JP4664808B2 - 水素製造装置及び燃料電池発電装置 - Google Patents

水素製造装置及び燃料電池発電装置 Download PDF

Info

Publication number
JP4664808B2
JP4664808B2 JP2005336918A JP2005336918A JP4664808B2 JP 4664808 B2 JP4664808 B2 JP 4664808B2 JP 2005336918 A JP2005336918 A JP 2005336918A JP 2005336918 A JP2005336918 A JP 2005336918A JP 4664808 B2 JP4664808 B2 JP 4664808B2
Authority
JP
Japan
Prior art keywords
temperature
gas
unit
replacement
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005336918A
Other languages
English (en)
Other versions
JP2006137668A (ja
Inventor
邦弘 鵜飼
清 田口
英延 脇田
誠二 藤原
幸宗 可児
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2005336918A priority Critical patent/JP4664808B2/ja
Publication of JP2006137668A publication Critical patent/JP2006137668A/ja
Application granted granted Critical
Publication of JP4664808B2 publication Critical patent/JP4664808B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Hydrogen, Water And Hydrids (AREA)
  • Fuel Cell (AREA)

Description

本発明は、少なくとも炭素原子と水素原子とを含む原料を水蒸気改質して水素リッチガスを発生させる水素製造装置、ならびに、この水素リッチガスを用いて電気と熱とを発生させる燃料電池発電装置に関する。
現在、水素ガスの供給系統は、一般的なインフラとして整備されていない。このため、分散型発電装置として開発及び商品化が進められている燃料電池発電装置では、発電燃料となる水素ガスが装置に直接供給される代わりに、水素ガス生成手段が燃料電池に併設され、この水素ガス生成手段で生成された水素ガスが燃料電池に供給される構成のものがある。例えば、都市ガス、LPG等の既存のインフラから供給される原料を用いて水素を生成する水素製造装置が併設された燃料電池発電装置がある。
水素製造装置の多くは、都市ガスやLPG等の原料を触媒を用いて化学反応(具体的には水蒸気改質)させて水素ガスを生成する。このような水素製造装置では、装置の運転と停止とを繰り返すと、連続運転を行った場合に比べて、高温下で触媒の酸化還元が繰り返される可能性が高くなり、その結果、触媒活性が低下する可能性が高くなる。特に、装置の停止では、装置内の触媒が高温状態であり、また、停止に伴う温度低下によって装置内が減圧されることから装置内に空気が混入する確率が高くなる。そして、このように触媒が高温の酸化雰囲気下におかれると、シンタリング等により触媒の活性低下が顕著となる。
水素製造装置の停止により生じる触媒活性の低下を防止するためには、窒素ガス等の不活性ガスを置換ガスとして用いて装置内部に残留する生成ガスを置換する(以下、これを装置内ガス置換と呼ぶ)ことが望ましい。しかしながら、水素ガス同様、不活性ガスのインフラも整っていないのが現状であり、このため、不活性ガスを用いずに装置内ガス置換を行って触媒活性の低下を防止することが望まれる。このような水素製造装置として、例えば、装置の停止動作において、触媒の温度が低下した後に原料および水の供給を停止させ、それにより、装置内に空気が混入しても触媒の酸化が防止されるように構成されたものがある(例えば、特許文献1参照)。
また、改質反応部の温度が検出可能に構成され、装置の停止時に改質反応部の温度を検出するとともに、検出温度が所定温度以下になったら原料ガスで装置内ガス置換を行って空気混入を防止する構成のものがある。かかる構成では、原料ガスで装置内ガス置換を行うことにより、特に、水蒸気および酸素によるシフト触媒の活性低下を防止することができる(例えば、特許文献2参照)。さらに、装置の停止動作中に原料と水蒸気との混合ガスを装置内に流通させて触媒を自然冷却させ、冷却後、空気で装置内ガス置換を行う構成のものや(例えば、特許文献3及び特許文献4参照)、原料で装置内ガス置換を行うものがある(例えば、特許文献5参照)。
特開2000−290001号公報 特開2000−95504号公報 特開2002−8701号公報 特開2002−93447号公報 特開2002−151124号公報
ところで、停止時における水素製造装置の温度状態は、停止に到るまでの装置の運転状況により相違する。ここで、停止時とは、運転停止の制御信号が制御部から出力された時点をさし、一方、この信号の出力時から装置が完全に停止するまでの期間を停止動作期間と呼ぶ。
例えば、水素製造装置は、長時間運転した後に停止した場合と、運転開始直後に停止した場合とで、停止時の装置の温度状態が異なる。また、水素製造装置の運転開始直後に装置を停止した場合であっても、運転開始前の装置の状況によって、装置内が十分に加熱されていない状態と、ある程度加熱された状態とが存在する。例えば、長時間の停止により温度が室温まで低下した装置の運転を開始してその直後に装置を停止させた場合には、装置内は十分に加熱されておらず、一方、長時間運転を行って高温に保持された装置を一旦停止させ、その後、直ちに運転を再開するとともにさらに再び装置を停止させた場合には、装置内はある程度加熱されて温度が高く保たれた状態となっている。
以上のように、停止時における水素製造装置の温度状態は、停止に到るまでの装置の運転状況によって多様であるが、この多様な装置の温度状態に対して、上記従来の装置内ガス置換方法が適切に対応しているとは限らず、また、適切な置換方法が行われないと、改質触媒の触媒活性低下等を招く。例えば、原料と水(水蒸気)とが適切な比率でないガスにより置換を行うと、装置内が高温の場合には触媒が酸化したり原料中の炭素が析出したりする。また、装置内が低温であれば、装置内で水蒸気が凝縮して水が生成する。そして、これらの結果、改質触媒の触媒活性が低下する。
本発明は、上記課題を解決するものであり、装置の停止に伴う触媒活性の低下が防止され、良好な水素製造を安定して行うことが可能な水素製造装置及び該装置を備えた燃料電池発電装置を提供することを目的とする。
上記課題を解決するために、本発明に係る水素製造装置は、少なくとも炭素と水素とから構成される有機化合物を含む原料を、触媒を用いて水蒸気と反応させて水素リッチな改質ガスを生成する改質反応部を備えた水素生成部と、少なくとも前記改質反応部を加熱する加熱部と、前記水素生成部に前記原料を供給する原料供給部と、前記水蒸気のもととなる水を前記水素生成部に供給する水供給部と、少なくとも前記加熱部、前記原料供給部、及び前記水供給部を制御する制御部とを備え、運転停止動作の開始時に、前記加熱部における加熱が停止され、前記運転停止動作において、装置内の前記水素リッチなガスを置換するための置換ガスを通流させて装置内ガス置換動作が行われる水素製造装置であって、前記装置内ガス置換動作では、前記原料供給部から供給される前記原料、前記水供給部から供給される前記水から生成された前記水蒸気、装置外部から供給される空気、装置外部から供給される不活性ガス、又は、これらを二種以上混合したガス、が前記置換ガスとして用いられ、前記制御部には、前記運転停止動作の開始時における少なくとも改質反応部の温度を含む装置の異なる温度状態に応じて使用する前記置換ガスの組成が予め設定されており、前記制御部は、前記運転停止動作の開始時において前記装置の温度状態を判定し、前記判定結果に応じて前記設定から選択される前記置換ガスを用いて前記装置内ガス置換動作を行うよう前記加熱部、前記原料供給部、及び前記水供給部を制御するものである。
かかる構成によれば、停止時の装置の温度状態に応じて適切な方法、具体的には装置の温度状態に応じた適切な組成の置換ガスを用いて装置内ガス置換を行うことが可能となる。このため、高温条件下や適切でない置換ガスの組成によって生じる、原料等からの炭素析出や装置内における水蒸気からの水凝縮や触媒の高温酸化等に起因して生じる触媒活性の低下を防止しながら速やかにかつ置換ガスを効率よく有効利用して装置内ガス置換を行うことが可能となる。
前記改質反応部以外の所定部分の温度を検出する温度検出手段をさらに備え、前記温度検出手段で検出された前記運転停止動作における前記所定部分の温度も考慮して前記装置の温度状態を判定してもよい。
前記改質反応部で生成された水素リッチなガスから変成反応により一酸化炭素を除去する一酸化炭素変成部と、前記一酸化炭素変成部から得られた変成後ガスを選択酸化してさらに一酸化炭素を除去する一酸化炭素選択酸化部と、前記一酸化炭素変成部の温度を検出する変成温度検出手段と、前記一酸化炭素選択酸化部の温度を検出する選択酸化温度検出手段と、をさらに備え、前記制御部は、前記運転停止動作において前記変成温度検出手段によって検出される前記一酸化炭素変成部の温度と前記選択酸化温度検出手段によって検出される前記一酸化炭素選択酸化部の温度とに基づき、前記運転停止動作における前記一酸化炭素変成部及び前記一酸化炭素選択酸化部が水蒸気の水凝縮が生じる状態であるか否かを判定し、その判定結果と前記改質反応部の温度状態の判定結果とに基づいて前記装置の温度状態を判定してもよい。
前記制御部は、前記運転停止時以前の装置の運転状態を記憶し、前記運転停止動作においては、前記記憶された前記装置の運転状態から該運転停止動作における前記装置の温度状態を推測してもよい。
運転動作の継続時間と装置の温度状態との相関関係が予め制御部に記憶されるとともに、前記運転停止動作の開始時までの運転動作の継続時間が前記運転停止時以前の装置の運転状態として前記制御部に取得され、前記制御部は、前記取得された前記運転停止動作の開始時までの運転動作の継続時間から、前記予め記憶された相関関係に基づいて、前記運転停止動作における装置が水蒸気から水の凝縮が生じる状態であるか否か、前記原料の熱分解が起こる状態であるか否か、一酸化炭素及び二酸化炭素の不均化反応が起こる状態であるか否か、又は、前記触媒の酸化が起こる状態であるか否かを判定してもよい。
前記制御部には、前記運転停止動作における装置の温度状態が前記水の凝縮が生じる状態である時に前記水蒸気のみの組成を除く組成を有する前記置換ガスで前記装置内ガス置換動作を行うよう第1の置換ガス設定が記憶されてもよい。
前記制御部には、前記運転停止動作における装置の温度状態が前記水の凝縮及び前記原料の熱分解を回避可能な状態である時、前記原料、前記水蒸気、前記空気、前記不活性ガス、又はこれらを二種以上含む混合ガスで前記装置内ガス置換動作を行うよう第2の置換ガス設定が記憶されてもよい。
前記制御部には、前記運転停止動作における装置の温度状態が前記原料の熱分解を起こす状態である時、前記原料のみの組成を除く組成を有する前記置換ガスで前記装置内ガス置換動作を行うよう第3の置換ガス設定が記憶されてもよい。
前記制御部には、前記運転停止動作における装置の温度状態が前記不均化反応を起こす状態である時に前記水蒸気を含む前記置換ガスで前記装置内ガス置換動作を行うよう第4の置換ガス設定が記憶されてもよい。
前記制御部には、前記運転停止動作における装置の温度状態が前記触媒の酸化を起こす状態である時に前記空気のみの組成を除く組成の前記置換ガスで前記装置内ガス置換動作を行うよう第5の置換ガス設定が記憶されてもよい。
前記制御部には、前記改質反応部が水蒸気から水の凝縮が生じる状態であるか否かの判定基準となる第1の基準温度と、前記原料の熱分解が起こる状態であるか否かの判定基準となる前記第1の基準温度よりも高い第2の基準温度と、前記不均化反応が起こる状態であるか否かの判定基準となる前記第2の基準温度よりも高い第3の基準温度と、前記触媒の酸化が起こる状態であるか否かの判定基準となる前記第3の温度よりも高い第4の基準温度とが予め設定されるとともに、前記運転停止動作において検出された前記改質反応部の温度が前記第1の基準温度未満であれば、前記第1の置換ガス設定に基づいて前記原料を前記置換ガスとし、前記第1の基準温度以上かつ前記第2の基準温度未満であれば、前記第2の置換ガス設定に基づいて前記原料を前記置換ガスとし、前記第2の基準温度以上かつ前記第3の基準温度未満であれば、前記第3の置換ガス設定に基づいて前記水蒸気を前記置換ガスとし、前記第3の基準温度以上かつ前記第4の基準温度未満であれば、前記第4の置換ガス設定に基づいて前記原料と前記水蒸気とを含み前記原料由来の炭素原子Cに対する水分子Sの比S/Cが2以上である混合ガスを前記置換ガスとし、前記第4の基準温度以上であれば、前記第5の置換ガス設定に基づいて水素生成動作時と同様の供給量で供給される前記原料と前記水蒸気との混合ガスを前記置換ガスとして、前記装置内ガス置換動作が行われてもよい。
前記制御部には、前記運転動作の継続時間と前記改質反応部の温度との相関関係に基づいて、運転停止動作における前記改質反応部が水蒸気から水の凝縮が生じる状態であるか否かの判定基準となる第1の基準時間と、前記原料の熱分解が起こる状態であるか否かの判定基準となる前記第1の基準時間よりも長い第2の基準時間と、前記不均化反応が起こる状態であるか否かの判定基準となる前記第2の基準時間よりも長い第3の基準時間と、前記触媒の酸化が起こる状態であるか否かの判定基準となる前記第3の基準時間よりも長い第4の基準時間と、が予め設定されており、前記運転動作の継続時間が、前記第1の基準時間未満であれば、前記第1の置換ガス設定に基づいて前記原料を前記置換ガスとし、前記第1の基準時間以上かつ前記第2の基準時間未満であれば、前記第2の置換ガス設定に基づいて前記原料を前記置換ガスとし、前記第2の基準時間以上かつ前記第3の基準時間未満であれば、前記第3の置換ガス設定に基づいて前記水蒸気を前記置換ガスとし、前記第3の基準時間以上かつ前記第4の基準時間未満であれば、前記第4の置換ガス設定に基づいて前記原料と前記水蒸気とを含み前記原料由来の炭素原子Cに対する水分子Sの比S/Cが2以上である混合ガスを前記置換ガスとし、前記第4の基準温度以上であれば、前記第5の置換ガス設定に基づいて水素生成動作時と同様の供給量で供給される前記原料と前記水蒸気との混合ガスを前記置換ガスとして前記装置内ガス置換動作が行われてもよい。
前記制御部は、前記運転停止動作中の前記装置内ガス置換動作において、前記停止に伴う前記装置の温度状態の変化に応じて前記装置内ガス置換動作を制御してもよい。例えば、前記制御部は、前記運転停止動作中の前記装置の温度状態を判定し、その判定結果から適切な前記置換ガスの設定を選択してもよい。
本発明に係る燃料電池発電装置は、上記構成を有する水素製造装置と、前記水素製造装置で生成された水素リッチガスが原料として供給されるとともに酸素が酸化剤として供給されて前記水素リッチガスの酸化により熱と電気とを発生させる燃料電池と、を備えたものである。
かかる構成によれば、水素製造装置において良好な水素製造が安定して行われるので、燃料電池に原料たる水素リッチガスを安定して供給することが可能となる。したがって、信頼性が高く経済性及び省エネルギー性に優れたコージェネレーション装置を実現することが可能となる。
また、本発明の水素製造装置は、原料を改質して水素リッチな改質ガスを生成する改質反応部と、前記改質ガスが流れる改質ガス流路と、燃焼燃料を空気と混合して燃焼させて前記改質反応部を加熱する加熱部と、前記改質ガス流路と隔壁で隔てられ、前記燃焼によって発生する燃焼後ガスが流れる燃焼後ガス流路と、酸化雰囲気中で表面に酸化膜が形成されるシース管と該シース管中に配設された熱検出素子とを有し、前記熱検出素子により前記改質反応部の温度を検出する改質反応温度測定器と、を備え、前記改質反応温度測定器の前記シース管が前記隔壁に接触して配設されている。
前記隔壁に、前記燃焼後ガス流路側から見て凹むように凹部が形成され、該凹部に前記改質反応温度測定器の前記シース管が該凹部の壁に接触するようにして収容されていてもよい。
本発明に係る水素製造装置によれば、装置の停止に伴う触媒活性の低下が防止されて良好な水素製造を安定して行うことが可能な水素製造装置を実現することが可能となる。また、このような水素製造装置を備えた本発明に係る燃料電池発電装置によれば、信頼性が高く良好なコージェネレーション運転を安定して行うことが可能となる。
以下に、本発明の実施の形態を、図面を参照して説明する。
(実施の形態1)
図1は、発明の実施の形態1に係る水素製造装置の構成を模式的に示すブロック図である。また、図2は、図1の改質反応部の構成を模式的に示す断面図である。また、図3は、図1の制御部の構成を模式的に示すブロック図である。
図1に示すように、水素製造装置100は、予熱部8及び改質反応部2を備えた水素生成部1と、原料供給部6と、水供給部7と、燃焼部4と、制御部9とを主たる構成要素として備えている。
原料供給部6は、原料流路aを介して水素生成部1の予熱部8に接続されている。水供給部7は、水流路bを介して水素生成部1の予熱部8に接続されている。また、予熱部8は、混合原料流路cを介して改質反応部2に接続されている。また、ここでは、燃焼部4における燃焼燃料の燃焼で生じる熱が、改質反応部2及び予熱部8の順で伝熱されるように、水素生成部1において改質反応部2が予熱部8よりも燃焼熱の伝熱経路の上流側に配置されている。また、水素生成部1の適所には改質反応部2の温度を測定する改質温度測定部3が配設されている。燃焼部4は、空気を供給するための燃焼ファン5を備えるとともに、燃焼に伴って生じる燃焼後ガスを排出するための燃焼後ガス流路gを備えている。また、燃焼部4には、原料供給部6から供給される原料の一部を燃焼部4に燃焼燃料として供給する燃焼燃料流路fが接続されている。制御部9は、原料供給部6、水供給部7、燃焼部4、及び燃焼ファン5を制御可能に構成され、また、改質温度測定部3で検出された温度情報が伝達されるように構成されている。この制御部9により、水素製造装置の起動、運転、及び停止の各動作が制御される。
図2に示すように、改質反応部2は、円筒状の本体30から構成されている。なお、ここでは図示を省略しているが、改質反応部2は高温となるので、外部への放熱を防ぐために、本体30の外壁が断熱材によって覆われている。本体30の内部には、異なる径を有する複数の円筒体が同心的に配置されており、それにより、本体30の内部空間が、各円筒体によって半径方向に区画され、軸方向に延びる複数の環状の間隙31が形成されている。ここでは、本体30の内部を半径方向に区画する円筒体の周壁を縦壁32と呼ぶ。縦壁32の軸方向の所定端部には、縦壁32と同心的に配置された円板状又は中空円板状の横壁33が配置されている。
このような縦壁32及び横壁33によって形成された間隙31により、本体30の内部には半径方向の外周側から中心に向けて、二重構造の燃焼後ガス流路gの下流流路g1、改質ガス流路d、改質触媒収容部e、及び、燃焼後ガス流路gの上流流路g2が形成される。
本体軸方向に形成された燃焼後ガス流路gの下流流路g1と上流流路g2とは、本体30の底部で連通している。また、燃焼後ガス流路gの上流流路g2は、後述する燃焼部4の輻射筒40の上面及び側面に沿って形成されて輻射筒40の噴出孔を介して筒内部と連通しており、また、下流流路g1の端部は、改質反応部2の外部に燃焼ガスを取り出し可能に形成されている。
改質触媒収容部eに改質触媒が充填されて改質触媒層20が形成されている。ここでは、ルテニウム触媒をアルミナ担体に担持して調製したものが改質触媒として用いられている。改質触媒層20は、燃焼後ガス流路gの上流流路g2を介して燃焼部4の輻射筒40の上面及び側面に沿って配置されている。改質触媒層20の上端の中央部は、予熱部8(図1参照)に連通する混合原料流路cに臨み、下端は、改質ガス流路dに臨んでいる。また、改質ガスの導入口となる改質ガス流路dの上流側端部には、改質温度測定部3が配設されている。ここでは、改質温度測定部3が温度検出手段として熱電対を備え、改質触媒層20を通流した気体の集合部分にこの熱電対が配置されている。なお、改質温度測定部3は、改質触媒層20の温度変化が比較的早く測定できる箇所及び雰囲気中であれば、配置位置はこれに限定されるものではない。ここでは、改質触媒層20を通流した後の気体の温度を改質反応部2の温度とし、改質温度測定部3で検出された温度によって改質反応部2の温度状態が把握される。ここで、本発明においては(特許請求の範囲及び明細書においては)、「温度を検出する」とは、温度を直接検出する場合と温度を間接的に検出する場合との双方を含む。温度を直接検出するとは、温度という物理量を検出することを意味し、例えば、ある検出対象の温度を熱電対やサーミスタで検出する場合がこれに該当する。一方、温度を間接的に検出するとは、当該検出対象の温度と関連する温度以外の物理量や時間を検出することを意味し、例えば、改質反応部内部の圧力や改質反応部の運転時間を検出する場合が該当する。
改質反応部2の本体30の中心部には、輻射筒40が縦壁32と同心的に挿入されている。輻射筒40の上端は燃焼後ガス流路gの上流流路g2に連通しており、輻射筒40の下端には燃料噴出口41aを有するバーナ41が配設されている。この輻射筒40の内部空間が燃焼空間44を構成しておりここに火炎42が形成される。また、バーナ41を囲むように、燃焼ファン5(図1参照)から送られた空気の流路43が形成され、この空気の流路43が空気噴出口43aを通じて燃焼空間44に連通している。バーナ41は燃焼燃料流路fを介して原料供給部6(図1参照)に接続されている。このように、ここでは、輻射筒40、バーナ41、空気の流路43によって燃焼部4が構成され、燃焼ファン5たるシロッコファンによって空気が空気流路43に供給される。シロッコファンの回転数は制御部9によって制御されており、それにより、燃焼部4への空気の供給量が調整される。燃焼部4での燃焼燃料の燃焼によって改質反応部2が加熱され、ここでは、改質反応部2の温度が、原料として改質反応部2に供給されるメタン、エタン、プロパン等の炭化水素系原料の85〜95%程度が水蒸気改質可能である温度、例えば650〜700℃程度、となるように加熱量が制御部9によって制御されている。
原料供給部6(図1参照)は、天然ガスやLPG等の炭化水素系原料、ナフサ系原料、メタノール等のアルコール原料等を、原料流路aを介して水素生成部1に供給するように構成されている。ここでは、炭化水素系有機化合物(具体的には主としてメタン)を含み既存のインフラから供給される天然ガスを原料として利用するように原料供給部6が構成されている。なお、図示を省略しているが、原料供給部6は、原料の供給圧力を増加させるブースタを備えるとともに、原料中の硫黄成分を低減する脱硫部を備え、脱硫部は、例えば原料中の付臭成分を除去するゼオライト吸着剤を備えている。
水供給部7(図1参照)は、ここでは図示を省略しているが、イオン交換器及びプランジャーポンプを備えており、例えば、供給された水道水をイオン交換器で処理した後、プランジャーポンプで加圧して水素生成部1に供給する。
図3に示すように、制御部9は、マイコン等のコンピュータによって構成されており、処理制御部(CPU)61と、半導体メモリから構成された記憶部(内部メモリ)62と、操作入力部63と、表示部64と、時計部65とから構成されている。制御部9では、これらの各処理部61〜65により、原料及び水の供給量、燃焼部4における燃焼量、及び、燃焼ファン5の出力の制御等が行われる。そして特に、装置の停止の際には、改質温度測定部3で検出された装置停止時の改質反応部2の温度に基づいて装置の温度状態を把握し、この装置の温度状態に対応した装置内ガス置換動作を行うように原料供給部6及び水供給部7を制御して置換ガスの組成を調整する。この装置内ガス置換動作の詳細については後述する。
次に、水素製造装置の動作について説明する。水素製造装置の動作は、運転開始の制御信号が出力されてから運転停止の制御信号が出力されるまでの間に実施される運転動作と、運転停止の制御信号が出力されてから実際に装置が停止するまでの間に実施される停止動作(運転停止動作)とに分けられる。運転動作では、装置の起動動作と水素生成動作とが実施され、また、停止動作では、装置内ガス置換動作が実施される。
まず、水素製造装置の運転動作では、制御部9の処理制御部61から運転開始の制御信号が出力されて装置が起動する。具体的には、燃焼燃料流路fを介して燃焼部4のバーナ41に燃焼燃料が所定の供給量で供給されるとともに、所定の供給量で燃焼ファン5から燃焼部4の燃焼空間44に空気が供給される。ここでは、空気供給量は、メタンの完全燃焼に必要な理論空気量の1.5倍としている。そして、この燃焼燃料と空気とを反応させて燃焼空間44に火炎42を形成し、燃焼熱及び燃焼後ガスの熱によって改質反応部2及び予熱部8を加熱する。加熱時には、改質反応部2の温度は改質温度測定部3によって常時検出され、検出温度の情報が、制御部9の処理制御部61に伝達される。ここでは、このように燃焼部4での燃焼が開始されて改質反応部2及び予熱部8が予熱される動作を、起動動作と呼ぶ。
上記のように改質反応部2及び予熱部8を加熱して改質反応部2(より具体的には改質触媒層20)及び予熱部8の温度を上昇させた後、予熱部8に、原料供給部6から原料を供給するとともに水供給部7から水を供給する。供給された水は予熱部8で蒸発して水蒸気となり、この水蒸気と原料とが混合されて混合原料流路cを介して改質反応部2に供給される。改質反応部2では、改質反応により原料が水蒸気改質されて改質ガス、すなわち水素リッチガス(以下、単に水素ガスと呼ぶ)が生成される。生成された水素ガスは、改質ガス流路dを介して水素製造装置の外部に取り出される。ここでは、このように原料と水蒸気とが改質反応部2に供給されて改質反応により水素ガスが生成する動作を、水素生成動作と呼ぶ。
水素生成動作時には、改質反応部2に供給される原料(具体的にはメタン)の85〜95%程度が改質するように、改質温度測定部3での検出温度が650℃程度に保持されるよう制御部9によって燃焼部4の加熱量が制御されている。また、改質反応部2に供給される原料及び水蒸気の混合ガス中における水分子と炭素原子との比(これをスチーム/カーボン比と呼びS/Cと表す)が3となる、すなわち、改質反応部2に供給される混合ガス中では炭素原子1モルに対して水分子が3モルとなるようにS/Cが設定されている。従って、メタン1モルに対する理論水量は2モルであるのに対して、ここでは3モルの水が供給される。このようなS/Cは、ユーザが制御部9の操作入力部63に所望の値(ここでは3)を表示部64で確認しながら入力し、この入力された値が処理制御部61によって記憶部62に記憶されて設定が行われる。また、このような水素製造装置の運転動作では、制御部9の処理制御部61が改質温度測定部3により改質反応部2の温度を取得して改質反応部2の温度状態を把握し、該温度状態に従って、原料、水、空気の供給量や燃焼部4における燃焼燃料の燃焼量等を制御する。
次に、水素製造装置の停止動作について説明する。ここでは、運転停止の制御信号の出力時を停止動作の開始時と呼び、該停止動作の開始時から実際に装置が停止するまでの期間を停止動作期間と呼ぶ。
従来の課題において前述したように、改質触媒層20を構成する改質触媒は、温度の影響を受けてシンタリングや酸化等が生じると触媒活性が低下する。特に、装置の停止動作期間では、改質触媒が高温酸化されやすいので触媒活性が低下しやすい。例えば、停止動作期間における水素製造装置では、装置の温度低下に伴う内部ガスの体積収縮により外部から装置内部に空気が混入する確率が高くなるので、改質触媒が高温酸化されやすく、このため、触媒活性の低下傾向が大きくなる。
図4は、改質触媒の酸化温度と、改質触媒の比表面積との関係を示す図である。ここで、触媒比表面積とは、改質触媒を構成するRu金属の酸化前の表面積に対する酸化後の表面積の相対比であり、具体的には、酸化前後におけるRu金属の一酸化炭素吸着量の比である。Ru金属は、酸化されるとシンタリングにより酸化前に比べて表面積が小さくなる。ここで、触媒活性と触媒表面積との間には相関関係があり、表面積が小さくなるほど触媒活性が低くなることから、触媒比表面積の低下は、触媒活性の低下を示している。
図4に示すように、改質触媒では、酸化温度が高温になるほど触媒比表面積が減少しており、よって、酸化温度が高温であるほど触媒活性が低下することが明らかである。これは、高温酸化ほどシンタリングが発生しやすいことに起因する。例えば、水素生成動作では改質触媒は上記のように650℃程度に保持されているが、装置の停止に伴って改質触媒がこの高温下で酸化雰囲気中におかれると、シンタリングにより改質触媒の活性が顕著に低下する。
このような触媒活性の低下を抑制するためには、改質触媒が高温である停止動作期間中に装置内が酸化雰囲気となることを避けるとともに、改質触媒の温度を速やかに低下させる必要がある。したがって、装置の停止動作では、改質触媒が高温である時に酸化雰囲気となる条件で装置内ガス置換動作を行うことは極力避ける必要がある。また、改質触媒が高温であると、原料の熱分解や一酸化炭素及び二酸化炭素の不均化反応により炭素析出等が生じる可能性が高いことから、原料リッチな条件で装置内ガス置換動作を行うことも極力避けることが望ましい。
一方、例えば装置の起動動作開始直後に装置を停止させた場合のように、改質触媒の温度が低温である場合には、上記のような酸化による触媒活性の低下や炭素析出等が生じにくいため、原料リッチな条件で装置内ガス置換動作を行うことが可能となる。しかしながら、この場合には改質触媒が低温であるので、装置内ガス置換動作に使用する置換ガス中の水蒸気含量が多いと、水蒸気が改質触媒上で凝縮して水を生じ(以下、これを水凝縮と呼ぶ)、この水が触媒活性を低下させる可能性がある。したがって、この場合には、置換ガス中の水蒸気含量が少ないことが望まれる。
以上のように、改質触媒の触媒活性の低下を防止するためには、停止動作において、装置の温度状態に応じて適切な方法で装置内ガス置換を行う必要がある。そこで、本実施の形態では、以下の方法により、装置の温度状態に適宜対応して適切な装置内ガス置換方法を選択及び実施し、改質触媒の触媒活性を低下させることなく装置を停止させる。
以下、図5に則して装置内ガス置換動作の詳細を説明する。
図5は、制御部9に格納された停止動作プログラムの内容を概略的に示すフローチャートである。装置内ガス置換動作の概略を説明すると、まず、制御部9の処理制御部61から運転停止の制御信号が出力されて運転動作から停止動作に移行し、具体的には、燃焼部4への燃料及び空気の供給が停止される(ステップS1)。この移行時点すなわち運転停止動作の開始時において、改質温度測定部3により改質反応部2の温度が検出され、その温度情報が制御部9の処理制御部61に取得される(ステップS2)。そして、処理制御部61は、予め記憶部62に設定された判定基準となる第1〜第4の基準温度と取得された改質反応部2の温度とを比較し、その比較結果に基づいて、停止動作の開始時の改質反応部2の温度状態が後述の第1〜第5の状態のいずれであるかを判定する。そして、その判定結果に応じて、予め記憶部62に記憶された後述の第1〜第5の置換設定の中から適切な設定が選択され、その設定に従った組成の置換ガスが装置内に供給されるように原料供給部6からの原料供給及び水供給部7からの水供給が制御されて装置内ガス置換動作が実施される(ステップS3〜11)。
具体的には、処理制御部61における上記判定において、改質反応部2の温度状態が、水凝縮が生じる第1の状態、水凝縮及び原料由来の炭素(ここでは原料をメタン単独と想定している)の熱分解による析出を回避可能である第2の状態、該熱分解が進行して炭素析出が生じる第3の状態、一酸化炭素及び二酸化炭素の不均化反応が進行して炭素析出が生じる第4の状態、及び、改質触媒が酸化する第5の状態の5つに分けて判定される。ここでは、改質反応部2が第1の状態であるか否かを判定する際の基準温度を第1の基準温度とし、第2の状態であるか否かを判定する際の基準温度を第2の基準の温度とし、第3の状態であるか否かを判定する際の基準温度を第3の基準温度とし、第4の状態であるか否かを判定する際の基準温度を第4の基準温度としている。この場合、第1の基準温度を100℃、第2の基準温度を300℃、第3の基準温度を400℃、及び第4の基準温度を500℃としている。このような第1〜第4の基準温度は、制御部9において、表示部64で確認しながら操作入力部63に各数値を入力することにより記憶部62に記憶及び設定される。
また、制御部9の記憶部62には、改質反応部2内で水凝縮が起こらず、かつ、原料由来の炭素や不均化反応由来の炭素を析出させず、かつ、改質触媒を酸化させないように、改質反応部2の温度状態に応じて装置内ガス置換動作に使用する置換ガスの組成が予め設定されている。ここでは、改質反応部2が水凝縮を生じる第1の状態であれば原料を置換ガスとして装置内ガス置換を行うよう設定されており(以下、これを第1の置換設定と呼ぶ)、また、水凝縮及び原料由来炭素の析出を回避可能な第2の状態であれば原料を置換ガスとして装置内ガス置換を行うように設定されており(以下、これを第2の置換設定と呼ぶ)、また、該炭素析出が生じる第3の状態であれば水蒸気を置換ガスとして装置内ガス置換を行うように設定されており(以下、これを第3の置換設定と呼ぶ)、また、不均化反応による炭素析出が生じる第4の状態であれば水蒸気含量の多い原料及び水蒸気の混合ガスを置換ガスとして装置内ガス置換を行うように設定されており(以下、これを第4の置換設定と呼ぶ)、また、改質触媒が酸化する第5の状態であれば水素生成動作時と同様の供給量で原料及び水蒸気を供給してその混合ガスを置換ガスとして装置内ガス置換を行うように設定されている(以下、これを第5の置換設定と呼ぶ)。
図5に示すように、制御部9では、まず、ステップS2において取得された運転の停止動作開始時の改質反応部2の温度と、第4の基準温度(500℃)とを比較することにより、改質反応部2が、触媒酸化が起こる状態(第5の状態)であるか否かを判定する(ステップS3)。検出温度が第4の基準温度以上であれば、改質反応部2において触媒酸化が起こる状態(すなわち第5の状態)であると判定され、よって、第5の置換設定が選択される。それにより、水素生成動作時と同様の供給量で原料及び水が水素生成部1に供給されるように原料供給部6及び水供給部7が制御されて原料と水蒸気との混合ガスが供給される。この混合ガスが改質反応部2に供給されると、水素生成動作時と同様、高温の改質反応部2において吸熱反応である改質反応が進行し、それにより、速やかに触媒温度を低下させることができる(ステップS4)。
一方、検出温度が第4の基準温度(500℃)未満である場合には、さらに第3の基準温度(400℃)との比較を行い、改質反応部2が、不均化反応が起こる状態(すなわち第4の状態)であるか否かを判定する(ステップS5)。改質反応部2の検出温度が第3の基準温度以上(すなわち400℃以上500℃未満)であれば、触媒の酸化は起こりにくいが不均化反応により炭素析出が生じる状態(第4の状態)であると判定され、その判定結果に従って第4の置換設定が選択される。改質反応部2が第4の状態にある時、原料のみ又は水蒸気含量が少ない混合ガスにより装置内ガス置換を行うと不均化反応により炭素析出が起こる可能性があるが、ここでは、第4の置換設定に従って置換ガスのS/Cが2以上となる(すなわち水蒸気含量が高くなる)ように水供給部7からの水供給量及び原料供給部6からの原料供給量が制御部9によって調整されるので、不均化反応による炭素析出を防止することが可能となる(ステップS6)。
また、検出温度が第3の基準温度(400℃)未満である場合には、さらに第2の基準温度(300℃)との比較を行い、改質反応部2が原料由来の炭素が熱分解により析出する状態(すなわち第3の状態)であるか否かを判定する(ステップS7)。改質反応部2の検出温度が第3の基準温度以上(すなわち300℃以上400℃未満)であれば、不均化反応は起こりにくいが原料由来の炭素が析出する状態(第3の状態)であると判定され、その判定結果に従って第3の置換設定が選択される。それにより、水供給部7から水が供給されて装置内が水蒸気により置換される(ステップS8)。
また、検出温度が第2の基準温度(300℃)未満である場合には、さらに第1の基準温度(100℃)との比較を行い、改質反応部2が水凝縮及び原料由来の炭素の析出を回避可能な状態(すなわち第2の状態)であるか否かを判定する(ステップS9)。改質反応部2の検出温度が第1の基準温度以上(すなわち100℃以上300℃未満)であれば、装置内が水凝縮及び原料由来炭素の析出を回避可能な状態(第2の状態)であると判定され、その判定結果に従って第2の置換設定が選択される。それにより、原料供給部6から原料が供給されて装置内が原料により置換される(ステップS10)。一方、検出温度が第1の基準温度(100℃)未満である場合には、装置内が水凝縮を生じる状態(すなわち第1の状態)であると判定され、その判定結果に従って第1の置換設定が選択される。そして、原料供給部6から原料が供給されて装置内が原料により置換される(ステップS11)。
ところで、上記のようにして停止動作の開始時の改質反応部2の温度に応じて装置内ガス置換動作を行うと、停止動作の開始時からの時間経過に伴って装置の温度が低下する。このため、装置の温度低下に応じて、装置内置換動作で使用するガス種(具体的にはガスの組成)を随時変更させる必要がある。それゆえ、ここでは、停止動作の開始以降の停止動作においても、検出された改質反応部2の温度から制御部9が第1〜第4の基準温度に基づいて装置の温度状態を判定し、その判定に従って、置換ガスの設定を適宜選択して設定の切替を行い置換ガスの種類を適宜変更する。
例えば、停止動作の開始時の改質反応部2の検出温度が第1の基準温度(100℃)未満である場合には、前述のように装置内が原料で置換されるため(ステップS9,11)、装置の温度が低下しても水凝縮は発生しない。したがって、この場合には、所定時間原料を供給して装置内を十分置換できる量の原料を通気させた後、原料供給部6を制御して原料の通気を停止して停止動作を終了する(ステップS12,13)。また、停止動作の開始時の検出温度が第1の基準温度以上かつ第2の基準温度未満(100℃以上300℃未満)の場合においても、前述のように装置内が原料で置換されるため(ステップS9,10)、装置の温度が低下しても水凝縮は発生せず、よって、所定時間原料を供給して装置内を十分置換できる量の原料を通気させた後、原料供給部6を制御して原料の通気を停止させ停止動作を終了する(ステップS12,13)。
一方、停止動作の開始時の改質反応部2の検出温度が第2の基準温度以上かつ第3の基準温度未満(300℃以上400℃未満)である場合には、前述のように水蒸気を通気させて置換が行われるが、このような水蒸気を用いた置換では、装置の温度が低下して第1の基準温度(100℃)より低くなると、装置内で水凝縮が生じるおそれがある。そこで、ここでは、装置内ガス置換動作における改質反応部2の温度を改質温度測定部3により検出して検出温度が第2の基準温度(300℃)より低くなったら(ステップS15)、水供給部7から水素生成部1への水供給を停止して水蒸気の通気を停止するとともに、原料供給部6を制御して装置内を十分置換できる量の原料を所定時間通気させる。その後、原料供給部6を制御して原料の通気を停止させて停止動作を終了する(ステップS14,12,13)。
また、停止動作の開始時の改質反応部2の検出温度が第3の基準温度以上かつ第4の基準温度未満(400℃以上500℃未満)である場合には、前述のように水蒸気と原料との混合ガスにより置換が行われるので、上記の場合と同様、温度低下による水凝縮の発生を防止するために、改質反応部2の温度が第2の基準温度(300℃)より低くなったら(ステップS16)、水供給部7から水素生成部1への水供給を停止して水蒸気の通気を停止するとともに装置内を十分置換できる量の原料を所定時間通気させる。その後、原料供給部6を制御して原料の通気を停止させて停止動作を終了する(ステップS14,12,13)。
また、停止動作の開始時の検出温度が第4の基準温度(500℃)より高い場合には、装置の温度が低下して第4の基準温度(500℃)より低くなるまで前述のように水と原料とを供給して混合ガスによる置換を行い(ステップS4)、第4の基準温度より低くなったら、原料供給部6を制御して原料の供給を停止させ水蒸気のみを通気させる(ステップS17,18)。さらに、改質反応部2の温度が第2の基準温度(300℃)より低くなったら、水供給部7を制御して水の供給を停止するとともに原料供給部6を制御して原料を再び供給し、装置内を十分置換できる量の原料を所定時間通気させる。その後、原料供給部6を制御して原料の通気を停止させて停止動作を終了する(ステップS19,14,12,13)。
このように、時間経過に伴う装置の温度低下に応じて装置内置換動作に用いる置換ガスを適宜変更することにより、温度低下に関わらず、水凝縮や原料の炭素析出等の発生を防止しながら速やかに停止動作を行うことが可能となる。
以上のように、本実施の形態の水素製造装置によれば、装置停止動作の開始時の改質反応部2の温度ならびに停止動作中における改質反応部2の温度変化に対応して、適切な置換ガスを用いて装置内ガス置換を行うことが可能となるため、置換ガスを効率よく有効に利用しつつ温度に起因して生じる改質触媒のシンタリング、酸化等や、炭素析出による流路閉塞等の問題を確実に回避することができる。したがって、改質触媒の触媒活性の低下を防止することが可能となり、その結果、良好な水素生成を安定して行うことが可能となる。
実施例として、上記の方法により水素製造装置の運転及び停止の一連の動作を繰り返し行ったところ、200回程度繰り返し該動作を行った後でも、改質触媒では大きな触媒活性の低下が見られなかった。
なお、置換ガス組成の設定や基準温度の設定は、停止動作における装置の温度状態を考慮して適切に設定されるのであれば、上記に限定されるものではない。
例えば、運転停止動作の開始時の装置の温度状態が第2の状態である時には、水蒸気のみを置換ガスとして用いてもよく、また、原料と水蒸気との混合ガスを置換ガスとして用いてもよい。このように水蒸気を含む置換ガスを用いる場合には、停止動作期間中に装置の温度が低下して100℃より低くなったところで水蒸気の供給を停止させて置換ガスを原料に変更する。また、停止動作の開始時の装置の温度状態が第3の状態である時には、原料と水蒸気との混合ガスを置換ガスとして用いてもよい。また、停止動作の開始時の装置の温度状態が第4の状態及び第5の状態である時には、水蒸気のみを置換ガスとして用いてもよい。なお、停止動作の開始時の装置の温度状態が第5の状態である場合には、水蒸気と共に原料を供給することで前述のように吸熱反応により速やかに触媒温度を低下させることが可能であることから、上記のように水蒸気と原料との混合ガスを置換ガスとして供給することが望ましい。それにより、確実に触媒酸化によるシンタリングを防止することができる。
さらに、水蒸気及び原料以外に、装置外部から窒素ガス等の不活性ガスや空気を供給して置換ガスとして利用してもよく、具体的には、窒素ボンベや空気供給ポンプが配設された構成を水素製造装置が有してもよい。不活性ガスを原料や水蒸気と組み合わせて装置内ガス置換を行うことにより、従来のように不活性ガスのみで置換を行う場合に比べて、不活性ガスの使用量を大幅に低減することができる。また、空気を単独で又は原料や水蒸気と組み合わせて置換ガスとして用いることにより、装置の停止動作における原料及び水の供給量を低減させることが可能となる。例えば、停止動作の開始時の装置の温度状態が第1の状態である時に、原料と不活性ガスとの混合ガス、又は、空気を置換ガスとして用いてもよい。また、停止動作の開始時の装置の温度状態が第2〜第5の状態である時には、原料、水蒸気、不活性ガス及び空気のいずれかをそれぞれ適切な割合で2種以上含む混合ガスで装置内置換動作を行ってもよい。
また、本実施の形態の変形例として、例えば、水素製造装置の改質ガス流路dの出口(取り出し口)付近に流路閉鎖弁を設け、停止動作を終了させる際に原料の供給を停止するとともにこの流路閉鎖弁を閉じ、停止した装置内に置換ガスを封入する構成であってもよい。
(実施の形態2)
本発明の実施の形態2に係る水素製造装置は、実施の形態1と同様の装置構成を有する。このような本実施の形態の水素製造装置では、実施の形態1と同様、停止動作の開始時の装置の温度状態に応じて装置内ガス置換方法が適宜選択されるが、実施の形態1では停止動作の開始時の改質反応部2の温度を検出して装置の温度状態を判定したのに対して、本実施の形態では、停止動作の開始時以前の運転動作時間に基づいて装置の温度状態の判定が行われる。
水素製造装置の装置内の温度は、運転動作時間に依存することが多く、例えば、一定条件下で運転した場合、運転時間が長いほど装置内の温度が高くなる。
図6は、運転動作時間と改質反応部2の温度との関係を示す図である。図6に示すように、運転動作時間が長くなるに従って改質反応部2の温度が高くなり、運転開始(起動時)から8分後まで(期間A)は改質反応部2の温度は100℃未満であり、8分後から15分後まで(期間B)は100℃以上300℃未満であり、15分後から18分後まで(期間C)は300℃以上400℃未満であり、18分後から22分後まで(期間D)は400℃以上500℃未満であり、22分後以降(期間E)は500℃以上となっている。
このように、改質反応部2の温度と装置の運転動作時間との間には相関関係が存在することから、ここでは、装置の停止動作の開始時に到るまでの運転動作時間に基づいて停止動作の開始時の装置の温度状態を判定し、その判定結果に従って適切な置換設定が選択されて装置内ガス置換動作が行われる。以下、本実施の形態における停止動作を、制御部9に格納された停止動作プログラムに則して説明する。
図7は、制御部9に格納された停止動作プログラムの内容を概略的に示すフローチャートである。図7に示すように、制御部9の時計部65が、装置の起動時(すなわち起動開始の制御信号の出力時点)から装置の停止動作の開始時(すなわち停止の制御信号の出力時点)までの経過時間を運転動作時間として計測し、装置の停止動作の開始時に計測結果が制御部9に伝達されて処理制御部61がこれを取得する(ステップS21,22)。一方、制御部9の記憶部62には、図6に示す運転動作時間と改質反応部2の温度との相関関係データが予め記憶されている。そして、停止動作の開始時には、処理制御部61が、取得した運転動作時間と前記相関データとを比較し、装置が前記第1〜第5のいずれの状態であるかを判定する。そして、その判定結果に基づいて、前記第1〜第5の置換設定から適切な設定が選択されて装置内ガス置換動作が実施される(ステップS23〜31)。
具体的には、まず、運転動作時間が22分未満であるか否かを判定し(ステップS23)、運転動作時間が22分以上である場合には、記憶部62に記憶されたデータに基づいて処理制御部61は改質反応部2の温度が500℃以上であると推定し、よって、改質反応部2は改質触媒の酸化が起こる状態(第5の状態)であると判定する。したがって、この場合には、第5の置換設定が選択されて水素生成動作時と同様の供給量で原料と水とが水素生成部1に供給され、原料と水蒸気との混合ガスにより置換動作が実施される(ステップS24)。
また、運転動作時間が22分未満である場合には、さらに、18分未満であるか否かを判定する(ステップS25)。運転動作時間が18分以上22分未満である場合には、処理制御部61は改質反応部2の温度が400℃以上500℃未満であると推定し、よって、改質反応部2は改質触媒の酸化は起こらないが不均化反応が起こる状態(すなわち第4の状態)であると判定する。したがって、この場合には第4の置換設定が選択されてS/Cが2以上の原料と水蒸気との混合ガスを置換ガスとして置換動作が実施される(ステップS26)。
また、運転動作時間が18分未満である場合には、さらに、15分未満であるか否かを判定する(ステップS27)。運転動作時間が15分以上18分未満である場合には、処理制御部61は改質反応部2の温度が300℃以上400℃未満であると推定し、よって、改質反応部2は不均一化反応は起こらないが原料由来の炭素が熱分解により析出する状態(すなわち第3の状態)であると判定する。したがって、この場合には第3の置換設定が選択され、水蒸気を置換ガスとして置換動作が実施される(ステップS28)。
また、運転動作時間が15分未満である場合には、さらに、8分未満であるか否かを判定する(ステップS29)。運転動作時間が8分以上15分未満である場合には、処理制御部61は改質反応部2の温度が100℃以上300℃未満であると推定し、よって、改質反応部2が水凝縮及び原料由来炭素の析出を回避可能な状態(すなわち第2の状態)であると判定する。したがって、この場合には第2の置換設定が選択され、原料を置換ガスとして置換動作が実施される(ステップS30)。
また、運転動作時間が8分未満である場合には、処理制御部61は改質反応部2の温度が100℃未満であると推定し、よって、改質反応部2が水凝縮する状態(すなわち第1の状態)であると判定する。したがって、この場合には第1の置換設定が選択され、原料を置換ガスとして置換動作が実施される(ステップS31)。
ここで、本実施の形態においても、実施の形態1の場合と同様、装置内置換動作中の改質反応部2の温度低下に応じて置換ガス種を変更する。
具体的には、停止動作の開始時の改質反応部2が第1の状態であると判定された場合には、前述のように装置内が原料で置換されるため(ステップS29,31)、装置の温度が低下しても水凝縮は発生しない。したがって、この場合には、所定時間原料を供給して装置内を十分置換できる量の原料を通気させた後、原料供給部6を制御して原料の通気を停止して停止動作を終了する(ステップS32,33)。また、停止動作の開始時の改質反応部2が第2の状態であると判定された場合も装置内が原料で置換されるため(ステップS29,30)、装置の温度が低下しても水凝縮は発生せず、よって、上記の場合と同様に装置内を十分置換できる量の原料ガスを所定時間通気させた後、原料供給部6を制御して原料ガスの通気を停止させて停止動作を終了する(ステップS32,33)。
また、停止動作の開始時の改質反応部2が第3の状態であると判定された場合には、前述のように水蒸気により装置内が置換されるため(ステップS27,28)、装置の温度が低下して100℃より低くなると、水凝縮が生じるおそれがある。そこで、ここでは、改質温度測定部3により検出した改質反応部2の温度が300℃未満となったら(ステップS34)、水供給部7を制御して水蒸気の通気を停止するとともに装置内を十分置換できる量の原料を所定時間通気させる。その後、原料供給部6を制御して原料の通気を停止させて停止動作を終了する(ステップS35,32,33)。
また、停止動作の開始時の改質反応部2が第4の状態であると判定された場合には、前述のように水蒸気と原料との混合ガスにより装置内が置換されるため(ステップS25,26)、上記の場合と同様、水凝縮の発生を防止するために、装置の温度が低下して300℃未満となったら(ステップS36)、水供給部7を制御して水の供給を停止させて水蒸気の通気を停止させるとともに装置内を十分置換できる量の原料を所定時間通気させる。その後、原料供給部6を制御して原料の通気を停止させて停止動作を終了する(ステップS35,32,33)。
また、停止動作の開始時の改質反応部2が第5の状態であると判定された場合には、改質温度測定部3で検出される改質反応部2の温度が500℃未満となったら(ステップS37)、原料供給部6を制御して原料の供給を停止させ、水蒸気のみを置換ガスとして通気させる(ステップS38)。そして、改質反応部2の温度が300℃未満になったら(ステップS39)、水供給部7を制御して水の供給を停止させ水蒸気の供給を停止させるとともに装置内を十分置換できる量の原料を所定時間通気させ、その後、原料供給部6を制御して原料の通気を停止させて停止動作を終了する(ステップS35,32,33)。
以上のように、本実施の形態の水素製造装置によれば、実施の形態1と同様の効果が得られる。
本実施の形態では、装置の起動条件や運転条件によって、同じ運転動作時間であっても、装置の温度状態にばらつきが生じることがある。このため、運転動作続時間による制御とともに、実施の形態1のような改質反応部2の温度による装置の温度状態の把握を併用することが好ましい。それにより、装置の温度状態の判定精度を向上させることが可能となる。
ところで、本発明に係る水素製造装置は種々の用途に利用可能であり、その用途に応じて、適宜、上記以外の構成を備えてもよい。例えば、燃料電池発電装置に供給する水素を生成する水素製造装置では、一酸化炭素の濃度が低減された水素を生成する必要があるために、改質反応部2の下流にさらに一酸化炭素変成部及び一酸化炭素選択酸化部が設けられた構成を有する。以下においては、かかる構成の水素製造装置を例示して説明する。
(実施の形態3)
図8は、本発明の実施の形態3に係る水素製造装置の構成を示す模式図である。図8に示すように、本実施の形態の水素製造装置は、実施の形態1の水素製造装置と同様の装置構成を有するが、以下の点が実施の形態1とは異なっている。
本実施の形態の水素製造装置100’は、水素生成部1の下流側に、さらに一酸化炭素変成部10と、一酸化炭素選択酸化部11とがこの順で配設されている。具体的な構成は、例えば、改質反応部2が図2のような円筒形状を有する水素製造装置において、一酸化炭素変成部10及び一酸化炭素選択酸化部11が、燃焼部4で生じる熱の伝熱経路において、改質反応部2よりも下流側に配設されている。燃焼部4による加熱により、運転動作中の一酸化炭素変成部10及び一酸化炭素選択酸化部11の温度は、200℃〜250℃程度及び100℃〜150℃程度となる。
一酸化炭素変成部10は、白金族系変成触媒を備えて構成されている。また、一酸化炭素選択酸化部11は、白金族系酸化触媒を備えて構成されている。一酸化炭素変成部10のガス入口は、水素生成部1の改質ガス反応部2の改質ガス流路dに連通する改質ガス取り出し配管12に接続され、一酸化炭素変成部10のガス出口は、変成後ガス取り出し配管13によって一酸化炭素選択酸化部11のガス入口に接続されている。変成後ガス取り出し配管13には、空気を導入する空気供給配管14が接続されており、この空気供給配管14を通じて一酸化炭素選択酸化部11での酸化反応に使用される空気が一酸化炭素選択酸化部11に供給される。一酸化炭素選択酸化部11のガス出口には、水素ガス取り出し配管15が接続されている。
さらに、一酸化炭素変成部10及び一酸化炭素選択酸化部11には、それぞれ、変成温度測定部16及び選択酸化温度測定部17が配設されており、これらは具体的には熱電対で構成されている。変成温度測定部16は、変成触媒及び/又は一酸化炭素変成部10内の温度(雰囲気温度又は構成部材の温度)を検出するように配置され、また、選択酸化温度測定部17は、酸化触媒及び/又は一酸化炭素選択酸化部11内の温度(雰囲気温度又は構成部材の温度)を検出するように配置されている。また、変成温度測定部16および選択酸化温度測定部17で検出された一酸化炭素変成部10及び一酸化炭素選択酸化部11の温度情報が制御部9に伝達されるように構成されている。
かかる構成の水素製造装置100’では、実施の形態1のようにして改質反応部2で生成された改質ガスが、改質ガス取り出し配管12を通じて水素生成部1から一酸化炭素変成部10に供給される。一酸化炭素変成部10では、変成触媒を用いて改質ガスの変成反応が行われ、改質ガス中の一酸化炭素濃度の低減化が図られる。また、一酸化炭素変成部10で得られたガス、すなわち変成後ガスは、変成後ガス取り出し配管13を通じて一酸化炭素選択酸化部11に供給される。この時、変成後ガス取り出し配管13に接続された空気供給配管14を通じて、空気が変成後ガスとともに一酸化炭素選択酸化部11に供給される。一酸化炭素選択酸化部11では、空気と酸化触媒とを用いて変成後ガスの酸化反応が行われ、それにより、変成後ガス中の一酸化炭素濃度の低減化がさらに図られる。このようにして一酸化炭素濃度が低減された水素ガスが、水素ガス取り出し配管15を通じて装置の外部に取り出される。
ところで、前述の実施の形態1では、装置の停止動作の開始時の改質反応部2の温度を改質温度測定部3により検出し、この検出温度に基づいて制御部9で装置の温度状態を判定しているが、本実施の形態の水素製造装置では、停止動作の開始時に、改質温度測定部3で改質反応部2の温度を検出するだけでなく、変成温度測定部16で一酸化炭素変成部10の温度を検出するとともに、選択酸化温度測定部17で一酸化炭素選択酸化部11の温度を検出する。そして、検出された改質反応部2、一酸化炭素変成部10、及び一酸化炭素選択酸化部11の温度に基づいて制御部9が装置の温度状態を判定し、その判定結果に従って装置の温度状態に応じた置換ガスの設定で置換動作が行われる。このような本実施の形態の構成によれば、以下の効果が奏される。
停止動作の開始時の装置の温度状態は、前述のように装置停止前の運転状況によって相違するだけではなく、装置を構成する各部分においても、構成や配置等によりそれぞれ異なっている。例えば、図9は、十分に冷えた状態から装置を起動させて運転した際の、改質温度測定部3、変成温度測定部16、及び、選択酸化温度測定部17における各検出温度を示す図である。図9に示すように、ここでは起動前は装置が十分に冷えた状態であるため、改質温度測定部3、変成温度測定部16、及び、選択酸化温度測定部17で検出され改質反応部2、一酸化炭素変成部10、及び一酸化炭素選択酸化部11の温度は室温程度となっている。このように冷えた状態から装置を起動させると、装置構成上、改質反応部2が一酸化炭素変成部10及び一酸化炭素選択酸化部11よりも燃焼部4の伝熱経路の上流側に位置するので、改質反応部2が他の2つよりも優先的に燃焼部4の熱で加熱され温度が速やかに上昇する。それゆえ、改質反応部2の温度は、起動開始からの経過時間が短くても高くなる。一方、一酸化炭素変成部10及び一酸化炭素選択酸化部11は、燃焼部4の熱の伝熱経路において改質反応部2の下流側に位置するため、改質反応部2に比べて温度の上昇が緩やかである。
一方、図10は、長時間運転した後に一旦装置を停止させ、その後速やかに運転を再開した場合の改質温度測定部3、変成温度測定部16、及び、選択酸化温度測定部17における各検出温度を示す図である。長時間運転した後に一旦装置を停止させると、運転中に高温に保持されていた改質反応部2では停止に伴って急激に温度が低下する。一方、運転中の温度が改質反応部2よりも低く保持されていた一酸化炭素変成部10及び一酸化炭素選択酸化部11では、改質反応部2のように温度が急激に低下することはなく、改質反応部2からの放熱を受けて加熱され改質反応部2よりも温度が高くなる。一旦停止後に運転を再開すると、改質反応部2は、一酸化炭素変成部10及び一酸化炭素選択酸化部11より優先的に燃焼部4の熱により加熱され、速やかに温度が上昇する。一方、一酸化炭素変成部10及び一酸化炭素選択酸化部11は、改質反応部2に比べて温度の上昇が緩やかであるが、この場合は、前述のように運転再開時の温度が比較的高温であるため、改質反応部2に比べて加熱が緩やかであっても、図9に示す場合に比べて、速やかに温度が上昇する。
次に、上記の図9及び図10の各運転状況下において、例えば起動開始から10分経過後に装置を停止させた場合について考える。図9及び図10に示すように、室温まで冷却された状態の図9の場合には、装置の停止動作の開始時の改質反応部2の温度は200℃程度であり、一方、図10の場合には、停止動作の開始時の改質反応部2の温度は600℃程度である。また、一酸化炭素変成部10及び一酸化炭素選択酸化部11では、図9の場合における停止動作の開始時の温度はともに室温程度であるのに対して、図10の場合における停止動作の開始時の温度は一酸化炭素変成部10が200℃程度、一酸化炭素選択酸化部11が150℃程度である。
起動開始から10分経過後に装置を停止させて実施の形態1のように改質反応部2の温度に応じて装置の温度状態の判定を行うと、図9の場合では、改質反応部2の温度が200℃程度であることから装置の温度状態が第2の状態(すなわち水凝縮と炭素析出を回避可能な状態)と判定される。ここで、例えば、装置が第2の状態である場合に原料と水蒸気との混合ガスを置換ガスとするよう第2の置換設定がなされていると、改質反応部2の温度に基づく判定結果に従って、第2の置換設定すなわち混合ガスにより装置内ガス置換が行われるが、前述のようにこの時の一酸化炭素変成部10及び一酸化炭素選択酸化部11の温度は100℃未満であるため、一酸化炭素変成部10及び一酸化炭素選択酸化部11では置換ガス中の水蒸気が凝縮して水を生じる。このため、停止動作の開始時の改質温度測定部3の検出温度に基づいて置換設定が選択されたにもかかわらず、一酸化炭素変成部10及び一酸化炭素選択酸化部11における水凝縮により触媒活性が低下するおそれがある。
一方、図10の場合では、改質反応部2の温度が600℃程度であることから装置の温度状態が第5の状態(すなわち改質触媒の酸化反応が起こる状態)と判定される。ここで、例えば、装置が第5の状態である場合に原料と水蒸気との混合ガスを置換ガスとするよう第5の置換設定がなされていると、第5の置換設定に従って原料と水蒸気との混合ガスにより装置内ガス置換が行われるが、この時の一酸化炭素変成部10及び一酸化炭素選択酸化部11の温度は100℃より高温であるため、置換ガス中の水蒸気から凝縮水が生じることはない。
このように、装置を停止させる前の運転状況によって、改質反応部2、一酸化炭素変成部10、及び一酸化炭素選択酸化部11の温度状態がそれぞれ異なり、特に、一酸化炭素変成部10及び一酸化炭素選択酸化部11の温度状態は、燃焼部4による加熱に伴う温度上昇が改質反応部2に比べて緩やかであるため、装置停止前の運転状況の影響が大きい。したがって、より確実に触媒活性の低下を防止するためには、装置の停止動作の開始時における改質反応部2の温度のみから装置の温度状態を判定するだけでなく、一酸化炭素変成部10及び一酸化炭素選択酸化部11の温度も考慮し総括的に判定を行って装置の温度状態をより正確に把握することが好ましい。
本実施の形態では、改質反応部2の温度を検出する改質温度測定部3の他に、一酸化炭素変成部10の温度を検出する変成温度測定部16と、一酸化炭素選択酸化部11の温度を検出する選択酸化温度測定部17とがさらに設けられ、装置の停止動作の開始時には、改質反応部2、一酸化炭素変成部10、及び一酸化炭素選択酸化部11の温度を、それぞれ改質温度測定部3、変成温度測定部16、及び選択酸化温度測定部17で検出する。検出された温度情報は、制御部9の処理制御部61に伝達される。そして、これらの温度を取得した処理制御部61は、以下のようにして装置の温度状態の判定を行う。
すなわち、本実施の形態における装置の温度状態の判定方法では、処理制御部61が、まず、図5の実施の形態1の方法と同様にして、停止動作の開始時に改質温度測定部3で検出した改質反応部2の温度をもとに、第1から第4の基準温度との比較によって、第1〜第5の状態のうちから停止動作の開始時の装置の温度状態を判定する。そして、ここではさらに、この改質反応部2の温度に基づく判定とともに、変成温度測定部16で検出した停止動作の開始時の一酸化炭素変成部10の温度及び選択酸化温度測定部17で検出した停止動作の開始時の一酸化炭素選択酸化部11の温度が、100℃未満であるか否かの判定が行われる。一酸化炭素変成部10及び一酸化炭素選択酸化部11のうちの少なくとも一方が100℃未満である場合には、改質反応部2の温度が100℃以上であっても、水蒸気を含まないガスを用いて装置内ガス置換を行う。一方、一酸化炭素変成部10及び一酸化炭素選択酸化部11の温度が100℃以上である場合には、改質反応部2の温度に基づいて選択された置換設定に従って水蒸気を含むガスを用いて装置内ガス置換を行う。
また、本実施の形態では、実施の形態1において前述したように、停止動作中における改質反応部2、一酸化炭素変成部10、及び一酸化炭素選択酸化部11の温度変化に応じて、適宜最適な置換設定を選択して置換ガス種を変更する。
本実施の形態によれば、より正確に運転停止動作の開始時の装置の温度状態を把握することができるので、より適切な装置内ガス置換動作を行うことが可能となる。具体的には、改質反応部2はもちろんのこと、一酸化炭素変成部10及び一酸化炭素選択酸化部11における水凝縮を防止しながら装置内ガス置換動作を行うことが可能となる。例えば、本実施の形態の実施例として、図9及び図10の場合の各状況下で装置を運転し、起動開始から10分経過後に装置を停止させて上記方法により装置内ガス置換動作を行うとともに、その後、再び装置を起動させる一連の動作を繰り返し100回程度行ったところ、改質触媒では大きな触媒活性の低下が見られず、安定して良好な水素製造を行うことが可能であった。
(実施の形態4)
本発明の実施の形態4に係る水素製造装置は、実施の形態3の水素製造装置と同様の構成を有し、実施の形態1の場合と同様にして改質温度測定部3で検出される改質反応部2の温度に基づき装置の温度状態の判定を行うものであるが、ここでは、運転停止以前の装置の運転状況に関するデータ、具体的には、停止以前の運転動作時間や、起動時及び運転時の各部の温度等のデータ(以下、これらのデータを運転データと呼ぶ)が制御部9の記憶部62に記憶されており、停止動作の開始時における装置の温度状態の判定では、改質反応部2の温度とともに、この運転データを考慮して装置の温度状態の判定が行われる。
停止動作の開始時の改質反応部2の温度だけで装置の温度状態を判定すると、実施の形態3において前述したように、一酸化炭素変成部10や一酸化炭素選択酸化部11の温度状態が反映されないため、適切な装置内ガス置換動作を行えない場合がある。ところで、前述の図9及び図10に示すように、停止動作の開始時の一酸化炭素変成部10及び一酸化炭素選択酸化部11の温度は、装置の運転及び停止の動作履歴や停止前の運転動作時間等によって決まるものである。そこで、本実施の形態では、装置の運転及び停止の動作履歴や停止前の運転動作時間を装置の運転データとして制御部9の記憶部62に記憶し、装置の温度状態の判定時には、改質反応部2の温度とともにこの運転データを考慮して判定を行う。このように装置の運転及び停止の動作履歴や停止前の運転動作時間を考慮することにより、温度を直接測定しなくても停止動作の開始時の一酸化炭素変成部10及び一酸化炭素選択酸化部11等の改質反応部2以外の状態を推定でき、よって、各部の温度を考慮して総括的に装置の温度状態の判定を行うことが可能となる。したがって、改質温度測定部3の検出温度には反映されない装置の温度状態、ここでは一酸化炭素変成部10や一酸化炭素選択酸化部11等の温度状態、を考慮して装置内ガス置換動作を行うことができ、よって、実施の形態3の場合と同様、より適切な装置内ガス置換を実施することが可能となる。
(実施の形態5)
図11は、本発明の実施の形態5に係る燃料電池発電装置の構成を示す模式的なブロック図である。図11に示すように、本実施の形態の燃料電池発電装置は、実施の形態3の水素製造装置100’と、固体高分子型燃料電池(以下、単に燃料電池と呼ぶ)101と、水回収装置102と、ブロワ103と、制御装置9とを主たる構成要素として備えている。制御装置9は、水素製造装置100’、燃料電池101、水回収装置102、及びブロワ103の制御を行うものであり、ここでは、制御装置9に燃料電池発電装置の停止の制御信号が出力された時点を燃料電池発電装置の停止動作の開始時とし、全ての構成要素100’,101,102,103の動作が停止した状態が燃料電池発電装置の停止である。そして、この燃料電池発電装置の停止動作の開始時が、水素製造装置100’の停止動作の開始時に相当する。
水素製造装置100’は、発電燃料配管104及び燃料オフガス配管105を介して燃料電池101に接続されている。また、燃料電池101は、空気配管106を介してブロワ103に接続されるとともに、水回収配管107を介して水回収装置102に接続されている。この水回収装置102は、さらに水回収配管107を介して水素製造装置100’の水供給部7に接続されている。
燃料電池発電装置の運転の際には、まず、前述のように水素製造装置100’で水素ガスの生成が行われる。生成された水素ガスは、発電燃料として、発電燃料配管104を通じて燃料電池101の燃料極側に供給される。一方、燃料電池101の空気極側には、空気配管106を介して、ブロワ103から空気が供給される。燃料電池101では、供給された水素ガスと空気とが反応(以下、発電反応と呼ぶ)して発電が行われるとともに、この発電反応に伴って熱が発生する。ここでは図示を省略しているが、燃料電池101で得られた電気エネルギーは、電力負荷端末に供給されて種々の用途で使用され、一方、発電反応に伴って発生した熱エネルギーは、熱回収手段によって回収され、その後、熱負荷端末に供給されて種々の用途で利用される。熱回収手段としては、例えば、温水回収装置等が用いられる。
燃料電池101での発電反応により生じた水は、水回収配管107を通じて水回収装置102に回収され、その一部又は全部が、さらに、水回収装置107を通じて水素製造装置100’の水供給部7に送られる。一方、発電反応に利用されなかった未使用の水素ガス(いわゆるオフガス)は、燃料電池101から取り出され、燃料オフガス配管105を通じて水素製造装置100’の燃焼部4に燃焼燃料として供給される。
本実施の形態の燃料電池発電装置では、水素製造装置100’において効率よく安定して水素ガスの製造を行うことが可能であるため、燃料電池101に安定して水素ガスの供給を行うことが可能となる。それゆえ、燃料電池101において、安定して電力エネルギー及び熱エネルギーを発生させることが可能となり、省エネルギー性及び経済性に優れたコージェネレーション装置を実現することが可能となる。
(実施の形態6)
図12は本発明の実施の形態6に係る水素製造装置の改質反応部の要部の構成を示す模式的な断面図、図13は図12の改質温度測定部を拡大して示す部分拡大断面図である。図12及び図13において図2と同一符号は同一又は相当する部分を示す。
図12及び図13に示すように、本実施の形態では、改質温度測定部3が、改質反応部2の温度を改質ガス流路dと燃焼後ガス流路gとの間の隔壁(横壁)33aを介して検出するように構成されている。また、水素製造装置100は、停止時に、内部が置換ガスによってパージされないか、又は最終的に空気によってパージされるように構成されている。その他の点は、実施の形態1と同様である。
具体的には、図13に示すように、改質ガス流路dと燃焼後ガス流路gとの間の隔壁33aに、燃焼後ガス流路g側から見て凹んでおりかつ改質ガス流路dに突出している円筒状の凹部33cが形成されている。また、燃焼後ガス流路の外壁(横壁)33bの前記凹部33cに対向する部分に貫通孔33dが形成されている。
一方、改質温度測定部3は、一端が開放され他端が閉鎖された円筒状のシース管51を有している。シース管51の開放された一端(以下、開放端という)にはフランジ51aが形成されている。シース管51の内部には、先端54aが該シース管51の底部51bに接触するようにして、熱電対54が挿入されている。さらに、シース管51の内部には、熱電対54と管壁との間を埋めるように、粉状の充填材54が充填されている。この充填材54は、熱電対の移動を防止するためのもので、熱伝導性及び電気絶縁性の材料、例えば酸化マグネシウム(MgO)で構成されている。そして、フランジ51aに合わさる蓋板52によってシース管51の開放端が封止されている。蓋板52は溶接等の適宜な手段によってシース管51のフランジ51aに接合されている。また、蓋板52には貫通孔が形成されていて、熱電対54はこの貫通孔を通ってシース管51の外部に導出されている。
この改質温度測定部3のシース管51が、底部51bを先にして(上に向けて)燃焼後ガス流路gの外壁33bの貫通孔33dを通って隔壁33aの凹部33cに嵌挿されている。シース管51の底部51b(先端部)は凹部33cの底部(隔壁33a)に接触している。シース管51は、フランジ51aを燃焼後ガス流路gの外壁33bにネジ等の適宜な固定具で固定することによって、該外壁33bに固定されている。フランジ51aは、燃焼後ガス流路gの外壁33bとの間にパッキング55を挟むようにして該外壁33に固定されており、それにより、燃焼後ガス流路gと外部との間がシールされている。
シース管51及び蓋材52は、熱伝導性、耐食性、及び耐熱性を有する材料で構成されている。これらの特性は、腐食性の雰囲気で使用される温度測定装置用の材料として基本的に要求されるものである。さらに、シース管51及び蓋材52は、本発明を特徴付ける構成として、酸化雰囲気中で、その表面に腐食に対する保護膜として機能する酸化膜が形成される。具体的には、本実施の形態では、シース管51及び蓋材52はステンレスで構成され、酸化雰囲気中でその表面にステンレスの酸化膜が形成される。
次に、以上のように構成された改質温度測定部3の作用を説明する。
図2及び図13を参照して、例えば、本実施の形態の改質温度測定部3のシース管51が実施の形態1(図2参照)と同様に、改質ガス流路dと燃焼後ガス流路gとの間の隔壁(縦壁)に、該隔壁33を貫通するように取り付けられていると仮定すると、シース管51が改質ガス流路d中に位置することになる。本実施の形態では、改質ガス流路dは、水素製造装置が停止すると、空気の侵入あるいは空気からなる置換ガスの封入によって、酸化雰囲気となる。この場合には、シース管51の表面に酸化膜が形成される。一方、水素製造装置の運転時には、改質ガス流路dは水素リッチなガスが充満する。すると、改質ガス流路dは還元雰囲気となり、シース管51の表面の酸化膜は還元されて鉄(ステンレスではない)になる。そして、改質ガス流路dが、次の水素製造装置の運転停止により酸化雰囲気になると、この鉄が酸化されていわゆる鉄錆となり、それにより、シース管51が腐食される。そして、このような水素製造装置の運転及び停止の繰り返しに伴うシース管51の酸化還元の繰り返しにより腐食が進行する。
これに対し、本実施の形態では、シース管51が燃焼後ガス流路g内に位置している。そして、燃焼後ガス流路gは水素製造装置の停止時には空気が侵入して酸化雰囲気となる。一方、水素製造装置の運転時には燃焼後ガスが充満するが、この燃焼後ガスには、燃料ガスの燃焼用に供給されて燃料ガスの燃焼に消費されなかった空気が含まれているため、燃焼後ガス流路gは酸化雰囲気となる。つまり、燃焼後ガス流路gは常に酸化雰囲気となっている。従って、水素製造装置の運転及び停止が繰り返されても、上記メカニズムによる腐食を防止することができる。なお、改質温度測定部3は、シース管51の先端(底部)51bが改質ガス流路dを区画する隔壁33a(正確には凹部33c)に接触し、かつ熱電対54の先端54aがシース管51の先端51bに接触しているので、改質反応部2の温度を正確に検出することができる。この場合、必要に応じて、熱電対54で検出した温度を適宜補正してもよく、それによって、より正確に改質反応部2の温度を検出することができる。
以上に説明したように、本実施の形態によれば、酸化雰囲気中でその表面に酸化膜が形成されるシース管51を有する改質温度測定部3の水素製造装置の運転及び停止の繰り返しによる腐食を防止することができる。
なお、実施の形態1乃至5では、改質反応部2等の水素製造装置の所要の箇所の温度を直接検出したが、これを、例えば圧力等の検出により間接的に検出してもよい。
本発明は、装置の停止動作に伴って生じる触媒活性の低下を防止することが可能な水素製造装置として有用であり、特に、頻繁に装置の運転と停止とを行っても触媒活性が低下することがない水素製造装置として有用である。このような水素製造装置は、例えば燃料電池発電装置に利用可能であり、それにより、経済性及び省エネルギー性に優れたコージェネレーション装置が実現可能となる。
本発明の実施の形態1に係る水素製造装置の構成を示す模式的なブロック図である。 図1の改質反応部の要部の構成を示す模式的な断面図である。 図1の制御部の構成を示すブロック図である。 酸化温度と改質反応部のRu金属触媒の比表面積との関係を示す図である。 図1の制御部に格納された停止動作プログラムの内容を概略的に示すフローチャートである。 本発明の実施の形態2に係る水素製造装置の制御部に記憶された運転動作時間と改質反応部の温度との関係を示す図である。 本発明の実施の形態2に係る水素製造装置の制御部に格納された停止動作プログラムの内容を概略的に示すフローチャートである。 本発明の実施の形態3に係る水素製造装置の構成を示す模式的なブロック図である。 十分に温度が低下した状態から起動させた場合の改質反応部、一酸化炭素変成部、及び一酸化炭素選択酸化部の温度変化を示す図である。 長時間運転した後に一旦停止させて直ぐに再起動させた場合の改質部、一酸化炭素変成部、及び一酸化炭素選択酸化部の温度変化を示す図である。 本発明の実施の形態5に係る燃料電池発電装置の構成を示す模式的なブロック図である。 本発明の実施の形態6に係る水素製造装置の改質反応部の要部の構成を示す模式的な断面図である。 図12の改質温度測定部を拡大して示す部分拡大断面図である。
符号の説明
1 水素生成部
2 改質反応部
3 改質温度測定部
4 燃焼部
5 燃焼ファン
6 原料供給部
7 水供給部
8 予熱部
9 制御部
10 一酸化炭素変成部
11 一酸化炭素選択酸化部
16 変成温度測定部
17 選択酸化温度測定部
20 改質触媒層
30 本体
31 間隙
32 縦壁
33 横壁
40 輻射筒
41 バーナ
42 火炎
43 空気の流路
44 燃焼空間
51 シース管
51a フランジ
51b 底部
52 蓋材
53 充填材
54 熱電対
54a 先端
55 パッキング
61 処理制御部
62 記憶部
63 操作入力部
64 表示部
65 時計部
100,100’ 水素製造装置
101 燃料電池
102 水回収装置
103 ブロワ
c 混合原料流路
d 改質ガス流路
e 改質触媒収容部
g 燃焼後ガス流路

Claims (15)

  1. 少なくとも炭素と水素とから構成される有機化合物を含む原料を、触媒を用いて水蒸気と反応させて水素リッチな改質ガスを生成する改質反応部を備えた水素生成部と、
    少なくとも前記改質反応部を加熱する加熱部と、
    前記水素生成部に前記原料を供給する原料供給部と、
    前記水蒸気のもととなる水を前記水素生成部に供給する水供給部と、
    少なくとも前記加熱部、前記原料供給部、及び前記水供給部を制御する制御部と
    前記改質反応部の温度を検出する改質温度検出手段と、を備え、
    運転停止動作の開始時に、前記加熱部における加熱が停止され、前記運転停止動作において、装置内の前記水素リッチなガスを置換するための置換ガスを通流させて装置内ガス置換動作が行われる水素製造装置であって、
    前記装置内ガス置換動作では、前記原料供給部から供給される前記原料、前記水供給部から供給される前記水から生成された前記水蒸気、装置外部から供給される空気、装置外部から供給される不活性ガス、又は、これらを二種以上混合したガス、が前記置換ガスとして用いられ、
    前記制御部には、前記運転停止動作の開始時における少なくとも改質反応部の温度を含む装置の異なる温度状態に応じて使用する前記置換ガスの組成が予め設定されており、
    前記制御部には、前記運転停止動作における前記改質反応部が、水蒸気の水凝縮が生じる状態であるか否か、前記原料の熱分解が起こる状態であるか否か、一酸化炭素及び二酸化炭素の不均化反応が起こる状態であるか否か、又は、前記触媒の酸化が起こる状態であるか否か、の判定基準となる基準温度が設定され、
    前記制御部は、前記運転停止動作の開始時において、前記改質温度検出手段で検出された前記改質反応部の温度を前記基準温度と比較することにより前記装置の温度状態を判定し、前記判定結果に応じて前記設定から選択される前記置換ガスを用いて前記装置内ガス置換動作を行うよう前記加熱部、前記原料供給部、及び前記水供給部を制御することを特徴とする水素製造装置。
  2. 前記改質反応部以外の所定部分の温度を検出する温度検出手段をさらに備え、前記温度検出手段で検出された前記運転停止動作における前記所定部分の温度も考慮して前記装置の温度状態を判定する請求項記載の水素製造装置。
  3. 前記改質反応部で生成された水素リッチなガスから変成反応により一酸化炭素を除去する一酸化炭素変成部と、
    前記一酸化炭素変成部から得られた変成後ガスを選択酸化してさらに一酸化炭素を除去する一酸化炭素選択酸化部と、
    前記一酸化炭素変成部の温度を検出する変成温度検出手段と、
    前記一酸化炭素選択酸化部の温度を検出する選択酸化温度検出手段と、をさらに備え、
    前記制御部は、前記運転停止動作において前記変成温度検出手段によって検出される前記一酸化炭素変成部の温度と前記選択酸化温度検出手段によって検出される前記一酸化炭素選択酸化部の温度とに基づき、前記運転停止動作における前記一酸化炭素変成部及び前記一酸化炭素選択酸化部が水蒸気の水凝縮が生じる状態であるか否かを判定し、その判定結果と前記改質反応部の温度状態の判定結果とに基づいて前記装置の温度状態を判定する請求項記載の水素製造装置。
  4. 前記制御部は、前記運転停止動作以前の装置の運転状態を記憶し、前記運転停止動作においては、前記記憶された前記装置の運転状態から該運転停止動作における前記装置の温度状態を推測する請求項1記載の水素製造装置。
  5. 運転動作の継続時間と装置の温度状態との相関関係が予め制御部に記憶されるとともに、前記運転停止動作の開始時までの運転動作の継続時間が前記運転停止動作以前の装置の運転状態として前記制御部により取得され、
    前記制御部は、前記取得された前記運転停止動作の開始時までの運転動作の継続時間から、前記予め記憶された相関関係に基づいて、前記運転動作における装置が、水蒸気から水の凝縮が生じる状態であるか否か、前記原料の熱分解が起こる状態であるか否か、一酸化炭素及び二酸化炭素の不均化反応が起こる状態であるか否か、又は、前記触媒の酸化が起こる状態であるか否か、を判定する請求項記載の水素製造装置。
  6. 前記制御部には、前記運転停止動作における装置の温度状態が前記水の凝縮が生じる状態である時、前記水蒸気のみの組成を除く組成の前記置換ガスで前記装置内ガス置換動作を行うよう第1の置換ガス設定が記憶されている請求項記載の水素製造装置。
  7. 前記制御部には、前記運転停止動作における装置の温度状態が前記水の凝縮及び前記原料の熱分解を回避可能な状態である時、前記原料、前記水蒸気、前記空気、前記不活性ガス、又はこれらを二種以上含む前記混合ガスで前記装置内ガス置換動作を行うよう第2の置換ガス設定が記憶されている請求項記載の水素製造装置。
  8. 前記制御部には、前記運転停止動作における装置の温度状態が前記原料の熱分解を起こす状態である時、前記原料のみの組成を除く組成を有する前記置換ガスで前記装置内ガス置換動作を行うよう第3の置換ガス設定が記憶されている請求項記載の水素製造装置。
  9. 前記制御部には、前記運転停止動作における装置の温度状態が前記不均化反応を起こす状態である時、前記水蒸気を含む前記置換ガスで前記装置内ガス置換動作を行うよう第4の置換ガス設定が記憶されている請求項記載の水素製造装置。
  10. 前記制御部には、前記運転停止動作における装置の温度状態が前記触媒の酸化を起こす状態である時、前記空気のみの組成を除く組成を有する前記置換ガスで前記装置内ガス置換動作を行うよう第5の置換ガス設定が記憶されている請求項記載の水素製造装置。
  11. 前記制御部には、
    前記改質反応部が水蒸気から水の凝縮が生じる状態であるか否かの判定基準となる第1の基準温度と、前記原料の熱分解が起こる状態であるか否かの判定基準となる前記第1の基準温度よりも高い第2の基準温度と、前記不均化反応が起こる状態であるか否かの判定基準となる前記第2の基準温度よりも高い第3の基準温度と、前記触媒の酸化が起こる状態であるか否かの判定基準となる前記第3の温度よりも高い第4の基準温度とが予め設定されるとともに、
    前記運転停止動作において検出された前記改質反応部の温度が
    前記第1の基準温度未満であれば、前記第1の置換ガス設定に基づいて前記原料を前記置換ガスとし、
    前記第1の基準温度以上かつ前記第2の基準温度未満であれば、前記第2の置換ガス設定に基づいて前記原料を前記置換ガスとし、
    前記第2の基準温度以上かつ前記第3の基準温度未満であれば、前記第3の置換ガス設定に基づいて前記水蒸気を前記置換ガスとし、
    前記第3の基準温度以上かつ前記第4の基準温度未満であれば、前記第4の置換ガス設定に基づいて前記原料と前記水蒸気とを含み前記原料由来の炭素原子Cに対する水分子Sの比S/Cが2以上である混合ガスを前記置換ガスとし、
    前記第4の基準温度以上であれば、前記第5の置換ガス設定に基づいて水素生成動作時と同様の供給量で供給される前記原料と前記水蒸気との混合ガスを前記置換ガスとして、前記装置内ガス置換動作が行われる請求項記載の水素製造装置。
  12. 前記制御部には、前記運転動作の継続時間と前記改質反応部の温度との相関関係に基づいて、運転停止動作における前記改質反応部が水蒸気から水の凝縮が生じる状態であるか否かの判定基準となる第1の基準時間と、前記原料の熱分解が起こる状態であるか否かの判定基準となる前記第1の基準時間よりも長い第2の基準時間と、前記不均化反応が起こる状態であるか否かの判定基準となる前記第2の基準時間よりも長い第3の基準時間と、前記触媒の酸化が起こる状態であるか否かの判定基準となる前記第3の基準時間よりも長い第4の基準時間と、が予め設定されており、
    前記運転の継続時間が、
    前記第1の基準時間未満であれば、前記第1の置換ガス設定に基づいて前記原料を前記置換ガスとし、
    前記第1の基準時間以上かつ前記第2の基準時間未満であれば、前記第2の置換ガス設定に基づいて前記原料を前記置換ガスとし、
    前記第2の基準時間以上かつ前記第3の基準時間未満であれば、前記第3の置換ガス設定に基づいて前記水蒸気を前記置換ガスとし、
    前記第3の基準時間以上かつ前記第4の基準時間未満であれば、前記第4の置換ガス設定に基づいて前記原料と前記水蒸気とを含み前記原料由来の炭素原子Cに対する水分子Sの比S/Cが2以上である混合ガスを前記置換ガスとし、
    前記第4の基準温度以上であれば、前記第5の置換ガス設定に基づいて水素生成動作時と同様の供給量で供給される前記原料と前記水蒸気との混合ガスを前記置換ガスとして、前記装置内ガス置換動作が行われる請求項記載の水素製造装置。
  13. 前記制御部は、前記運転停止動作中の前記装置内ガス置換動作において、前記運転停止動作に伴う前記装置の温度状態変化に応じて前記装置内ガス置換動作を制御する請求項1記載の水素製造装置。
  14. 前記制御部は、前記運転停止動作中の前記装置の温度状態を判定し、その判定結果から適切な前記置換ガスの設定を選択する請求項13記載の水素製造装置。
  15. 請求項1に記載の水素製造装置と、前記水素製造装置で生成された水素リッチガスが原料として供給されるとともに酸素が酸化剤として供給されて前記水素リッチガスの酸化により熱と電気とを発生させる燃料電池と、を備えたことを特徴とする燃料電池発電装置。
JP2005336918A 2004-01-22 2005-11-22 水素製造装置及び燃料電池発電装置 Active JP4664808B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005336918A JP4664808B2 (ja) 2004-01-22 2005-11-22 水素製造装置及び燃料電池発電装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004014751 2004-01-22
JP2005336918A JP4664808B2 (ja) 2004-01-22 2005-11-22 水素製造装置及び燃料電池発電装置

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2004343300A Division JP2005231987A (ja) 2004-01-22 2004-11-29 水素製造装置及び燃料電池発電装置

Publications (2)

Publication Number Publication Date
JP2006137668A JP2006137668A (ja) 2006-06-01
JP4664808B2 true JP4664808B2 (ja) 2011-04-06

Family

ID=36618717

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005336918A Active JP4664808B2 (ja) 2004-01-22 2005-11-22 水素製造装置及び燃料電池発電装置

Country Status (1)

Country Link
JP (1) JP4664808B2 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4939114B2 (ja) * 2006-06-01 2012-05-23 株式会社荏原製作所 燃料処理装置及び燃料電池システム
JP5125181B2 (ja) * 2007-03-30 2013-01-23 カシオ計算機株式会社 反応装置及び発電装置並びに反応装置の停止方法
US8961627B2 (en) 2011-07-07 2015-02-24 David J Edlund Hydrogen generation assemblies and hydrogen purification devices
US9187324B2 (en) 2012-08-30 2015-11-17 Element 1 Corp. Hydrogen generation assemblies and hydrogen purification devices
US10717040B2 (en) 2012-08-30 2020-07-21 Element 1 Corp. Hydrogen purification devices
US20140065020A1 (en) 2012-08-30 2014-03-06 David J. Edlund Hydrogen generation assemblies
US11738305B2 (en) 2012-08-30 2023-08-29 Element 1 Corp Hydrogen purification devices

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000095504A (ja) * 1998-09-22 2000-04-04 Matsushita Electric Works Ltd 改質装置
JP2000290001A (ja) * 1999-04-05 2000-10-17 Matsushita Electric Ind Co Ltd 水素発生装置の運転方法
WO2000063114A1 (fr) * 1999-04-20 2000-10-26 Tokyo Gas Co., Ltd. Reformeur cylindrique monotube et procede pour faire fonctionner ledit reformeur
JP2002008701A (ja) * 2000-06-21 2002-01-11 Tokyo Gas Co Ltd 固体高分子型燃料電池の起動及び停止方法
JP2002093447A (ja) * 2000-09-14 2002-03-29 Tokyo Gas Co Ltd 固体高分子型燃料電池用改質器の起動及び停止方法
JP2002151124A (ja) * 2000-11-14 2002-05-24 Tokyo Gas Co Ltd 固体高分子形燃料電池用改質器の停止方法
JP2002179401A (ja) * 2000-12-11 2002-06-26 Toyota Motor Corp 水素ガス生成システムの運転停止方法
WO2002090249A1 (fr) * 2001-05-07 2002-11-14 Matsushita Electric Industrial Co., Ltd. Appareil de formation d'hydrogene
EP1271679A1 (en) * 2000-03-28 2003-01-02 Matsushita Electric Industrial Co., Ltd. Device for producing hydrogen and method of operating the same
JP2003176105A (ja) * 2001-10-03 2003-06-24 Matsushita Electric Ind Co Ltd 水素生成装置、燃料電池システム、水素生成装置の運転方法
JP2003300704A (ja) * 2002-02-08 2003-10-21 Nissan Motor Co Ltd 燃料改質システムおよび燃料電池システム
JP2004006217A (ja) * 2002-04-12 2004-01-08 Sekisui Chem Co Ltd 燃料電池コジェネレーションシステム
JP2004002154A (ja) * 2002-03-26 2004-01-08 Matsushita Electric Ind Co Ltd 水素生成装置およびそれを備える燃料電池システム
JP2004137108A (ja) * 2002-10-17 2004-05-13 Toyo Radiator Co Ltd 水蒸気改質システムの運転停止方法
JP2005044684A (ja) * 2003-07-24 2005-02-17 Matsushita Electric Ind Co Ltd 燃料電池発電装置
JP2005162580A (ja) * 2003-12-05 2005-06-23 Matsushita Electric Ind Co Ltd 水素生成装置および水素生成装置の作動停止方法並びに燃料電池発電装置

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000095504A (ja) * 1998-09-22 2000-04-04 Matsushita Electric Works Ltd 改質装置
JP2000290001A (ja) * 1999-04-05 2000-10-17 Matsushita Electric Ind Co Ltd 水素発生装置の運転方法
WO2000063114A1 (fr) * 1999-04-20 2000-10-26 Tokyo Gas Co., Ltd. Reformeur cylindrique monotube et procede pour faire fonctionner ledit reformeur
EP1271679A1 (en) * 2000-03-28 2003-01-02 Matsushita Electric Industrial Co., Ltd. Device for producing hydrogen and method of operating the same
JP2002008701A (ja) * 2000-06-21 2002-01-11 Tokyo Gas Co Ltd 固体高分子型燃料電池の起動及び停止方法
JP2002093447A (ja) * 2000-09-14 2002-03-29 Tokyo Gas Co Ltd 固体高分子型燃料電池用改質器の起動及び停止方法
JP2002151124A (ja) * 2000-11-14 2002-05-24 Tokyo Gas Co Ltd 固体高分子形燃料電池用改質器の停止方法
JP2002179401A (ja) * 2000-12-11 2002-06-26 Toyota Motor Corp 水素ガス生成システムの運転停止方法
WO2002090249A1 (fr) * 2001-05-07 2002-11-14 Matsushita Electric Industrial Co., Ltd. Appareil de formation d'hydrogene
JP2003176105A (ja) * 2001-10-03 2003-06-24 Matsushita Electric Ind Co Ltd 水素生成装置、燃料電池システム、水素生成装置の運転方法
JP2003300704A (ja) * 2002-02-08 2003-10-21 Nissan Motor Co Ltd 燃料改質システムおよび燃料電池システム
JP2004002154A (ja) * 2002-03-26 2004-01-08 Matsushita Electric Ind Co Ltd 水素生成装置およびそれを備える燃料電池システム
JP2004006217A (ja) * 2002-04-12 2004-01-08 Sekisui Chem Co Ltd 燃料電池コジェネレーションシステム
JP2004137108A (ja) * 2002-10-17 2004-05-13 Toyo Radiator Co Ltd 水蒸気改質システムの運転停止方法
JP2005044684A (ja) * 2003-07-24 2005-02-17 Matsushita Electric Ind Co Ltd 燃料電池発電装置
JP2005162580A (ja) * 2003-12-05 2005-06-23 Matsushita Electric Ind Co Ltd 水素生成装置および水素生成装置の作動停止方法並びに燃料電池発電装置

Also Published As

Publication number Publication date
JP2006137668A (ja) 2006-06-01

Similar Documents

Publication Publication Date Title
EP1557395B1 (en) Hydrogen generator and fuel cell system
JP4664808B2 (ja) 水素製造装置及び燃料電池発電装置
JP4105758B2 (ja) 燃料電池システム
JP4486353B2 (ja) 水素生成装置および水素生成装置の作動停止方法並びに燃料電池発電装置
JP5164441B2 (ja) 燃料電池システムの起動方法
JP3970064B2 (ja) 水素含有ガス生成装置の運転方法
JP5340657B2 (ja) 水素生成装置、燃料電池システム、及び水素生成装置の運転方法
WO2006088018A1 (ja) 水素生成装置及びその運転方法並びに燃料電池システム
JP2006056771A (ja) 水素生成装置およびその運転方法ならびに燃料電池システム
JP2006056771A5 (ja)
CN103052591B (zh) 氢生成装置及燃料电池系统
JP2005170784A (ja) 水素発生装置及びその運転方法ならびに燃料電池発電システム
JP2005200260A (ja) 水素製造装置及び燃料電池発電システム
JP2006008458A (ja) 水素生成装置、および燃料電池システム
JP2005231987A (ja) 水素製造装置及び燃料電池発電装置
JP2007210835A (ja) 水素生成装置及び燃料電池システム
JP3995503B2 (ja) 改質装置の起動方法及び改質装置
JP4945878B2 (ja) 水素生成装置
JP4847759B2 (ja) 水素製造装置の運転方法、水素製造装置および燃料電池発電装置
US7258704B2 (en) Hydrogen generator and fuel cell system having the same
JP2009078938A (ja) 脱硫器およびその運転方法、ならびに燃料電池システム
JP2019202898A (ja) 水素生成装置、及びそれを用いた燃料電池システム、並びにその運転方法
JP5363717B2 (ja) 水素製造システム
JP2014139116A (ja) 水素生成装置及び燃料電池システム
JP2005255458A (ja) 水素生成装置及び燃料電池システム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070726

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101005

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101214

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110107

R150 Certificate of patent or registration of utility model

Ref document number: 4664808

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140114

Year of fee payment: 3