JP4150959B2 - 単結晶引き上げ装置 - Google Patents

単結晶引き上げ装置 Download PDF

Info

Publication number
JP4150959B2
JP4150959B2 JP2002274831A JP2002274831A JP4150959B2 JP 4150959 B2 JP4150959 B2 JP 4150959B2 JP 2002274831 A JP2002274831 A JP 2002274831A JP 2002274831 A JP2002274831 A JP 2002274831A JP 4150959 B2 JP4150959 B2 JP 4150959B2
Authority
JP
Japan
Prior art keywords
seed crystal
single crystal
auxiliary heating
crystal
neck
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002274831A
Other languages
English (en)
Other versions
JP2004107166A (ja
Inventor
修一 稲見
英樹 渡邉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumco Corp
Original Assignee
Sumco Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumco Corp filed Critical Sumco Corp
Priority to JP2002274831A priority Critical patent/JP4150959B2/ja
Publication of JP2004107166A publication Critical patent/JP2004107166A/ja
Application granted granted Critical
Publication of JP4150959B2 publication Critical patent/JP4150959B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は単結晶引き上げ装置に関し、より詳細にはチョクラルスキー法(以下、CZ法と記す)に代表される引き上げ法により、シリコン等からなる単結晶を引き上げる際に使用される単結晶引き上げ装置に関する。
【0002】
【従来の技術】
現在、大規模集積回路(LSI)等の回路素子形成用基板の製造に使用されているシリコン単結晶の大部分は、CZ法により引き上げられている。引き上げ単結晶を無転位化する方法としては、結晶の直径を数mm程度にまで細くすることで無転位化を図る、ダッシュネック法と呼ばれる方法が一般的に用いられている。近年、引き上げ単結晶の大口径化に伴い、単結晶重量が大きくなってきており、細いネック部に掛かる荷重がシリコンの引張強度を超え、単結晶の引き上げ中に結晶が落下する虞れが大きくなってきている。
【0003】
上記虞れに対処するため、移動可能な補助加熱手段を用いて種結晶を余熱し、種結晶を溶融液に接触させる際の熱ショックによる導入転位を抑制し、ネックを形成することなく引き上げ単結晶を無転位化する方法(特許文献1参照)や、ダッシュネック法による無転位化作業時にネック部を補助加熱手段を用いて加熱することにより、ネック部の温度分布を制御してネック部に作用する熱応力を軽減し、通常よりも太い直径のネック部でも引き上げ単結晶を無転位化できる方法(特許文献1参照)が開発されている。
【0004】
また、補助加熱装置の移動方法としては、種結晶を取り囲む環状の補助加熱ヒ−タにスリット状の開口部を形成し、無転位化作業の終了後に、前記開口部に結晶を通過させて前記補助加熱ヒ−タを斜め上方に移動させるようになっている(例えば、特許文献2参照)。
【0005】
図9は、このCZ法に用いられる、補助加熱法により種結晶を無転位化するための補助加熱手段15が装備された従来の単結晶引き上げ装置を模式的に示した断面図であり、図中21は坩堝を示している。
【0006】
この坩堝21は、有底円筒形状をした石英製坩堝21aと、この石英製坩堝21aの外側に嵌合された、同じく有底円筒形状をした黒鉛製坩堝21bとから構成されており、坩堝21は、図中の矢印A方向に所定の速度で回転する支持軸28に支持されている。この坩堝21の外側には、抵抗加熱式のメインヒ−タ22、メインヒータ22の外側には保温筒27が同心円状に配置されており、坩堝21内には、このメインヒータ22により溶融される結晶用原料である溶融液23が充填されるようになっている。また、坩堝21の中心軸上には、引き上げ棒あるいはワイヤー等からなる引き上げ軸24が吊設されており、この引き上げ軸24の先に、保持具24aを介して種結晶35が取り付けられるようになっている。また、これら部材は、圧力の制御が可能な水冷式のチャンバ29内に納められている。補助加熱手段15は発熱部15a、電極15bを備え、移動手段10により石英製坩堝21aの中心上方へ進退可能に支持されている。
【0007】
上記した単結晶引き上げ装置を用いて単結晶36を引き上げる方法を、図9及び図10に基づいて説明する。図10(a)〜(d)は、単結晶を引き上げる各工程のうちの一部の工程における、種結晶の近傍を模式的に示した部分拡大正面図である。
【0008】
図10には示していないが、まずチャンバ29内を減圧した後、不活性ガスを導入してチャンバ29内を減圧の不活性ガス雰囲気とし、その後メインヒータ22により結晶用原料を溶融させ、しばらく放置して溶融液23中のガスを十分に放出させる。
【0009】
次に、支持軸28と同一軸心で逆方向に所定の速度で引き上げ軸24を回転させながら、保持具24aに取り付けられた種結晶35を降下させて溶融液23に着液させ、種結晶35の先端部を溶融液23に馴染ませた後、単結晶36の引き上げを開始する(シーディング工程、図10(a))。
次に、種結晶35の先端に結晶を成長させてゆくが、このとき補助加熱手段15の発熱部15aにより種結晶35と溶融液23との界面を加熱し、種結晶35の温度分布に起因する熱応力を低減させ、ネック36aを形成して無転位化させる(無転位化工程、図10(b))。
次に、移動手段10を駆動させて発熱部15aをネック36aから退避させ、その後引き上げ軸24の引き上げ速度(以下、単に引き上げ速度とも記す)を落としてネック36aを所定の径まで成長させ、ショルダー36bを形成する(ショルダー形成工程、図10(c))。
次に、一定の速度で引き上げ軸24を引き上げることにより、一定の径、所定長さのメインボディ36cを形成する(メインボディ形成工程、図10(d))。
その後、図10には示していないが、最後に急激な温度変化により単結晶36に高密度の転位が導入されないように、単結晶36の直径を徐々に絞って単結晶36全体の温度を徐々に降下させ、終端コーンを形成する。その後、単結晶36を溶融液23から切り離し、冷却して単結晶36の引き上げを完了させる。
【0010】
図10(b)に示した前記無転位化工程において、ネック36a直径の自動制御を行うためにネック36a直径の計測を行っている。ネック36a直径計測の一般的な方法として結晶を溶融液に接触させた際に、結晶の周囲に形成されるフュージョンリングと呼ばれる光環を計測カメラで撮影し、画像解析を行うことによりネック36a直径を算出する方法が採用されている。
【0011】
このフュージョンリングは下記の物理的現象により形成される。結晶を溶融液に接触させると、表面張力により溶融液表面は結晶の側壁を這上がり、鉛直上方から見ると凹面上に湾曲した状態となる。この湾曲面部が周囲の白熱した石英坩堝の明かりを反射して、明るい円環が形成される。この明るい円環がフュージョンリングと呼ばれている。
【0012】
前記補助加熱法を用いた無転位化工程においては、種結晶35と溶融液23表面との接触部の周囲を加熱するために、例えば抵抗加熱式の補助加熱手段15の発熱部15aで取り囲んでいる。このとき、フュージョンリングを直径計測用カメラで撮影するために、発熱部15aの一部にカメラ視野確保のための開口部を設ける必要がある。補助加熱法において、抵抗加熱式ヒーターで種結晶35と溶融液23表面との接触部周辺を加熱する際には、加熱の効率を高くし、温度勾配の小さい部分を広くするために、前記カメラ視野確保のための開口部を狭くするほうが望ましい。
【0013】
【特許文献1】
特開平11−189488号公報
【特許文献2】
特開2001−278695号公報
【0014】
【発明が解決しようとする課題】
しかしながら、前記抵抗加熱式ヒーターの開口部を狭くすればするほど、前記フュージョンリングを直径計測用のカメラで撮影するためには、種結晶35の中心を前記開口部の中心に整合させるための位置調整作業の精度を高めてやる必要がある。この位置調整作業は、熟練した作業者の慎重かつ長時間に渡る作業となり、準備作業の長時間化や労働コストの上昇といった問題を生じさせている。
【0015】
また種結晶35や種結晶保持部24aの重心が回転軸上からはずれていると、種結晶35を回転させた場合、種結晶35は回転振り子のように振動してしまい、回転軸上に静止させることができなくなる。このとき、フュージョンリングが移動したり、この移動に伴いフュージョンリングが前記抵抗加熱式ヒーターの開口部視野から外れてしまい、直径計測用カメラによるフュージョンリングの撮影が困難または不可能になったりする。このように、種結晶35に振動が生じると、ネック36a直径の計測値の精度が悪化したり、計測自体が不可能になってしまうといった課題があった。
【0016】
また補助加熱手段を用い、種結晶35を溶融液23に浸漬して一部を溶融させることで無転位化し、ネック36aを形成することなく単結晶36を引き上げる引き上げ方法においても、種結晶35を溶融液23に浸漬する際の溶融液23の温度と種結晶35を浸漬する速度を決定する際に、フュージョンリングの形成状況を観察することが不可欠となる。この際のフュージョンリングの形成状況の観察においても、できるだけ安定した状態で、かつ広範囲でフュージョンリングを観察できることが望ましい。
【0017】
ところが、種結晶35の中心軸と補助加熱手段15の発熱部15aの中心軸とが整合していない場合や、種結晶35や種結晶保持部24aの重心が回転軸上からはずれた状態で、種結晶35を回転させた場合、種結晶35は回転振り子のように振動してしまい、回転軸上に静止させることができず、フュージョンリングの観察が十分行えない状態がしばしば発生していた。このようにフュージョンリングの観察が十分行えない状態では、溶融液温度の設定や種結晶35の浸漬速度の調整を誤り、種結晶35の無転位化に失敗するといったことも生じていた。
【0018】
なお、上記説明では、抵抗加熱式の補助加熱手段を使用する場合を例に挙げたが、本発明の対象は補助加熱手段が抵抗加熱式であるものに限定されるものではなく、例えば、干渉光を当該部位に照射することで、種結晶の温度分布を制御する補助加熱手段を使用する場合においても、同様の課題が存在する。
【0019】
本発明は上記課題に鑑みなされたものであって、種結晶と補助加熱手段との位置の調整を容易にし、かつ調整作業時間を短縮することができ、また種結晶の回転に伴い種結晶が回転振り子のように振動した場合でも、振動の幅を極めて小さく制限することができ、さらに補助加熱手段による加熱効率を向上させ、種結晶に生じる温度分布の制御性を向上させ得ると共に、種結晶の無転位化工程終了後、種結晶を拡径してメインボディを形成する前に、前記補助加熱手段を退避させる作業を複雑化させることのない単結晶引き上げ装置を提供することを目的としている。
【0020】
【課題を解決するための手段及びその効果】
本発明者等は補助加熱手段を使用した種結晶の転位除去中に、また種結晶の転位除去後に種結晶と補助加熱手段とが接触しても、前記種結晶の無転位化に影響を与えることがなく、また無転位化した種結晶の有転位化をも引き起こさないことを知見し、本発明を完成するに至った。
【0021】
すなわち、上記目的を達成するために、本発明に係る単結晶引き上げ装置(1)は、種結晶を保持する種結晶保持手段、該種結晶保持手段を昇降させる昇降手段、メインヒ−タとは別に前記種結晶及び溶融液表面を部分的に加熱するための補助加熱手段、該補助加熱手段を移動させる移動手段、及び前記補助加熱手段、前記メインヒ−タへの電力供給を制御する電力供給制御手段を備えた単結晶引き上げ装置において、前記補助加熱手段に対する前記種結晶の水平方向移動量を規制する移動量制限部を含んで構成された位置制御手段を備えていることを特徴としている。
【0022】
前記位置制御手段が装備されていない場合には、事前の前記補助加熱手段と種結晶との位置調整が不完全で、前記種結晶と溶融液との接触部分が直径計測用カメラの視野に対して前記補助加熱手段の開口部に位置しない場合や、前記種結晶の回転に伴い前記種結晶が回転振り子のように振動する場合でも、上記した単結晶引き上げ装置(1)によれば、前記位置制御手段の存在により、事前の前記種結晶の位置調整が不備であっても、前記種結晶の設定位置を所望位置に正確に制御することができ、前記種結晶の中心軸を、前記補助加熱手段の中心軸付近に正確に導くことができる。これにより、前記補助加熱手段の開口部に対して前記種結晶と溶融液との接触部を直径計測用カメラの視野に常時収めることができることとなる。また前記種結晶の回転による振動が生じた際にも、振動の幅を狭め、直径計測用カメラの視野から前記種結晶と溶融液との接触部分が外れてしまうことを阻止できる。
【0023】
以上のように、前記種結晶と前記溶融液との接触部分を常に直径計測用カメラで観測することができるようになるので、前記種結晶を前記溶融液に接触、または浸漬した後に前記補助加熱手段を用いて前記種結晶と前記溶融液との界面近傍を加熱しながら、直径6mm以上のネックを形成して単結晶を引き上げる方法や、あらかじめ、前記補助加熱手段を用いて前記種結晶と前記溶融液との界面近傍を予熱したあと、前記種結晶を前記溶融液に接触、または浸漬した後、引き続き前記補助加熱手段で加熱しながら直径6mm以上のネックを形成して単結晶を引き上げる方法における、前記種結晶を前記補助加熱手段で加熱しながらネックを形成する際の直径制御を、安定したものとすることができる。
【0024】
また、あらかじめ前記補助加熱手段を用いて前記種結晶と前記溶融液との界面近傍を予熱したあと、前記補助加熱手段を用いて加熱しながら前記種結晶を溶融液に浸漬し、その後ネックを形成せずに、単結晶を引き上げる方法においても、前記補助加熱手段で加熱しながら、前記種結晶を前記溶融液に浸漬する際の、溶融液温度の制御や浸漬速度の制御を確実に行うことができることとなる。
【0025】
また、上記した単結晶引き上げ装置(1)によれば、前記種結晶と前記補助加熱手段との位置調整作業を容易なものとすることができ、位置調整作業に要する熟練度を下げ、作業時間を短縮することが可能になり、生産コストを削減することができる。
【0026】
また、 上記した単結晶引き上げ装置(1)によれば、簡単な構成により、上記した大きな効果を得ることができる。
【0027】
また、本発明に係る単結晶引き上げ装置(2)は、種結晶を保持する種結晶保持手段、該種結晶保持手段を昇降させる昇降手段、メインヒ−タとは別に前記種結晶及び溶融液表面を部分的に加熱するための補助加熱手段、該補助加熱手段を移動させる移動手段、及び前記補助加熱手段、前記メインヒ−タへの電力供給を制御する電力供給制御手段を備えた単結晶引き上げ装置において、前記種結晶の降下時、該種結晶を位置制御手段の所定箇所へ案内する案内部と、該案内部の下方に固定された前記種結晶の水平方向移動量を規制する移動量制限部とを含んで構成された位置制御手段を備えていることを特徴としている。
上記した単結晶引き上げ装置(2)によれば、前記位置制御手段が、前記種結晶の降下時、該種結晶を前記位置制御手段の所定箇所へ案内する案内部を備えているので、前記種結晶と前記補助加熱手段との位置調整作業を容易なものとし、位置調整作業に要する熟練度を下げ、作業時間を短縮し、生産コストを削減する効果をより確実なものとすることができる。
【0028】
また、本発明に係る単結晶引き上げ装置()は、上記単結晶引き上げ装置(1)または(2)において、前記位置制御手段の種結晶からの退避を可能にする開口部が形成されていることを特徴としている。
上記した単結晶引き上げ装置()によれば、前記補助加熱手段による種結晶の無転位化作業が終了した後、結晶を所定の径まで拡径する前に、前記位置制御手段を容易に種結晶から退避させることができ、単結晶の引き上げ工程に悪影響を与えることはない。
【0029】
また、本発明に係る単結晶引き上げ装置()は、上記単結晶引き上げ装置(1)〜()のいずれかにおいて、前記移動量制限部の端部に形成された固定部を介して前記位置制御手段が前記補助加熱手段の発熱部に電力を供給するための電極に固定されていることを特徴としている。
上記した単結晶引き上げ装置()によれば、前記補助加熱手段による種結晶の無転位化作業が終了した後、結晶を所定の径まで拡径する前に、前記位置制御手段を回収する作業が、従来の補助加熱手段を用いた場合と同様の作業で行うことができ、前記位置制御手段の回収が単結晶の引き上げ工程に悪影響を与えることをなくすことができる。
【0030】
また、本発明に係る単結晶引き上げ装置()は、上記単結晶引き上げ装置(1)〜()のいずれかにおいて、前記移動量制限部の前記固定部と、前記補助加熱手段の前記電極との間に絶縁性の部材が介装されていることを特徴としている。
上記した単結晶引き上げ装置()によれば、位置制御手段の構成材料として導電性のものを採用しても前記補助加熱手段の前記電極との間に、短絡などの不具合の発生を阻止することができる。
【0031】
【発明の実施の形態】
以下、本発明に係る単結晶引き上げ装置の実施の形態を図面に基づいて説明する。尚、従来例と同一の機能を有する構成部品については同一の符号を付してその説明を省略することとする。
本実施の形態に係る単結晶引き上げ装置は、12インチ以上の大口径、大重量の単結晶の引き上げを前提としている。
【0032】
図1は、実施の形態(1)に係る単結晶引き上げ装置を模式的に示した要部の断面図であり、図2(a)、(b)はこの単結晶引き上げ装置における位置制御手段を含む要部を模式的に示した平面図及び側面図である。
【0033】
図1に示した単結晶引き上げ装置は位置制御手段18を備えており、位置制御手段18は、図2(a)、(b)に示すように、鉛直上方に向かって口径が大きくなった中空の略逆円錐形状をした案内スロート18aを備え、案内スロート18aの下方には、略円板形状をした移動量制限部18bが固定され、これら案内スロート18a及び移動量制限部18bには、位置制御手段18の種結晶35からの退避を可能にするための開口部18cが形成されている。移動量制限部18bにより種結晶35の水平方向に関する外周長さの半分以上が取り囲まれ、種結晶35の水平方向に関する移動量が制限されるようになっている。移動量制限部18bの端部に形成された固定部18dを介して位置制御手段18が補助加熱手段15の発熱部15aに電力を供給するための電極15bに固定されている。
【0034】
補助加熱手段15は、溶融液23の直上に位置した状態の種結晶35を取り囲むように位置させ得る発熱部15aと、この発熱部15aに電力を供給するための電極15bとを含んで構成され、発熱部15aと位置制御手段18とを単結晶36の通過領域より退避させるための移動機構11Aに保持されている。
【0035】
移動機構11Aは図3に示すように、モ−タ11aと、このモ−タ11aに連結され、モ−タ11aの回転に伴い回転駆動されるポ−ルスクリュ−11bと、電極15bが固定されポ−ルスクリュ−11bの回転に伴いポ−ルスクリュ−11bの軸方向に斜め上下動する電極ホルダ11cと、ポ−ルスクリュ−11b、電極ホルダ11c、及び電極15bを収容してチャンバ29に固定されたシリンダ11dを含んで構成されている。
【0036】
また、別の実施の形態では、移動機構11Bは図4に示すように、モ−タ11aと、このモ−タ11aに連結され、モ−タ11aの回転に伴い回転駆動されるポ−ルスクリュ−11bと、電極15bが固定されポ−ルスクリュ−11bの回転に伴いポ−ルスクリュ−11bの軸方向に斜め上下動する電極ホルダ11fと、モ−タ11aを支持しチャンバ29に固定された支持板11eと、チャンバ29に固定された密閉板11hと電極ホルダ11fとの間を周りと隔離して電極15bを収容するベロ−ズ11gとを含んで構成されていてもよい。
【0037】
また、移動機構のさらに別の実施の形態では、モ−タ11aと、このモ−タ11aに連結され、モ−タ11aの回転に伴い回転駆動されるポ−ルスクリュ−11bの構成に変えて、エア−シリンダとピストンとの組み合わせとしても良いし、あるいはリニアモ−タを利用したものであっても良い。
【0038】
また、さらに別の実施の形態では、チャンバ29とシリンダ11dとの間にゲ−トバルブを介装し、補助加熱手段15及び位置制御手段18全体をチャンバ29から切り離し可能な構成とし、点検、整備作業が容易となる構成としても良い。
【0039】
位置制御手段18の案内スロート18aにより、種結晶35の降下時に、種結晶35の中心軸と発熱部15aの中心軸とが大きく偏移しているような場合であっても、種結晶35の安定位置を無転位化に最適な位置へと容易に導くことができ、その後は移動量制限部18bにより、種結晶35の安定位置を維持することができるようになっている。
【0040】
開口部18cの寸法は、種結晶35よりも細いネック36aを形成して無転位化する無転位化工程を採用する場合には、ネック36a直径の約1.2倍あればよく、また、他方、種結晶35の所定長さを溶融液23に浸漬して溶融させ、ネック36aを形成することなく無転位化する無転位化工程を採用する場合には、種結晶35の直径の約1. 2倍以上あればよい。この開口部18cの存在により位置制御手段18の種結晶35からの退避をスム−ズに行わせることができることとなる。
【0041】
位置制御手段18の存在により、種結晶35の安定位置を無転位化に最適な位置へと導びき、安定位置を維持することができるため、種結晶径制御のための発熱部15aの開口率(種結晶35の中心軸から見た発熱部15aの開口部の水平面内でのなす角度の割合)を著しく減少させることができ、無転位化工程の際に育成する種結晶35(あるいはネック36a)の直径の1.2倍程度の開口部構成も可能である。
【0042】
位置制御手段18の構成材料としては、絶縁性、高温耐久性に優れたセラミックスを挙げることができる。セラミックスであれば単体での使用が可能である。
【0043】
また、絶縁性に優れるが高温耐久性に劣る石英と、カ−ボン繊維を固めた成形断熱材とを組み合わせることにより、絶縁性、高温耐久性に優れた位置制御手段18を構成することができる。両者とも炉内部品として以前から使用されており、重金属汚染を引き起こす虞れは少ない。
【0044】
また、高温耐久性に優れた黒鉛、モリブデン、タングステンなどの高融点金属と、電気的絶縁性に優れた石英やセラミックスとを組み合わせることにより、絶縁性、高温耐久性に優れた位置制御手段18を構成することができる。黒鉛は加工が容易であるといった長所も有している。
【0045】
また、図1に示した単結晶引き上げ装置は、種結晶35を無転位化する際に育成する結晶の直径の変動を監視し得る撮像手段を備えた画像処理手段12と、種結晶径制御手段16とを備えており、種結晶径制御手段16は、補助加熱手段15への電力供給制御手段13、メインヒーター22への電力供給制御手段9、及び種結晶35の昇降速度制御手段14を含んで構成され、画像処理手段12により検出された種結晶35の径の変動情報を受信し、この情報に基づいて種結晶35の径が所望の値に維持されるように自動制御可能となっている。
【0046】
図5は実施の形態(2)に係る位置制御手段18Aを模式的に示した平面図であり、位置制御手段18Aは種結晶35から退避するための開口部18cと、位置制御手段18Aを補助加熱手段15に電力を供給する電極15bに固定する固定部18dに加え、位置制御手段18Aと電極15bとを絶縁するために、さらに絶縁性ワッシャ18eと絶縁性スリーブ18fとを備えている。
【0047】
図5に示した実施の形態(2)に係る位置制御手段18Aによれば、種結晶35と接触する案内スロート18a及び移動量制限部18bの構成材料としていかなる材料を選択しても、位置制御手段18Aと電極15bとの絶縁性は確保されるので、位置制御手段18Aを付設しても電気的な不具合を生じることは無い。
【0048】
図6は実施の形態(3)に係る位置制御手段18Bを模式的に示した平面図であり、実施の形態(3)に係る位置制御手段18Bが図2に示した位置制御手段18と相違する点は、種結晶35と接触する鉛直上方に向かって口径が大きくなった中空の略逆円錐形状をした案内スロート18aを備えていない点にある。その他の構成は図2に示した位置制御手段18と同様であるので、ここではその詳細な説明は省略することとする。この位置制御手段18Bは、種結晶35を回転させることにより発生する振動を制限することを主目的に開発され、構造が簡単で、安価に製造することができることを特徴としている。
【0049】
次に、上記した単結晶引き上げ装置を用いた単結晶引き上げ方法について説明する。
図7(a)〜(e)は、単結晶36の引き上げの各工程のうちの、一部の工程を実施する際の、種結晶35の近傍を模式的に示した部分断面拡大正面図である。
まず種結晶35を溶融液23に接触または浸漬させたあとに、補助加熱手段15の発熱部15aに電力を供給し、種結晶35を加熱しながらネック36aを形成して無転位化する方法について説明する。
【0050】
以下に説明する工程以前の工程は、「従来の技術」の項で説明した方法と同様の方法で行う。
まず、保持具24a(図9)に取り付けられた種結晶35を回転させることなく溶融液23の直上まで降下させ、種結晶35の予熱を行う。このとき、種結晶35を回転させない理由は、種結晶35と保持具24aとで構成される重心位置が回転軸上から偏移していた場合、保持具24aを回転させると、種結晶35に回転振り子状の振動が起き、位置制御手段18によっても制御不可能な大きさの振幅が発生すると、種結晶35の降下作業が困難なものになってしまうためである。
【0051】
このとき、種結晶35の中心軸と補助加熱手段15の発熱部15aの中心軸とが一致しておらず、従来では種結晶35の最適位置への誘導が不可能であった場合でも、位置制御手段18の存在により、種結晶35を最適位置へと誘導することができる(図7(a)、(b))。
【0052】
次に、種結晶35を溶融液23に接触させ、支持軸28(図9)と同一軸心で逆方向に所定の速度で引き上げ軸24を回転させたあと、経験的に求められた補助加熱電力を補助加熱手段15に供給するとともに、メインヒーター22への供給電力を調整し、種結晶35と溶融液23の温度を最適な温度に調整する。このとき、種結晶35と溶融液23との接触界面の周囲にできる表面張力による溶融液23の湾曲の度合いから、溶融液23の温度が適正であるか否かが判断され、適正でなければメインヒーター22へ供給する電力を調整し、溶融液23の温度が調整される。
【0053】
なお、溶融液23の温度を安定化させるためには、たとえば溶融液23の重量が200kg程度の場合には、メインヒーターパワーを操作したときから起算して、2時間程度の時間の経過が必要となる。溶融液23の重量がさらに大きくなると溶融液23の熱容量が増大するので、溶融液23の液温安定化のために要する時間もさらに長く必要となる。次のプロセスへ移行する前に、十分な液温安定化のための時間を設定することが、引き上げる単結晶36の品質管理の上で重要となる。
【0054】
次に、種結晶35の無転位化のためのネック36aの成長を行う。結晶を無転位化するためには、ネック36aの直径が細いほうが望ましいが、ネック36a直径が5mmよりも細くなると、強度が小さくなり、大重量の単結晶36を育成した場合には、破断する危険性が高くなる。一方ネック36aの直径を太くすると、結晶の無転位化には不利となる。補助加熱手段15を用いた場合には、無転位化のために育成するネック36aの直径は6〜10mmの範囲の値に設定することが望ましい。ネック36aの直径を6〜10mmの範囲の値で成長させれば、無転位化は可能であり、種結晶35の直径には影響を与えない。この無転位化のための結晶成長において、ネック36a直径制御をするために、上記画像処理手段12により育成中のネック36aの直径の計測を行う。
【0055】
従来であれば、種結晶35の回転に起因して振動し、ネック36a直径の計測が不可能になってしまうような場合であっても、実施の形態に係る単結晶引き上げ装置を用いれば、位置制御手段18の存在により、ネック36aと溶融液23との接触部位が発熱部15aの開口部から観測不可能な位置へ移動してしまうことが無く、安定してネック36a直径の計測を行うことができる。また種結晶35の回転による振動が生じた際も、振動の幅を狭め、直径計測用カメラの視野から種結晶35と溶融液23との接触部分が外れてしまうことを阻止でき、安定してネック36a直径の計測を行うことができる。
【0056】
次に、補助加熱手段15への電力供給を停止し、発熱部15aと同時に位置制御手段18をネック36aの周囲から退避させた後、ショルダー36bを形成し、単結晶36を所定の径(12インチ程度)まで成長させる(図7(d))。この後、所定の引き上げ速度で単結晶36を引き上げて、メインボディ36cを形成する(図7(e))。
【0057】
その後は、「従来の技術」の項で説明した方法と同様の方法により単結晶36を引き上げ、溶融液23から切り離して冷却する。その後、系外において、ニッパ等の工具を使用してネック36aを切断し、単結晶36を種結晶35から切り離して単結晶36の引き上げを完了する。
【0058】
また、補助加熱手段15に電力を供給し、種結晶35を十分に予熱したあと、種結晶35を加熱しながら、溶融液23に接触または浸漬させ、その後、接触界面近傍を加熱しながらネック36aを形成して無転位化する場合についても、上記した、種結晶35を溶融液23に接触または浸漬させたあとに、補助加熱手段15に電力を供給し、種結晶35を加熱しながらネック36aを形成して無転位化する場合と略同様にして単結晶36の引き上げを実施することができる。
【0059】
次に、上記した単結晶引き上げ装置を用い、種結晶35を溶融液23に浸漬させる前に、補助加熱手段15に電力を供給し、種結晶35を十分予熱した後に溶融液23に浸漬し、その後ネックを形成することなく単結晶36を育成する場合について説明する。この方法においては、直径が6〜10mm程度の種結晶35を使用する。
【0060】
以下に説明する工程以前の工程は、「従来の技術」の項で説明した方法と同様の方法で行う。
あらかじめ経験的に求められた補助加熱電力と、同じく経験的に求められたメインヒーター電力を、補助加熱手段15とメインヒーター22へ供給し、溶融液23の温度と補助加熱手段15の温度を経験的に求めた最適な温度に設定する。
【0061】
次に、保持具24a(図9)に取り付けられた種結晶35を回転させることなく溶融液23の直上まで降下させ、種結晶35の予熱を行う(図8(b))。
【0062】
このとき、種結晶35の中心軸と補助加熱手段15の発熱部15aの中心軸とが一致しておらず、従来では種結晶35の最適位置への誘導が不可能であった場合でも、位置制御手段18の存在により、種結晶35を最適位置へと誘導することができる(図8(a)、(b))。
【0063】
その後に成長させる結晶の品質を高品質とするために、ここでの予熱は10分以上とする。次に、種結晶35を溶融液23に接触させ、支持軸28と同一軸心で逆方向に所定の速度で引き上げ軸24を回転させて種結晶35と溶融液23との温度を安定させる。このとき、種結晶35と溶融液23との接触界面の周囲にできる表面張力による溶融液23の湾曲の度合いから、溶融液23の温度が適正であるか否かが判断され、適正でなければメインヒーター22へ供給する電力を調整し、溶融液23の温度が調整される。
【0064】
次に、種結晶35を溶融液23に、種結晶35のネック36a直径の3倍程度以上の長さだけ浸漬し、種結晶35を溶融液23に接触させた際の熱ショックにより発生し導入された転位を除去し、結晶を無転位化する。
【0065】
この無転位化の際には、種結晶35を溶融液23に浸漬する工程において、溶融液23と種結晶35の温度を制御するために、種結晶35と溶融液23との接触部周囲に表面張力に起因して形成される湾曲部の形状を観測する。
【0066】
従来であれば、種結晶35の回転に起因して振動し、ネック36a直径の計測が不可能になってしまうような場合であっても、実施の形態に係る単結晶引き上げ装置を用いれば、位置制御手段18の存在により、ネック36aと溶融液23との接触部位が発熱部15aの開口部から観測不可能な位置へ移動してしまうことが無く、安定してネック36a直径の計測を行うことができる。また種結晶35の回転による振動が生じた際も、振動の幅を狭め、直径計測用カメラの視野から種結晶35と溶融液23との接触部分が外れてしまうことを阻止でき、安定してネック36a直径の計測を行うことができる。
【0067】
その後、ネックを形成することなく直ちに拡径し、単結晶36を育成することもできるが、浸漬により短くなった種結晶35の長さを回復するためと、熱環境の急変を避けるために、補助加熱手段15を用いて加熱しながら、種結晶35の直径とほぼ同じ太さの直胴部37を種結晶35の直径の5倍程度の長さ分育成することが望ましい。
この直胴部37の成長においても、直径制御を正確に行うために、上記画像処理手段12により育成中の直胴部37のネック36a直径の計測を行う。
【0068】
従来であれば、種結晶35の回転に起因して振動し、直胴部37直径の計測が不可能になってしまうような場合であっても、実施の形態に係る単結晶引き上げ装置を用いれば、位置制御手段18の存在により、直胴部37と溶融液23との接触部位が発熱部15aの開口部から観測不可能な位置へ移動してしまうことが無く、安定して直胴部37直径の計測を行うことができる。また種結晶35の回転による振動が生じた際も、振動の幅を狭め、直径計測用カメラの視野から直胴部37と溶融液23との接触部分が外れてしまうことを阻止でき、安定して直胴部37直径の計測を行うことができる。
【0069】
次に、補助加熱手段15への電力供給を停止し、発熱部15aと同時に位置制御手段18を直胴部37の周囲から退避させた後、ネックを形成することなく、ショルダー36bを形成し、単結晶36を所定の径(12インチ程度)まで成長させる(図8(d))。この後、所定の引き上げ速度で単結晶36を引き上げて、メインボディ36cを形成する(図8(e))。
【0070】
その後は、「従来の技術」の項で説明した方法と同様の方法により単結晶36を引き上げ、溶融液23から切り離して冷却する。その後、系外において、ニッパ等の工具を使用して直胴部37の下端部37a近傍を切断し、単結晶36を種結晶35及び直胴部37から切り離して単結晶36の引き上げを完了する。
この種結晶35及び直胴部37は次回の単結晶の引き上げの際の種結晶として使用する。
【0071】
上記実施の形態では、CZ法を適用した場合について説明したが、本発明は何らCZ法への適用に限定されるものではなく、例えば磁場を供給するMCZ法にも同様に適用可能である。
【0072】
又、上記実施の形態では、種結晶35が略円柱形状である場合について説明したが、別の実施の形態では種結晶が多角柱形状であってもよく、この際の直胴部も直径が6〜10mm程度あればよい。
【0073】
【実施例及び比較例】
以下、実施例及び比較例に係る単結晶引き上げ方法を説明する。その条件を下記する。
<実施例及び比較例に共通する条件>
引き上げる単結晶36の形状
直径:約300mm(12インチ)、長さ:約1100mm
重量:約215kg
結晶用原料の仕込み量:約240kg
坩堝21の内径:30インチ
チャンバ29内の雰囲気:Ar雰囲気
Arの流量:100リットル/分
圧力:1.33×10Pa
引き上げ軸24の回転速度:6rpm
坩堝21の回転速度:5rpm
種結晶35の形状
直径D:8mm、長さ:300mm
<実施例1に共通する条件>
溶融液23に種結晶35を接触させた後、ネック36a(L=150mm)を形成し、引き続いて単結晶36を引き上げた。ネック36aの形成中、補助加熱手段15により加熱を行う際に、位置制御手段18によりネック36aの位置を制御した。この単結晶36の引き上げを10回行った。
<比較例1に共通する条件>
溶融液23に種結晶35を接触させた後、ネック36a(L=150mm)を形成し、引き続いて単結晶36を引き上げた。ネック36aの形成中、補助加熱手段15により加熱を行う際に、位置制御手段18によるネック36aの位置制御は行われていない。この単結晶36の引き上げを10回行った。
【0074】
実施例1と比較例1の結果を下記の表1に示す。
【表1】
Figure 0004150959
【0075】
実施例1の場合、10回の単結晶36の引き上げのいずれも、無転位化のためのネック36aの形成において、画像処理手段12がネック36aと溶融液23との界面部分を見失うことがなく、直径の自動制御に失敗することがなかった。また、すべての単結晶36の引き上げにおいて、無転位化に成功し、所定の長さのメインボディ部36cを形成することができた。
【0076】
一方、比較例1の場合、10回の単結晶36の引き上げのうち、7回の単結晶36の引き上げにおいて、種結晶35の振動により、直径計測が不可能となり、ネック36a直径の自動制御ができなくなった。7回のうち5回はオペレーターが手動でネック36a直径を制御することによりネック36aを形成することができたが、無転位化に成功したのは3回であり、残りの2回は有転位化し、単結晶36の引き上げに失敗した。ネック36a直径計測が不可能になった単結晶36の引き上げのうち2回は、手動によるネック36aの制御に失敗し、溶融液23から切り離された。ネック36a直径計測が可能であった3回の単結晶36の引き上げは無転位化に成功した。最終的に10回の単結晶36の引き上げのうち所定のメインボディ36cを無転位で成長させることができたのは6回であった。
【0077】
以上のように補助加熱装置15cを使用する際に、実施の形態に係る位置制御手段18を併用することにより、種結晶35と保持具24aとの位置の整合作業の作業時間の短縮と、単結晶36の引き上げ時における作業不可の低減と、単結晶36の引き上げの成功率に大幅な向上が見られた。
<実施例2に共通する条件>
補助加熱装置15にあらかじめ電力を供給し、種結晶35を溶融液23に接触させる前に十分加熱する。続いて溶融液23に種結晶35を接触させた後、ネック36a(L=150mm)を形成し、引き続いて単結晶36を引き上げる。ネック36aを形成中、補助加熱手段15により加熱を行う際に、位置制御手段18によりネック36aの位置を制御した。この単結晶36の引き上げを5回行った。
<比較例2に共通する条件>
補助加熱手段15にあらかじめ電力を供給し、種結晶35を溶融液23に接触させる前に十分加熱する。続いて溶融液23に種結晶35を接触させた後、ネック36a(L=150mm)を形成し、引き続いて単結晶36を引き上げる。ネック36aを形成中、補助加熱手段15により加熱を行う際に、位置制御手段18によるネック36aの位置制御を行わなかった。この単結晶36の引き上げを5回行った。
【0078】
実施例2と比較例2の結果を下記の表2に示す。
【表2】
Figure 0004150959
【0079】
実施例2の場合、5回の単結晶36の引き上げのいずれも、無転位化のためのネック36aの形成において、画像処理手段12がネック36aと溶融液23の界面部分を見失うことなく、ネック36a直径の自動制御に失敗することがなかった。すべての単結晶36の引き上げにおいて、無転位化に成功し、所定の長さのメインボディ部36cを形成することができた。
【0080】
一方、比較例2の場合、5回の単結晶36の引き上げのうち、3回の単結晶36の引き上げにおいて、種結晶35の振動により、ネック36a直径計測が不可能となり、ネック36a直径の自動制御ができなくなった。3回のうち2回はオペレーターが手動でネック36a直径を制御することによりネック36aを形成できたが、無転位化に成功したのは1回であり、残りの1回は有転位化し単結晶36の引き上げに失敗した。ネック36a直径計測が不可能になった単結晶36の引き上げのうち1回は、手動によるネック36aの制御に失敗し、溶融液23から切り離された。ネック36a直径計測が可能であった2回の単結晶36の引き上げは無転位化に成功した。最終的に5回の単結晶36の引き上げのうち所定のメインボディ36cを無転位で成長させることができたのは3回であった。
【0081】
以上のように補助加熱手段15を使用する際に、実施の形態に係る位置制御手段18を併用することにより、種結晶35と保持具24aの位置の整合作業の作業時間の短縮と、単結晶36の引き上げ時における作業不可の低減と、単結晶36の引き上げの成功率に大幅な向上が見られた。
<実施例3に共通する条件>
補助加熱手段15にあらかじめ電力を供給し、種結晶35を溶融液23に接触させる前に十分加熱する。つづいて溶融液23に種結晶35を浸漬させた後、直胴部37(L2=50mm)を形成し、引き続いて単結晶36を引き上げる。直胴部37を引き上げ中、補助加熱手段15により加熱を行う際に、位置制御手段18により種結晶35の位置を制御した。この単結晶36の引き上げを5回行った。
<比較例3に共通する条件>
補助加熱手段15にあらかじめ電力を供給し、種結晶35を溶融液23に接触させる前に十分加熱する。つづいて溶融液23に種結晶35を浸漬させた後、直胴部37(L2=50mm)を形成し、引き続いて単結晶36を引き上げる。直胴部37を引き上げ中、補助加熱手段15により加熱を行う際に、位置制御手段18による種結晶35の位置制御を行わなかった。この単結晶36の引き上げを5回行った。
【0082】
実施例3と比較例3の結果を下記の表3にまとめる。
【表3】
Figure 0004150959
【0083】
実施例3の場合には、5回の単結晶36の引き上げのいずれも、無転位化のための直胴部37の形成において、画像処理手段12が直胴部37と溶融液23との界面部分を見失うことなく、直胴部37直径の自動制御に失敗することがなかった。すべての単結晶36の引き上げにおいて、無転位化に成功し、所定の長さのメインボディ部36cを形成することができた。
【0084】
比較例3では、5回の単結晶36の引き上げのうち、2回の単結晶36の引き上げにおいて、種結晶35の振動により、直胴部37直径計測が不可能となり、直胴部37直径の自動制御ができなくなった。オペレーターが手動で直胴部37直径を制御することにより1回は直胴部37を形成できたが、無転位化はできなかった。残りの1回は直胴部37直径制御に失敗し結晶が溶融液23から切り離れた。直胴部37直径計測が可能であった3回の単結晶36の引き上げのうち2回は無転位化に失敗した。最終的に5回の単結晶36の引き上げのうち所定のメインボディ36cを無転位で成長させることができたのは1回であった。
【0085】
以上のように補助加熱手段15を使用する際に、実施の形態に係る位置制御手段18を併用することにより、種結晶35と保持具24aとの位置の整合作業の作業時間の短縮と、単結晶36の引き上げにおける作業負荷の低減と、単結晶36の引き上げの成功率に大幅な向上が見られた。
【0086】
つぎに位置制御手段18の形成に高融点金属を用い、絶縁スリーブ、絶縁ワッシャを介して、補助加熱手段15の電極15bに接合する位置制御手段18を用いた例を紹介する。
<実施例4に共通する条件>
補助加熱手段15にあらかじめ電力を供給し、種結晶35を溶融液23に接触させる前に十分予熱する。続いて溶融液23に種結晶35を接触させた後、ネック36a(L=150mm)を形成し、引き続いて単結晶36を引き上げる。ネック36aを形成中、補助加熱手段15により加熱を行う際に、位置制御手段18によりネック36aの位置を制御した。この単結晶36の引き上げを5回行った。
【0087】
結果を下記の表4に示す。
【表4】
Figure 0004150959
【0088】
実施例4の場合、5回の単結晶36の引き上げのいずれも、無転位化のためのネック36aの形成において、画像処理手段12がネック36aと溶融液23との界面部分を見失うことがなく、ネック36a直径の自動制御に失敗することがなかった。すべての単結晶36の引き上げにおいて、無転位化に成功し、所定の長さのメインボディ部36cを形成することができた。また補助加熱手段15に電気的な不具合を誘発することも無かった。
【0089】
以上の実施例1、2、3、4と比較例1、2、3において、ネック36a直径あるいは直胴部37直径計測に成功し、単結晶36の引き上げにも成功したものに1点、ネック36a直径あるいは直胴部37直径計測は失敗したが、単結晶36の引き上げには成功したものに0.5点、単結晶36の引き上げに失敗したものに0点をあたえ、実施例、比較例それぞれを合算したものをそれぞれ実験回数で割ったものを100倍したものを下記の表5に示した。
【0090】
【表5】
Figure 0004150959
表5から本発明の効果は明らかであった。
【0091】
なお、無転位のメインボディ36cを有する単結晶36の引き上げに成功した結晶については、結晶品質の測定を行った。その結果、実施例、比較例ともライフタイムなどの結晶の品質に差は無いことが明らかとなった。
【図面の簡単な説明】
【図1】本発明の実施の形態に係る単結晶引き上げ装置の要部を示す模式的部分断面図
【図2】(a)は実施の形態に係る単結晶引き上げ装置の要部を示す部分拡大平面図、(b)は部分拡大側面図である。
【図3】実施の形態に係る単結晶引き上げ装置の要部を示す部分拡大側断面図である。
【図4】別の実施の形態に係る単結晶引き上げ装置の要部を示す部分拡大側断面図である。
【図5】別の実施の形態に係る単結晶引き上げ装置の要部を示す部分拡大平面図である。
【図6】(a)はさらに別の実施の形態に係る単結晶引き上げ装置の要部を示す部分拡大平面図、(b)は部分拡大側面図である。
【図7】(a)〜(e)は、実施の形態に係る単結晶引き上げ装置を用いた単結晶の引き上げ工程のうちの、一部の工程を実施する際の、種結晶近傍を模式的に示した部分断面拡大正面図である。
【図8】(a)〜(e)は、実施の形態に係る単結晶引き上げ装置を用いた単結晶の引き上げ工程のうちの、一部の工程を実施する際の、種結晶近傍を模式的に示した部分断面拡大正面図である。
【図9】従来の単結晶引き上げ装置の要部を示す模式的部分断面図である。
【図10】(a)〜(d)は、従来の単結晶引き上げ装置を用いた単結晶の引き上げ工程のうちの、一部の工程を実施する際の、種結晶近傍を模式的に示した部分断面拡大正面図である。
【符合の説明】
12 画像処理手段
13 電力供給制御手段
14 昇降速度制御手段
15 補助加熱手段
15a 発熱部
15b 電極
16 種結晶径制御手段
18 位置制御手段
18a 案内スロ−ト
18b 移動量制限部
18c 開口部
18d 固定部
21 坩堝
22 メインヒ−タ

Claims (5)

  1. 種結晶を保持する種結晶保持手段、
    該種結晶保持手段を昇降させる昇降手段、
    メインヒ−タとは別に前記種結晶及び溶融液表面を部分的に加熱するための補助加熱手段、
    該補助加熱手段を移動させる移動手段、
    及び前記補助加熱手段、前記メインヒ−タへの電力供給を制御する電力供給制御手段を備えた単結晶引き上げ装置において、
    前記補助加熱手段に対する前記種結晶の水平方向移動量を規制する移動量制限部を含んで構成された位置制御手段を備えていることを特徴とする単結晶引き上げ装置。
  2. 種結晶を保持する種結晶保持手段、
    該種結晶保持手段を昇降させる昇降手段、
    メインヒ−タとは別に前記種結晶及び溶融液表面を部分的に加熱するための補助加熱手段、
    該補助加熱手段を移動させる移動手段、
    及び前記補助加熱手段、前記メインヒ−タへの電力供給を制御する電力供給制御手段を備えた単結晶引き上げ装置において、
    前記種結晶の降下時、該種結晶を位置制御手段の所定箇所へ案内する案内部と、該案内部の下方に固定された前記種結晶の水平方向移動量を規制する移動量制限部とを含んで構成された位置制御手段を備えていることを特徴とする単結晶引き上げ装置。
  3. 前記位置制御手段の種結晶からの退避を可能にする開口部が形成されていることを特徴とする請求項1又は請求項2記載の単結晶引き上げ装置。
  4. 前記移動量制限部の端部に形成された固定部を介して前記位置制御手段が前記補助加熱手段の発熱部に電力を供給するための電極に固定されていることを特徴とする請求項1〜3のいずれかの項に記載の単結晶引き上げ装置。
  5. 前記移動量制限部の前記固定部と、前記補助加熱手段の前記電極との間に絶縁性の部材が介装されていることを特徴とする請求項1〜4のいずれかの項に記載の単結晶引き上げ装置。
JP2002274831A 2002-09-20 2002-09-20 単結晶引き上げ装置 Expired - Fee Related JP4150959B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002274831A JP4150959B2 (ja) 2002-09-20 2002-09-20 単結晶引き上げ装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002274831A JP4150959B2 (ja) 2002-09-20 2002-09-20 単結晶引き上げ装置

Publications (2)

Publication Number Publication Date
JP2004107166A JP2004107166A (ja) 2004-04-08
JP4150959B2 true JP4150959B2 (ja) 2008-09-17

Family

ID=32271196

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002274831A Expired - Fee Related JP4150959B2 (ja) 2002-09-20 2002-09-20 単結晶引き上げ装置

Country Status (1)

Country Link
JP (1) JP4150959B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6451478B2 (ja) * 2015-04-27 2019-01-16 株式会社Sumco シリコン単結晶の製造方法

Also Published As

Publication number Publication date
JP2004107166A (ja) 2004-04-08

Similar Documents

Publication Publication Date Title
JP3065076B1 (ja) 単結晶引き上げ方法及び単結晶引き上げ装置
US7335257B2 (en) Apparatus for and method of manufacturing a single crystal rod
EP1908861A1 (en) Silicon single crystal pulling apparatus and method thereof
JP4150959B2 (ja) 単結晶引き上げ装置
JP4360163B2 (ja) 単結晶の製造装置及び単結晶の製造方法
CN112921394B (zh) 感应加热线圈及使用其的单晶制造装置
JP2990658B2 (ja) 単結晶引上装置
KR101186751B1 (ko) 멜트갭 제어장치, 이를 포함하는 단결정 성장장치
KR20000068909A (ko) 단결정 인양장치 및 단결정 인양방법
JP2010132498A (ja) 単結晶の製造方法および単結晶の製造装置
JP4248671B2 (ja) 単結晶製造装置及び単結晶製造方法
JP6943046B2 (ja) シリコン単結晶製造装置
JP2956574B2 (ja) 単結晶引上げ装置
EP4130348A1 (en) Device and method for producing a monocrystalline silicon rod
JP4341379B2 (ja) 単結晶の製造方法
JP5805527B2 (ja) シリコン単結晶の製造方法
JP5819185B2 (ja) シリコン単結晶の製造方法
JPH09249489A (ja) 種結晶保持具及び該種結晶保持具を用いた単結晶の引き上げ方法
JP3721977B2 (ja) 単結晶引き上げ方法
KR20010077853A (ko) 단결정의 제조방법 및 인상장치
JP4273820B2 (ja) 単結晶引き上げ方法
WO2002016678A1 (fr) Procede de production d'un monocristal de silicium
JP4389465B2 (ja) 単結晶引き上げ方法
JPH1072279A (ja) 単結晶引き上げ方法及び単結晶引き上げ装置
JP2019026522A (ja) シリコン単結晶の製造装置及び製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070418

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070515

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070717

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070904

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071018

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080605

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080618

R150 Certificate of patent or registration of utility model

Ref document number: 4150959

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110711

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120711

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130711

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees