JP4144349B2 - 化合物半導体製造装置 - Google Patents

化合物半導体製造装置 Download PDF

Info

Publication number
JP4144349B2
JP4144349B2 JP2002375828A JP2002375828A JP4144349B2 JP 4144349 B2 JP4144349 B2 JP 4144349B2 JP 2002375828 A JP2002375828 A JP 2002375828A JP 2002375828 A JP2002375828 A JP 2002375828A JP 4144349 B2 JP4144349 B2 JP 4144349B2
Authority
JP
Japan
Prior art keywords
crystal
crystal growth
region
temperature
solid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002375828A
Other languages
English (en)
Other versions
JP2004203687A (ja
Inventor
賢哉 井谷
慎史 小又
貴裕 皆川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP2002375828A priority Critical patent/JP4144349B2/ja
Publication of JP2004203687A publication Critical patent/JP2004203687A/ja
Application granted granted Critical
Publication of JP4144349B2 publication Critical patent/JP4144349B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、垂直温度勾配凝固法により単結晶成長を行う化合物半導体製造装置に関するものである。
【0002】
【従来の技術】
近年、直径がφ3インチを超える大型で、しかも低転位密度のGaAs結晶が得られる方法として、液体封止引上法(LEC法)に代わって、垂直ブリッジマン法が注目されている。この方法は、成長容器の下部に種結晶を設置し、その上にGaAs原料を置き、上部が高く、下部が低い温度分布を設けた縦型電気炉の中で、種結晶側の下部から上部に向かって結晶固化させるものである。垂直ブリッジマン法(VB法)の他に、上記炉内温度分布形状を維持したまま、炉内温度を一定速度で降温することで、成長させる垂直温度勾配凝固法(Vertical Gradient Freeze Method)がある。
【0003】
垂直温度勾配凝固法には、石英アンプル中でAs圧を制御しながら成長する方式と不活性ガス中においB23で融液表面を覆いAsの揮散を防ぎながら成長する2つの方式があるが、以下、まとめてVGF法と呼ぶ。
【0004】
VGF法を用いた単結晶育成装置の特徴としては、結晶成長軸の駆動部がなく、結晶成長装置の構造が単純であるため、VB法と比較し、装置が安価となり、大量生産に適した結晶成長方式であることが挙げられる。
【0005】
本発明は、成長容器移動のための駆動部がなく、装置構造が単純である垂直温度勾配凝固法(VGF法)に関する発明である。
【0006】
垂直ブリッジマン法および垂直温度勾配凝固法の特徴である低転位化を実現するためには、結晶固化後に発生する熱的歪みおよび固液界面(結晶成長時の結晶と融液の境界部)が融液側に凹面となった場合に発生する機械的な応力による転位の発生を抑制する必要がある。熱的な歪み抑制対策の一つとして、低温度勾配の下での成長が挙げられる。これは、結晶固化をゆっくり冷却することで冷却時の熱歪みにより発生する転位を抑制することができるためである。しかし、低温勾配下で成長することは、シード側からの放熱が抑制されてしまうため、固液界面の凹面化につながることとなる。つまり、熱歪みによる転位を抑制すれば、固液界面の凹面化により機械的応力による転位が増加する。
【0007】
一方、温度勾配を急峻に設定した場合は、シードからの放熱を促進し、固液界面を平坦化することで機械的歪みよる転位を抑制することができる。しかし、急峻な温度勾配により熱歪みによる転位が発生してしまうこととなる。これらの相反する効果が垂直ブリッジマン法および垂直温度勾配凝固法において低転位結晶を成長させることを困難としている。また、結晶の長尺化、大口径化となると共に、結晶中心と表面の温度差が大きくなり、固液界面の凹面化、結晶表面と中心部の温度差の増加による熱歪みの増加などが顕著になってきてくる。
【0008】
このように低転位結晶成長を可能にするためには、低温度勾配下で、且つ固液界面の平坦化が必要となってくる。
【0009】
図5に、従来より報告されているVGF法を用いた単結晶育成装置および炉内温度分布を示す。VGF法を用いた単結晶育成装置では、熱歪みによる転位の増加を抑制するため、炉内上下方向に熱歪みが発生しない1〜8℃/cm程度の低温度勾配に設定する。原料融解後、図5に示すような単純増加温度勾配を維持しながら降温することで結晶成長を行うが、単調増加温度勾配を有した低温度勾配下では、輻射および伝熱による放熱を促進する急峻な温度勾配領域がないため、種結晶側からの放熱が不足し、固液界面は凹面成長し、機械的歪みにより転位が増加する問題が発生していた。
【0010】
従来方法では上述したような問題を解決するため、シード部に冷却装置を設置するような方法(例えば、特許文献1、2参照)や、また、温度勾配の急峻化を目的とし、保温材などをヒータと結晶成長容器の間に設置することで固液界面の急峻化を実現する方法(例えば、特許文献3参照)等が提案されている。
【0011】
また、炉内の垂直方向に温度分布を形成すべく、融液を形成する高温域を作る高温加熱部と、固液界面位置を制御する結晶融点近傍の界面温度域を作る界面加熱部と、融点より低い低温域を作る低温加熱部とを備え、結晶原料を入れたルツボを高温加熱部から界面加熱部を経て低温加熱部に相対移動させていくことにより単結晶を育成する垂直ブリッジマン法による単結晶の製造装置において、上記高温加熱部と界面加熱部との間に隙間を設け、この隙間により温度分布の谷を形成した単結晶の製造装置も提案されている(特許文献4参照)。
【0012】
【特許文献1】
特開平5−139878号公報
【0013】
【特許文献2】
特開平7−149592号公報
【0014】
【特許文献3】
特開昭59−54688号公報
【0015】
【特許文献4】
特許第2814796号公報
【0016】
【発明が解決しようとする課題】
上記したように、低転位結晶成長を可能にするためには、低温度勾配化と固液界面の平坦化が必要となってくる。
【0017】
しかしながら、従来方法の特許文献1、2のように、シード部に冷却装置を設置するような方法では、▲1▼シード下に設置される冷却装置構造が複雑となると共に、▲2▼成長中の温度制御が困難であるなど、生産性、歩留の安定性の点で問題であった。また、特許文献3のように、保温材などをヒータと結晶成長容器の間に設置することで固液界面の急峻化を実現する方法では、▲1▼上下に移動する保温剤の駆動機構が複雑となる、▲2▼保温剤部の温度制御が難しく、目的とする温度勾配の実現が難しい等、実用化には至っていなかった。
【0018】
また、特許文献4によれば、界面加熱部と高温加熱部との間を広げる等して、これらの間に温度分布の谷を形成する隙間を設けるため、融液内の対流が上下で遮断され、しかも温度勾配が0℃/cmとなることにより、固液界面形状が融液方向に凸になり、単結晶収率が向上する。しかし、これは界面加熱部より上に温度分布の谷を形成する隙間を設けるものであり、結晶原料を入れたルツボを高温加熱部から界面加熱部を経て低温加熱部に移動させて行くVB法によることを基本とする。
【0019】
そこで、本発明の目的は、上記課題を解決し、上述した熱歪みによる転位、及び機械的歪みによる転位の発生を抑制した結晶固化を実現し得る垂直温度勾配凝固法による化合物半導体製造装置を提供することにある。
【0020】
【課題を解決するための手段】
上記目的を達成するため、本発明は、次のように構成したものである。
【0021】
請求項1の発明に係る化合物半導体製造装置は、結晶成長容器を加熱装置内に縦型に配置し、垂直温度勾配凝固法によって半導体融液を結晶成長容器内で種結晶側の下部から上部に向けて徐々に固化させて化合物半導体結晶を成長する装置において、結晶固化部と融液部の境界である固液界面の位置より10cm下の領域の円周方向に局所的に融点よりも30℃低い、50mmの幅の低温度領域帯が存在するように上記加熱装置を構成したことを特徴とする。
【0022】
請求項2の発明は、請求項1に記載の化合物半導体製造装置において、上記加熱装置の構造として、結晶固化部と融液部の境界である固液界面の位置より10cm下の領域の円周方向に局所的に融点よりも30℃低い、50mmの幅の低温度領域帯が存在し、その領域の最下限温度が融点より少なくとも5℃以上低くなるように構成したことを特徴とする。
【0023】
請求項3の発明は、請求項1又は2に記載の化合物半導体製造装置において、上記加熱装置の構造として、結晶固化部と融液部の境界である固液界面の温度勾配が1〜30℃/cmとなるように構成したことを特徴とする。
【0024】
請求項4の発明は、請求項1〜3のいずれかに記載の化合物半導体製造装置において、上記加熱装置を、上下方向に多数のヒータを配設したマルチゾーンヒータとその温度制御装置により構成し、このマルチゾーンヒータの温度制御により、垂直温度勾配凝固法による単結晶育成に際して、結晶固化部と融液部の境界である固液界面の位置より10cm下の領域の円周方向に局所的に融点よりも30℃低い、50mmの幅の低温度領域帯を形成し、その融点よりも30℃低い、50mmの幅の低温度領域帯を、結晶成長容器に対して、相対的に結晶成長方向に移動させることで単結晶成長を行うようにしたことを特徴とする。
【0025】
<発明の要点>
上記のように低温度勾配化、且つシードからの放熱を促進させるための方策として、本発明に従い、固液界面の下部領域において、円周方向に融点より少なくとも5℃以上低い低温度領域帯(非発熱部)を局所的に設けることにより、結晶受け部に特別な冷却装置を設置することなく、シード領域から低温度領域帯へ輻射を促進させることができる。これにより、固液界面は平坦(または凸面)となり、機械的な歪みによる転位の増加を抑制することができる。但し、固液界面を平坦化させることで、機械的な応力による歪みを抑制することはできるが、温度勾配の急峻化に伴う熱応力により転位が発生しないような低温度勾配にて結晶成長する必要がある。
【0026】
すなわち、垂直温度勾配凝固法による単結晶育成方法としては、結晶固化部と融液部の境界である固液界面の下部領域の円周方向に局所的な低温度領域帯が存在し、その低温度領域帯が、結晶成長容器に対して、相対的に結晶成長方向に移動することで単結晶成長を行う。
【0027】
本発明では固液界面の下部領域において円周方向に融点より少なくとも5℃以上低い低温度領域帯(非発熱部)を局所的に設けることを特長としているが、その非発熱領域の幅を適切に設定することで、固液界面部領域の長手方向(結晶成長方向)の温度勾配を熱歪みの発生しない1〜30℃/cmに設定することが可能である。
【0028】
また、低転位化が可能となるための必須条件である▲1▼固液界面の平坦化、▲2▼低温度勾配での結晶成長、以上の2つの条件を結晶全域において適用するため、図1に示す通り、固液界面の下部領域に設けられた低温度領域帯を結晶成長容器に対し、相対的に上方へ移動させることで、結晶全域において低転位結晶成長を実現することができる。
【0029】
本発明の化合物半導体製造装置では、上述した効果により、▲1▼放熱促進及び、▲2▼熱歪みの抑制という相反する2つの現象を満足し、且つ非常に単純な炉内構造にて低転位単結晶の成長を実現することができる。
【0030】
【発明の実施の形態】
以下、本発明を図示の実施形態に基づいて説明する。
【0031】
図2に、第一の実施形態に係る化合物半導体製造装置の構成の概略を示す。この化合物半導体製造装置は、上下方向に多数のヒータ7を配設したマルチゾーンヒータから成る加熱装置70と、その温度制御装置(図示せず)を備えた縦型電気炉であって、その加熱装置70内に結晶成長容器1を縦型に配置し、垂直温度勾配凝固法によって半導体融液6を結晶成長容器1内で種結晶側の下部から上部に向けて徐々に固化させて化合物半導体単結晶5を成長する単結晶育成装置として構成されている。
【0032】
図3に示すように、固液界面23の位置より、約10cm下の領域に、融点よりも約30℃低い低温度領域帯22(非発熱部8)を設ける。この低温度領域帯22(非発熱部8)の温度設定は、固液界面部の温度勾配が、熱歪みの発生しない、1〜30℃/cmとなるよう、約50mmの低温度領域の幅に設定する。但し、低温度領域帯よりも下部領域の結晶温度保持領域帯21での温度勾配は熱歪みの発生しない1〜8℃/cm程度にすることが望ましい。
【0033】
結晶成長時は、図1に低温度領域帯22aとして例示するように、低温度領域帯22を結晶成長容器1に対し、上方へ移動させることにより、凝固熱を低温度領域帯より局所的に放熱し、結晶テール部まで固化させる。この時の固液界面形状については、固液界面部の温度勾配を1〜30℃/cmに設定しているため、凝固熱を十分に放熱することが可能となる。従って、凹面成長による機械的応力による転位は増加しない。更に局所的に設けた低温度領域帯の下部領域の温度勾配については熱歪みの発生しない1〜8℃/cmに設定しているため、結晶固化後の熱歪みによる転位も増加しない。
【0034】
上述した内容を満足する単結晶成長装置および単結晶成長方式を適用することで、結晶受け部に特別な冷却装置を設置することなく、輻射熱を低温度領域部より放出することが可能となり、結晶全域において熱歪みのない低転位結晶成長を実現することができる。
【0035】
次に、本発明の化合物半導体製造装置の構成の詳細と、これを用いた単結晶成長方法についてに説明する。
【0036】
図1は本実施形態での化合物半導体単結晶の育成方式を示す概略図、図2は本実施形態に係る化合物半導体製造装置たる単結晶成長装置の構成図、図3は本実施形態のVGF成長炉の結晶中を流れる熱流図、図5は従来方式の単結晶成長装置の概略図を示す。
【0037】
図2(a)において、3はPBNるつぼから成る成長容器であり、そのるつぼの雰囲気を調整するため、石英ガラス成長容器1(石英アンプル)に入れられ、石英ガラスキャップ2で成長容器1が蓋されている。以下必要に応じ、説明の便宜上、図2の形態に関しては、両成長容器1及び3を一体的なものと捉え、成長容器1で代表させて説明する。
【0038】
成長容器1は円筒形をしており、下部に肩部1bと種結晶4を載置する小径の種結晶載置部1aを有すると共に、肩部1bから上方に続く筒状の直胴部1cを有している。肩部1bを高熱伝導率の下軸受け台9に載せて、炉内に縦型に配置される。
【0039】
成長容器3内の種結晶載置部1aに種結晶4を設置し、その種結晶4の上にGaAs等の結晶原料が入れられる。図2には、種結晶4、単結晶5、原料融液6の状態で示す。
【0040】
加熱装置70は多数のヒータ7を上下方向に配設したマルチゾーンヒータとその温度制御装置とを備えた縦型電気炉から成る。その内部温度は、基本的には、図2(b)に示すように、上部が高く、下部が低い温度分布とされ、結晶下部に固化温度を、上部で原料融液を保持するように制御される。そして、従来であれば、このように上部が高く下部が低い温度分布を設けた加熱装置の中で、種結晶部側の下部から上部に向かって結晶固化させるものである。
【0041】
しかし、本発明の実施形態においては、図2(b)に示すように、縦型電気炉のシード付け部の下部領域、つまり固液界面23の位置より約10cm下の領域に、局所的な低温度領域帯22が設けられる。この局所的な低温度領域帯22の実現は、図示してない温度制御装置の働きにより、加熱装置70を構成するマルチゾーンヒータのヒータ7群のうち、当該領域に相当するヒータ7の通電をOFF又は小電力とする制御を行い、非発熱部8を形成することで達成する。この例では、この低温度領域帯22の温度設定をGaAs融点よりも30℃低い、1208℃に設定する。その後、シード付け部の温度勾配が5℃/cmとなるように低温度領域帯の幅を調整する。
【0042】
一方、GaAs原料が存在するヒータ上部付近の温度勾配については、上部の温度が高く、下部の温度が低くなるよう0〜4℃/cmに調整する。
【0043】
調整完了後、原料融液6の部分の温度を−0.5℃/hrの割合で降温すると同時に、シード付け部位置の下部に設けた低温度領域帯22(非発熱部8)の位置を融液側に2.0mm/hrの速度で上昇させることで種結晶付け及び結晶成長を開始する。
【0044】
この結晶成長時、成長容器3は縦型温度勾配凝固法用の縦型電気炉内で高熱伝導率下軸受け台9に設置され、その縦型電気炉内は、加熱装置70の温度制御装置により、結晶下部に固化温度、上部で原料融液を保持するように制御される。図3に、固液界面23の下部領域の円周方向に局所的な低温度領域帯22が存在し、その下方に結晶温度保持領域帯21が、また上方に融液領域24が存在する様子を示す。また、図1に局所的な低温度領域帯22が固化が進むにつれ低温度領域帯22aへと移動する様子と、その際の結晶中の温度分布とを示す。
【0045】
通常、単純増加温度勾配を有するVGF法の結晶成長においては、急峻な温度勾配を炉内に設定することが困難であるため、シード側からの放熱が抑制され、固液界面形状は、融液側に凹面形状となってしまう。しかし、本実施形態においては、縦型電気炉の一部(非発熱部8)のヒータ7の電力をゼロ又は低く制御することにより、固液界面の下部領域に融点より30℃低い1208℃の温度領域を局所的に設けているため、これにより固液界面23の平坦成長に十分な凝固熱の放熱が可能となる。また、結晶固化部領域の温度勾配に関しても、熱歪みの入らない低温度勾配(0〜4℃/cm)となっているため、熱歪みによる転位の増加は認められなかった。
【0046】
以上の効果により、機械的歪み、および熱的歪みのない低転位結晶成長が可能となる。結晶は成長終了後、局所的に設けた低温度領域帯の部分を結晶上部へ移動または、局所的な低温度領域を無くした後、熱歪みが入らない低温度勾配(0〜2℃/cm)となるように設定し、この状態で縦型電気炉を−100℃/hrで冷却する。
【0047】
本発明の単結晶成長装置は、成長容器3を縦型に配置し、成長容器中に入れた原料融液を下部から上部に向かって徐々に結晶固化させるVGF法による単結晶成長装置において、固液界面の下部領域において、融点より少なくとも5℃以上低い低温度領域帯(非発熱部)を局所的に設けることにより、シード領域から低温度領域部へ輻射によって放出され、結晶受け部に特別な冷却装置を設置することなく、シード方向からの放熱を促進させることができる。また、その結晶成長方式として、低温度領域帯を結晶成長容器に対し、上方へ移動させることにより、凝固熱を低温度領域帯より局所的に放熱することで、結晶テール部までの固形界面形状を平坦化することができる。
【0048】
次に、GaAs単結晶の成長例につき、図2を参照しながら説明する。
【0049】
石英ガラス成長容器1の中に種結晶4とGaAs原料3000グラムを入れた後、石英ガラス成長容器1を真空で封じる。石英ガラス成長容器1は、冷却装置を有した高熱伝導率下軸受け台9の上に、真空封止した石英ガラス成長容器1を乗せる。種結晶4が位置する箇所が、縦型電気炉の下部の円周方向に設置される放熱部の存在する低温度領域帯に位置するように、成長容器1の位置を設定する。
【0050】
設置終了後、成長容器を縦型電気炉の加熱装置70により大気中で昇温する。種結晶4部を約1200℃、上部原料を約1245℃に調整する。原料を溶かし込んで融液とした後、固液界面23の温度勾配を約4℃/cmとなるようシード下部領域に設けた局所的な低温度領域帯22の温度設定および温度幅を調整しながら、種付けを行う。
【0051】
種付完了後、局所的な低温度領域帯22を2mm/hrの速度で石英ガラス成長容器1に対して上昇させ、結晶固化を行う。全体を固化した後、縦型電気炉7温度を約−30℃/hrで室温まで冷却し、石英ガラス成長容器1を縦型電気炉7から取り出す。
【0052】
この方法で直径約φ80mm、直胴部長さ約200mmの熱歪みによる転位のない低転位GaAs単結晶を得ることができた。
【0053】
図4に、本発明の他の実施形態として、成長容器3をSUS製チャンバ容器11で被い、内部に導入した不活性ガス(Arガス)12中で成長を行う構成の化合物半導体製造装置の断面図を示す。この実施形態の場合、原料融液6の表面はAsの揮散を防止するため酸化硼素(B23)により被われる。
【0054】
不活性ガス中において、加熱装置70の最下限部に円周方向に非発熱部8を存在させ得るグラファイト製のヒータ7群を用いて、実施例1と同じ手順で、炉内雰囲気をArガスに置換した後、結晶成長を行った。成長の結果、石英アンプル(石英ガラス成長容器1)を使用した図2の場合と同様に、熱歪み及び機械的な歪みによる転位の無い、低転位単結晶を得ることができた。
【0055】
以上述べたように、本実施形態の化合物半導体製造装置は、加熱装置の構造として、固液界面の下部領域において円周方向に融点より少なくとも5℃以上低い低温度領域帯(非発熱部)を局所的に形成するようにしたので、固液界面の下部領域に設けられた低温度領域帯を結晶成長容器に対し、相対的に上方へ移動させることで、▲1▼放熱促進及び、▲2▼熱歪みの抑制という相反する2つの現象を満足し、且つ非常に単純な炉内構造にて低転位単結晶成長を実現することができる。
【0056】
上記実施形態では、GaAsの単結晶成長について述べたが、本発明の化合物半導体製造装置は、GaAsの他に、例えばInP、GaP等の単結晶成長に応用することも可能である。
【0057】
【発明の効果】
以上説明したように、本発明の化合物半導体製造装置によれば、加熱装置の構造として、固液界面の下部領域において円周方向に融点より少なくとも5℃以上低い低温度領域帯(非発熱部)を局所的に形成するようにしたので、結晶受け部に特別な冷却装置を設置することなく、シード領域から低温度領域帯へ輻射を促進させることができ、これにより、固液界面を平坦(または凸面)とし、機械的な歪みによる転位の増加を抑制することができる。また、固液界面の下部領域に設けられた低温度領域帯を結晶成長容器に対し、相対的に上方へ移動させることで、結晶全域において低転位結晶成長を実現することができる。よって、本発明によれば、▲1▼放熱促進及び、▲2▼熱歪みの抑制という相反する2つの現象を満足し、且つ非常に単純な炉内構造にて低転位単結晶成長を実現することができる。
【図面の簡単な説明】
【図1】本発明の化合物半導体製造装置による単結晶育成方式を示した概略図である。
【図2】本発明の一実施形態を示したもので、石英ガラス成長容器を用いた化合物半導体製造装置の構成図である。
【図3】本発明の実施形態に係るVGF成長炉の結晶中を流れる熱流図である。
【図4】本発明の他の実施形態を示したもので、成長容器をチャンバ容器で被い、内部に導入した不活性ガス中で成長を行う化合物半導体製造装置の断面図を示す。
【図5】従来の単結晶成長方式を示す概略図である。
【符号の説明】
1 石英ガラス成長容器
3 成長容器
4 種結晶
5 単結晶
6 原料融液
7 ヒータ
8 非発熱部
21 結晶温度保持領域帯
22 低温度領域帯
23 固液界面
24 融液領域
70 加熱装置

Claims (4)

  1. 結晶成長容器を加熱装置内に縦型に配置し、垂直温度勾配凝固法によって半導体融液を結晶成長容器内で種結晶側の下部から上部に向けて徐々に固化させて化合物半導体結晶を成長する装置において、
    結晶固化部と融液部の境界である固液界面の位置より10cm下の領域の円周方向に局所的に融点よりも30℃低い、50mmの幅の低温度領域帯が存在するように上記加熱装置を構成したことを特徴とする化合物半導体製造装置。
  2. 上記加熱装置の構造として、結晶固化部と融液部の境界である固液界面の位置より10cm下の領域の円周方向に局所的に融点よりも30℃低い、50mmの幅の低温度領域帯が存在し、その領域の最下限温度が融点より少なくとも5℃以上低くなるように構成したことを特徴とする請求項1に記載の化合物半導体製造装置。
  3. 上記加熱装置の構造として、結晶固化部と融液部の境界である固液界面の温度勾配が1〜30℃/cmとなるように構成したことを特徴とする請求項1又は2に記載の化合物半導体製造装置。
  4. 上記加熱装置を、上下方向に多数のヒータを配設したマルチゾーンヒータとその温度制御装置により構成し、
    このマルチゾーンヒータの温度制御により、垂直温度勾配凝固法による単結晶育成に際して、結晶固化部と融液部の境界である固液界面の位置より10cm下の領域の円周方向に局所的に融点よりも30℃低い、50mmの幅の低温度領域帯を形成し、その融点よりも30℃低い、50mmの幅の低温度領域帯を、結晶成長容器に対して、相対的に結晶成長方向に移動させることで単結晶成長を行うようにしたことを特徴とする請求項1〜3のいずれかに記載の化合物半導体製造装置。
JP2002375828A 2002-12-26 2002-12-26 化合物半導体製造装置 Expired - Fee Related JP4144349B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002375828A JP4144349B2 (ja) 2002-12-26 2002-12-26 化合物半導体製造装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002375828A JP4144349B2 (ja) 2002-12-26 2002-12-26 化合物半導体製造装置

Publications (2)

Publication Number Publication Date
JP2004203687A JP2004203687A (ja) 2004-07-22
JP4144349B2 true JP4144349B2 (ja) 2008-09-03

Family

ID=32813440

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002375828A Expired - Fee Related JP4144349B2 (ja) 2002-12-26 2002-12-26 化合物半導体製造装置

Country Status (1)

Country Link
JP (1) JP4144349B2 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7566641B2 (en) * 2007-05-09 2009-07-28 Axt, Inc. Low etch pit density (EPD) semi-insulating GaAs wafers
CN103074668A (zh) * 2013-01-11 2013-05-01 元亮科技有限公司 水平温度梯度法生长大尺寸高温晶体的装置及方法
WO2020031273A1 (ja) * 2018-08-07 2020-02-13 住友電気工業株式会社 ヒ化ガリウム単結晶体およびヒ化ガリウム単結晶基板
CN114808106B (zh) * 2022-03-02 2023-08-11 北京通美晶体技术股份有限公司 一种GaAs单晶生长工艺
CN114908424B (zh) * 2022-04-29 2023-10-20 合肥天曜新材料科技有限公司 一种高阻碲锌镉晶体制备装置及方法

Also Published As

Publication number Publication date
JP2004203687A (ja) 2004-07-22

Similar Documents

Publication Publication Date Title
KR100966182B1 (ko) 반도체결정들을 강성 지지물로 탄소도핑과 저항률제어 및 열경사도제어에 의해 성장시키기 위한 방법 및 장치
JP4830312B2 (ja) 化合物半導体単結晶とその製造方法
US20110143091A1 (en) Germanium ingots/wafers having low micro-pit density (mpd) as well as systems and methods for manufacturing same
JP4144349B2 (ja) 化合物半導体製造装置
JP3533812B2 (ja) チョクラルスキー法による結晶製造装置、結晶製造方法、およびこの方法から製造される結晶
JP2010260747A (ja) 半導体結晶の製造方法
JP3806791B2 (ja) 化合物半導体単結晶の製造方法
JP2001080987A (ja) 化合物半導体結晶の製造装置及びそれを用いた製造方法
JP2004277267A (ja) 化合物半導体単結晶の製造装置
JP3700397B2 (ja) 化合物半導体結晶の製造方法
JP3567662B2 (ja) 単結晶成長方法及びその装置
JP2004277266A (ja) 化合物半導体単結晶の製造方法
JP2004099390A (ja) 化合物半導体単結晶の製造方法及び化合物半導体単結晶
JP2004026577A (ja) 化合物半導体単結晶成長装置及び化合物半導体単結晶成長方法
KR102167633B1 (ko) 결정 인상용 열차단 에셈블리 및 이를 갖는 인상기
JP4155085B2 (ja) 化合物半導体単結晶の製造方法
JP2814796B2 (ja) 単結晶の製造方法及びその装置
JP2010030868A (ja) 半導体単結晶の製造方法
JP2005343737A (ja) 化合物半導体単結晶の製造装置
JPH03193689A (ja) 化合物半導体の結晶製造方法
JPH08325090A (ja) 単結晶引上装置
JPH11130579A (ja) 化合物半導体単結晶の製造方法及びその製造装置
JPH0782084A (ja) 単結晶成長方法及び単結晶成長装置
JPH08319189A (ja) 単結晶の製造方法及び単結晶製造装置
JPH0449185Y2 (ja)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050121

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20050121

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070620

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070626

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070824

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070824

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071002

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080527

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080609

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110627

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees