JP4154655B2 - 水蒸気改質システムの運転停止方法 - Google Patents

水蒸気改質システムの運転停止方法 Download PDF

Info

Publication number
JP4154655B2
JP4154655B2 JP2002303428A JP2002303428A JP4154655B2 JP 4154655 B2 JP4154655 B2 JP 4154655B2 JP 2002303428 A JP2002303428 A JP 2002303428A JP 2002303428 A JP2002303428 A JP 2002303428A JP 4154655 B2 JP4154655 B2 JP 4154655B2
Authority
JP
Japan
Prior art keywords
reforming
steam
raw material
gas
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002303428A
Other languages
English (en)
Other versions
JP2004137108A (ja
Inventor
武 桑原
良夫 冨沢
靖 吉野
三郎 丸子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
T.RAD CO., L T D.
Original Assignee
T.RAD CO., L T D.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by T.RAD CO., L T D. filed Critical T.RAD CO., L T D.
Priority to JP2002303428A priority Critical patent/JP4154655B2/ja
Publication of JP2004137108A publication Critical patent/JP2004137108A/ja
Application granted granted Critical
Publication of JP4154655B2 publication Critical patent/JP4154655B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、原料ガスの水蒸気改質反応により水素リッチな改質ガスを生成するように構成した水蒸気改質システムの運転停止方法に関する。
【0002】
【従来の技術】
メタン等の炭化水素、メタノール等の脂肪族アルコール類、或いはジメチルエーテル等のエーテル類などの原料ガスと水蒸気の混合物(以下、原料−水蒸気混合物という)を水蒸気改質触媒の存在下に水蒸気改質し、水素リッチな改質ガスを生成するシステムが従来から知られている。
改質システムの主要な構成要素である改質反応装置としては、水蒸気改質反応に必要な熱量を外部から供給する外部加熱型と、内部加熱型がある。
【0003】
前者の外部加熱型は、バーナー等で発生した燃焼ガスで改質反応装置の壁面を外部から加熱し、その壁を通して内部の反応室に改質反応に必要な熱を供給するものである。この外部加熱型を採用した水蒸気改質装置において、原料ガスとしてメタンを使用した場合の反応式は、
CH4 + 2H2 O → CO2 + 4H2 (1)
で示すことができ、水蒸気改質反応に必要な温度は700〜750℃の範囲とされる。
【0004】
内部加熱型は上記外部加熱型を改良したものであり、改質反応装置における原料−水蒸気混合物の供給側(上流側)に部分酸化反応層を装備し、該部分酸化反応層で発生した熱を用いて下流側に配備した水蒸気改質反応層を水蒸気改質反応温度まで加熱し、該加熱された水蒸気改質触媒層で水蒸気改質反応をさせて水素リッチな改質ガスを生成するように構成している。この場合において、原料ガスとしてメタンを使用したときの部分酸化反応は、
CH4 + 1/2 ・O22 →CO + 2H2 (2)
で示すことができ、部分酸化反応に必要な温度は250℃以上の範囲とされる。
【0005】
さらに、前記内部加熱型の改良型として「自己酸化内部加熱型改質装置及び方法」が提案されている(例えば、特許文献1参照。)。
従来から、酸素存在下では水蒸気改質触媒の機能が阻害されるとされていたが、該公報に提案された技術では、酸化触媒を共存させることにより前記問題を解決し、酸素の存在下でも水蒸気改質触媒の本来の機能を有効に維持させることを可能としている。
【0006】
【特許文献】
特開2001−192201号公報
【0007】
上記公報で提案された改良技術では、酸化反応による発熱と水蒸気改質反応をそれぞれ酸化触媒と水蒸気改質触媒からなる混合触媒層で同時に行っている。すなわち、酸化発熱層と水蒸気改質反応(吸熱反応)層が共存することにより、加熱部の温度と吸熱部の温度を同等に維持することが可能となり、触媒等の構成部材の温度を所定の改質反応温度以下、例えば700℃近傍に抑制でき、それによって構成部材の寿命短縮も防止でき得るとしている。また、改質装置内部の熱を有効に回収する機能を併せ持っているので高い改質効率が得られるとされている。
【0008】
上記いずれの方式の水蒸気改質システムにおいても、改質ガスを供給する負荷設備が停止したときには、それと連動してシステムの運転を停止せざるを得ない場合が多い。
従来から、水蒸気改質システムの運転停止方法として種々のものが提案されているが、改質反応装置への水蒸気と原料ガスの供給を停止して改質反応を終了させた後、改質反応装置の内部を窒素などの不活性ガスでパージする方法が一般に採用されている。
【0009】
このように改質反応装置の内部を不活性ガスでパージする理由は、高温で運転していた改質反応装置の内部にそれまで供給していた燃料−水蒸気混合物を封入したまま停止すると、内部の触媒層などにカーボンフォーメーション(炭化物生成)が進行し、例えば触媒としてニッケル系を使用した場合には、ニッケルがニッケルカルボニル変性して劣化し、触媒機能が低下するなどの問題があるためである。
また他の方法として、改質反応を終了させた後、改質反応装置の内部の原料−水蒸気混合物を空気でパージする方法も提案されているが、空気でパージすると改質触媒等に酸化反応が起こって、触媒劣化その他の問題を引き起こすおそれがある。
【0010】
【発明が解決しようとする課題】
窒素などの不活性ガスパージによる運転停止方法は、カーボンフォーメーションや触媒劣化などを引き起こさない利点はあるが、システムの運転停止の都度、不活性ガスを大量に消費するという問題がある。特に一般家庭用や車両搭載用の場合には、大きな窒素ボンベの設置や搭載が困難なので、極めて少量の不活性ガスパージで安定に運転停止することが求められる。
【0011】
そこで本発明は、従来の不活性ガスパージ方法における問題を解決することを課題とし、少ない不活性ガスパージで安定に停止できる水蒸気改質システムの運転停止方法を提供することを目的とする。
【0012】
【課題を解決するための手段】
前記課題を解決する本発明は、水蒸気発生手段と、水蒸気発生手段で発生した水蒸気と原料ガスを混合して原料−水蒸気混合物を生成する混合手段と、混合手段で得られた原料−水蒸気混合物を加熱下に水蒸気改質反応して水素リッチな改質ガスを生成する改質手段と、制御手段を備えた水蒸気改質システムの運転停止方法である。
【0013】
そして本運転停止方法は、改質手段の内部温度を検出してその検出信号を前記制御手段に伝送する温度検出手段と、改質手段の内部圧力を検出してその検出信号を前記制御手段に伝送する圧力検出手段を設け、前記制御手段は、改質手段から改質ガスの供給を受ける負荷設備の停止信号に基づき、先ず改質手段の加熱を停止すると共に、混合手段への原料ガスの供給を停止し、前記温度検出手段からの温度検出信号が水蒸気の結露温度またはその近傍温度まで低下したとき、改質手段への水蒸気供給を停止すると共に、改質手段に不活性ガスを供給して内部に残存する水蒸気を該不活性ガスで置換し、その後は前記圧力検出手段による圧力検出信号が負圧値にならないだけの不活性ガスを改質手段に供給するように制御することを特徴とする(請求項1)。
【0014】
上記運転停止方法において、前記改質手段として原料−水蒸気混合物を酸素の存在下に自己酸化により加熱し水蒸気改質して水素リッチな改質ガスを生成する自己酸化内部加熱型を使用し、前記制御手段は、前記改質手段の加熱停止に際して酸素の供給も併せて停止するように制御することができる(請求項2)。
【0015】
上記いずれかの運転停止方法において、前記水蒸気発生手段は、燃焼用の空気流中に燃料を吸入し空気−燃料混合物を得る第1の吸引混合手段を有し、その空気−燃料混合物を燃焼部で燃焼し水を加熱して水蒸気を発生するように構成し、前記原料−水蒸気混合物を生成する混合手段は、水蒸気発生手段で得られた水蒸気流中に原料ガスを吸引して原料−水蒸気混合物を得る第2の吸引混合手段により構成し、前記制御手段は、前記改質手段への水蒸気供給停止に際して第1の吸引混合手段への燃料供給を停止するように制御することができる(請求項3)。
【0016】
上記運転方法において、改質手段から改質ガスの供給を受ける負荷設備が燃料電池であり、前記制御手段は、燃料電池の運転時には第1の吸引混合手段への燃料として燃料電池のアノード排ガスを使用し、燃料電池の停止信号に基づき、第1の吸引混合手段への燃料を燃料電池のアノード排ガスから他の燃料に切り換えるように制御することができる(請求項4)。
【0017】
【発明の実施の形態】
次に図面により本発明の実施の形態を説明する。図1は本発明の運転停止方法を適用する「自己酸化内部加熱型」の水蒸気改質システムのプロセスフロー説明図である。図1において、水蒸気発生手段2は燃焼部2aと第1の吸引混合手段6を備えており、燃焼部2aには第1の吸引混合手段6から供給される空気−燃料混合物を燃焼するバーナー(図示せず)が設けられる。また水蒸気発生手段2には水タンク(または純水タンク)10からの水供給用の配管108と、混合手段50を構成する第2の吸引混合手段4への水蒸気供給用の配管109が接続され、配管108には遠隔操作可能な流量調整弁32(例えば空気圧式、油圧式または電動式などで駆動される調整弁、以下他の流量調整弁も同じ)が設けられ、配管109には同様な流量調整弁31が設けられる。
【0018】
さらに水蒸気発生手段2には水貯留部(水ドラム)の水位を検出する水位検出手段40と発生する水蒸気の圧力を検出する圧力検出手段41が設けられ、それらの検出値に比例する電気信号(検出信号)が制御手段14にそれぞれ伝送される。
制御手段14は後述するように、水位検出手段40や圧力検出手段41の検出値、または他の操作指令を受けて各流量調整弁などを制御する。この制御手段14は例えばコンピュータ装置により構成される。
【0019】
制御手段14を構成するコンピュータ装置は、種々の制御動作を行うCPU(中央演算装置)、オペレーションシステム(OS)や制御プログラムを格納したROMやRAM等の記憶部、キーボードやマウス、もしくは操作盤などの入力部などにより構成され、さらに必要に応じてディスプレーやプリンタ等が附加される。なお制御手段14を本システムから離れた場所に設置し、通信回線を利用して流量調整弁等を制御することもできる。
【0020】
燃焼部2aには燃焼排ガスを排出する配管113が接続され、その配管113は第1の熱交換手段13における熱交換配管を経て配管114に接続され、その配管114の先端部は外部に開口する。第1の熱交換手段13には燃料電池のアノード排ガス等のガス燃料や液体燃料を供給する配管101aが接続され、配管101aは第1の熱交換手段13における熱交換配管を経て配管101bに連通し、その配管101bの先端部は第1の吸引混合手段6に接続される。
なお燃焼部2aにはさらに配管112が接続され、その配管112は流量調整弁34を介して加圧空気供給系7からの配管102に接続される。配管112からの空気は燃焼部2aの燃焼温度を低減するための冷却用空気として利用される。すなわち運転開始信号により、制御手段14から流量調整弁34を開ける制御信号が設定された時間出力される。
【0021】
貯留タンクなどを備えた原料供給系8に接続された原料ガス供給用の配管111が脱硫手段9の入口側に接続され、脱硫手段9の出口側には脱硫された原料ガスが流出する配管103が接続される。配管103には遠隔操作可能な流量調整弁31が設けられ、流量調整弁31の下流側は前記第1の熱交換手段13における熱交換配管を経て配管109に接続され、さらに配管109の先端部は第2の吸引混合手段4に接続される。
なお第1の熱交換手段13は3流体熱交換器を使用しているが、燃焼排ガスの熱交換配管を共通して有する2流体熱交換器を2基使用することもできる。
【0022】
一方、前記第1の吸引混合手段6には、さらに燃焼用の空気を供給する配管102bが接続され、その配管102bは第2の熱交換手段12における熱交換配管を経て遠隔操作可能な流量調整弁37を設けた配管102aに接続される。そして配管102aの先端部は空気圧縮機などを備えた加圧空気供給系7に接続される。さらに配管101aには原料ガス供給用の配管111から分岐した配管111aが接続され、その配管111aには流量調整弁33aが設けられる。
【0023】
改質手段1には第2の吸引混合手段4からの原料−水蒸気混合物を供給する配管104、および加圧空気などの加圧された酸素含有気体を供給する配管102dが接続される。配管102dは第2の熱交換手段12における熱交換配管を経て遠隔操作可能な流量調整弁36を設けた配管102cに接続され、配管102cの先端部は前記加圧空気供給系7に接続される。
【0024】
さらに改質手段1には改質ガス排出用の配管105が接続され、配管105は第2の熱交換手段12における熱交換配管を経て配管106に接続され、配管106の先端部は酸化用の空気を混合する混合手段5に接続される。なお本実施形態では第2の熱交換手段12として3流体熱交換器を使用しているが、改質ガスの熱交換配管を共通して有する2流体熱交換器を2基使用することもできる。
【0025】
改質手段1への配管104には改質手段1を運転停止した際に、その内部に窒素などの不活性ガスを供給する配管115が接続され、その配管115には制御手段14で制御される流量調整弁39bが設けられる。また改質手段1にはその内部温度を検出する温度検出手段42と内部圧力を検出する圧力検出手段43が設けられ、それらの検出信号はいずれも制御手段14に伝送される。
温度検出手段42は、改質手段1が運転停止した際に、水蒸気残留する部分の中で最も早く温度低下する場所の温度が検出できるように設置する。また圧力検出手段43は、改質手段1が運転停止した際に、配管115から不活性ガスを供給した状態で、最も圧力低下を生じやすい部分の圧力が検出できるように設置することが望ましいが、水蒸気発生手段2の圧力検出手段で置き換えることも可能であることはいうまでもない。
【0026】
前記混合手段5には遠隔操作可能な流量調整弁38を設けた加圧空気供給用の配管110が接続され、配管110の先端部は前記加圧空気供給系7に接続される。混合手段5はCO低減手段3に連結され、その出口側の配管107は図示しない燃料電池などの負荷設備に接続される。
【0027】
図2は図1における第1の吸引混合手段6または第2の吸引混合手段4の具体的構造を示す横断面図である。第1の吸引混合手段6と第2の吸引混合手段4は容量などが異なるだけでいずれも同じ原理のエジェクター20で構成される。エジェクター20は固定部21と、固定部21から延長する内部ノズル構造体22および外部ノズル構造体23を備え、外部ノズル構造体23に開口部24,25および絞り部26が設けられる。
【0028】
第1の吸引混合手段6の場合を例に作用を説明すると、内部ノズル構造体22に主流体である空気流を矢印のように供給したとき、空気流のベンチュリー効果により空間部26部分が減圧状態になる。そして開口部24から副流体である燃料を矢印のように供給すると、燃料は吸引され空気流と均一に混合されて開口部25から噴出する。従って、燃料ガスは特に加圧しなくても燃焼用の空気と均一に混合する。
なお第2の吸引混合手段4の場合は、主流体である水蒸気を内部ノズル構造体22に供給し、副流体である原料ガスを開口部24から供給することにより、原料ガスは特に加圧しなくても水蒸気と均一に混合する。
【0029】
図3(a)は図1における改質手段1の具体的構成を示す縦断面図であり、図3(b)はそのA−A断面図である。改質手段1は横断面が矩形な縦長の外側筒61と、その内部に所定間隔で配置された横断面が矩形な縦長の2つの内側筒62を備えている。外側筒61の内壁面と内側筒62の外壁面と間の空間部に第1反応室61aが形成され、内側筒62の内部に第2反応室62aが形成される。
【0030】
内側筒62の側壁は耐食性を有し且つ伝熱性の良いステンレス等の金属で作られており、そのため第1反応室61aと第2反応室62aは良好な伝熱性の隔壁62bで仕切られた状態になっている。
第1反応室61aの一方の端部(図3の下側)に原料−水蒸気混合物を供給する原料供給部68が設けられ、他方の端部(図3の上側)に排出部68aが設けられる。また第1反応室61aの内部には排出部68a側から順に多数の微小な貫通部を有する支持板73a、73c、73eが設けられ、支持板73aと73cの間に水蒸気改質触媒層71aが充填され、支持板73cと73eの間に伝熱粒子層71bが充填されている。
【0031】
第2反応室62aの一方の端部(図3の上側)に第1反応室61aの排出部68aと連通する原料供給部69aが設けられると共に、その原料供給部69aに空気などの酸素含有ガスを導入する酸素含有ガス導入部63のマニホールド64、65が連通される。また第2反応室62aの他方の端部(図3の下側)にマニホールド65を介して排出部69が接続される。さらに第2反応室62aの内部には原料供給部69a側から順に多数の微小な貫通部を有する支持板73a、73b、73c、73d、73eが設けられる。
【0032】
そして支持板73aと73bの間に水蒸気改質触媒と酸化触媒を混合した混合触媒層72aが充填され、支持板73bと73cの間に伝熱粒子層72bが充填され、支持板73cと73dの間に高温シフト触媒層72cが充填され、支持板73dと73eの間に低温シフト触媒層72dが充填される。そして高温シフト触媒層72cと低温シフト触媒層72dの両層でシフト触媒層72eが構成される。なお第2の反応室62aに配置した支持板73aと73bの間に存在する周囲壁は断熱壁70とされ、酸化触媒による酸化反応熱が第1の反応室61aに逃げることを防止している。
【0033】
第1の反応室61aに充填する水蒸気改質触媒層71aは、原料ガスを水蒸気改質する触媒層であり、特開2001−192201号公報に開示されている改質反応触媒と同様なもので構成できるが、その中でもNiS−SiO2 ・Al2 3 などのNi系改質反応触媒が望ましい。またWS2 −SiO2 ・Al2 3 やNiS−WS2 ・SiO2 ・Al2 3 などの改質反応触媒も使用できる。
【0034】
混合触媒層72aを構成する主要成分である水蒸気改質触媒は、前記第1の反応室61aに充填する水蒸気改質触媒と同様なものを使用できる。この水蒸気改質触媒の使用量は、原料−水蒸気混合物が混合触媒層72aを通過する間に水蒸気改質反応が完了するに十分な値とされるが、その値は使用する原料ガスの種類により変化するので、最適な範囲を実験等により決定する。
【0035】
混合触媒層72aに均一に分散される酸化触媒は、原料−水蒸気混合物中の原料ガスを酸化発熱させて、水蒸気改質反応に必要な温度を得るものであり、例えば白金(Pt)やパラジウム(Pd)を使用することができる。水蒸気改質触媒に対する酸化触媒の混合割合は、水蒸気改質すべき原料ガスの種類に応じて1〜15%程度の範囲で選択する。例えば原料ガスとしてメタンを使用する場合は5%±2%程度、メタノールの場合は2%±1%程度の混合割合とすることが望ましい。
【0036】
第1の反応室61aの伝熱粒子層71bと第2の反応室62aの伝熱粒子層72bは、隔壁62bを介して第2の反応室62aの熱エネルギーを効率よく第1の反応室61aに伝達するために設けられる。すなわち第2の反応室62aに充填する伝熱粒子層72bは、混合触媒層72aからの高温流出物の熱エネルギーで第1の反応室61aに充填する水蒸気改質触媒層71a部分を加熱し、第1の反応室61aに充填する伝熱粒子層71bは、発熱反応部であるシフト触媒層72eからの熱エネルギーで原料供給部68から流入する原料−水蒸気混合物を加熱し、それら両方の熱エネルギー伝達により第1の反応層61aの水蒸気改質触媒層71a部分における温度を水蒸気改質反応温度まで昇温する。なおこれら伝熱粒子層71bと伝熱粒子層72bを構成する伝熱粒子は、例えば、アルミナまたはシリコンカーバイトを使用することができる。
【0037】
高温シフト触媒層72cと低温シフト触媒層72dの両層により構成されるシフト触媒層72eは、改質ガス中に含まれる一酸化炭素を酸化して水素を生成するものである。すなわち、改質ガスに残存する水蒸気と一酸化炭素の混合物をシフト触媒の存在下に水素と炭酸ガスにシフト変換して水素を発生させ、改質ガス中の水素濃度をより高くし、改質ガスに含まれる一酸化炭素濃度をそれに応じて低くする。
【0038】
高温シフト触媒層72cや低温シフト触媒層72dを形成するシフト触媒としては、CuO−ZnO2 、Fe2 3 、Fe3 4 または酸化銅の混合物等を使用することができる。しかし700℃以上で反応を行う場合にはCr2 3 を使用することが望ましい。
【0039】
次に図1の自己酸化加熱型水蒸気改質システムにより原料ガスの水蒸気改質を行う方法について説明する。最初に加圧空気供給系7を起動しておき、システムへ加圧空気を供給すると共に制御手段14を起動状態としておく。
【0040】
(水蒸気発生操作)
次に水蒸気発生手段2を運転する。蒸気発生手段2の水貯留部(水ドラム)の水位は水位検出手段40で検出され、その検出値が予め設定された値より少ないときには、制御手段14から流量調整弁32を開ける制御信号が出力され、水貯留部の水位を常に所定値に維持する。
【0041】
制御装置14は水蒸気発生手段2の燃焼部2aにおけるバーナーを起動する制御信号を出力すると共に、流量調整弁37、33(または33a)を制御して燃焼部2aへ所定流量の燃料−空気混合物を供給する。すなわち、制御手段14は圧力検出器41からの水蒸気圧力検出値が予め設定された値になるように、先ず第1の吸引混合手段6へ加圧空気を流す配管102bの流量調整弁37を制御する。
【0042】
制御された空気流が第1の吸引混合手段6に流入すると、その流量に対して所定割合で燃料が吸引して両者が均一に混合される。そのため燃料供給系統に特別な昇圧手段を設ける必要がない上に、均一混合により燃焼部2a内部では局部的に高温になる領域がなくなり、良好な燃焼進行によってNOxの発生は低く抑えられ、環境にやさしい燃焼排ガスを排出することができる。
【0043】
第1の吸引混合手段6を使用することにより、流量調整弁33または33aは燃料の最大許容流量を設定するように一定の弁開度に制御すれば十分である。なお燃料の流量調整弁33または33aの弁開度を空気流量にほぼ比例するように制御手段14が制御するように構成することもできる。また第1の吸引混合手段6に供給される加圧空気の圧力は常圧より僅かに高い値、例えば0.02MPa程度で燃料ガスを吸引可能なレベルの負圧を発生することができる。
【0044】
流量調整弁33または33aを開けることにより、配管101aから燃料電池のアノード排ガスが、第1の吸引混合手段6に供給される。また流量調整弁33aを開けることにより配管111から都市ガス、プロパンガス、天然ガスなどのガス燃料、または灯油などの液体燃料が第1の吸引混合手段6に供給することもできる。
【0045】
この流量調整弁33と33aの選択は、例えば制御手段14への燃料選択指令により行うことができる。燃焼部2aからの燃焼排ガスは配管113から第1の熱交換手段13に供給され、そこで冷やされてから配管114で外部に排出される。一方、配管101aまたは111からの燃料は第1の熱交換手段13で加熱されて第1の吸引混合手段6に供給される。
【0046】
(原料−水蒸気混合操作)
水蒸気発生手段2で発生した水蒸気は、流量調整弁39で流量調整されて第2の吸引混合手段4に供給されるが、その流量調整は制御手段14からの制御信号で行われる。すなわち制御手段14に設けた入力手段で改質手段1への原料供給流量の設定値を入力すると、制御手段14から流量調整弁39および31に所定の弁開度を維持する制御信号が出力される。好適な原料ガスと水蒸気の混合割合は、原料ガスに含まれている炭素Cを基準に表示すると、例えば炭化水素の場合はH2 O/C=2.5〜3.5の範囲が好ましく、脂肪族アルコールの場合はH2 O/C=2〜3の範囲が好ましい。
【0047】
第2の吸引混合手段4には前記のように水蒸気流量に対して所定割合のメタン、エタン、プロパン等の炭化水素、メタノール等のアルコール類、ジメチルエーテル等のエーテル類または残水素を含む燃料電池のアノード排ガス、さらには都市ガス、プロパンガス、天然ガスなどの原料ガスが配管109から吸引される。そして、第2の吸引混合手段4から均一な原料−水蒸気混合物が流出して改質手段1に供給される。このように原料ガスは水蒸気流により第2の吸入混合手段4に自動的に吸引されるので、原料ガス系統に特別な昇圧手段を設ける必要はない。
【0048】
なお、原料供給系8からの原料ガスは配管111、脱硫手段9、流量調整弁31および第1の熱交換手段13を経て配管109に供給される。そして原料ガスは制御手段14からの制御信号により所定開度に維持された流量調整弁31でその最大許容流量を制限され、第1の熱交換手段113で所定温度に加熱されてから第2の吸引混合手段4に流入する。
【0049】
(改質反応操作)
前記のように第2の吸引混合手段4から配管104に流出した原料−水蒸気混合物は、改質手段1の原料供給部69(図3)を経て第1の反応室61a内に流入する。平常運転時においては、第2の反応室62aから隔壁62bを通して伝熱する熱エネルギーによって、第1反応室61aに充填された伝熱粒子層71bが昇温されており、第1反応室61aに流入した原料−水蒸気混合物はその伝熱粒子層71bを通過する間に改質反応温度まで昇温する。
【0050】
改質反応温度に達した原料−水蒸気混合物は、次いで水蒸気改質触媒層71aを通過し、その間に原料−水蒸気混合物の一部が水蒸気改質反応して水素リッチな改質ガスに変換され、その水素を含む改質ガスと反応しなかった残りの原料−水蒸気混合物が排出部68aから一体となって排出する。
【0051】
但し、運転開始から暫くの間は、原料−水蒸気混合物が改質反応温度まで昇温できないので、その時点の温度に応じて水蒸気改質反応は低下もしくは殆ど進行せずに、原料−水蒸気混合物はほぼ流入時に近い組成で排出部68aから排出する。なお水蒸気改質反応は吸熱反応であるから、排出部68aから流出する混合物の温度は水蒸気改質触媒層71aの平均温度より低下している。
【0052】
第1の反応室61aの排出部68aから排出した前記改質ガスと原料−水蒸気混合物は、そのまま第2の反応室62aの原料供給部69aから混合触媒層72aに流入する。その際、原料供給部69aには酸素含有ガス導入部63からの酸素含有ガスとしての空気が供給され、混合触媒層72aに流入する原料−水蒸気混合物等に混入する。
【0053】
酸素含有ガス導入部63から供給される空気流量は制御手段14で制御される流量調整弁36によって調整される。すなわち、制御手段14には水蒸気流量を調整する流量調整弁39または原燃料流量を調整する流量調整弁31の制御情報が記憶されており、水蒸気流量および原燃料流量は原料−水蒸気混合物の流量と相関関係にあるので、該制御情報から必要とする空気流量を算出して流量調整弁36に制御信号を出力する。
【0054】
混合触媒層72aに流入した原料−水蒸気混合物を構成する原料ガスの一部は流入した空気中の酸素により酸化反応し、原料−水蒸気混合物を改質反応に必要なレベルまで昇温する。すなわち自己酸化加熱が行われる。ここで、混合触媒層72aにおける平均温度は水蒸気改質反応に適した温度、すなわち650℃〜750℃程度、標準的には700℃前後の温度に維持する必要がある。
【0055】
一方、混合触媒層72aにおける温度管理は、水蒸気改質反応に適した温度に加えて、その下流側の伝熱粒子層72bとの境界における温度が所定レベルに維持できるように管理することも重要になる。例えば伝熱粒子層72bとの境界における温度が650℃以上、好ましくは700℃以上になるように、混合触媒層72aにおける平均温度を管理すると、前記第1の反応室61aにおける伝熱粒子層71bの温度を少なくとも500℃以上に維持することが可能になり、それによって第1の反応室61aの水蒸気改質反応を促進できる。その意味から言えば、第2反応室62aは予備改質部として機能する。
【0056】
混合触媒層72aの平均温度を上記のような範囲に維持することは、例えば混合触層層72aを通過する改質ガスのSV値(Space Velocity)を、使用する触媒機能の要求仕様に合わせることによって実現できる。本実施形態では、混合触媒層72aの平均温度を水蒸気改質反応を進行させる改質反応温度に維持するが、水蒸気改質反応に必要な熱量を供給できる量の空気量とその空気の酸素を完全に消費するために必要最小限の酸化触媒量となるように、水蒸気改質反応のための改質触媒に対して、SV=5000,部分酸化反応のための酸化触媒に対しては、SV=100,000とすることが好ましい。
【0057】
混合触媒層72aから水素リッチな改質ガスがその下流側の伝熱粒子層72bに流出する。650℃以上、好ましくは700℃以上の温度で流入した改質ガスは、前記のように、伝熱粒子層72bを通過する間にその顕熱の一部が隔壁62bを通して第1の反応室61aの伝熱粒子層71bに移動し、伝熱粒子層72bから下流側の高温シフト触媒層72cに流入する際には、シフト反応に適する500℃程度の温度まで下降する。
【0058】
高温シフト触媒層72cに流入した改質ガスはシフト反応し、含まれている一酸化炭素の殆どが水素に変換される。すなわち前記のように、改質ガスに残存する水蒸気と一酸化炭素がシフト触媒の存在下に水素と炭酸ガスにシフト変換されて水素を生成する。
【0059】
改質ガスは次いで高温シフト触媒層72cからその下流側の低温シフト触媒層72dに流入し、そこで残存する一酸化炭素からさらに水素が生成される。このように2段階のシフト反応を行うことにより、水素をより多く生成することが出来ると共に、一酸化炭素もそれに応じて低減される。
高温シフト触媒層72cおよび低温シフト触媒層72dにおけるシフト反応は発熱反応であり、その反応熱の一部は前記のように隔壁62bを通して第1の反応室61aの伝熱粒子層71bに移動する。
【0060】
低温シフト触媒層72dを通過した改質ガスは、第2反応室62aの排出部69から配管105(図1)に流出するが、その温度は180℃程度の高温であるため、第2の熱交換手段12で冷却した後、配管106から混合手段5に流入する。流入した改質ガスは配管110から供給される空気と混合し、次いでCO低減手段3に流入する。CO低減手段3では改質ガスに残存する一酸化炭素が極めて微量なレベル(例えば10ppm以下)まで低減され、配管107から燃料電池等の負荷設備に供給される。
【0061】
前記配管110から混合手段5に供給される空気の流量は、制御手段14で制御される流量調整弁38により調整される。すなわち制御手段14には水蒸気流量を調整する流量調整弁39の制御情報が記憶されており、水蒸気流量は改質ガス流量と相関関係にあるので、該制御情報から必要とする空気流量を算出して流量調整弁38に適正な制御信号を出力するように構成されている。
【0062】
しかし上記水蒸気制御情報を使用する代わりに、CO低減手段3の出口側に一酸化炭素濃度検出手段を設け、その検出信号を制御手段14に伝送して制御することもできる。すなわちCO低減手段の出口側から流出する改質ガス中の微量に含まれる一酸化炭素の濃度が予め設定された範囲を越えないように、制御手段14が流量調整弁38に制御信号を出力するように構成する。
【0063】
前記CO低減手段3は、例えば円筒状の反応槽内に酸化触媒を担持したハニカム状の多孔性のシートを多重に巻回して収容することにより構成できる。反応槽の入口部から流入した改質ガスが巻回したシートの間隙を通過して出口部から流出する間に、含まれる一酸化炭素は酸化触媒によって酸化されて無害な二酸化炭素に変換する。そのためCO低減手段3から流出する改質ガスには極めて微量な一酸化炭素しか含まないので、例えば燃料電池に供給しても悪影響を及ぼすことがない。
なおCO低減手段の酸化触媒としては、例えばPtおよび/またはPd等をアルミナ粒子等、セラミック粒子に担持した粒状のものや、ハニカム金属やハニカムセラミックの表面に前記貴金属触媒を担持させたモノリスタイプの触媒を使用できる。
【0064】
次に図1の水蒸気改質システムの運転停止方法について説明する。制御手段14に負荷設備の停止または遮断信号が入力されたとき、または手動停止スイッチからの運転停止信号が入力されたとき、制御手段14は先ず改質手段1の加熱を停止すると共に、混合手段50を構成する第2の吸引混合手段4への原料ガスの供給を停止する(第1工程)。
【0065】
次に改質手段1の内部温度を検出する温度検出手段42からの温度検出信号が水蒸気の結露温度またはその近傍まで低下したとき、制御手段14は改質手段1への水蒸気供給を停止すると共に、改質手段1に不活性ガスを供給して内部に残存する水蒸気を該不活性ガスで置換する。さらに制御手段14は第1の吸引混合手段6への燃料供給を停止する(第2工程)。
【0066】
その後は改質手段1の内部圧力を検出する圧力検出手段43による圧力検出信号が負圧値にならないだけの不活性ガスを改質手段1に供給するように制御手段14が制御動作を行う(第3工程)。
次に各工程を具体的に説明する。
【0067】
(第1工程)
第1工程では、先ず制御手段14は流量調整弁36を閉じて改質手段1への酸素供給、すなわち空気などの酸素含有ガス供給を遮断し、それによって酸化加熱操作を停止させる。さらに制御手段14は流量調整弁31を閉じて混合手段50を構成する第2の吸引混合手段4への燃料ガスを遮断する。この状態では水蒸気発生手段2が直前の負荷運転に十分な改質用水蒸気を発生しているので、改質手段1には第2の吸引混合手段4からの水蒸気が引き続いて供給される。
【0068】
そして運転停止直後の改質手段1の内部温度は、水蒸気が結露することのない十分に高い温度になっているので、その温度で水蒸気供給を継続するとカーボンフォーメーションや水蒸気改質触媒71aや混合触媒72a等の劣化を進行させることなく、正常に改質用原料がパージされる。
なお配管106の途中に切換弁(図示せず)を設け、改質手段1の運転停止と共に、改質手段1からの流出物を混合手段5から他の回収タンク等に切り換えて回収することが好ましい。
【0069】
水蒸気改質システムで生成した改質ガスを供給する負荷設備が燃料電池であり、その燃料電池のアノード排ガスを水蒸気発生手段2の燃料として使用している場合には、制御手段14は上記加熱停止と共に、流量調整弁33を閉じて流量調整弁33aを開ける制御を行う。具体的には、水蒸気発生手段2の燃焼用燃料の供給、すなわち第1の吸引混合手段6への燃料供給を配管101aによる燃料電池のアノード排ガスから他の燃料、例えば原料供給系8に接続された配管111aによる原料ガスに切り換える制御を行う。それによって燃料電池が遮断した状態でも水蒸気発生を継続することができる。
【0070】
第1工程で改質手段1の加熱操作を停止すると、水蒸気供給だけでは加熱源が不足するので次第に改質手段1の内部温度が低下していく。そして改質手段1の内部温度が水蒸気の結露温度以下になると、内部に結露が生じて前記各触媒が劣化する。
【0071】
(第2工程)
そこで第2工程では、改質手段1の内部温度が予め設定された水蒸気の結露温度、またはその近傍温度に達したことを温度検出手段42が検出したとき、その検出信号を受けた制御手段14が流量調整弁39を閉じて混合手段50を構成する第2の吸引混合手段4への水蒸気供給を遮断し、それによって改質手段1への水蒸気供給を停止する。なお結露の近傍温度とは、結露温度に近い温度を意味し、例えば結露温度を100℃とすると、その近傍温度は105℃〜110℃程度の温度である。このような制御手段14が結露の近傍温度で改質手段1への水蒸気供給を停止する場合には、結露温度に達する前に制御する時間的余裕を十分に確保することができる。
【0072】
さらに第2工程では、制御手段14は流量調整弁39bを開けて配管115から改質手段1の内部に不活性ガスを供給し、内部に滞留する水蒸気等を不活性ガスで置換する。これら操作によって、前記各触媒の劣化を有効に防止できると共に、第1工程の最初から改質手段1へ不活性ガスを供給する場合と比べると、不活性ガスの消費を大幅に抑制する効果がある。
【0073】
なお実験によれば、改質手段1の内容積のおよそ3倍程度不活性ガスを供給すれば、改質手段1の内部を不活性ガスで完全に置換できることが分かった。従って、不活性ガスの消費量を抑制するには、制御手段14は前記3倍程度の不活性ガス供給を行った後、一時的に不活性ガスの供給を停止する(すなわち流量調整弁39bを閉じる)ような制御をすることが好ましい。
【0074】
(第3工程)
第2工程で改質手段1へ内容積の3倍程度の不活性ガスを供給した後、制御手段14がその供給を停止するか、または供給を大幅に減少するように制御した場合、改質手段1の内部温度の低下と共に充填した不活性ガスの容積が減少し、その結果、改質手段1の内部は負圧になって外部から空気を吸引する可能性がある。そこで第3工程では、制御手段14は圧力検出手段43による改質手段1の内部圧力の検出値が負圧にならないように、流量調整弁39を制御して僅かずつ不活性ガスを改質手段1へ供給する。なお、第3工程の制御は改質手段1の運転再開まで連続的または断続的に行うことができる。
【0075】
上記実施形態では、水蒸気改質システムとして自己酸化内部加熱型のシステムを例に説明したが、本発明の運転停止方法はそれに限らず、外部加熱型など、従来知られている他の水蒸気改質システム等にも同様に適用できる。その場合、例えば外部加熱型の水蒸気改質システムに適用するときは、第1工程における改質手段1の加熱操作停止操作を外部から供給される加熱源の停止によって行う。
また、改質手段1の運転時に燃料電池のアノード排ガスを水蒸気発生手段2の燃料として使用していない場合は、第1工程で配管101aからの燃料供給を他の燃料に切り換える必要はない。
【0076】
【発明の効果】
以上のように、本発明に係る水蒸気改質システムの運転停止方法は、システムの運転を停止した初期には、不活性ガスの代わりに運転時に使用していた改質用水蒸気をそのままパージ用として改質手段の内部に供給し、改質手段の内部温度が水蒸気の結露温度またはその近傍温度まで低下したときには、パージ流体を水蒸気から不活性ガスに切り換え、その後は改質手段の内部が負圧にならない程度の不活性ガス供給を行うことを特徴としている。
【0077】
そのため、従来のように運転停止工程を通して不活性ガスを使用する場合に比べて、不活性ガスの消費量を著しく抑制できる。特に一般家庭用や車両搭載用の燃料電池などの負荷設備に供給する改質システムの場合には、大きな窒素ボンベの設置や車両搭載が困難なので、本発明を適用する利点が大きい。
【0078】
上記運転停止方法において、前記改質手段として、原料−水蒸気混合物を酸素の存在下に自己酸化により加熱し水蒸気改質して水素リッチな改質ガスを生成する自己酸化内部加熱型改質手段を使用し、前記制御手段は改質手段の加熱停止に際して酸素供給を停止するように制御することができる。このような自己酸化内部加熱型改質手段を使用すると改質反応温度を比較的低くできるので、装置寿命を長くできるという利点があるが、本発明は上記構成を採用することにより、このような改質手段にも好適に適用できる。
【0079】
上記いずれかの運転停止方法において、前記水蒸気発生手段は燃焼用の空気流中に燃料を吸入し空気−燃料混合物を得る第1の吸引混合手段を有し、その空気−燃料混合物を燃焼部で燃焼し水を加熱して水蒸気を発生するように構成し、前記原料−水蒸気混合物を生成する混合手段は、水蒸気発生手段で得られた水蒸気流中に原料ガスを吸引して原料−水蒸気混合物を得る第2の吸引混合手段により構成し、前記制御手段は、前記改質手段への水蒸気供給停止に際して第1の吸引混合手段への燃料供給を停止するように制御することができる。
【0080】
このような第1の吸引混合手段を用いると、燃料を加圧ポンプなどで加圧しなくても空気流に吸引されて容易に燃料−空気混合物を生成することができ、装置が小型化、軽量化できるという利点があるが、本発明は上記構成を採用することにより、このような場合にも好適に適用できる。
【0081】
上記運転方法において、改質手段から改質ガスの供給を受ける負荷設備が燃料電池である場合、前記制御手段は、燃料電池の運転時には第1の吸引混合手段への燃料として燃料電池のアノード排ガスを使用し、燃料電池の停止信号に基づき、第1の吸引混合手段への燃料を燃料電池のアノード排ガスから他の燃料に切り換えるように制御することができる。
【0082】
このように負荷設備が燃料電池である場合は、水素が残留するアノード排ガスを燃料としてリサイクルするとシステム効率が向上する。その燃料電池の運転停止により水蒸気改質システムの運転を停止するときに、本発明は上記構成を採用することにより、このような場合にも好適に適用できる。
【図面の簡単な説明】
【図1】本発明の運転停止方法を適用する自己酸化内部加熱型水蒸気改質システムのプロセスフロー説明図。
【図2】図1における第1の吸引混合手段6または第2の吸引混合手段4の具体的構造を示す横断面図。
【図3】図1における改質手段1の具体的構成を示す縦断面図とそのA−A断面図。
【符号の説明】
1 改質手段
2 水蒸気発生手段
2a 燃焼部
3 貯留タンク(CO低減手段)
4 第2の吸引混合手段
5 混合手段
6 第1の吸引混合手段
7 加圧空気供給系
8 原料ガス供給系
9 脱硫手段
10 水タンク
12 第2の熱交換手段
13 第1の熱交換手段
14 制御手段
20 エジェクター
21 固定部
22 内部ノズル構造体
23 外部ノズル構造体
24,25 開口部
26 絞り部
31〜39 流量調整弁
40 水位検出手段
41 圧力検出手段
42 温度検出手段
43 圧力検出手段
50 混合手段
61 外側筒
62 内側筒
61a 第1反応室
62a 第2反応室
62b 隔壁
63 酸素含有ガス導入部
64〜66 マニホールド
68 原料供給部
68a 排出部
69 排出部
69a 原料供給部
70 断熱壁
71a 水蒸気改質触媒層
71b 伝熱粒子層
72a 混合触媒層
72b 伝熱粒子層
72c 高温シフト触媒層
72d 低温シフト触媒層
72e シフト触媒層
73a〜73e 支持板
101〜115 配管

Claims (4)

  1. 水蒸気発生手段2と、水蒸気発生手段2で発生した水蒸気と原料ガスを混合して原料−水蒸気混合物を生成する混合手段50と、混合手段50で得られた原料−水蒸気混合物を加熱下に水蒸気改質反応して水素リッチな改質ガスを生成する改質手段1と、制御手段14を備えた水蒸気改質システムの運転停止方法において、
    改質手段1の内部温度を検出してその検出信号を前記制御手段14に伝送する温度検出手段42と、改質手段1の内部圧力を検出してその検出信号を前記制御手段14に伝送する圧力検出手段43を設け、
    前記制御手段14は、改質手段1から改質ガスの供給を受ける負荷設備の停止信号に基づき、先ず改質手段1の加熱を停止すると共に、混合手段50への原料ガスの供給を停止し、前記温度検出手段42からの温度検出信号が水蒸気の結露温度またはその近傍温度まで低下したとき、改質手段1への水蒸気供給を停止すると共に、改質手段1に不活性ガスを供給して内部に残存する水蒸気を該不活性ガスで置換し、その後は前記圧力検出手段43による圧力検出信号が負圧値にならないだけの不活性ガスを改質手段1に供給するように制御することを特徴とする水蒸気改質システムの運転停止方法。
  2. 請求項1において、
    前記改質手段1は原料−水蒸気混合物を酸素の存在下に自己酸化により加熱し水蒸気改質して水素リッチな改質ガスを生成する自己酸化内部加熱型であり、
    前記制御手段14は、前記改質手段1の加熱停止に際して酸素供給を停止するように制御することを特徴とする水蒸気改質システムの運転停止方法。
  3. 請求項1または請求項2において、
    前記水蒸気発生手段2は、燃焼用の空気流中に燃料を吸入し空気−燃料混合物を得る第1の吸引混合手段6を有し、その空気−燃料混合物を燃焼部2aで燃焼し水を加熱して水蒸気を発生するように構成され、
    前記原料−水蒸気混合物を生成する混合手段50は、水蒸気発生手段2で得られた水蒸気流中に原料ガスを吸引して原料−水蒸気混合物を得る第2の吸引混合手段4により構成され、
    前記制御手段14は、前記改質手段1への水蒸気供給停止に際して第1の吸引混合手段6への燃料供給を停止するように制御することを特徴とする水蒸気改質システムの運転停止方法。
  4. 請求項3において、
    改質手段1から改質ガスの供給を受ける負荷設備が燃料電池であり、
    前記制御手段14は、燃料電池の運転時には第1の吸引混合手段6への燃料として燃料電池のアノード排ガスを使用し、燃料電池の停止信号に基づき、第1の吸引混合手段6への燃料を燃料電池のアノード排ガスから他の燃料に切り換えるように制御することを特徴とする水蒸気改質システムの運転停止方法。
JP2002303428A 2002-10-17 2002-10-17 水蒸気改質システムの運転停止方法 Expired - Fee Related JP4154655B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002303428A JP4154655B2 (ja) 2002-10-17 2002-10-17 水蒸気改質システムの運転停止方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002303428A JP4154655B2 (ja) 2002-10-17 2002-10-17 水蒸気改質システムの運転停止方法

Publications (2)

Publication Number Publication Date
JP2004137108A JP2004137108A (ja) 2004-05-13
JP4154655B2 true JP4154655B2 (ja) 2008-09-24

Family

ID=32451217

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002303428A Expired - Fee Related JP4154655B2 (ja) 2002-10-17 2002-10-17 水蒸気改質システムの運転停止方法

Country Status (1)

Country Link
JP (1) JP4154655B2 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4664808B2 (ja) * 2004-01-22 2011-04-06 パナソニック株式会社 水素製造装置及び燃料電池発電装置
JP2006286249A (ja) * 2005-03-31 2006-10-19 Sanyo Electric Co Ltd 燃料電池発電システムにおける燃料改質装置のガスパージ機構
JP5373256B2 (ja) * 2005-08-01 2013-12-18 カシオ計算機株式会社 電源システム及び電源システムの制御方法並びに電源システムを備える電子機器
JP5236966B2 (ja) * 2008-02-29 2013-07-17 三菱重工業株式会社 燃料電池およびその運転方法

Also Published As

Publication number Publication date
JP2004137108A (ja) 2004-05-13

Similar Documents

Publication Publication Date Title
JP5015590B2 (ja) 燃料改質反応物の迅速加熱用の方法および装置
US9112201B2 (en) Hydrogen production apparatus, fuel cell system and operation method thereof
US20060183009A1 (en) Fuel cell fuel processor with hydrogen buffering
EP1559679B1 (en) Autooxidation internal heating type steam reforming system
AU2007333978A1 (en) Hybrid combustor for fuel processing applications
JP4891594B2 (ja) 改質器
JP4620947B2 (ja) 自己酸化内部加熱型水蒸気改質システム
JP4189731B2 (ja) 自己酸化内部加熱型水蒸気改質システムとその起動方法
JP4154655B2 (ja) 水蒸気改質システムの運転停止方法
JP4281087B2 (ja) 自己酸化内部加熱型水蒸気改質システム
EP1479650A2 (en) Hydrogen generator and fuel cell system
KR100759693B1 (ko) 일산화탄소 저감기 및 연료전지용 개질기
JP4486832B2 (ja) 水蒸気改質システム
JP3733753B2 (ja) 水素精製装置
JP2005314180A (ja) 自己酸化内部加熱型改質装置の停止方法
JP4676819B2 (ja) 改質触媒の還元方法
JP2007284265A (ja) 改質システムの停止方法
JP4847053B2 (ja) 改質システムの負荷制御方法
JP2006335623A (ja) 改質システム
JP2005149910A (ja) 自己酸化内部加熱型水蒸気改質システム
JP2005216615A (ja) 燃料処理装置及び燃料電池発電システム
JP2003306306A (ja) オートサーマルリフォーミング装置
JP2003303610A (ja) 燃料電池システム及びその運転方法並びにオートサーマルリフォーミング装置
JP2005005010A (ja) 燃料電池用燃料改質器
JP5243839B2 (ja) 酸化自己熱型改質装置及び固体酸化物形燃料電池システムの起動方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050906

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080605

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080624

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080625

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110718

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140718

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees