0.425kg添加するようにした以外は同様の方法で、触媒Q−2を調製した。この触媒のPの含有量は、0.5重量%であった。
〔有機塩素化合物の分解除去処理〕
触媒Q〜触媒W、触媒Q−1および触媒Q−2を用いて下記の条件で有機ハロゲン化合物の分解除去処理を行った。処理対象となる有機ハロゲン化合物としてはクロロトエルエン(以下、CTと略す)を用いた。
【0059】
CT分解率は下記の式に従って求めた。
CT分解率(%)=[(反応器入口CT濃度)−(反応器出口CT濃度)]÷(反応器入口CT濃度)×100
<CT分解反応ガス組成、反応条件>
CT:30ppm、NOx:200ppm、SO2:50ppm、NH3:140ppm、O2:10%、H2O:15%、N2:バランス、ガス温度185℃、空間速度:3000Hr-1
得られたCT分解率を表3に示した。
【0060】
【表3】
Figure 0004173707
【0061】
【発明の効果】
本発明によれば、排ガス中のダイオキシン類等の有機ハロゲン化合物を効率良く除去することのできる有機ハロゲン化合物除去用触媒、および、それを用いた有機ハロゲン化合物除去方法を提供することができる。

Claims (3)

  1. 排ガス中の有機ハロゲン化合物を除去する際に用いる触媒であって、Ti−Si−Mo複合酸化物を主成分とし、硫黄化合物が硫黄原子換算百分率で0.01〜2重量%含まれているとともにバナジウムの酸化物が0.1〜20重量%含まれていることを特徴とする、有機ハロゲン化合物除去用触媒。
  2. 前記硫黄化合物が、Ti−Si−Mo複合酸化物の出発原料としてチタンの硫酸塩を用いたことによって含まれるものであり、かつ、複合酸化物の調製時の洗浄工程における洗浄水量および/または洗浄回数の制御により硫黄化合物の含有量が前記範囲となっている、請求項1に記載の有機ハロゲン化合物除去用触媒。
  3. 請求項1または2に記載の触媒を用いて排ガス中の有機ハロゲン化合物を除去する、有機ハロゲン化合物除去方法。
JP2002262062A 2002-09-06 2002-09-06 有機ハロゲン化合物除去用触媒および有機ハロゲン化合物除去方法 Expired - Fee Related JP4173707B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002262062A JP4173707B2 (ja) 2002-09-06 2002-09-06 有機ハロゲン化合物除去用触媒および有機ハロゲン化合物除去方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002262062A JP4173707B2 (ja) 2002-09-06 2002-09-06 有機ハロゲン化合物除去用触媒および有機ハロゲン化合物除去方法

Publications (2)

Publication Number Publication Date
JP2004097914A JP2004097914A (ja) 2004-04-02
JP4173707B2 true JP4173707B2 (ja) 2008-10-29

Family

ID=32262238

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002262062A Expired - Fee Related JP4173707B2 (ja) 2002-09-06 2002-09-06 有機ハロゲン化合物除去用触媒および有機ハロゲン化合物除去方法

Country Status (1)

Country Link
JP (1) JP4173707B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4902969B2 (ja) * 2005-06-08 2012-03-21 研一 秋鹿 クロロフルオロカーボンの分解処理方法およびそのための分解処理剤
JP2017177051A (ja) * 2016-03-31 2017-10-05 株式会社日本触媒 排ガス処理触媒および排ガス処理方法

Also Published As

Publication number Publication date
JP2004097914A (ja) 2004-04-02

Similar Documents

Publication Publication Date Title
JP4098703B2 (ja) 窒素酸化物除去用触媒および窒素酸化物除去方法
JP3648125B2 (ja) 有機ハロゲン化合物の除去用触媒および有機ハロゲン化合物の除去方法
JPH0796185A (ja) 窒素酸化物類除去用触媒に用いる混合酸化物粉末の製造方法
JPWO2006132097A1 (ja) チタン酸化物、排ガス処理用触媒および排ガスの浄化方法
JP2005125211A (ja) 排ガス処理方法
JP2004000943A (ja) ハニカム状排ガス処理触媒用二酸化チタン粉末およびその二酸化チタン粉末を使用したハニカム状排ガス処理触媒
JP2008024565A (ja) 改質酸化チタン粒子およびその製造方法、並びにこの改質酸化チタン粒子を使用した排ガス処理用触媒
KR100456748B1 (ko) 배기가스 처리용 촉매, 그 제조방법 및 배기가스 처리방법
JP4822740B2 (ja) 排ガス処理触媒および排ガス処理方法
JP2006255641A (ja) 排ガス処理触媒、その製造方法および排ガス処理方法
JP4173707B2 (ja) 有機ハロゲン化合物除去用触媒および有機ハロゲン化合物除去方法
JP3860707B2 (ja) 燃焼排ガスの処理方法
JP3893014B2 (ja) 排ガス処理用触媒、その製造方法および排ガス処理方法
JP3785310B2 (ja) 有機ハロゲン化合物分解触媒、その製造方法、および用途
JP3860708B2 (ja) 燃焼排ガスの処理方法
JP4098698B2 (ja) 排ガス処理方法
JP3860734B2 (ja) 排ガス処理用触媒、および排ガス処理方法
JP3739659B2 (ja) 排ガス処理用触媒、排ガスの処理方法、および排ガス処理用触媒の製造方法
JP3739032B2 (ja) 有機ハロゲン化合物の除去用触媒、その製造方法および有機ハロゲン化合物の除去方法
JP4283092B2 (ja) 排ガス処理用触媒および排ガス処理方法
JP3984122B2 (ja) 脱硝触媒、脱硝方法および脱硝触媒の製造方法
JP2006116537A (ja) 排ガスの処理方法
JP3920612B2 (ja) 排ガス処理方法
JP3984121B2 (ja) 排ガス処理触媒およびその触媒を用いた排ガス処理方法
JP6016572B2 (ja) 排ガス処理触媒および排ガス処理方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071003

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071016

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080205

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080331

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080708

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080715

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080812

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080814

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110822

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees