JP4172269B2 - 蓄熱装置を備えた内燃機関 - Google Patents

蓄熱装置を備えた内燃機関 Download PDF

Info

Publication number
JP4172269B2
JP4172269B2 JP2002380541A JP2002380541A JP4172269B2 JP 4172269 B2 JP4172269 B2 JP 4172269B2 JP 2002380541 A JP2002380541 A JP 2002380541A JP 2002380541 A JP2002380541 A JP 2002380541A JP 4172269 B2 JP4172269 B2 JP 4172269B2
Authority
JP
Japan
Prior art keywords
engine
internal combustion
value
combustion engine
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002380541A
Other languages
English (en)
Other versions
JP2004211573A (ja
Inventor
泰広 久世
孝之 大塚
宏樹 一瀬
錬太郎 黒木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2002380541A priority Critical patent/JP4172269B2/ja
Publication of JP2004211573A publication Critical patent/JP2004211573A/ja
Application granted granted Critical
Publication of JP4172269B2 publication Critical patent/JP4172269B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Combined Controls Of Internal Combustion Engines (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、内燃機関を循環する熱媒体が持つ熱を蓄熱する蓄熱装置を有する内燃機関に関する。
【0002】
【従来の技術】
自動車などに搭載される内燃機関が冷間状態で始動される場合には、吸気ポートや燃焼室等の壁面温度が低くなるため、燃料が霧化し難くなるとともに燃焼室の周縁部において消炎が発生し易くなり、始動性の低下や排気エミッションの悪化などが誘発される。
【0003】
このような問題に対し従来では、水冷式内燃機関において、冷却水が持つ熱を蓄熱する蓄熱タンクと、内燃機関が冷間始動されるときに前記蓄熱タンク内の冷却水(温水)を内燃機関に循環させる機構とを備えた蓄熱装置が提案されている。
【0004】
一方、近年の車両用内燃機関では、燃料噴射弁、点火栓、吸気絞り弁(スロットル弁)等に代表される様々な機関構成要素の電子制御化が進められており、そのような電子制御に係る制御値を決定するためのパラメータとして、内燃機関を循環する冷却水の温度が用いられる場合がある。
【0005】
例えば、燃料噴射制御や点火制御では、機関回転数や機関負荷などをパラメータとして基本燃料噴射量や基本点火時期が算出されるとともに、冷却水温度に応じた補正値(水温補正値)が算出される。続いて、基本燃料噴射量や基本点火時期に水温補正値が加算されて最終的な燃料噴射量や点火時期が決定される。
【0006】
ところで、上記したような電子制御技術と蓄熱システムとが組み合わされる場合には、内燃機関を循環する冷却水の温度に加え、蓄熱タンクにて蓄熱された冷却水の温度も考慮して制御値を決定する必要がある。
【0007】
これは、蓄熱タンクにて蓄熱された温水が内燃機関へ供給されると、内燃機関側の冷却水温度が急速に上昇するのに対し、冷却水の温度を検出するための水温センサが冷却水温度の急速な上昇に追従することができなくなる、いわゆる応答遅れが発生するためである。
【0008】
このような要求に対し従来では、内燃機関を冷却するための冷却水の一部を導入して該冷却水を蓄熱状態で保管する蓄熱器を備えた内燃機関において、蓄熱器の内部若しくは蓄熱器の出口付近における冷却水の温度を検出する温度センサと、内燃機関の低温始動時に前記温度センサの検出温度が所定温度より高ければ始動時燃料増量補正量およびまたは暖機時燃料増量補正量を減量側に修正する補正指令手段とを備えたものが提案されている(例えば、特許文献1を参照。)。
【0009】
【特許文献1】
特開平10−37785号公報
【発明が解決しようとする課題】
ところで、上記した従来の技術は内燃機関の低温始動時における蓄熱器の冷却水温度が所定温度より高いか否かを基準にして燃料増量補正量を変更しているのみであるため、内燃機関の実際の温度が燃料噴射補正量に反映されていない。従って、上記した従来の技術が精度の高い燃料噴射制御を実現しているとは言い難い。
【0010】
本発明は、上記したような事情に鑑みてなされたものであり、蓄熱装置を有する内燃機関において、冷却水に代表される熱媒体の状態をパラメータとした内燃機関の制御精度を向上させることを目的とする。
【0011】
【課題を解決するための手段】
本発明の要旨は、蓄熱タンクに保温貯蔵された熱媒体(以下、保温熱媒体と記す)が内燃機関へ供給されている場合に、内燃機関を流通する熱媒体温度(以下、機関側熱媒体温度と記す)と保温熱媒体の温度とに基づいて蓄熱タンクから内燃機関へ供給される熱媒体の流量を推定し、その熱媒体流量の推定値と機関側熱媒体温度と保温熱媒体温度とをパラメータとして内燃機関を制御する技術において、熱媒体流量の推定値にガード値を設定する点にある。
【0012】
そこで、本発明にかかる蓄熱装置を備えた内燃機関は、内燃機関を流通する熱媒体の温度を検出する機関側温度検出手段と、蓄熱タンクの内部又は出口における熱媒体の温度を検出するタンク側温度検出手段と、蓄熱タンクから内燃機関へ熱媒体が供給されるときに、前記機関側温度検出手段の検出値及び前記タンク側温度検出手段の検出値に基づいて蓄熱タンクから内燃機関へ供給される熱媒体の流量を推定する熱媒体流量推定手段と、前記熱媒体流量推定手段の推定値が特定値以下であるときは前記推定値を熱媒体の流量として設定し、前記熱媒体流量推定手段の推定値が特定値を越えるときは前記特定値を熱媒体の流量として設定する熱媒体流量ガード手段と、前記機関側温度検出手段の検出値、前記タンク側温度検出手段の検出値、及び前記熱媒体流量ガード手段の設定値に従って内燃機関の制御に係る制御値を決定する制御値決定手段と、を備えるようにした。
【0013】
蓄熱タンク内の保温熱媒体が内燃機関へ供給されているときは、保温熱媒体の熱により内燃機関が急速に昇温することになる。その際の内燃機関の温度上昇速度は、例えば、保温熱媒体の供給前における機関側熱媒体温度と保温熱媒体温度との差が大きくなるほど速くなり、逆に保温熱媒体供給前における機関側熱媒体温度と保温熱媒体温度との差が小さくなるほど遅くなる。
【0014】
つまり、蓄熱タンクから内燃機関へ保温熱媒体が供給されている状況下における内燃機関の温度には、保温熱媒体供給前における機関側熱媒体温度と保温熱媒体温度との相対関係が深く関与していると言える。
【0015】
更に、蓄熱タンクから内燃機関へ保温熱媒体が供給されている状況下では、蓄熱タンクから内燃機関へ供給される保温熱媒体の流量が多くなるほど内燃機関の温度上昇速度が速くなり、蓄熱タンクから内燃機関へ供給される保温熱媒体の流量が少なくなるほど内燃機関の温度上昇速度が遅くなる。
【0016】
このため、蓄熱タンクから内燃機関へ保温熱媒体が供給されている状況下での内燃機関の温度には、蓄熱タンクから内燃機関へ供給される保温熱媒体の流量(以下、保温熱媒体流量と記す)も相関があると言える。
【0017】
従って、蓄熱タンクから内燃機関へ保温熱媒体が供給されているときの内燃機関の温度は、機関側熱媒体温度と保温熱媒体温度と保温熱媒体流量とに相関があると言える。
【0018】
ここで、上記した保温熱媒体流量は、蓄熱タンクから流出した保温熱媒体が内燃機関へ到達するまでの所要時間から推定することができる。
【0019】
蓄熱タンクから熱媒体が流出する時には、蓄熱タンク内に低温の熱媒体が流入して蓄熱タンク内の保温熱媒体を押出することになるため、蓄熱タンク出口の熱媒体温度が上昇すると同時に蓄熱タンク内の熱媒体温度が低下する。
【0020】
従って、蓄熱タンクから熱媒体が流出した時期(以下、保温熱媒体流出時期と記す)を特定する方法としては、蓄熱タンクの出口に温度センサを配置して温度センサの検出値が上昇した時期を保温熱媒体流出時期とみなす方法、或いは、蓄熱タンク内に温度センサを配置して温度センサの検出値が低下した時期を保温熱媒体流出時期とみなす方法などを例示することができる。
【0021】
また、蓄熱タンクから流出した保温熱媒体が内燃機関へ到達した時期(以下、保温熱媒体到達時期と記す)を特定する方法としては、内燃機関を流通する熱媒体の温度が上昇した時期を保温熱媒体到達時期とみなす方法を例示することができる。
【0022】
ところで、上記したような方法により保温熱媒体到達時期を特定する場合に、蓄熱タンクから内燃機関へ至る経路の一部に機関側熱媒体温度より高い温度の熱媒体が存在していると、その高温な熱媒体が内燃機関へ流入した時期が保温熱媒体到達時期と誤判定される可能性がある。
【0023】
すなわち、蓄熱タンクから流出した保温熱媒体が内燃機関に到達していないにも関わらず、蓄熱タンクからの保温熱媒体が内燃機関に到達したと誤判定される可能性がある。
【0024】
このような誤判定が発生すると、熱媒体流量推定手段により推定される保温熱媒体流量(以下、保温熱媒体流量推定値と記す)が実際の保温熱媒体流量(以下、実保温熱媒体流量と記す)より多くなり、内燃機関の温度が実際の温度より高いとみなされることが想定される。このような場合に、機関側熱媒体温度と保温熱媒体温度と保温熱媒体流量推定値とに基づいて内燃機関の制御にかかる制御値が決定されると、前記した制御値が内燃機関の実際の温度に適していない値になる可能性がある。
【0025】
これに対し、本発明にかかる蓄熱装置を備えた内燃機関では、保温熱媒体流量推定手段により推定される保温熱媒体流量推定値が特定値を越える場合には、前記した特定値を保温熱媒体流量として設定し、その特定値と機関側熱媒体温度と保温熱媒体温度とに基づいて内燃機関の制御にかかる制御値が決定されるようにした。
【0026】
かかる構成によれば、蓄熱タンクから流出した保温熱媒体が内燃機関に到達していないにも関わらず蓄熱タンクからの保温熱媒体が内燃機関に到達したと誤判定された場合であっても、制御値の決定に利用される保温熱媒体流量が実保温熱媒体流量に対して過剰に多くなることがなくなる。
【0027】
この結果、内燃機関の温度が実際の温度より過剰に高いとみなされることがなくなるとともに、内燃機関の制御性の低下が抑制される。
【0028】
尚、保温熱媒体流量は、熱媒体を循環させるためのポンプ機構の吐出量や熱媒体の粘性等の影響を受けるため、本発明における特定値は、ポンプ機構の吐出量や熱媒体の粘性などをパラメータとして決定されるようにしてもよい。
【0029】
例えば、特定値は、ポンプ機構の吐出量が多くなるほど、およびまたは熱媒体の粘性が低くなるほど大きく設定され、且つ、ポンプ機構の吐出量が少なく、およびまたは熱媒体の粘性が高くなるほど小さく設定されるようにしてもよい。
【0030】
ポンプ機構の吐出量は、該ポンプ機構がバッテリ電圧を駆動源とする電動式ポンプであればバッテリ電圧に依存し、該ポンプ機構が内燃機関の出力軸の回転トルクを駆動源とする機械式ポンプであれば機関回転数に依存する。すなわち、電動式ポンプの吐出量はバッテリ電圧が高くなるほど多く且つバッテリ電圧が低くなるほど少なくなり、機械式ポンプの吐出量は機関回転数が高くなるほど多く且つ機関回転数が低くなるほど少なくなる。
【0031】
熱媒体の粘性は、該熱媒体の温度が高くなるほど低くなり、且つ該熱媒体の温度が低くなるほど高くなる。保温熱媒体供給時における熱媒体の温度は、外気温度や機関側熱媒体温度と相関があるため、外気温度およびまたは機関側熱媒体温度が高くなるほど熱媒体の粘性が低く、且つ、外気温度およびまたは機関側熱媒体温度が低くなるほど熱媒体の粘性が高くなる。
【0032】
従って、本発明にかかる蓄熱装置を備えた内燃機関では、保温熱媒体の供給開始時における外気温度、機関側熱媒体温度、バッテリ電圧、機関回転数の少なくとも一つをパラメータとして特定値が設定されるようにしてもよい。
【0033】
また、本発明は、内燃機関を流通する熱媒体の温度を検出する機関側温度検出手段と、蓄熱タンクの内部又は出口における熱媒体の温度を検出するタンク側温度検出手段と、蓄熱タンクから内燃機関へ熱媒体が供給されるときに、前記機関側温度検出手段の検出値及び前記タンク側温度検出手段の検出値に基づいて蓄熱タンクから内燃機関へ供給される熱媒体の流量を推定する熱媒体流量推定手段と、前記機関側温度検出手段の検出値、前記タンク側温度検出手段の検出値、及び前記熱媒体流量推定手段の推定値に基づいて、内燃機関を流通する熱媒体の実際の温度を推定する実機関側温度推定手段と、前記機関側温度検出手段の検出値と前記実機関側温度推定手段の推定値との偏差が特定値以下であるときは前記実機関側温度推定手段の推定値を機関側温度として設定し、前記機関側温度検出手段の検出値と前記実機関側温度推定手段の推定値との偏差が特定値を越えるときは前記機関側温度検出手段の検出値に前記特定値を加算した値を機関側温度として設定する機関側温度ガード手段と、前記機関側温度ガード手段の設定値に従って内燃機関の制御に係る制御値を決定する制御値決定手段と、を備えるようにしてもよい。
【0034】
この発明の要旨は、蓄熱タンクの保温熱媒体が内燃機関へ供給されている場合に、内燃機関を流通する熱媒体の温度を検出する機関側検出手段の検出値(以下、機関側温度検出値と記す)と保温熱媒体温度とに基づいて蓄熱タンクから内燃機関へ供給される保温熱媒体の流量を推定し、その保温熱媒体流量推定値と機関側温度検出値と保温熱媒体温度に基づいて内燃機関を流通する熱媒体の実際の温度(以下、実機関側温度と記す)を推定し、更に前記の実機関側温度の推定値をパラメータとして内燃機関を制御する技術において、実機関側温度推定値にガード値を設定する点にある。
【0035】
保温熱媒体流量推定値をパラメータとして実機関側温度が推定される場合に、保温熱媒体流量推定値が実保温熱媒体流量に対して過剰に多いとみなされると、機関側温度の推定値が実際の機関側温度より高い値になることが想定される。
【0036】
これに対し、実機関側温度推定値にガード値が設定されると、保温熱媒体流量推定値が実保温熱媒体流量に対して過剰に多いとみなされた場合であっても、実機関側温度の推定値が実際の温度より過剰に高いとみなされることがなくなる。この結果、内燃機関の制御性の低下が抑制される。
【0037】
本発明において、内燃機関の制御に係る制御値としては、燃料噴射量、燃料噴射時期、点火時期、吸気絞り弁(スロットル弁)の開度などを例示することができる。
【0038】
本発明に係る熱媒体としては、内燃機関を循環する冷却水や潤滑油などを例示することができる。
【0039】
【発明の実施の形態】
以下、本発明に係る蓄熱装置を有する内燃機関の具体的な実施態様について図面に基づいて説明する。
【0040】
図1は、本発明を適用する内燃機関の冷却系の概略構成を示す図である。
【0041】
内燃機関1のシリンダヘッド1aとシリンダブロック1bとには、本発明にかかる熱媒体としての冷却水を流通させるためのヘッド側冷却水路2aとブロック側冷却水路2bとがそれぞれ形成され、それらヘッド側冷却水路2aとブロック側冷却水路2bとが相互に連通している。
【0042】
前記ヘッド側冷却水路2aには第1冷却水路4が接続され、この第1冷却水路4はラジエター5の冷却水流入口に接続されている。前記ラジエター5の冷却水流出口は、第2冷却水路6を介してサーモスタットバルブ7に接続されている。
【0043】
前記サーモスタットバルブ7には、前記第2冷却水路6に加えて、第3冷却水路8とバイパス水路9とが接続されている。前記第3冷却水路8は、内燃機関1に取り付けられてクランクシャフトの回転トルクを駆動源とする機械式ウォーターポンプ10の吸込口に接続され、前記機械式ウォーターポンプ10の吐出口には、前記ブロック側冷却水路2bが接続されている。一方、前記バイパス水路9は、ヘッド側冷却水路2aに接続されている。
【0044】
前記ヘッド側冷却水路2aと前記ラジエター5とを接続する第1冷却水路4の途中には、ヒータホース11が接続され、そのヒータホース11は、前記したサーモスタットバルブ7と機械式ウォーターポンプ10との間の第3冷却水路8に接続されている。
【0045】
前記ヒータホース11の途中には、冷却水と車室内暖房用空気との間で熱交換を行うヒータコア12が配置されている。
【0046】
前記ヒータコア12と前記第3冷却水路8との間に位置するヒータホース11の途中には、第1バイパス通路13aが接続されている。この第1バイパス通路13aは、電動ウォーターポンプ14の冷却水吸込口に接続されている。
【0047】
前記電動ウォーターポンプ14は、バッテリ100の出力電圧を駆動源として作動するウォーターポンプであり、前記した冷却水吸込口から吸い込んだ冷却水を冷却水吐出口から所定の圧力で吐出するよう構成されている。
【0048】
前記電動ウォーターポンプ14の冷却水吐出口は、第2バイパス通路13bを介して蓄熱タンク15の冷却水入口15aに接続されている。蓄熱タンク15は、冷却水の持つ熱を蓄熱しつつ冷却水を貯蔵する容器であり、前記冷却水入口15aから新規の冷却水が流入すると、その代わりに該蓄熱タンク15内に貯蔵されていた高温の冷却水を冷却水出口15bから排出するよう構成されている。
【0049】
前記蓄熱タンク15の冷却水出口15bには、第3バイパス通路13cが接続されており、この第3バイパス通路13cは、ヒータコア12と第1冷却水路4との間に位置するヒータホース11に接続されている。
【0050】
尚、ヒータコア12と第1冷却水路4との間に位置するヒータホース11において、第3バイパス通路13cとの接続部位を基準にして第1冷却水路4側の部位を第1ヒータホース11aと称するとともに、ヒータコア12側の部位を第2ヒータホース11bと称するものとする。更に、ヒータコア12と第3冷却水路8との間に位置するヒータホース11において、第1バイパス通路13aとの接続部位を基準にしてヒータコア12側の部位を第3ヒータホース11cと称するとともに、第3冷却水路8側の部位を第4ヒータホース11dと称するものとする。
【0051】
前記した第3ヒータホース11cと第4ヒータホース11dと第1バイパス通路13aとの接続部には、流路切換弁16が設けられている。この流路切換弁16は、前記した3つの通路の全ての導通と、前記3つの通路の何れか1つの遮断とを選択に切り換えるバルブである。流路切換弁16は、例えば、ステップモータ等からなるアクチュエータによって駆動されるようになっている。
【0052】
前記した第3バイパス通路13cにおける蓄熱タンク15の冷却水出口15b近傍には、蓄熱タンク15から流出する冷却水の温度を検出するタンク出口水温センサ17が取り付けられている。このタンク出口水温センサ17は、本発明にかかるタンク側温度検出手段の一実施態様である。
【0053】
前記した第1冷却水路4におけるヘッド側冷却水路2aとの接続部位の近傍には、該第1冷却水路4内を流れる冷却水の温度を検出する機関側水温センサ18が取り付けられている。この機関側水温センサ18は、本発明にかかる機関側温度検出手段の一実施態様である。
【0054】
このように構成された内燃機関1の冷却系には、内燃機関1及び冷却系を制御するための電子制御ユニット(Electronic Control Unit:ECU)19が併設されている。このECU19は、CPU、ROM、RAM、バックアップRAMなどを備えた算術論理演算回路である。
【0055】
ECU19には、タンク出口水温センサ17、機関側水温センサ18、バッテリ100などが電気的に接続されている。更に、ECU19には、電動ウォーターポンプ14や流路切換弁16等が電気配線を介して接続されている。
【0056】
ECU19は、上記した各種センサの出力信号値をパラメータとして電動ウォーターポンプ14や流路切換弁16を制御するとともに、内燃機関1の図示しない燃料噴射弁、点火栓、スロットル弁などを制御することが可能となっている。
【0057】
例えば、ECU19は、内燃機関1が冷間始動される場合には、内燃機関1の始動に先駆けて内燃機関1を予熱する予熱制御を実行する。
【0058】
予熱制御では、ECU19は、内燃機関1が冷間始動される場合、例えば、機関側水温センサ18の出力信号値が一定温度(例えば、50℃)未満となる状況下で内燃機関1が始動される場合には、始動に先駆けて内燃機関1を予熱する予熱制御を実行する。
【0059】
予熱制御では、ECU19は、電動ウォーターポンプ14を作動させるべくバッテリ100から電動ウォーターポンプ14へ駆動電圧を印加させるとともに、第3ヒータホース11cを遮断し且つ第4ヒータホース11dと第1バイパス通路13aを導通させるように流路切換弁16を制御する。
【0060】
尚、電動ウォーターポンプ14の作動開始タイミング及び流路切換弁16の切換タイミングとしては、例えば、車室内に設けられた図示しないイグニションスイッチがオフからオンに切り換えられた時、車両のドア(好ましくは、運転席のドア)が開かれた時、運転者が運転席に着座した時などを例示することができる。
【0061】
この場合、機械式ウォーターポンプ10が作動せずに電動ウォーターポンプ14のみが作動するため、図2に示すように、電動ウォーターポンプ14→第2バイパス通路13b→蓄熱タンク15→第3バイパス通路13c→第1ヒータホース11a→第1冷却水路4→ヘッド側冷却水路2a→ブロック側冷却水路2b→機械式ウォーターポンプ10→第3冷却水路8→第4ヒータホース11d→流路切換弁16→第1バイパス通路13a→電動ウォーターポンプ14の順で冷却水が流れる循環回路が成立する。
【0062】
このような循環回路が成立すると、電動ウォーターポンプ14から吐出された冷却水が第2バイパス通路13bを介して蓄熱タンク15の冷却水入口15aへ流入する。冷却水入口15aに冷却水が流入すると、蓄熱タンク15内に保温貯蔵されていた冷却水(以下、保温冷却水と記す)が冷却水出口15bから排出する。
【0063】
蓄熱タンク15の冷却水出口15bから排出された保温冷却水は、第3バイパス通路13c、第1ヒータホース11a、及び第1冷却水路4を介して、内燃機関1のヘッド側冷却水路2aへ流入し、次いでヘッド側冷却水路2aからブロック側冷却水路2bへ流入する。
【0064】
ヘッド側冷却水路2aからブロック側冷却水路2bへ流入した温水は、ブロック側冷却水路2bを流通した後に機械式ウォーターポンプ10を介して第3冷却水路8へ流入する。
【0065】
このように蓄熱タンク15に貯蔵されていた保温冷却水がヘッド側冷却水路2a及びブロック側冷却水路2bへ流入すると、それと入れ代わりにヘッド側冷却水路2a及びブロック側冷却水路2bに元々滞留していた低温の冷却水がヘッド側冷却水路2a及びブロック側冷却水路2bから排出される。そして、保温冷却水の熱が内燃機関1のシリンダヘッド1aやシリンダブロック1bへ伝達されることになる。
【0066】
更に、図2に示すような循環回路では、蓄熱タンク15からの保温冷却水がヘッド側冷却水路2aを経由した後にブロック側冷却水路2bへ供給されることになるため、シリンダヘッド1aが優先的に予熱されることになる。更に、図2に示すような循環回路では、蓄熱タンク15からヘッド側冷却水路2aへ至る経路にヒータコア12等の熱容量の大きな部材が存在しないため、蓄熱タンク15にて蓄えられていた熱が不要に放熱されることなくシリンダヘッド1aへ伝達されるようになる。
【0067】
この結果、シリンダヘッド1aの図示しない吸気ポートの壁面温度や燃焼室の壁面温度などが速やかに上昇することになり、機関始動時及び機関始動直後の燃料の気化が促進されるとともに混合気の温度が高められ、壁面付着燃料量の減少、燃焼の安定化、始動性の向上、暖機運転時間の短縮等を実現することが可能となる。
【0068】
上記した予熱制御が実行されると、ヘッド側冷却水路2a、ブロック側冷却水路2b、第1冷却水路4、第3冷却水路8、及びバイパス水路9を循環する冷却水の温度が急速に上昇することになる(以下では、ヘッド側冷却水路2a、ブロック側冷却水路2b、第1冷却水路4、第3冷却水路8、及びバイパス水路9を流れる冷却水を機関側冷却水と称し、その機関側冷却水の温度を機関側水温と称するものとする)。
【0069】
このため、内燃機関1が予熱されている途中で始動要求が発生した場合(例えば、スタータスイッチがオフからオンへ切り換えられた場合)、言い換えれば、予熱制御の実行途中に内燃機関1が始動される場合には、機関側水温が急速に変化している途中で燃料噴射制御などを実行する必要が生じる。
【0070】
始動時における燃料噴射制御では、例えば、以下に示すような始動時燃料噴射量演算式を用いて始動時燃料噴射量(TAU)が決定される。
【0071】
TAU=TAUSTA*FTHA+TAUV
(TAUSTA:始動時基本噴射量,FTHA:吸気温補正値,TAUV:無効噴射時間)
上記した始動時燃料噴射量演算式において、始動時基本噴射量(TAUSTA)は、内燃機関1の温度と相関のある機関側水温をパラメータとして決定される値であり、例えば、機関側水温が低くなる程増加される値である。
【0072】
始動後における燃料噴射制御では、例えば、以下に示すような燃料噴射量演算式を用いて燃料噴射量(TAU)が決定される。
【0073】
TAU=TP*FWL*(FAF+FG)*[FASE+FAE+FOTP+FDE(D)]*FFC+TAUV
(TP:基本噴射量、FWL:暖機増量、FAF:空燃比フィードバック補正係 数、 FG:空燃比学習係数、FASE:始動後増量、FAE:加速増量、FOTP:OT P増量、 FDE(D):減速増量(減量)、FFC:フューエルカット復帰時補正 係数、 TAUV:無効噴射時間)
上記したような燃料噴射量演算式において、暖機増量(FWL)や始動後増量(FASE)も、内燃機関1の温度と相関のある機関側水温をパラメータとして決定される値である。例えば、暖機増量(FWL)は機関側水温に対応した補正値を機関回転数に基づく補正係数により補正して得られる値であり、始動後増量(FASE)は機関始動時の機関側水温に応じて決定される値である。
【0074】
このような燃料噴射制御に用いられる機関側水温としては、機関側水温センサ18の出力信号値を用いることができる。
【0075】
ところで、一般の車両用内燃機関に用いられる水温センサは、内燃機関が通常の運転状態にあるときのように実際の機関側水温の変化が比較的穏やかな状況を想定して設計されているため、内燃機関1が保温冷却水によって加熱されるときのように機関側水温が急速に変化するような状況下では、実際の機関側水温の変化に追従しきれず応答遅れを生じる場合がある。
【0076】
例えば、予熱制御の実行が開始されると、流路切換弁16が第3ヒータホース11cを遮断し且つ第4ヒータホース11dと第1バイパス通路13aを導通させるとともに、電動ウォーターポンプ14が作動する。この場合、図3に示されるように、蓄熱タンク15内の保温冷却水が内燃機関1へ到達するまでの時間(保温冷却水の応答遅れ時間)が経過した後に、実際の機関側水温が急速に上昇する。これに対し、機関側水温センサ18は、実際の機関側水温の急速な上昇に追従することができないため、該機関側水温センサ18の出力信号値は穏やかに上昇することになる。
【0077】
この結果、実際の機関側水温と機関側水温センサ18の出力信号値との間には、機関側水温センサ18の応答遅れ分に相当する誤差が生じることになる。
【0078】
但し、時間の経過とともに機関側冷却水と保温冷却水との混合が進んで両者の温度が略同一の温度に収束すると、実際の機関側水温の変化が穏やかになるため、機関側水温センサ18の応答遅れが解消されることになる。
【0079】
従って、内燃機関1の予熱が開始された時点から機関側水温センサ18の応答遅れが解消されるまでの期間に内燃機関1が始動されると、実際の機関側水温と機関側水温センサ18の出力信号値との誤差により、前述した始動時基本噴射量(TAUSTA)、暖機増量(FWL)、及び始動後増量(FASE)等を実際の機関側水温に対応した最適な値とすることが困難となる。
【0080】
そこで、本実施の形態では、予熱制御の実行途中に内燃機関1が始動された場合に、実際の機関側水温を精度よく推定し、推定された機関側水温を用いて燃料噴射制御等の制御値を決定するようにした。
【0081】
以下、内燃機関1の予熱制御が実行されているときに実際の機関側水温を推定する方法について述べる。
【0082】
ECU19は、実際の機関側水温を推定するに当たりに、図4に示すような機関側水温推定制御ルーチンを実行する。この機関側水温推定制御ルーチンは、内燃機関1の予熱制御実行条件が成立したことをトリガにして実行されるルーチンである。
【0083】
前記した予熱制御実行条件としては、(1)内燃機関1が始動直前の状態にある、(2)機関側水温センサ18の出力信号値が所定の冷間判定温度(例えば、50℃)未満である、等の条件を例示することができる。
【0084】
機関側水温推定制御ルーチンでは、ECU19は、先ずS401において、予熱制御の実行が既に開始されている否かを判別する。
【0085】
前記S401において予熱制御の実行が開始されていないと判定した場合は、ECU19は、S402へ進み、RAMに予め設定されている推定完了フラグ記憶領域へアクセスし、その推定完了フラグ記憶領域に“0”を書き込む。
【0086】
前記した推定完了フラグ記憶領域は、予熱制御の実行が開始されるときに“0”が書き込まれ、機関側水温センサ18の応答遅れが解消された時点で“1”に書き換えられる領域である。
【0087】
S403では、ECU19は、予熱制御の実行開始前における機関側水温センサ18の出力信号値(以下、機関側水温初期値:THWeiniと記す)を読み込み、RAMなどに記憶させる。
【0088】
S404では、ECU19は、予熱制御の実行が開始されたか否か、具体的には、流路切換弁16が開弁され且つ電動ウォーターポンプ14が作動されたか否かを判別する。
【0089】
前記S404において予熱制御の実行が開始されていないと判定された場合は、ECU19は、本ルーチンの実行を一旦終了する。
【0090】
一方、前記S404において予熱制御の実行が開始されていると判定された場合は、ECU19は、S405へ進み、蓄熱タンク15に保温貯蔵されていた冷却水(保温冷却水)の温度:THWtiniを推定する。保温冷却水温度:THWtiniの推定方法としては、予熱制御実行開始後におけるタンク出口水温センサ17の出力信号値、すなわち、蓄熱タンク15から流出する冷却水の温度を保温冷却水温度:THWtiniとみなす方法を例示することができる。
【0091】
S406では、ECU19は、前記S403において読み込まれた機関側水温初期値:THWeiniと前記S405において推定された保温冷却水温度:THWtiniとの温度差(以下、初期温度差:△Tteと称する)を算出し、算出された初期温度差:△TteをRAM等に記憶させる。
【0092】
S407では、ECU19は、前記S406で算出された初期温度差:△Tteを、内燃機関1側の冷却水量(ヘッド側冷却水路2a、ブロック側冷却水路2b、第1冷却水路4、第3冷却水路8、バイパス水路9、第1ヒータホース11a、第4ヒータホース11d、第1バイパス通路13a、第2バイパス通路13b、及び第3ヒータホース11cに存在する冷却水の総量)に各通路の熱容量を加えた値と蓄熱タンク15から内燃機関1へ単位時間当たりに供給される冷却水の流量との比を表す係数:Aで除算して、保温冷却水から機関側冷却水へ伝達される熱量:△THWaを算出する。
【0093】
ここで、蓄熱タンク15から内燃機関1へ単位時間当たりに供給される冷却水の流量(以下、保温冷却水流量と称する)は、蓄熱タンク15から流出した保温熱媒体が内燃機関1のヘッド側冷却水路2aに到達するまでの所要時間(以下、保温熱媒体到達所要時間と称する)をパラメータとして求めることができる。すなわち、保温熱媒体到達所要時間が短くなるほど保温冷却水流量が多くなり、保温熱媒体到達所要時間が長くなるほど保温冷却水流量が少なくなる。
【0094】
前記した保温熱媒体到達所要時間を求める場合に、ECU19は、先ず蓄熱タンク15から保温冷却水が流出した時期(以下、保温冷却水流出時期と記す)を特定し、続いて保温冷却水がヘッド側冷却水路2aに到達した時期(以下、保温冷却水到達時期と記す)を特定する。
【0095】
保温冷却水流出時期を特定する場合は、ECU19は、予熱制御実行開始直前におけるタンク出口水温センサ17の出力信号値(以下、タンク出口水温初期値:THWex1と記す)を記憶しておくとともに、予熱制御実行開始後のタンク出口水温センサ17の出力信号値(以下、タンク出口水温:THWex2と記す)を監視し、タンク出口水温:THWex2がタンク出口水温初期値:THWex1より一定温度以上高くなった時期を保温冷却水流出時期と特定する。
【0096】
これは、蓄熱タンク15内の保温冷却水が冷却水出口15bから流出すると、タンク出口水温センサ17近傍の冷却水温度が上昇することになるからである。
【0097】
保温冷却水到達時期を特定する場合は、ECU19は、予熱制御実行開始直前における機関側水温センサ18の出力信号値(機関側水温初期値:THWeini)を記憶しておくとともに、予熱制御実行開始後の機関側水温センサ18の出力信号値(以下、機関側水温:THWeと記す)を監視し、機関側水温:THWeが機関側水温初期値:THWeiniより一定温度以上高くなった時期を保温冷却水到達時期と特定する。
【0098】
これは、蓄熱タンク15から流出した高温な保温冷却水がヘッド側冷却水路2aに到達すると、機関側水温センサ18近傍の冷却水温度が上昇することになるからである。
【0099】
ところで、予熱制御実行開始前に、蓄熱タンク15から内燃機関1へ至る経路(第3バイパス通路13c、第1ヒータホース11a、及び第1冷却水路4)の一部に機関側水温センサ18近傍の冷却水より高温な冷却水が存在していると、その高温な冷却水が機関側水温センサ18近傍に到達した時に機関側水温センサ18の出力信号値(機関側水温:THWe)が機関側水温初期値:THWeiniに対して一定温度以上高い値を示す可能性がある。
【0100】
この場合、ECU19は、蓄熱タンク15からの保温冷却水が実際にはヘッド側冷却水路2aに到達していないにも関わらず、蓄熱タンク15からの保温熱媒体がヘッド側冷却水路2aに到達したと誤判定することになる。
【0101】
このような誤判定が発生すると、ECU19により算出される保温熱媒体到達所要時間が実際の保温熱媒体到達所要時間より短くなり、以てECU19により推定される保温冷却水流量が実際の保温冷却水流量より多くなってしまう。
【0102】
ECU19により推定される保温冷却水流量が実際の保温冷却水流量より多くなった場合には、機関側水温が実際の機関側水温より高いと推定され、以て前述した始動時基本噴射量(TAUSTA)、暖機増量(FWL)、及び始動後増量(FASE)等が実際の機関側水温に対して不適切な値となり、以て内燃機関1の制御性が低下することが想定される。
【0103】
これに対し、本実施の形態における蓄熱装置を備えた内燃機関では、機関側水温推定制御に用いられる保温冷却水流量に上限値を設け、ECU19によって推定された保温冷却水流量が前記上限値を超える場合には、前記した上限値を保温冷却水流量として用いて機関側水温を推定するようにした。
【0104】
具体的は、ECU19は、図5に示すような保温冷却水流量推定制御ルーチンを実行することにより保温冷却水流量を推定するようにした。この保温冷却水流量推定制御ルーチンは、内燃機関1の予熱制御実行条件が成立したことをトリガにして実行されるルーチンである。
【0105】
保温冷却水流量推定制御ルーチンでは、ECU19は、先ず、S501において予熱制御実行開始直前におけるタンク出口水温センサ17の出力信号値(タンク出口水温初期値:THWex1)と機関側水温センサ18の出力信号値(機関側水温初期値:THWeini)とを読み込み、RAMなどに記憶させる。
【0106】
S502では、ECU19は、予熱制御の実行が開始されたか否かを判別する。
【0107】
前記S502において予熱制御の実行が開始されていないと判定された場合は、ECU19は、予熱制御の実行が開始されるまで該S502の処理を繰り返し実行する。
【0108】
前記S502において予熱制御の実行が開始されたと判定された場合は、ECU19は、S503へ進み、タンク出口水温センサ17の出力信号値(タンク出口水温:THWex2)を読み込む。
【0109】
S504では、ECU19は、前記S501で読み込んだタンク出口水温初期値:THWex1をRAMから読み出し、そのタンク出口水温初期値:THWex1と前記S503で読み込んだタンク出口水温:THWex2とを比較する。
【0110】
具体的には、ECU19は、タンク出口水温:THWex2からタンク出口水温初期値:THWex1を減算して得られる値(=THWex2−THWex1)が一定温度:t以上であるか否かを判別する。
【0111】
前記S504においてタンク出口水温:THWex2からタンク出口水温初期値:THWex1を減算して得られる値(=THWex2−THWex1)が一定温度:t未満であると判定された場合は、ECU19は、前述したS503以降の処理を再度実行する。
【0112】
前記S504においてタンク出口水温:THWex2からタンク出口水温初期値:THWex1を減算して得られる値(=THWex2−THWex1)が一定温度:t以上であると判定された場合は、ECU19は、蓄熱タンク15内の保温冷却水が冷却水出口15bから流出したとみなし(すなわち、現時点が保温冷却水流出時期であるとみなし)、S505においてカウンタ:Cを起動させる。前記カウンタ:Cは、保温冷却水流出時期からの経過時間を計測するカウンタである。
【0113】
S506では、ECU19は、機関側水温センサ18の出力信号値(機関側水温:THWe)を読み込む。
【0114】
S507では、ECU19は、前記S501で読み込んだ機関側水温初期値:THWeiniをRAMから読み出し、その機関側水温初期値:THWeiniと前記S506において読み込んだ機関側水温:THWeとを比較する。
【0115】
具体的には、ECU19は、機関側水温:THWeから機関側水温初期値:THWeiniを減算して得られる値(=THWe−THWeini)が一定温度:t以上であるか否かを判別する。
【0116】
前記S507において機関側水温:THWeから機関側水温初期値:THWeiniを減算して得られる値(=THWe−THWeini)が一定温度:t未満であると判定された場合は、ECU19は、前述したS506以降の処理を再度実行する。
【0117】
前記S507において機関側水温:THWeから機関側水温初期値:THWeiniを減算して得られる値(=THWe−THWeini)が一定温度:t以上であると判定された場合は、ECU19は、保温冷却水がヘッド側冷却水路2aに到達したとみなし(すなわち、現時点が保温冷却水到達時期であるとみなし)、S508においてカウンタ:Cの計測時間:Cを保温熱媒体到達所要時間としてRAMに記憶させる。
【0118】
S509では、ECU19は、前記S508で求められた保温熱媒体到達所要時間と、蓄熱タンク15からヘッド側冷却水路2aに至る経路(第3バイパス通路13c、第1ヒータホース11a、及び第1冷却水路4)の距離とから保温冷却水流量:fvを演算する。
【0119】
S510では、ECU19は、前記S509において算出された保温冷却水流量:fvが上限値:fvmax以下であるか否かを判別する。
【0120】
ここで、上限値:fvmaxは、機関側水温初期値:THWeini、外気温度(例えば、外気温度センサや吸気温度センサ等の出力信号値)、バッテリ100の出力電圧の少なくとも一つをパラメータとして決定される値である。
【0121】
例えば、上限値:fvmaxは図6に示すように機関側水温初期値:THWeiniが高くなるほど大きな値となり且つ機関側水温初期値:THWeiniが低くなるほど小さな値となるようにしてもよい。
【0122】
これは、冷却水は温度が低くなるほど粘性が高くなり且つ温度高くなるほど粘性が低くなるため、冷却水の温度が低くなるほど冷却水の流速が低くなり易く且つ冷却水の温度が高くなるほど冷却水の流速が高くなり易いからである。
【0123】
また、上限値:fvmaxは図7に示すように外気温度が高くなるほど大きな値となり且つ外気温度が低くなるほど小さな値となるようにしてもよい。
【0124】
これは、外気温度が低くなるほど冷却水の温度が低くなり易く(冷却水の粘性が高くなり易く)、且つ外気温度が高くなるほど冷却水の温度が高くなり易い(冷却水の粘性が低くなり易い)ため、外気温度が低くなるほど冷却水の流速が低くなり易く且つ外気温度が高くなるほど冷却水の流速が高くなり易いからである。
【0125】
また、上限値:fvmaxは図8に示すようにバッテリ100の出力電圧が高くなるほど大きな値となり且つバッテリ100の出力電圧が低くなるほど小さな値となるようにしてもよい。
【0126】
これは、バッテリ100の出力電圧が低くなるほど電動ウォーターポンプ14の吐出量が少なくなり且つバッテリ100の出力電圧が高くなるほど電動ウォーターポンプ14の吐出量が多くなるため、バッテリ100の出力電圧が低くなるほど冷却水の流速が低くなり易く且つバッテリ100の出力電圧が高くなるほど冷却水の流速が高くなり易いからである。
【0127】
ここで図5に戻り、前記S510において保温冷却水流量:fvが上限値:fvmax以下であると判定された場合は、ECU19は、前記S509で算出された保温冷却水流量:fvを保温冷却水流量としてRAMに記憶させ、本ルーチンの実行を終了する。
【0128】
一方、前記S510において保温冷却水流量:fvが上限値:fvmaxを越えていると判定された場合は、ECU19は、前記上限値:fvmaxを保温冷却水流量としてRAMに記憶させ、本ルーチンの実行を終了する。
【0129】
このように図5に示すような流量演算制御ルーチンをECU19が実行することにより、保温冷却水到達時期が誤判定された場合であっても、保温冷却水流量の推定値が実際の保温冷却水流量に対して過剰に多くなることがなくなる。
【0130】
ここで図4に戻り、前述したS407において、前記流量推定制御ルーチンに従って推定された保温冷却水流量を利用して、保温冷却水から機関側冷却水へ伝達される熱量:△THWaが算出されると、ECU19は、S408へ進む。
【0131】
S408では、ECU19は、RAMの推定完了フラグ記憶領域へアクセスし、“1”が記憶されていないか否かを判別する。
【0132】
前記S408においてRAMの推定完了フラグ記憶領域に“1”が記憶されていると判定された場合は、ECU19は、機関側水温を推定する必要がないとみなし、本ルーチンの実行を終了する。
【0133】
一方、前記S408においてRAMの推定完了フラグ記憶領域に“1”が記憶されていないと判定された場合、すなわち推定完了フラグ記憶領域に“0”が記憶されていると判定された場合は、ECU19は、S409へ進む。
【0134】
S409では、ECU19は、予熱制御の実行が開始された時点からの経過時間(以下、予熱制御実行時間と称する)が所定時間:Time未満であるか否かを判別する。前記した所定時間:Timeは、機関側水温センサ18の応答遅れ時間に相当する時間である。
【0135】
尚、第2の機関側水温センサ18の応答遅れ時間は、機関側水温初期値:THWeini及び保温冷却水温度:THWtiniに応じて変化するため、機関側水温センサ18の応答遅れ時間と機関側水温初期値:THWeiniと保温冷却水温度:THWtiniとの関係を予め実験的に求めておくとともに、それらの関係をマップ化しておくようにしてもよい。
【0136】
前記S409において前記予熱制御実行時間が前記所定時間:Time以上であると判定された場合は、ECU19は、機関側水温センサ18の応答遅れが既に解消されているとみなし、本ルーチンの実行を終了する。
【0137】
前記S409において前記予熱制御実行時間が前記所定時間:Time未満であると判定された場合は、ECU19は、機関側水温センサ18の応答遅れが未だに解消されていないとみなし、S410へ進む。
【0138】
S410では、ECU19は、保温冷却水から機関側冷却水へ単位時間当たりに伝達される熱量:△THWaの減衰処理を実行する。これは、予熱制御の実行開始時点からの経過時間が増加すると、保温冷却水と機関側冷却水との温度差が減少し、それに伴って保温冷却水から機関側冷却水へ伝達される熱量も減少することになるからである。
【0139】
前記熱量:△THWaの減衰処理では、例えば、ECU19は、本ルーチンの前回の実行時に算出された熱量:△THWa-1に所定の減衰係数:Bを積算して、新たな熱量:△THWaを算出する。前記した減衰係数:Bは、保温冷却水の量、機関側冷却水の量、冷却水が流れる経路の熱容量、及び保温冷却水流量を考慮して、保温冷却水と機関側冷却水との間で行われる熱の授受を模擬した値であり、例えば、“1”未満の数値である。この減衰係数:Bは、固定値であってもよいが、予熱制御実行時間に応じて変更される可変値であってもよい。
【0140】
尚、前記S410が予熱制御の実行開始後において初めて実行される場合は、ECU19は、前記S407にて算出された熱量:△THWaをそのまま新たな熱量:△THWaとして設定する。
【0141】
S411では、ECU19は、前記S410にて算出された新たな熱量:△THWaを用いて機関側冷却水の実際の温度を推定する。具体的には、ECU19は、先ず、前記S403で読み込まれた機関側水温初期値:THWeiniをRAMから読み出すとともに、前述した図5の流量推定制御ルーチンで推定された保温冷却水流量と前記S410にて算出された新たな熱量:△THWaと予熱制御実行時間と所定の係数:Cとを積算する(保温冷却水流量*予熱制御実行時間*△THWa*C)。続いて、ECU19は、前記機関側水温初期値:THWeiniと前記積算値(保温冷却水流量*予熱制御実行時間*△THWa*C)とを加算して、実際の機関側水温の推定値(以下、実機関側水温推定値:THWbと称する)を算出する。
【0142】
ここで、前記した係数:Cは、内燃機関1から冷却水へ伝達される熱量とヒートマス分の遅れを考慮した係数である。但し、機関始動前は、内燃機関1で燃焼が行われず、内燃機関1から冷却水へ伝達される熱が発生しないため、機関始動前と機関始動後において係数:Cの値を変更することが好ましい。
【0143】
S412では、ECU19は、現時点における機関側水温センサ18の出力信号値(機関側水温:THWe)を読み込む。
【0144】
S413では、ECU19は、前記S411で算出された実機関側水温推定値:THWbと前記S412で読み込まれた機関側水温センサ値:THWeとが等しいか否かを判別する。
【0145】
前記S413において実機関側水温推定値:THWbと機関側水温センサ値:THWeとが等しくないと判定された場合は、ECU19は、機関側水温センサ18の応答遅れが解消されていないとみなし、S414へ進む。
【0146】
S414では、ECU19は、前記実機関側水温推定値:THWbを現時点における機関側水温としてRAMの所定領域に記憶させ、本ルーチンの実行を終了する。
【0147】
一方、前記S413において実機関側水温推定値:THWbと機関側水温センサ値:THWeとが等しいと判定された場合は、ECU19は、機関側水温センサ18の応答遅れが解消されたとみなし、S415へ進む。
【0148】
S415では、ECU19は、前記機関側水温センサ値:THWeを現時点における機関側水温としてRAMの所定領域へ記憶させる。
【0149】
続いて、ECU19は、S416へ進み、RAMの推定完了フラグ記憶領域へアクセスし、この推定完了フラグ記憶領域の値を“0”から“1”へ書き換える。
【0150】
このようにECU19が機関側水温推定制御ルーチンを実行することにより、機関側水温初期値:THWeiniと保温冷却水温度:THWtiniと保温冷却水流量:fvとに基づいて実機関側水温:THWbが推定されるため、実機関側水温推定値:THWbの推定精度を高めることが可能となる。
【0151】
この結果、予熱制御の実行途中に内燃機関1が始動される場合、特に予熱制御の実行途中であって機関側水温センサ18の応答遅れが生じている状況下で内燃機関1が始動される場合には、燃料噴射制御に用いられる機関側水温として実機関側水温推定値:THWbが用いられることになるため、始動時基本噴射量(TAUSTA)、暖機増量(FWL)、及び始動後増量(FASE)等を実際の機関側水温に適した値にすることができる。
【0152】
更に、本実施の形態では、保温冷却水流量の推定値に上限値が設定されるため、保温冷却水到達時期が誤判定されても、保温冷却水流量の推定値が実際の保温冷却水流量に対して過剰に多くなく、保温冷却水流量をパラメータとして推定される実機関側水温推定値:THWbが実際の機関側水温に対して過剰に高くなることがない。
【0153】
この結果、始動時基本噴射量(TAUSTA)、暖機増量(FWL)、及び始動後増量(FASE)等を決定するパラメータとして実機関側水温推定値:THWbが用いられても、始動時基本噴射量(TAUSTA)、暖機増量(FWL)、及び始動後増量(FASE)等は、実際の機関側水温に対応した適正値から過剰に懸け離れた値となることはない。
【0154】
尚、本実施の形態では、保温冷却水流量にガード値が設定される例について述べたが、保温冷却水流量の代わりに実機関側水温推定値にガード値が設定されるようにしてもよい。
【0155】
例えば、前述した図5の流量推定制御ルーチンにおいてS510〜S512の処理を削除するとともに、前述した図4の機関側水温推定制御ルーチンにおいてS414の処理の代わりに、実機関側水温推定値:THWbから機関側水温:THWeを減算した値が特定値以下である場合には実機関側水温推定値:THWbを現時点における機関側水温として設定する処理と、実機関側水温推定値:THWbから機関側水温:THWeを減算した値が特定値を越える場合には機関側水温:THWeに前記特定値を加算した温度を現時点における機関側水温として設定する処理とを追加するようにしてもよい。
【0156】
また、本実施の形態では、機関側水温センサ18の出力信号値が利用される制御として、燃料噴射制御を例に挙げたが、これに限られるものではなく、点火制御、アイドル回転数制御(ISC:Idle Speed Control)、排気再循環(EGR:Exhaust Gas Recircuration)制御等であってもよい。
【0157】
【発明の効果】
本発明にかかる蓄熱装置を備えた内燃機関は、蓄熱タンクから内燃機関へ供給される保温熱媒体の流量の推定値が特定値を越えないようにしたため、保温熱媒体流量が誤推定された場合であっても、蓄熱タンクから内燃機関へ供給される保温熱媒体流量の推定値が実際の保温熱媒体流量に対して過剰に多くなることがない。
【0158】
この結果、内燃機関の温度が実際の温度より過剰に高いとみなされることがなく、以て内燃機関の制御性の低下が抑制される。
【図面の簡単な説明】
【図1】 本発明を適用する内燃機関の冷却系の概略構成を示す図
【図2】 予熱制御時における冷却水の循環形態を示す図
【図3】 予熱制御実行時における機関側水温センサの応答遅れを示す図
【図4】 機関側水温推定制御ルーチンを示すフローチャート図
【図5】 流量推定制御ルーチンを示すフローチャート図
【図6】 上限値:fvmaxと機関側水温初期値:THWeiniとの関係を示す図
【図7】 上限値:fvmaxと外気温度との関係を示す図
【図8】 上限値:fvmaxとバッテリの出力電圧との関係を示す図
【符号の説明】
1・・・・内燃機関
1a・・・シリンダヘッド
1b・・・シリンダブロック
2a・・・ヘッド側冷却水路
2b・・・ブロック側冷却水路
10・・・機械式ウォータポンプ
14・・・電動ウォーターポンプ
15・・・蓄熱タンク
17・・・タンク出口水温センサ
18・・・機関側水温センサ
19・・・ECU

Claims (3)

  1. 内燃機関を流通する熱媒体の温度を検出する機関側温度検出手段と、
    蓄熱タンクの内部又は出口における熱媒体の温度を検出するタンク側温度検出手段と、
    内燃機関の始動前に蓄熱タンクから内燃機関へ熱媒体を供給することにより、内燃機関を予熱する予熱制御手段と、
    前記機関側温度検出手段の検出値及び前記タンク側温度検出手段の検出値に基づいて、前記予熱制御手段による予熱実行中に蓄熱タンクから内燃機関へ供給される熱媒体の流量を推定する熱媒体流量推定手段と、
    前記熱媒体流量推定手段の推定量が特定値以下であるときは前記推定量を熱媒体の流量として設定し、前記熱媒体流量推定手段の推定値が特定値を越えるときは前記特定値を熱媒体の流量として設定する熱媒体流量ガード手段と、
    前記予熱手段による予熱実行中に内燃機関が始動される場合は、前記予熱制御手段による予熱開始前に前記機関側温度検出手段及び前記タンク側温度検出手段が検出した検出値の差、及び前記熱媒体流量ガード手段の設定値に従って内燃機関の制御に係る制御値を決定する制御値決定手段と、
    を備えることを特徴とする蓄熱装置を備えた内燃機関。
  2. 内燃機関を流通する熱媒体の温度を検出する機関側温度検出手段と、
    蓄熱タンクの内部又は出口における熱媒体の温度を検出するタンク側温度検出手段と、
    内燃機関の始動前に蓄熱タンクから内燃機関へ熱媒体を供給することにより、内燃機関を予熱する予熱制御手段と、
    前記機関側温度検出手段の検出値及び前記タンク側温度検出手段の検出値に基づいて、前記予熱制御手段による予熱実行中に蓄熱タンクから内燃機関へ供給される熱媒体の流量を推定する熱媒体流量推定手段と、
    前記予熱制御手段による予熱開始前に前記機関側温度検出手段及び前記タンク側温度検出手段が検出した検出値の差、及び前記熱媒体流量推定手段の推定値に基づいて、内燃機関を流通する熱媒体の実際の温度を推定する実機関側温度推定手段と、
    前記機関側温度検出手段の検出値と前記実機関側温度推定手段の推定値との偏差が特定値以下であるときは前記実機関側温度推定手段の推定値を機関側温度として設定し、前記機関側温度検出手段の検出値と前記実機関側温度推定手段の推定値との偏差が特定値を越えるときは前記機関側温度検出手段の検出値に前記特定値を加算した値を機関側温度とし
    て設定する機関側温度ガード手段と、
    前記予熱手段による予熱実行中に内燃機関が始動される場合は、前記機関側温度ガード手段の設定値に従って内燃機関の制御に係る制御値を決定する制御値決定手段と、
    を備えることを特徴とする蓄熱装置を備えた内燃機関。
  3. 前記特定値は、蓄熱タンクから内燃機関に対する熱媒体の供給開始時における外気温度、バッテリ電圧、温度検出手段の検出温度の少なくとも一つに基づいて設定されることを特徴とする請求項1又は2に記載の蓄熱装置を備えた内燃機関。
JP2002380541A 2002-12-27 2002-12-27 蓄熱装置を備えた内燃機関 Expired - Fee Related JP4172269B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002380541A JP4172269B2 (ja) 2002-12-27 2002-12-27 蓄熱装置を備えた内燃機関

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002380541A JP4172269B2 (ja) 2002-12-27 2002-12-27 蓄熱装置を備えた内燃機関

Publications (2)

Publication Number Publication Date
JP2004211573A JP2004211573A (ja) 2004-07-29
JP4172269B2 true JP4172269B2 (ja) 2008-10-29

Family

ID=32816729

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002380541A Expired - Fee Related JP4172269B2 (ja) 2002-12-27 2002-12-27 蓄熱装置を備えた内燃機関

Country Status (1)

Country Link
JP (1) JP4172269B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150240702A1 (en) * 2012-06-18 2015-08-27 Toyota Jidosha Kabushiki Kaisha Cooling control system for engine

Also Published As

Publication number Publication date
JP2004211573A (ja) 2004-07-29

Similar Documents

Publication Publication Date Title
JP4682863B2 (ja) エンジンの冷却装置
JP4122731B2 (ja) 蓄熱装置を備えた内燃機関
US7277791B2 (en) Strategy for detecting use of a block heater and for modifying temperature-dependent variables to account for its use
JP4962657B2 (ja) 内燃機関の制御装置
JP5276636B2 (ja) 内燃機関温度制御システム
JP4529709B2 (ja) エンジンの冷却装置
JP4062285B2 (ja) 蓄熱システム
JP4172269B2 (ja) 蓄熱装置を備えた内燃機関
JP2012072669A (ja) 内燃機関制御システム
JP2002266679A (ja) 内燃機関用制御装置
JP5125755B2 (ja) 内燃機関の制御装置
JP4066728B2 (ja) 蓄熱装置を備えた内燃機関
JP2006207457A (ja) 回転電機の制御装置
JP2006207461A (ja) 車両の制御装置
JP3891064B2 (ja) 内燃機関の制御装置
JP5553041B2 (ja) 内燃機関の制御装置
JP3843808B2 (ja) 蓄熱装置を備えた内燃機関
JP2007071047A (ja) 内燃機関の制御装置
JP3906745B2 (ja) 内燃機関の冷却装置
JP4692478B2 (ja) オイル温度推定装置及びオイル温度推定方法
JP2017155608A (ja) 車両の冷却装置
WO2018051806A1 (ja) 内燃機関の燃料噴射制御装置及び燃料噴射制御方法
JP2016145549A (ja) エンジンの制御装置
JP4029797B2 (ja) 蓄熱装置を備えた内燃機関
JP2002276420A (ja) 蓄熱装置を備えた内燃機関

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050805

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080219

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080421

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080722

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080804

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110822

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110822

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120822

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130822

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees