JP4134742B2 - マルチキャリアダイバーシチ復調方法及びマルチキャリアダイバーシチ復調装置 - Google Patents
マルチキャリアダイバーシチ復調方法及びマルチキャリアダイバーシチ復調装置 Download PDFInfo
- Publication number
- JP4134742B2 JP4134742B2 JP2003024795A JP2003024795A JP4134742B2 JP 4134742 B2 JP4134742 B2 JP 4134742B2 JP 2003024795 A JP2003024795 A JP 2003024795A JP 2003024795 A JP2003024795 A JP 2003024795A JP 4134742 B2 JP4134742 B2 JP 4134742B2
- Authority
- JP
- Japan
- Prior art keywords
- subcarriers
- unit
- diversity
- signal
- complex digital
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Radio Transmission System (AREA)
Description
【発明の属する技術分野】
本発明はマルチキャリアダイバーシチ復調方法及びマルチキャリアダイバーシチ復調装置に関する。本発明はマルチパス環境下でのOFDM受信に特に有効である。
【0002】
【従来の技術】
例えばOFDM変調方式において、遅延波の重畳による直交性の崩れを防止する為、有効シンボルの前に、ガードインターバルとよばれる波形を付加している。このガードインターバルは、例えば有効シンボルの末尾1/4を付加し、1シンボルを5/4倍として、ガードインターバル長以下の遅延時間の遅延波に対しては復調時に影響を受けないようにするものである。この際、有効シンボル長の「ウインドウ」をかけることより、有効シンボル長分の波形が復調に用いられる。
【0003】
しかしマルチパスの影響によりガードインターバルを越える遅延時間差を持つ遅延波が到来すると、誤り率が大きく劣化するという問題がある。このような場合、ガードインターバル長を大きくとる必要が有るが、これは通信の冗長さを増すこととなり、通信効率を落とす結果となる。
【0004】
ところでOFDMにおいては、例えばN本のキャリアの帯域を使用する場合でもガードバンド等のヌルキャリアを多数有することが多い。そこで出願人は特願2001−298078を基礎とする特願2002−281868において、ヌルキャリアを有するOFDM通信において、より短いシンボル長から有効キャリアを全て復調できることに着目し、遅延波による波形歪みの生じている信号部分を用いずに、有効キャリアを分離復調することで、ガードインターバルを越える遅延時間差を持つ遅延波が到来するマルチバスの影響下でも誤り率が大きく劣化しない復調方法及び復調装置を開示した。本発明者はこれを投稿し、発表した。
【0005】
【非特許文献1】
N. Suzuki, et al., IEICE Trans. Fundamentals, Vol. E85-A, No. 12 Dec. 2002, p.2859
【0006】
【発明が解決しようとする課題】
マルチパス環境下においては、上記技術に基づく復調部を複数個用意し、同数個のアンテナを用いてダイバーシチによりエラービットレートを抑制することも考えうる。しかし本発明者は、ダイバーシチ技術を上記技術の内部に組み込むことで、更にエラービットレートを抑制できることを見出し、本願発明を完成させた。
【0007】
【課題を解決するための手段】
本願の請求項1に係る発明は、有効シンボル長がT、N本のサブキャリアの隣り合う周波数間隔が1/Tで、N−L本(L<N)のサブキャリアがヌルキャリアであるマルチキャリア変調信号を複数個のアンテナで受信し、各サブキャリアに分離復調するマルチキャリアダイバーシチ復調方法において、複数個のアンテナごとに設けられた、時間軸上及び周波数軸上のマルチパス伝搬環境を推定する工程と、当該複数個のアンテナごとに設けられ、前記マルチパス伝搬環境を推定する工程で推定した遅延波の遅延時間差を基に、遅延波による波形歪みの生じている部分を含まないように有効シンボル長Tから長さTM/N(M<N)の使用シンボル部分を決定し、サンプリング間隔T/Nで直交復調された複素ディジタル信号から、前記使用シンボル部分M点を取り出す工程と、前記複数個の使用シンボル部分M点を取り出す工程ごとに設けられた、前記使用シンボル部分M点を用いてL本のサブキャリアを整合フィルタにより分離する工程と、前記複数個の整合フィルタにより分離する工程の出力である複数組のL本のサブキャリアの信号をダイバーシチ合成する工程と、ダイバーシチ合成されたL本のサブキャリアの信号を仮判定する小工程と、前記複数個の整合フィルタごとに設けられた、仮判定したL個のシンボルから前記対応する整合フィルタにより分離されたL本のサブキャリアの各信号に含まれる他のサブキャリアとの間の干渉成分を、マルチパス伝搬環境の周波数特性を考慮して求め、前記対応する整合フィルタにより分離したL本のサブキャリアからL本のサブキャリア間の前記干渉成分を減じる小工程と、前記複数個の前記干渉成分を減じる小工程の出力である複数組のL本のサブキャリアの信号をダイバーシチ合成する小工程とからなる1乃至複数段の干渉成分除去工程とを有することを特徴とするマルチキャリアダイバーシチ復調方法である。
【0008】
また、請求項2に係る発明は、請求項1に記載のマルチキャリアダイバーシチ復調方法において、前記マルチャリア変調はOFDMであり、前記整合フィルタは、前記使用シンボル部分M点とN−M個の0とのN個の複素ディジタル信号を入力してN点高速フーリエ変換を用いて形成され、前記干渉成分を減じる小工程においては、マルチパス伝搬環境を推定する工程の計算する周波数歪みを用いて、前記仮判定したL個のシンボルとN−L個のヌルシンボルとのN個の複素ディジタル信号をN点逆高速フーリエ変換し、その結果から前記使用シンボル部分M点に相当するM点を選び、他のN−M個を0に置き換えたのちN点高速フーリエ変換してサブキャリアに相当するL個を選択し、前記仮判定したL個のシンボルとの差から求めることを特徴とする。
【0009】
また、請求項3に係る発明は、有効シンボル長がT、N本のサブキャリアの隣り合う周波数間隔が1/Tで、N−L本(L<N)のサブキャリアがヌルキャリアであるマルチキャリア変調信号を複数個のアンテナで受信し、各サブキャリアに分離復調するマルチキャリアダイバーシチ復調装置において、前記複数個のアンテナごとに設けられた、サンプリング間隔T/Nで直交復調されたN個の複素ディジタル信号を得る直交復調及びサンプリング部と、前記複数個のアンテナごとに設けられた、遅延波の遅延時間差及び受信波の周波数歪みを推定する遅延時間差推定部と、前記複数個のアンテナごとに設けられた、前記遅延時間差推定部の遅延時間差から、遅延波による波形歪みの生じている部分を含まないように前記N個の複素ディジタル信号のうち使用シンボルとしてM個(M<N)の複素ディジタル信号を抽出する使用シンボル抽出部と、前記複数個のアンテナごとに設けられた、前記使用シンボル抽出部の出力する前記M個の複素ディジタル信号を用いて整合フィルタによりL本のサブキャリアを分離する整合フィルタ部と、前記複数個の整合フィルタの出力である複数組のL本のサブキャリアの信号をダイバーシチ合成する信号合成部と、前記信号合成部の出力するL本のサブキャリアの信号からL個のシンボルを仮判定する仮判定器と、前記複数個の整合フィルタごとに設けられた、仮判定したL個のシンボルから対応する整合フィルタ部で分離されたL本のサブキャリアの各信号に含まれる他のサブキャリアとの間の干渉成分を求める干渉成分推定器と、前記複数個の整合フィルタごとに設けられた、対応する整合フィルタ部の出力するL本のサブキャリアの信号からL本のサブキャリア間の前記干渉成分を減じる干渉成分減算器と、前記複数個の干渉成分減算器の出力である複数組のL本のサブキャリアの信号をダイバーシチ合成する信号合成部とから成る1乃至複数の干渉成分除去部とを有することを特徴とするマルチキャリア復調装置である。
【0010】
また、請求項4に係る発明は、請求項3に記載のマルチキャリアダイバーシチ復調装置において、前記マルチャリア変調はOFDMであり、前記整合フィルタ部は前記使用シンボル抽出部の出力する前記M個の複素ディジタル信号とN−M個の0とのN個の複素ディジタル信号を入力してN点高速フーリエ変換を用いて形成され、前記干渉成分推定器は、マルチパス伝搬環境推定部の計算する周波数歪みを用い、仮判定したL個のシンボルにN−L個のヌルシンボルを付加するヌルキャリア挿入器と、ヌルキャリア挿入器の出力するN個の複素ディジタル信号をN点逆高速フーリエ変換する逆高速フーリエ変換器と、逆高速フーリエ変換器の出力から、前記使用シンボル抽出部の出力する前記M個の複素ディジタル信号に相当するM点を選び、他のN−M個を0に置き換える有効シンボル区間抽出ウインドウ器と、有効シンボル区間抽出ウインドウ器の出力するN個の複素ディジタル信号をN点高速フーリエ変換する高速フーリエ変換器と、高速フーリエ変換器の出力からサブキャリアに相当するL個を選択するキャリア選択器と、キャリア選択器の出力するL個の複素ディジタル信号と、前記仮判定したL個のシンボルとの差を求める減算器とから成ることを特徴とする。
【0011】
【作用及び発明の効果】
本願発明のマルチキャリアダイバーシチ復調方法、マルチキャリアダイバーシチ復調装置は、1有効シンボル長のN個の複素ディジタル信号を用いず、N−M個の欠けた、M個の複素ディジタル信号を用いてヌルキャリアでないL本のサブキャリアの複素信号を計算する。ここで整合フィルタは、1有効シンボル長の各サブキャリアではなく、当該一部欠けた時間軸上の信号を基に、周波数軸上の信号を概算する働きをする。即ち、L本の各サブキャリアの1有効シンボル長から一部欠けた時間軸上の波形に対応するL個の整合フィルタ群を1個の整合フィルタとして例えば1個の行列演算により実現する。まずこれについて説明する。尚、欠けた部分を有効シンボル長の先頭として説明する。
【0012】
例えばN点フーリエ逆変換、N点フーリエ変換を用いるOFDM通信方式において、N点フーリエ変換を行列FとおくとN点フーリエ逆変換の行列は(1/N)F*とおくことができる。ただし、行列F*は行列Fの共役転置行列を示し、且つN点フーリエ変換の行列Fは対称行列であって、行列Fのk+1行n+1列は次の通りである。
【数1】
【0013】
以下、煩雑さを避けるため、行列の定数倍、ベクトルの定数倍については適宜省略し、例えばN点フーリエ逆変換の行列を単にF*などと示す。送信側において、N個のサブキャリアの複素信号(ヌルキャリアに対応するものは0)をX(k)(kは0からN−1までの整数)とおくと、有効シンボル長の離散波形x(n)(nは0からN−1までの整数)は次の通りとなる。
【数2】
【0014】
ここで、N点フーリエ逆変換の行列F*の要素を、第1列、第2列、第N列ごとに縦ベクトルf0、f1、…、fN-1とおくと、各縦ベクトルf0、f1、…、fN-1に対応する横ベクトルtf0、tf1、…、tfN-1は、各々第0、第1、第N−1のサブキャリアの波形になっている。N点フーリエ逆変換の行列F*の共役転置行列Fは、当該横ベクトルtf0、tf1、…、tfN-1の複素共役を第1行、第2行、…、第N行に有するものである。有効シンボル長の離散波形x(n)(nは0からN−1までの整数)をN点フーリエ変換の行列Fの右から乗ずることは、N本のサブキャリアを抽出する整合フィルタ群に当該有効シンボル長の離散波形x(n)を作用させてキャリア成分の複素信号(複素振幅)を求めることと等価である。
【0015】
ここで、有効シンボル長から先頭のN−M個の欠けた、M個の複素ディジタル信号を整合フィルタに作用させる場合は次のように考えることができる。上記N次の各横ベクトルtf0、tf1、…、tfN-1の複素共役について、左からN−M個の欠けたM次の横ベクトルを、有効シンボル長から先頭のN−M個の欠けたM個の複素ディジタル信号からなる縦ベクトルに左から乗ずることで達成できることは明らかである。
【0016】
本願発明においてはN点フーリエ逆変換、N点フーリエ変換を用いるOFDM通信方式には限定されない。L個の複素信号で変調されたL個のサブキャリアの波形を合成した、N個の離散波形からM個を取り出した、時間軸上のM個の複素信号からL個のサブキャリアのシンボルを求める。変調側がL本のサブキャリアに対応するL個の複素シンボルからなるベクトルを、M行L列の行列Aに右から乗ずることにより達成されるならば、復調側の整合フィルタの演算としては、M個の離散波形を示すM個の複素信号からなるベクトルを、M行L列の行列Aの共役転置行列であるL行M列の行列A*に右から乗ずることで達成できる。
【0017】
勿論、OFDM復調側において、N点フーリエ変換の行列Fを用いる場合は、有効シンボル長から先頭のN−M個の欠けたM個の複素ディジタル信号の先頭にN−M個の0を加えたN次のベクトルをN点フーリエ変換の行列Fの右から乗じて、必要なL本のサブキャリア番号に対応する複素信号を取り出すことで達成できる。
【0018】
1有効シンボル長のN個の複素ディジタル信号からなるベクトルをN点フーリエ変換の行列Fの右から乗じた場合は、各キャリア間の干渉が生じず、得られるN個の複素信号はヌルキャリアを含めたN本のサブキャリアのシンボルである。しかし、本願は有効シンボル長から先頭のN−M個の欠けたM個の複素ディジタル信号に対して整合フィルタを作用させているので、必要なL本のサブキャリア番号に対応する複素信号はキャリア間干渉を有する。これを次のように、ダイバーシチ合成をしながらキャリア間干渉を除去していく。
【0019】
まず、非特許文献1の技術内容を説明する。複数個の整合フィルタの出力のうち、1組のL本のサブキャリア番号に対応する複素信号をL次のベクトルX0で示す。まず、仮判定により、L次のベクトルX0からL次のベクトルX1を仮判定する。即ち、QPSK、16QAMその他の変調方式にあった、複素信号のいずれかに当てはめる。この時、L次のベクトルX0はキャリア間干渉を有するのでL次のベクトルX1は送信されたL本のサブキャリアの複素信号とは一部異なっている可能性が高い。そこで仮判定されたL次のベクトルX1から、ヌルキャリア番号の位置を0とおいたN次のベクトルを構成する。次に、当該N次のベクトルを変調した時間軸上の波形に変換する。この際、伝送経路特性(伝送経路の伝達関数)を乗じておく。次にN個の時間軸上の複素ディジタル信号先頭のN−M個を0と置き換えて、再度周波数軸上の値に変換するためにN点フーリエ変換する。次に周波数軸上の値においてL本のサブキャリアに対応するL個の複素信号を選択する。この際、伝送経路特性(伝送経路の伝達関数)で除する。これは行列Rを用いてRX1とおくことができる。
【0020】
前記仮判定されたL次のベクトルX1に対し、L次のベクトルRX1がえられたので、これらに差があれば、その差RX1−X1は、上記整合フィルタの出力X0の有するキャリア間干渉成分である可能性が高い。そこで、整合フィルタの出力X0から、RX1−X1を減じ、その結果をもとにL次のベクトルX2を仮判定する。仮判定されたL次のベクトルX2は、一段前の仮判定されたL次のベクトルX1よりもキャリア間干渉が減っていることが下記実施例のシミュレーションで確かめられている。そこで同様に、仮判定されたL次のベクトルX2から、ヌルキャリア番号の位置を0とおいたN次のベクトルを構成する。次に、当該N次のベクトルを変調した時間軸上の波形に変換する。この際、伝送経路特性(伝送経路の伝達関数)を乗じておく。次にN個の時間軸上の複素ディジタル信号先頭のN−M個を0と置き換えて、再度周波数軸上の値に変換するためにN点フーリエ変換する。次に周波数軸上の値においてL本のサブキャリアに対応するL個の複素信号を選択する。この際、伝送経路特性(伝送経路の伝達関数)で除する。こうして出力RX2を求め、整合フィルタの出力X0からRX2−X2を減じ、その結果をもとにL次のベクトルX3を仮判定する。このように、L本のサブキャリアの複素信号を順次仮判定し、整合フィルタにおけるキャリア間干渉を見積もってL個の複素信号をL本のサブキャリアの複素信号に近づけていくことができる。これが非特許文献1の技術内容である。
【0021】
本願発明では、ダイバーシチ合成を各アンテナごとに非特許文献1の技術を適用した最終結果に適用するのではなく、信号合成をシンボル仮判定の前において各段の干渉成分除去工程のシンボル仮判定を一元化する。各段の仮判定されたシンボルはアンテナに対応した複数個の整合フィルタごとに設けられたキャリア間干渉推定小工程、干渉成分減算小工程を通して、元の複数個の整合フィルタの出力よりも確度の高い複数組のL本のサブキャリア信号となる。これを次段においてダイバーシチ合成し、その結果である1組のL本の信号からL本のサブキャリア信号を仮判定する。これを複数個の整合フィルタごとに設けられたキャリア間干渉推定小工程、干渉成分減算小工程を通して、アンテナに対応した元の複数個の整合フィルタの出力よりも確度の高い複数組のL本のサブキャリア信号となる。
【0022】
このような干渉成分除去工程を1乃至複数段有することで、単に各アンテナごとに非特許文献1の技術を適用した最終結果にダイバーシチ合成を適用するよりも、格段にエラービットレートを抑制することが可能となる。
【0023】
本願発明の復調方法又は復調方式は、ヌルキャリアでないL本のサブキャリアの複素信号は常に正確に得られるものではないが、後述する通り、通信方式として十分有効性のあるエラービットレートに押えることができる。これは復調に用いる時間軸上のシンボル長を短くすることができることを意味し、ガードインターバルを越える遅延波が到来しても、当該遅延波にあわせた、本来の有効シンボル長よりも短い時間軸上の離散波形からヌルキャリアでないL本のサブキャリアの複素信号を得ることが可能となる。
【0024】
上記の通り、L次のベクトルX1から、RX1−X1を求めるには、予め行列Rを求めておいてRX1−X1と計算することも可能である。また、OFDMの場合には、ヌルキャリア番号の位置を0とおいたN次のベクトルを構成して、伝送経路特性(伝送経路の伝達関数)を乗じた上でN点フーリエ逆変換し、得られるN個の時間軸上の複素ディジタル信号先頭のN−M個を0と置き換えて、N点フーリエ変換し、周波数軸上の値においてL本のサブキャリアに対応するL個の複素信号を選択した上で伝送経路特性(伝送経路の伝達関数)で除して、RX1を求めてX1を減じてRX1−X1を計算しても良い。
【0025】
【発明の実施の形態】
本発明は、遅延波の電力が小さい場合は、周波数歪みによる補正を行わなくても有効であるが、その場合はダイバーシチを用いた効果も小さい。そこで下記実施例においては当該周波数伝搬特性による複素信号の周波数歪みを修正する部分を省略してまず説明し、シミュレーションで用いた構成は別の図で示すものとする。
【0026】
〔実施例〕
図1は本願の具体的な第1の実施例に係るマルチキャリアダイバーシチ復調装置100の構成の概略を示すブロック図、図2は構成の詳細を示すブロック図である。マルチキャリアダイバーシチ復調装置100は、2つのアンテナに接続され、第i(本実施例ではiは1又は2)アンテナに対応して各々直交復調部1−i、有効シンボル抽出部2−i、整合フィルタ部3−i、マルチバス伝搬環境推定部4−iを有する。また、第1段の干渉成分除去部101として、シンボル仮判定部111、整合フィルタ3−iに対応して設けられた干渉推定部121−i及び減算器131−i、並びに信号合成部141を有する。第2段及び第3段の干渉成分除去部102及び103には同様に、それぞれシンボル仮判定部112と113が、整合フィルタ3−iに対応して設けられた干渉推定部122−iと123−i及び減算器132−iと133−iが、並びに信号合成部142と143が設けられている。また、第1段の干渉成分除去部101のシンボル仮判定部111の前段には信号合成部5が、第3段の干渉成分除去部103の後段にはシンボル判定部6と並直列変換器7が設けられている。
【0027】
図1のマルチキャリアダイバーシチ復調装置100のマルチバス伝搬環境推定部4−1は、図2に示すように2つの部分である、時間応答推定部41−1と周波数応答推定部42−1で構成される。尚、図2では第2アンテナに対する構成を略しているが、マルチバス伝搬環境推定部4−2も、2つの部分である、時間応答推定部41−2と周波数応答推定部42−2で構成される。同様に各段の干渉推定部121−i、122−i、123−iは、各々2つの部分である、伝搬路特性再現部151−i、152−i、153−iと、キャリア間干渉推定部161−i、162−i、163−iとで構成される。
【0028】
本実施例は請求項1乃至4の具体的な実施例に当たる。シンボル仮判定部111、112、113が仮判定器に、干渉推定部121−i、122−i、123−iが干渉成分推定器に、減算器131−i、132−i、133−iが干渉成分減算器に、干渉成分除去部101、102、103が干渉成分除去部に当たる。また、直交復調部1−iが直交復調及びサンプリング部に、マルチバス伝搬環境推定部4−iが遅延時間差推定部に、有効シンボル抽出部2−iが使用シンボル抽出部に当たる。
【0029】
以下、本実施例ではガードインターバルを有するマルチキャリアダイバーシチ変調波からデータを復調するものとする。キャリア数はN本、うち有効キャリアをL本(L<N)とする。
【0030】
マルチキャリアダイバーシチ復調装置100においては、受信信号が直交復調部1−iでいわゆる同相成分I及び直交成分Qの信号列が形成されたのち、有効シンボル抽出部2−iにおいて、シンボルタイミングにより1有効シンボル長ごとにN個の複素ディジタル信号が選択され、更にマルチバス伝搬環境推定部4−iの時間応答推定部が出力に基づき、遅延波の影響を受けないM個(M<N)の複素ディジタル信号が抽出される。ここでは本来抽出すべきN個の複素ディジタル信号のうち、先頭のN−M個が遅延波の前シンボルの影響を受けたものとする。ガードインターバルを有している場合はここで同時にガードインターバルも除去される。M個の複素ディジタル信号が整合フィルタ部3−iに出力される。
【0031】
整合フィルタ部3−iにおいては、まずM個の複素ディジタル信号の先頭に、N−M個の0を加えてN個の複素信号とする。次に高速フーリエ変換(FFT)を行う。この出力の内、ヌルキャリアでないサブキャリア番号に対応するものを選択して出力する。尚、L個のヌルキャリアでないサブキャリアによるM個の複素ディジタル信号を生成するためのM行L列の行列Aの共役転置行列A*を用意し、右からM個の複素ディジタル信号からなるベクトルを乗ずることによりL個の複素信号を求めても良い。マルチキャリアダイバーシチ復調装置100の整合フィルタ部3−iの出力であるL個の複素信号は、各サブキャリアに整合したフィルタにより分離することで、ノイズの影響を最小限に抑えたものであるが、他のサブキャリアからの干渉成分(キャリア間干渉)を含んでいる。
【0032】
2個の整合フィルタ部3−1及び3−2で分離された2組のL本のサブキャリアの信号は、信号合成部5においてダイバーシチ合成される。この時、マルチバス伝搬環境推定部4−1及び4−2の周波数応答推定部42−1、42−2から各々伝搬路特性が各サブキャリアごとに複素係数として出力される。よってこの複素係数を用いて2組のL本のサブキャリアの信号を周波数ごとに位相を調整した上、振幅による最大比合成を行う。尚、ダイバーシチ合成の方法は任意の方法をとり得る。この出力であるL個の複素信号が第1段の干渉成分除去部101のシンボル仮判定部111に出力される。
【0033】
第1段の干渉成分除去部101のシンボル仮判定部111にて仮判定が行われ、その出力は、整合フィルタ3−1に対応した干渉推定部121−1の伝搬路特性再現部151−1と、整合フィルタ3−2に対応した干渉推定部121−2の伝搬路特性再現部151−2とに出力される。伝搬路特性再現部151−1及び後段のキャリア間干渉推定部161−1、減算器131−1においては、マルチバス伝搬環境推定部4−1の周波数応答推定部42−1の出力する伝搬路係数に基づき次のようにして受信信号を再現する。
【0034】
まず伝搬路特性再現部151−1において、L個の複素信号に対し、ヌルキャリアの番号に対応してN−L個の0が挿入され、N個のサブキャリア信号が形成される。これは、そもそもの受信信号とは若干異なるレプリカであり、上述の通り、キャリア間干渉成分による影響が含まれている。これをマルチバス伝搬環境推定部4−1の周波数応答推定部42−1の出力する伝搬路係数に基づき周波数歪みをかける(伝送路の伝達関数を乗ずる)。次に逆高速フーリエ変換(IFFT)してN個の時間軸上の複素信号を得る。次にキャリア間干渉推定部161−1において、マルチバス伝搬環境推定部4−1の時間応答推定部41−1の出力する有効シンボル長に基づき、有効シンボル区間抽出ウインドウで先頭のN−M個の複素信号を0に置換したN個の複素信号とする。これを高速フーリエ変換して周波数軸上のN個の複素信号を得る。次にマルチバス伝搬環境推定部4−1の周波数応答推定部42−1の出力する伝搬路係数に基づき周波数歪みを除く(伝送路の伝達関数で除する)。ヌルキャリアでないサブキャリア番号に対応するL個を選択する。この出力は、L個の複素数からなり、整合フィルタ部3−1の出力とは若干異なるレプリカがである。ここからL個の複素数であるシンボル仮判定部111の出力を減算すると、L個のサブキャリア各々のキャリア間干渉成分を概算することができる。尚、シンボル仮判定部111の出力するL個の複素信号に対して周波数歪みを加えたのちの、ヌルキャリアの挿入、IFFT処理及び有効シンボル長の選択を、周波数歪みが加わったL個の複素信号に対し1の行列Aを左から乗ずる演算により行って時間軸上のM個の複素信号を得ても良い。また、FFT処理に変えて、その時間軸上のM個の複素信号、又は時間軸上のN個の複素信号からM個を選択したのち、当該行列Aの共役転置行列A*を左から乗ずる演算によってL個の複素信号を得ても良く、そもそも周波数歪みが加わったL個の複素信号に対し行列A*Aを乗じて新たなL個の複素信号を求めても良い。このL個の干渉成分を減算器131−1でL個の複素数からなる整合フィルタ部3−1の出力から減じると、整合フィルタ部3−1の出力よりもより確度の高い各サブキャリアの信号が得られる。
【0035】
全く同様にして、シンボル仮判定部111の出力するL個の複素信号に対して伝搬路特性再現部151−2、後段のキャリア間干渉推定部161−2、減算器131−2において、マルチバス伝搬環境推定部4−2の周波数応答推定部42−2の出力する伝搬路係数に基づき、整合フィルタ部3−2の出力よりもより確度の高い各サブキャリアの信号が得られる。こうして、信号合成部141において、減算器131−1と131−2の出力である2組のL個の複素信号を、マルチバス伝搬環境推定部4−1及び4−2の周波数応答推定部42−1、42−2から各々出力される伝搬路特性に基づき、最大比合成によりダイバーシチ合成を行う。尚、ダイバーシチ合成は公知の任意の方法を採用できる。
【0036】
第1段の干渉成分除去部101の信号合成部141の出力であるL個の複素信号は、整合フィルタ3−1、3−2の出力よりも、また、それらをダイバーシチ合成した信号合成部5の出力よりも確度の高い各サブキャリアの信号である。このような干渉成分除去を第2段の干渉成分除去部102、第3段の干渉成分除去部103で行う。最終段である第3段の干渉成分除去部103の信号合成部143の出力であるL個の複素信号は、整合フィルタ3−1、3−2の出力よりも、また、それらをダイバーシチ合成した信号合成部5の出力よりも、第1段の干渉成分除去部101の信号合成部141又は第2段の干渉成分除去部102の信号合成部142の出力よりも確度の高い各サブキャリアの信号である。これをシンボル判定部6で最終判定し、並直列変換器(P/S)7で並直列変換して復調データを得る。
【0037】
図3にマルチキャリアダイバーシチ復調装置100のシミュレーションを示す。シミュレーション条件は、無線LAN(802.11a)に準拠し、DCキャリアを含む12本をヌルとしたL=52のサブキャリアを用い、ガードインターバル長TGIを有効シンボル長Tの1/4、サブキャリア変調をQPSK、2波レイリーフェージングモデル、遅延時間差を2TGIとした。本発明によれば以下に示す比較例に比べ格段にビット誤り率の低いマルチキャリアダイバーシチ復調装置を構成することができる。
【0038】
〔第1の比較例〕
例えば特開平11−205208(東芝)の出願内容である。図4は、図3で比較例1とした、高速フーリエ変換器を2台有するマルチキャリアダイバーシチ復調装置900の構成を示すブロック図である。マルチキャリアダイバーシチ復調装置900はアンテナを2つ接続するものであり、各々のアンテナiに対し、直交復調部1−i、シンボルタイミング検出部941−i、周波数応答推定部942−i、ガードインターバル(GI)除去部92−i、高速フーリエ変換器(FFT)93−iを有する。また、信号合成部95、シンボル判定部96、並直列変換器(P/S)7を有する。この構成のうち、直交復調部1−iと並直列変換器(P/S)7の作用は図1、図2のマルチキャリアダイバーシチ復調装置100の直交復調部1−iと並直列変換器(P/S)7の作用と同一であり、信号合成部95、シンボル判定部96は入出力するデータの大きさが異なるものの実質的な作用は図1、図2のマルチキャリアダイバーシチ復調装置100の信号合成部5、シンボル判定部6と変わらない。また周波数応答推定部942−iは、図1、図2のマルチキャリアダイバーシチ復調装置100の周波数応答推定部42−iと比較して出力先のみが異なるだけである。このような構成の通常のOFDM受信部を2台設けて1回のダイバーシチ合成を行った場合、図3に示す通り、遅延時間差が2TGIに及ぶとビット誤り率は0.04程度と非常に大きな値となる。
【0039】
〔第2の比較例〕
図5は、図3で比較例2とした、非特許文献1の復調部を2台有するマルチキャリアダイバーシチ復調装置990の構成を示すブロック図である。マルチキャリアダイバーシチ復調装置990はアンテナを2つ接続するものであり、各々のアンテナiに対し、直交復調部1−i、有効シンボル抽出部2−i、整合フィルタ部3−i、時間応答推定部41−i、周波数応答推定部42−i、第1段の干渉成分除去部901−iとして、伝搬路特性補償部971−i、シンボル仮判定部911−i、伝搬路特性再現部951−i、キャリア間干渉推定部961−i及び減算器931−iを有する。第2段及び第3段の干渉成分除去部902−i及び903−iには同様に、それぞれ伝搬路特性補償部972−iと973−i、シンボル仮判定部912−iと913−i、伝搬路特性再現部952−iと953−i、キャリア間干渉推定部962−iと963−i、減算器932−iと933−iが設けられている。また、最終段である第3段の干渉成分除去部903−1及び903−2の後段には信号合成部995とシンボル判定部6と並直列変換器7が設けられている。この構成のうち、図1、図2のマルチキャリアダイバーシチ復調装置100と同一の符号を付したものはその作用は図1、図2のマルチキャリアダイバーシチ復調装置100の同一の符号のブロックの作用と同一であり、信号合成部995はその入力及び出力がL個であること以外は図4の信号合成部95と実質同一である。図1、図2のマルチキャリアダイバーシチ復調装置100において信号合成部5、141、142においてダイバーシチ合成を周波数歪みを除去したのち行うのに替えて、伝搬路特性補償部971〜3−iを各段のシンボル仮判定部911〜3−iの前段に設けて周波数歪みを除去する構成とし、シンボル仮判定部911〜3−iをアンテナごとに設けた。このような構成のマルチキャリアダイバーシチ復調装置990は、図3に示す通り、遅延時間差が2TGIに及ぶとビット誤り率は0.003程度である。これは図4のマルチキャリアダイバーシチ復調装置900に比して1/10以上改善されているが、ダイバーシチ合成を1回しか用いていないため、各段の干渉成分除去部でダイバーシチ合成を行う図1のマルチキャリアダイバーシチ復調装置100のビット誤り率には及ばない。
【0040】
〔変形例〕
図6は、図1のマルチキャリアダイバーシチ復調装置100を一部変形した、本発明に係るマルチキャリアダイバーシチ復調装置200の構成を示すブロック図である。本変形例は、図1の構成においてアンテナを2、干渉成分推定部を3段としていたものを、アンテナを3、干渉成分推定部を2段としたものである。符号iが1、2又は3になった点を除けば図1と図6とで同一の符号を付してあるものは同一の作用をするブロックである。また、信号合成部205、241、242は、3組のL個の複素信号を3つのマルチパス伝搬環境推定部4−1、4−2、4−3からの各周波数の係数を基に最大比合成することを除けば図1の信号合成部5、141、142と同一の作用をするものである。
【0041】
上述の各実施例では、最も早い到来波と最も遅い遅延波との遅延時間差を考慮し、且つ最も早い到来波により同期が確立することを前提としているが、遅延時間差推定部の働きとして次のような遅延時間差を各構成要素に出力するとしても良い。即ち、各遅延波の強度も考慮した遅延時間差、或いは、予め定められた閾値以上の電力を持つ最も遅い遅延波と最も早い到来波との遅延時間差が挙げられる。
【0042】
上述の各実施例では、遅延波の有効シンボル先頭或いはガードインターバル末尾から最も早い到来波の有効シンボル末尾までを使用シンボル部としたが、使用シンボル部は当該区間の内部であれば良い。
【図面の簡単な説明】
【図1】本願の実施例に係るマルチキャリアダイバーシチ復調装置100の構成の概略を示すブロック図。
【図2】本願の実施例に係るマルチキャリアダイバーシチ復調装置100の構成の詳細を示すブロック図。
【図3】本願の実施例に係るマルチキャリアダイバーシチ復調装置100の平均ビット誤り率を示すグラフ図。
【図4】第1の比較例に係るマルチキャリアダイバーシチ復調装置900の構成を示すブロック図。
【図5】第2の比較例に係るマルチキャリアダイバーシチ復調装置990の構成を示すブロック図。
【図6】実施例の変形例に係るマルチキャリアダイバーシチ復調装置200の構成の概略を示すブロック図。
【符号の説明】
1−i 第iアンテナに対応した直交復調部
2−i 第iアンテナに対応した有効シンボル抽出部
3−i 第iアンテナに対応した整合フィルタ部
4−i 第iアンテナに対応したマルチパス伝搬環境推定部
5 信号合成部
101、102、103、201、202 干渉成分除去合成部
111、112、113、211、221 シンボル仮判定部
121−i、122−i、123−i、221−i、222−i 干渉推定部
131−i、132−i、133−i、231−i、232−i 減算器
151−i、152−i、153−i キャリア間干渉推定部
161−i、162−i、163−i 伝搬路特性再現部
141、142、143 信号合成部
6 シンボル判定部
7 並直列変換器(P/S)
93−1、93−2 高速フーリエ変換器(FFT)
Claims (4)
- 有効シンボル長がT、N本のサブキャリアの隣り合う周波数間隔が1/Tで、N−L本(L<N)のサブキャリアがヌルキャリアであるマルチキャリア変調信号を複数個のアンテナで受信し、各サブキャリアに分離復調するマルチキャリアダイバーシチ復調方法において、
複数個のアンテナごとに設けられた、時間軸上及び周波数軸上のマルチパス伝搬環境を推定する工程と、
当該複数個のアンテナごとに設けられ、前記マルチパス伝搬環境を推定する工程で推定した遅延波の遅延時間差を基に、遅延波による波形歪みの生じている部分を含まないように有効シンボル長Tから長さTM/N(M<N)の使用シンボル部分を決定し、サンプリング間隔T/Nで直交復調された複素ディジタル信号から、前記使用シンボル部分M点を取り出す工程と、
前記複数個の使用シンボル部分M点を取り出す工程ごとに設けられた、前記使用シンボル部分M点を用いてL本のサブキャリアを整合フィルタにより分離する工程と、
前記複数個の整合フィルタにより分離する工程の出力である複数組のL本のサブキャリアの信号をダイバーシチ合成する工程と、
ダイバーシチ合成されたL本のサブキャリアの信号を仮判定する小工程と、前記複数個の整合フィルタごとに設けられた、仮判定したL個のシンボルから前記対応する整合フィルタにより分離されたL本のサブキャリアの各信号に含まれる他のサブキャリアとの間の干渉成分を、マルチパス伝搬環境の周波数特性を考慮して求め、前記対応する整合フィルタにより分離したL本のサブキャリアからL本のサブキャリア間の前記干渉成分を減じる小工程と、前記複数個の前記干渉成分を減じる小工程の出力である複数組のL本のサブキャリアの信号をダイバーシチ合成する小工程とからなる1乃至複数段の干渉成分除去工程と
を有することを特徴とするマルチキャリアダイバーシチ復調方法。 - 前記マルチャリア変調はOFDMであり、
前記整合フィルタは、前記使用シンボル部分M点とN−M個の0とのN個の複素ディジタル信号を入力してN点高速フーリエ変換を用いて形成され、
前記干渉成分を減じる小工程においては、マルチパス伝搬環境を推定する工程の計算する周波数歪みを用いて、前記仮判定したL個のシンボルとN−L個のヌルシンボルとのN個の複素ディジタル信号をN点逆高速フーリエ変換し、その結果から前記使用シンボル部分M点に相当するM点を選び、他のN−M個を0に置き換えたのちN点高速フーリエ変換してサブキャリアに相当するL個を選択し、前記仮判定したL個のシンボルとの差から求めることを特徴とする請求項1に記載のマルチキャリアダイバーシチ復調方法。 - 有効シンボル長がT、N本のサブキャリアの隣り合う周波数間隔が1/Tで、N−L本(L<N)のサブキャリアがヌルキャリアであるマルチキャリア変調信号を複数個のアンテナで受信し、各サブキャリアに分離復調するマルチキャリアダイバーシチ復調装置において、
前記複数個のアンテナごとに設けられた、サンプリング間隔T/Nで直交復調されたN個の複素ディジタル信号を得る直交復調及びサンプリング部と、
前記複数個のアンテナごとに設けられた、遅延波の遅延時間差及び受信波の周波数歪みを推定するマルチパス伝搬環境推定部と、
前記複数個のアンテナごとに設けられた、前記マルチパス伝搬環境推定部の推定した遅延時間差から、遅延波による波形歪みの生じている部分を含まないように前記N個の複素ディジタル信号のうち使用シンボルとしてM個(M<N)の複素ディジタル信号を抽出する使用シンボル抽出部と、
前記複数個のアンテナごとに設けられた、前記使用シンボル抽出部の出力する前記M個の複素ディジタル信号を用いて整合フィルタによりL本のサブキャリアを分離する整合フィルタ部と、
前記複数個の整合フィルタの出力である複数組のL本のサブキャリアの信号をダイバーシチ合成する信号合成部と、
前記信号合成部の出力するL本のサブキャリアの信号からL個のシンボルを仮判定する仮判定器と、前記複数個の整合フィルタごとに設けられた、仮判定したL個のシンボルから対応する整合フィルタ部で分離されたL本のサブキャリアの各信号に含まれる他のサブキャリアとの間の干渉成分を、前記マルチパス伝搬環境推定部の推定した周波数歪みを勘案して求める干渉成分推定器と、前記複数個の整合フィルタごとに設けられた、対応する整合フィルタ部の出力するL本のサブキャリアの信号からL本のサブキャリア間の前記干渉成分を減じる干渉成分減算器と、前記複数個の干渉成分減算器の出力である複数組のL本のサブキャリアの信号をダイバーシチ合成する信号合成部とから成る1乃至複数の干渉成分除去部とを有することを特徴とするマルチキャリア復調装置。 - 前記マルチャリア変調はOFDMであり、
前記整合フィルタ部は前記使用シンボル抽出部の出力する前記M個の複素ディジタル信号とN−M個の0とのN個の複素ディジタル信号を入力してN点高速フーリエ変換を用いて形成され、
前記干渉成分推定器は、
マルチパス伝搬環境推定部の計算する周波数歪みを用い、
仮判定したL個のシンボルにN−L個のヌルシンボルを付加するヌルキャリア挿入器と、
ヌルキャリア挿入器の出力するN個の複素ディジタル信号をN点逆高速フーリエ変換する逆高速フーリエ変換器と、
逆高速フーリエ変換器の出力から、前記使用シンボル抽出部の出力する前記M個の複素ディジタル信号に相当するM点を選び、他のN−M個を0に置き換える有効シンボル区間抽出ウインドウ器と、
有効シンボル区間抽出ウインドウ器の出力するN個の複素ディジタル信号をN点高速フーリエ変換する高速フーリエ変換器と、
高速フーリエ変換器の出力からサブキャリアに相当するL個を選択するキャリア選択器と、
キャリア選択器の出力するL個の複素ディジタル信号と、前記仮判定したL個のシンボルとの差を求める減算器とから成る
ことを特徴とする請求項3に記載のマルチキャリアダイバーシチ復調装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003024795A JP4134742B2 (ja) | 2003-01-31 | 2003-01-31 | マルチキャリアダイバーシチ復調方法及びマルチキャリアダイバーシチ復調装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003024795A JP4134742B2 (ja) | 2003-01-31 | 2003-01-31 | マルチキャリアダイバーシチ復調方法及びマルチキャリアダイバーシチ復調装置 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004236188A JP2004236188A (ja) | 2004-08-19 |
JP4134742B2 true JP4134742B2 (ja) | 2008-08-20 |
Family
ID=32953238
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003024795A Expired - Fee Related JP4134742B2 (ja) | 2003-01-31 | 2003-01-31 | マルチキャリアダイバーシチ復調方法及びマルチキャリアダイバーシチ復調装置 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4134742B2 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20220349860A1 (en) * | 2019-09-13 | 2022-11-03 | Petroliam Nasional Berhad (Petronas) | Optical fiber distribution measurement system and signal processing method for optical fiber distribution measurement |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4557160B2 (ja) * | 2005-04-28 | 2010-10-06 | 日本電気株式会社 | 無線通信システム、無線通信装置、受信装置、および無線通信方法 |
JP4722752B2 (ja) * | 2006-04-11 | 2011-07-13 | 日本電信電話株式会社 | Ofdm信号受信装置 |
JP4722753B2 (ja) * | 2006-04-12 | 2011-07-13 | 日本電信電話株式会社 | Ofdm信号伝送システム、ofdm信号伝送方法およびofdm信号受信装置 |
-
2003
- 2003-01-31 JP JP2003024795A patent/JP4134742B2/ja not_active Expired - Fee Related
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20220349860A1 (en) * | 2019-09-13 | 2022-11-03 | Petroliam Nasional Berhad (Petronas) | Optical fiber distribution measurement system and signal processing method for optical fiber distribution measurement |
US12066408B2 (en) * | 2019-09-13 | 2024-08-20 | Petroliam Nasional Berhad (Petronas) | Optical fiber distribution measurement system and signal processing method for optical fiber distribution measurement |
Also Published As
Publication number | Publication date |
---|---|
JP2004236188A (ja) | 2004-08-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4958565B2 (ja) | 無線通信装置 | |
JP4515155B2 (ja) | 送信装置 | |
KR101052985B1 (ko) | Mimo 수신 장치 및 수신 방법 | |
JP2005537747A (ja) | 周波数領域判定フィードバック等化デバイス及び方法 | |
JP2001060936A (ja) | 直交周波数分割多重信号の送受信方法及びその装置 | |
JP6996496B2 (ja) | Los-mimo復調装置、通信装置、los-mimo伝送システム、los-mimo復調方法及びプログラム | |
JP4311132B2 (ja) | Ofdm伝送方式における受信装置 | |
WO2007020943A1 (ja) | Ofdm通信方法 | |
CN101133580A (zh) | 接收装置 | |
CN107171713A (zh) | 一种信号发射方法及相应的接收端波束成形方法 | |
EP2084872A1 (en) | Subblock-wise frequency domain equalizer | |
US7801179B2 (en) | Radio apparatus and communication system using the same | |
JP5271163B2 (ja) | マルチキャリヤ変調信号受信装置 | |
JP4134742B2 (ja) | マルチキャリアダイバーシチ復調方法及びマルチキャリアダイバーシチ復調装置 | |
JP2010098471A (ja) | マルチキャリヤ変調信号受信装置 | |
JP2007201523A (ja) | 受信信号等化装置および方法 | |
JP6743327B2 (ja) | 無線通信システム、無線送信装置および無線受信装置 | |
JP4055587B2 (ja) | Ofdm復調方法及びofdm復調装置 | |
JP2001313594A (ja) | Dmtシステムのタイムドメインイコライザーの係数更新方法、レシーブ方法、dmtシステム及びdmtモデム | |
CN101510860A (zh) | 多载波系统中的均衡方法 | |
JP4175220B2 (ja) | マルチキャリア復調方法及びマルチキャリア復調装置 | |
JP2001308820A (ja) | 直交周波数分割多重信号受信装置 | |
JP2001237796A (ja) | マルチキャリア信号検波装置 | |
JP4063030B2 (ja) | マルチキャリア復調方法及びマルチキャリア復調装置 | |
JP4772911B2 (ja) | 送信装置及び受信装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060125 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20080331 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20080507 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20080520 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110613 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110613 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120613 Year of fee payment: 4 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313532 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120613 Year of fee payment: 4 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120613 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130613 Year of fee payment: 5 |
|
LAPS | Cancellation because of no payment of annual fees |