JP4127007B2 - 半導体装置 - Google Patents

半導体装置 Download PDF

Info

Publication number
JP4127007B2
JP4127007B2 JP2002287199A JP2002287199A JP4127007B2 JP 4127007 B2 JP4127007 B2 JP 4127007B2 JP 2002287199 A JP2002287199 A JP 2002287199A JP 2002287199 A JP2002287199 A JP 2002287199A JP 4127007 B2 JP4127007 B2 JP 4127007B2
Authority
JP
Japan
Prior art keywords
field effect
terminal
effect transistor
gate
diode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002287199A
Other languages
English (en)
Other versions
JP2004128052A (ja
Inventor
泰久 石川
敦 渡邊
幸弘 寺田
亮 池内
拡 大谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsumi Electric Co Ltd
Original Assignee
Mitsumi Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsumi Electric Co Ltd filed Critical Mitsumi Electric Co Ltd
Priority to JP2002287199A priority Critical patent/JP4127007B2/ja
Priority to CNB03156853XA priority patent/CN1324704C/zh
Priority to US10/658,781 priority patent/US6952037B2/en
Publication of JP2004128052A publication Critical patent/JP2004128052A/ja
Application granted granted Critical
Publication of JP4127007B2 publication Critical patent/JP4127007B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/0203Particular design considerations for integrated circuits
    • H01L27/0248Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection
    • H01L27/0251Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection for MOS devices
    • H01L27/0255Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection for MOS devices using diodes as protective elements

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は半導体装置に係り、特に、静電放電保護を行う保護回路を内蔵した半導体装置に関する。
【0002】
【従来の技術】
半導体集積回路(IC;integrated circuit)を構成する素子は、微小であり、静電気放電(ESD;electrostatic discharge)により容易に破壊される。このため、半導体集積回路には、外部で発生した静電気放電から内部回路を保護するための破壊保護回路が内蔵され、ユーザー等からの要求に合わせた多種のESD試験が行なわれる。そのESD試験の静電気印加モデルとしては、人体モデル、マシンモデル等が代表的である。
【0003】
この種(人体モデルやマシンモデル等)の保護回路には、通常、トランジスタ素子を用いた保護回路とダイオード素子を用いた保護回路とで対応している。
【0004】
ここで、トランジスタ素子を用いた保護回路とダイオード素子を用いた保護回路を説明する。
【0005】
図11は電界効果トランジスタを用いた保護回路の回路構成図を示す。
【0006】
電界効果トランジスタを用いた保護回路700は、電界効果トランジスタ701から構成されており、内部回路702に電源を供給する電源端子703と内部回路702と信号をやり取りするための入出力端子704との間に設けられている。電界効果トランジスタ701は、ドレインが電源端子703に接続され、ソース及びゲートが入出力端子704に接続された構成とされている。
【0007】
上記構成により入出力端子704の電位が静電気放電などで上昇したときに、電界効果トランジスタ701がオンし、静電気放電による電荷を電源端子702に放電させ、入出力端子704の電位をクランプする。
【0008】
図12はトランジスタを用いた保護回路の特性を示す図、図13はトランジスタ及びダイオードの電圧−電流特性図を示す。図13(A)はパルスが印加されたときの時間に対する電圧の特性、図13(B)はパルスが印加されたときの電圧に対する電流の特性を示す。
【0009】
なお、図12及び図13(A)、図13(B)は、トランジスタとダイオードの素子サイズを同一サイズとした場合の特性図である。
【0010】
トランジスタ素子は、図12に実線で示すようにインピーダンス(ΔI1/ΔV1)は図12に破線で示すダイオード素子のインピーダンス(ΔI2/ΔV2)に比べて小さい。しかし、トランジスタ素子701には、図12、図13(A)に示す実線の曲線で表される特性、いわゆる、スナップバック現象が発生する。このスナップバック現象により図13(B)に実線で示すように電流の立ち上がりに時間τの遅れが生じることになる。このため、例えば人体又はマシンモデル等よりも立ち上り波形が急峻なESD入力に対しては対応が遅れ、内部回路及び保護素子を破損する恐れが生じる。
【0011】
図14はダイオードを用いた保護回路の回路構成図を示す。
【0012】
ダイオードを用いた保護回路800は、ダイオード801から構成され、電源端子803と入出力端子804との間に設けている。ダイオード801は、カソードが電源端子803に接続され、アノードが入出力端子804に接続された構成とされている。
【0013】
上記構成により入出力端子804が静電気放電などで上昇したときに、ダイオード801がオンし、静電気放電を電源端子803に放電させ、入出力端子804を所定電位にクランプする。
【0014】
図15はダイオードを用いた保護回路の特性を示す図である。図15(A)はパルスを印加したときの時間に対する電圧の特性、図15(B)はパルスを印加したときの時間に対する電流の特性を示す。
【0015】
ダイオード801は、入力パルスに対して図15に示すように電圧と電流とが同時に立ち上がる。しかし、立ち上がった後、図15(A)に示すようにインピーダンスが大きい。このため、例えば人体又はマシンモデル等よりも高電圧なESD入力に対しては内部回路を保護するためには素子を大きくしてインピーダンスを下げる必要が生じる。
【0016】
【発明が解決しようとする課題】
近年、ユーザーからのESD試験の要求として、人体又はマシンモデルに比べ非常に高電圧で高速のESDパルスでの試験を要望する場合がある。
【0017】
そこで、上記試験をトランジスタを用いた保護回路では行なった場合、上述したスナップバック現象により、オン状態になるまでの立ち上がりが遅いため、高速で立ち上がるESDパルスには対応できず、内部回路を破壊する恐れがあるなどの問題点が生じる。
【0018】
また、ダイオードを用いた保護回路で行なった場合、素子のインピーダンスを下げるために素子面積を大きくする必要がある。よって、高電圧のESDパルスに対応しようとすると、保護回路を搭載しようとする素子が大型化するなどの問題点が生じる。
【0019】
本発明は上記の点に鑑みてなされたもので、小型で、応答速度及び耐量を向上させることができる半導体装置を提供することを目的とする。
【0020】
【課題を解決するための手段】
本発明の請求項1は、基板内に形成されたウェル領域(32)と、ウェル領域内に形成された電界効果トランジスタ(Q1)と、ウェル領域(32)とその外周部とに跨って形成され、ウェル領域(32)にバイアス電位を与えるためのチャネルストッパ(44)と、チャネルストッパ(44)と接触し、かつ、チャネルストッパ(44)の外周部に位置して、チャネルストッパ(44)とでPN接合(D1)を形成する高濃度拡散領域(45)とを有し、電界効果トランジスタ(Q1)は、ドレインが第1端子(T1)に接続され、ソース及びゲートは第2端子(T2)に接続され、チャネルストッパ(44)は第2端子(T2)に接続され、高濃度拡散領域(45)は第1端子(T1)に接続され、第1端子(T1)と第2端子(T2)との間で過電流を吸収し、第1端子(T1)と第2端子(T2)とに接続された内部回路(11)を保護することを特徴とする。
【0021】
本発明の請求項1によれば、基板内に形成されたウェル領域(32)と、ウェル領域内に形成された電界効果トランジスタ(Q1)と、ウェル領域(32)とその外周部とに跨って形成され、ウェル領域(32)にバイアス電位を与えるためのチャネルストッパ(44)と、チャネルストッパ(44)と接触し、かつ、チャネルストッパ(44)の外周部に位置して、チャネルストッパ(44)とでPN接合(D1)を形成する高濃度拡散領域(45)とを設け、電界効果トランジスタ(Q1)は、ドレインが第1端子(T1)に接続され、ソース及びゲートは第2端子(T2)に接続され、チャネルストッパ(44)は第2端子(T2)に接続され、高濃度拡散領域(45)は第1端子(T1)に接続され、第1端子(T1)と第2端子(T2)との間で過電流を吸収し、第1端子(T1)と第2端子(T2)とに接続された内部回路(11)を保護することにより、PN接合(D1)により電流の立ち上がりに対して高速に対応でき、かつ、電流が立ち上がった後には電界効果トランジスタ(Q1)により低インピーダンスで電流を吸収できるため、耐量を向上させることができる。
【0022】
また、本発明の請求項2は、電界効果トランジスタ(Q1)のゲートをチャネル上の形成されたゲート酸化膜(36)と、ゲート酸化膜(36)上に形成された保護膜(37)と、保護膜(37)上に形成された導電材(38)とから構成することを特徴とする。
【0023】
本発明の請求項2によれば、ゲートの絶縁膜(36、37)を厚くすることができるため、電界効果トランジスタ(Q1)の耐量を向上させることができる。
【0024】
本発明の請求項3は、電界効果トランジスタ(Q1)のゲートをメタルゲート構造としたことを特徴とする。
【0025】
本発明の請求項3によれば、電界効果トランジスタ(Q1)のゲートをメタルゲート構造とすることにより、電界効果トランジスタ(Q1)のゲート酸化膜耐圧を向上させることができるため、静電放電試験など大きな耐量が要求される場合に対応できる。
【0026】
本発明の請求項4は、ウェル領域(32)内に、複数の電界効果トランジスタ(Q11〜Q14)を設け、複数の電界効果トランジスタ(Q11〜Q14)でゲートとドレインとを共有化したことを特徴とする。
【0027】
本発明の請求項4によれば、ウェル領域(32)内に、複数の電界効果トランジスタ(Q11〜Q14)を設け、複数の電界効果トランジスタ(Q11〜Q14)でゲートとドレインとを共有化することにより、複数の電界効果トランジスタ(Q11〜Q14)で電流を分散して逃がすことができるため、大電流に対応できる。また、複数の電界効果トランジスタ(Q11〜Q14)をゲートとドレインとで共有化し、同一のウェル領域(32)内に形成するため、小さいスペースで実現できる。
【0028】
本発明の請求項5は、電界効果トランジスタ(Q1)及びダイオード(D1)と内部回路(11)との間に電界効果トランジスタ(Q1)及びダイオード(D1)がオンしたときの電界効果トランジスタ(Q1)及びダイオード(D1)のインピーダンスより大きいインピーダンスを有するインピーダンス素子(R1)を設けたことを特徴とする。
【0029】
本発明の請求項5によれば、電界効果トランジスタ(Q1)及びダイオード(D1)と、内部回路(11)との間に電界効果トランジスタ(Q1)及びダイオード(D1)がオンしたときの電界効果トランジスタ(Q1)及びダイオード(D1)のインピーダンスより大きいインピーダンスを有するインピーダンス素子(R1)を設けることにより、電界効果トランジスタ(Q1)及びダイオード(D1)により電流が吸収されているときに、内部回路(11)側に大電流が流れ込むことを防止できる。
【0032】
なお、参照符号は、参考であり、請求の範囲を限定するものではない。
【0033】
【発明の実施の形態】
図1は本発明の半導体装置の一実施例のブロック構成図を示す。
【0034】
本実施例の半導体装置1は、内部回路11及び保護回路12を含む構成とされている。
【0035】
内部回路11には、電源端子Ts、接地端子Tgnd及び入力端子Tin、出力端子Toutが接続されている。内部回路11は、電源端子Tsに供給される電源電圧Vddに応じて駆動され、入力端子Tinに供給される入力信号に所定の処理を行って、出力端子Toutから出力する。
【0036】
保護回路12は、電源端子Tsと入力端子Tinとの間、入力端子Tinと接地端子Tgndとの間、電源端子Tsと出力端子Toutとの間、出力端子Toutと接地端子Tgndとの間、電源端子Tsと接地端子Tgndとの間に接続される。保護回路12は、電源端子Ts、接地端子Tgnd、入力端子Tin、出力端子Toutに発生する過電流が内部回路11に供給されないようにバイパスする。
【0037】
図2は本発明の半導体装置の一実施例の保護回路の回路構成図を示す。
【0038】
保護回路12は、第1の保護素子21及び第2の保護素子22を並列に接続した構成とされている。第2の保護素子22は、スナップバックとよばれる特性を有し、端子間の電圧の立ち上がり後、電界効果トランジスタと同等のインピーダンスとされる。第1の保護素子21は、端子間の電位差に応じて流れる電流の応答がダイオードと同等の立ち上がりとなる素子であり、例えば、ダイオードD1から構成される。
【0039】
また、第2の保護素子22は、両端に時刻t0でパルス波形を印加した場合、図13(B)に示すように電流は緩やかに立ち上がる。一方、電圧は、スナップバック現象により一旦立ち上がった後、インピーダンスが低インピーダンスで安定することにより低電圧で安定化する。
【0040】
第1の保護素子21は、両端に時刻t0でパルス波形を印加した場合、図15(B)に示すように急峻に電流が流れる。また、第1の保護素子21にかかる電圧は、図15(A)に示すように時刻t1で安定後、一定レベルに保持される。
【0041】
本実施例の保護回路12は、上記図13に示すような特性を示す第2の保護素子22と図15に示すような特性を示す第1の保護素子21とを並列に接続した構成とされている。
【0042】
図3は保護回路12の動作説明図を示す。図3(A)はパルスが印加されたときの時間に対する電圧の特性、図3(B)はパルスが印加されたときの時間に対する電圧の特性を示す。
【0043】
保護回路12は、立ち上がり時には第1の保護素子21が動作して図3(B)に示すように立ち上がりが急峻で、パルスが立ち上がった後、第1の保護素子21に加えて第2の保護素子22が動作して端子間を低インピーダンスで安定し、図3(A)に示すような特性を実現できる。このように、保護回路12は、急峻な応答で、かつ、低インピーダンス化を実現できる。これによって、立ち上がりスピードが早く、かつ、電圧の高いESDサージに対して対応できる。
【0044】
このとき、電流が立ち上がった後には、第2の保護素子22を構成し、インピーダンスが比較的小さい電界効果トランジスタQ1を通して電流がバイパスされるため、電圧が上昇することがない。このため、第1の保護素子21を構成するダイオードD1の素子面積を小さくすることができる。これによって、保護回路12を省スペース化できる。
【0045】
なお、第1の保護素子21と第2の保護素子22とは、拡散領域を共用して作成されていおり、更に省スペース化が可能となる。
【0046】
図4は保護回路12の平面図、図5は保護回路12の断面図を示す。
【0047】
電界効果トランジスタQ1は、N型の半導体基板31上に形成されたP型のウェル領域32内に形成される。Pウェル領域32には、ソース領域の高濃度のN型拡散領域33及びドレイン領域の高濃度のN型拡散領域34が形成されている。このN型拡散領域33とN型拡散領域34との間にチャネル領域が形成される。
【0048】
チャネル領域が形成されるチャネル形成部35の上部に、例えば膜厚40nm程度のSiO膜などからなるゲート酸化膜36が形成される。さらに、このゲート酸化膜36の上部には、例えば膜厚120nmのNSG膜からなる絶縁膜37a及び例えば膜厚480nm程度のBPSG膜からなる絶縁膜37bから構成される保護層37が形成される。この保護層37の上部に、例えばアルミニウムなどから構成されるメタルゲート配線38が形成されている。メタルゲート配線38は、端子T2に接続される。
【0049】
このように電界効果トランジスタQ1のゲートは、メタルゲート構造とされており、膜厚が厚い為酸化膜破壊が発生しにくい構造とされている。また、メタルゲートのゲート酸化膜36上に保護層37が形成されることで640nm程度と厚いため、耐圧が大きい。このため、気中放電などに充分に絶え得る構造となっている。
【0050】
例えば、ゲートの絶縁膜が厚さ40nm程度のSiOのゲート酸化膜だけの構成である場合には、その耐圧が40Vであるのに対し、本実施例のようにゲートの絶縁層の厚さを640nm程度とすることによりその耐圧は700Vにすることができる。
【0051】
また、ソース領域を構成するN型拡散領域33上には、コンタクトホール40が形成されている。コンタクトホール40には、メタルゲート配線38が配設される。メタルゲート配線38には、端子T2に接続される。
【0052】
さらに、保護層37と膜構成が同一の保護膜39のドレイン領域を構成するN型拡散領域34上には、コンタクトホール42が形成されている。コンタクトホール42内には、ドレイン配線43が形成される。ドレイン配線43は、端子T1に接続される。
【0053】
また、ウェル領域32には、ウェル領域32にバイアス電位を与えるためのチャネルストッパと呼ばれるP型拡散領域44が形成されている。P型拡散領域44は、ウェル領域32とその外周部の半導体基板31に跨って形成されている。
【0054】
P型拡散領域44には、コンタクトホール40がN型拡散領域33から連通して形成されおり、メタルゲート配線38が接続されている。
【0055】
さらに、P型拡散領域44の外周には、高濃度のN型拡散領域45が形成されている。このN型拡散領域45は、P型拡散領域44に接触しており、P型拡散領域44とPN接合46を形成している。このPN接合46がダイオードD1として機能する。なお、このとき、PN接合46を構成するP型拡散領域44及びN型拡散領域45は、共に高濃度不純物拡散領域となるため、半導体基板31とウェル領域32とで構成される寄生ダイオードに比べて耐量を向上させることができるとともに、インピーダンスを低下させることができる。
【0056】
N型拡散領域45は、コンタクトホール47を介してアルミニウムなどからなる配線48に接続されている。また、配線48は、端子T1に接続される。
【0057】
以上のように電界効果トランジスタQ1のチャネルストッパを構成するP型拡散領域44をウェル領域32から外部に延出させ、高濃度N型拡散領域45と接触させることによりダイオードD1を構成しているため、ダイオードD1を別の領域に形成する必要がないので、省スペース化できる。
【0058】
なお、複数の電界効果トランジスタ及び複数のダイオードを共通のウェル領域を用いて形成することもできる。
【0059】
図6は保護回路12の第1変形例の平面図、図7は保護回路12の第1変形例の断面図を示す。同図中、図4、図5と同一構成部分には同一符号を付し、その説明は省略する。
【0060】
本変形例の保護回路112は、ウェル領域32内に第1〜第4の電界効果トランジスタQ11〜Q14を形成し、その外側にチャネルストッパを構成するP型拡散領域44を用いて第1のダイオードD11及び第2のダイオードD12を形成した構成とされている。
【0061】
第1の電界効果トランジスタQ11は、ソース/ゲート配線121を有する。ソース/ゲート配線121は、ソース拡散領域122及びチャンネル領域上の絶縁膜124並びにチャネルストッパを構成するP型拡散領域44に跨って形成されており、コンタクトホール123を通してソース拡散領域122及びP型拡散領域44に接続される。絶縁膜124は、図7と同様にゲート酸化膜及びNSG膜並びにBPSG膜とが積層された構造とされており、厚膜構造とされている。なお、ソース/ゲート配線121は、端子T2に接続されている。
【0062】
また、第1の電界効果トランジスタQ11と第2の電界効果トランジスタQ12とは、ドレイン拡散領域125及びドレイン配線126が共有化された構造とされている。ドレイン配線126は、コンタクトホール127を通してドレイン拡散領域125に接続される。なお、ドレイン配線126は、端子T2に接続されている。
【0063】
また、第2の電界効果トランジスタQ12と第3の電界効果トランジスタQ13とはソース拡散領域128及びソース/ゲート配線129が共有化された構造とされている。ソース/ゲート配線129は、コンタクトホール130を通してソース拡散領域128に接続されるとともに、ゲート領域を上の絶縁膜131、132に跨って形成されている。絶縁膜131、132は、図7と同様にゲート酸化膜及びNSG膜並びにBPSG膜とが積層された構造とされており、厚膜構造とされている。ソース/ゲート配線129は、入力端子Tinに接続される端子T2に接続されている。
【0064】
さらに、第3の電界効果トランジスタQ13と第4の電界効果トランジスタQ14とは、ドレイン拡散領域133及びドレイン配線134が共有化された構造とされている。ドレイン配線134は、コンタクトホール135を通してドレイン拡散領域133に接続される。なお、ドレイン配線134は、電源端子Tsに接続される端子T1に接続される。
【0065】
また、第4の電界効果トランジスタQ14は、ソース/ゲート配線136を有する。ソース/ゲート配線136は、ソース拡散領域137及び絶縁膜138並びにチャネルストッパを構成するP型拡散領域44に跨って形成されており、コンタクトホール139を通して、ソースコンタクト用拡散領域137及びP型拡散領域44に接続されている。絶縁膜138は、図7と同様にゲート酸化膜及びNSG膜並びにBPSG膜とが積層された構造とされており、厚膜構造とされている。なお、ソース/ゲート配線136は、入力端子Tinに接続される端子T2に接続される。
【0066】
ダイオードDは、チャネルストッパを構成するP型拡散領域44と、P型拡散領域44に外側に形成された高濃度N型拡散領域140とから構成されている。ダイオードD11は、N型拡散領域140の上部に形成されたコンタクトホール141,143を通してアノード配線142,144にそれぞれ接続された構成とされ、アノード配線142、144は、電源端子Tsに接続された端子T1に接続される。 また、ダイオードD11は、P型拡散領域44の上部に形成されたコンタクトホール123,139を通してカソード配線であるソース/ゲート配線121とドレイン配線136にそれぞれ接続された構成とされ、配線121,136は、電源端子Tsに接続された端子T2に接続される。
【0067】
図8は保護回路112の等価回路図を示す。
【0068】
保護回路112は、第1の電界効果トランジスタQ11〜第4の電界効果トランジスタQ14及びダイオードD11から構成される。第1の電界効果トランジスタQ11〜第4の電界効果トランジスタQ14は、ソース−ドレイン間が端子T1と端子T2との間に接続され、ゲート及びバックゲートが端子T1に接続された構成とされる。また、ダイオードD11は、アノードが端子T1、カソードが端子T2に接続された構成とされる。
【0069】
本変形例によれば、第1の電界効果トランジスタQ11〜第4の電界効果トランジスタQ14からなる複数のトランジスタ及びダイオードD11からなる複数のダイオードにより電流を吸収できるため、大電流に対応可能となる。また、複数のトランジスタ及びダイオードを一つのウェル領域32の周辺にまとめて形成することができるため、各素子を分離するための分離領域などが不要となり、保護回路112を省スペース化することが可能となる。また、拡散領域及び配線を第1の電界効果トランジスタQ11〜第4の電界効果トランジスタQ14及び第1のダイオードD11及び第2のダイオードD12で共有化できるため、配線を簡略化できる。
【0070】
なお、内部回路11と保護回路12との間に抵抗などのインピーダンスを挿入するようにしてもよい。
【0071】
図9は本発明の半導体装置の一実施例の他の変形例のブロック構成図を示す。同図中、図1と同一構成部分には同一符号を付し、その説明は省略する。
【0072】
本変形例の半導体装置200は、内部回路11と保護回路12との間に抵抗R1を間挿した構成とされている。抵抗R1は、保護回路12が動作したときの保護回路12のインピーダンスよりも大きいインピーダンスに設定されている。
【0073】
内部回路11と保護回路12との間に抵抗R1を間挿することにより、保護回路12により電流が吸収されているときに、内部回路11側に大電流が流れ込むことを防止できる。
【0074】
なお、本実施例では、電界効果トランジスタを例に説明を行ったが、バイポーラトランジスタを用いても同様な回路構成を得ることができる。
【0075】
図10はバイポーラトランジスタを用いた保護回路の回路構成図を示す。
【0076】
バイポーラトランジスタを用いた保護回路300は、ダイオードD21及びバイポーラトランジスタQ21から構成される。バイポーラトランジスタQ21は、トランジスタ本体Q31、内部抵抗R31、寄生ダイオードD31とを含む構成とされている。なお、ダイオードD21は、バイポーラトランジスタQ21の寄生ダイオードD31とは別に設けられている。
【0077】
【発明の効果】
上述の如く、本発明の請求項1によれば、基板内に形成されたウェル領域(32)と、ウェル領域内に形成された電界効果トランジスタ(Q1)と、ウェル領域(32)とその外周部とに跨って形成され、ウェル領域(32)にバイアス電位を与えるためのチャネルストッパ(44)と、チャネルストッパ(44)と接触し、かつ、チャネルストッパ(44)の外周部に位置して、チャネルストッパ(44)とでPN接合(D1)を形成する高濃度拡散領域(45)とを設け、電界効果トランジスタ(Q1)は、ドレインが第1端子(T1)に接続され、ソース及びゲートは第2端子(T2)に接続され、チャネルストッパ(44)は第2端子(T2)に接続され、高濃度拡散領域(45)は第1端子(T1)に接続され、第1端子(T1)と第2端子(T2)との間で過電流を吸収し、第1端子(T1)と第2端子(T2)とに接続された内部回路(11)を保護することにより、PN接合により電流の立ち上がりに対して高速に対応でき、かつ、電流が立ち上がった後には電界効果トランジスタにより低インピーダンスで電流を吸収できるため、耐量を向上させることができるなどの特長を有する。
【0078】
また、本発明の請求項2によれば、電界効果トランジスタのゲートをチャネル上に形成されたゲート酸化膜と、ゲート酸化膜上に形成された保護膜と、保護膜上に形成された導電材とから構成することにより、ゲートの絶縁膜を厚くすることができるため、電界効果トランジスタの耐量を向上させることができるなどの特長を有する。
【0079】
本発明の請求項3によれば、電界効果トランジスタのゲートをメタルゲート構造とすることにより、電界効果トランジスタのゲート酸化膜耐圧を向上させることができるため、静電放電試験など大きな耐量が要求される場合に対応できるなどの特長を有する。
【0080】
本発明の請求項4によれば、ウェル領域内に、複数の電界効果トランジスタを設け、複数の電界効果トランジスタでゲートとドレインとを共有化することにより、複数の電界効果トランジスタで電流を分散して逃がすことができるため、大電流に対応できる。また、複数の電界効果トランジスタをゲートとドレインとで共有化し、同一のウェル領域内に形成するため、小さいスペースで実現できるなどの特長を有する。
【0081】
本発明の請求項5によれば、端子間の電位差に応じて流れる電流の応答がダイオードと同等に立ち上がりを有する第1の素子と電流の立ち上がり後、トランジスタと同等のインピーダンスとなる第2の素子とを端子間に接続し、端子間の過電流を吸収する構成とすることにより、第1の素子により電流の立ち上がりに対して高速に対応でき、かつ、電流が立ち上がった後には第2の素子により低インピーダンスで電流を吸収できるため、耐量を向上させることができるなどの特長を有する。
【図面の簡単な説明】
【図1】 本発明の半導体装置の一実施例のブロック構成図である。
【図2】 保護回路12の回路構成図である。
【図3】 保護回路12の特性図である。
【図4】 保護回路12の平面図である。
【図5】 保護回路12の断面図である。
【図6】 保護回路12の変形例の平面図である。
【図7】 保護回路12の変形例の断面図である。
【図8】 保護回路12の変形例の等価回路図である。
【図9】 保護回路12の他の変形例の回路構成図である。
【図10】 バイポーラトランジスタを用いた保護回路の回路構成図である。
【図11】 電界効果トランジスタを用いた保護回路の回路構成図である。
【図12】 トランジスタを用いた保護回路の特性図である。
【図13】 トランジスタ及びダイオードの電圧−電流特性図である。
【図14】 ダイオードを用いた保護回路の回路構成図である。
【図15】 ダイオードを用いた保護回路の特性図である。
【符号の説明】
1、200:半導体装置
11:内部回路
12:保護回路
21:第1の素子、22:第2の素子
Q1、Q11〜Q14:電界効果トランジスタ、D1、D11、D12:ダイオード

Claims (5)

  1. 基板内に形成されたウェル領域と、
    前記ウェル領域内に形成された電界効果トランジスタと、
    前記ウェル領域とその外周部とに跨って形成され、前記ウェル領域にバイアス電位を与えるためのチャネルストッパと、
    前記チャネルストッパと接触し、かつ、前記チャネルストッパの外周部に位置して、前記チャネルストッパとでPN接合を形成する高濃度拡散領域とを有し、
    前記電界効果トランジスタは、ドレインが第1端子に接続され、ソース及びゲートは第2端子に接続され、
    前記チャネルストッパは、前記第2端子に接続され、
    前記高濃度拡散領域は、第1端子に接続され、
    前記第1端子と前記第2端子との間で過電流を吸収し、前記第1端子と前記第2端子とに接続された内部回路を保護することを特徴とする半導体装置。
  2. 前記電界効果トランジスタのゲートは、前記チャネル上に形成されたゲート酸化膜と、
    前記ゲート酸化膜上に形成された保護膜と、
    前記保護膜上に形成された導電材とを有することを特徴とする請求項1記載の半導体装置。
  3. 前記電界効果トランジスタのゲートは、メタルゲートから構成されたことを特徴とする請求項2記載の半導体装置。
  4. 前記ウェル領域には、前記電界効果トランジスタが複数設けられ、
    前記複数の電界効果トランジスタは、ゲートとドレインとが共有化されたことを特徴とする請求項1乃至3のいずれか一項記載の半導体装置。
  5. 前記電界効果トランジスタ及び前記ダイオードと前記内部回路との間に前記電界効果トランジスタ及び前記ダイオードがオンしたときの前記電界効果トランジスタ及び前記ダイオードのインピーダンスより大きいインピーダンスを有するインピーダンス素子を設けたことを特徴とする請求項1乃至4のいずれか一項記載の半導体装置。
JP2002287199A 2002-09-30 2002-09-30 半導体装置 Expired - Fee Related JP4127007B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2002287199A JP4127007B2 (ja) 2002-09-30 2002-09-30 半導体装置
CNB03156853XA CN1324704C (zh) 2002-09-30 2003-09-10 半导体设备
US10/658,781 US6952037B2 (en) 2002-09-30 2003-09-10 Electrostatic discharge semiconductor protection circuit of reduced area

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002287199A JP4127007B2 (ja) 2002-09-30 2002-09-30 半導体装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2008058270A Division JP4888424B2 (ja) 2008-03-07 2008-03-07 半導体装置

Publications (2)

Publication Number Publication Date
JP2004128052A JP2004128052A (ja) 2004-04-22
JP4127007B2 true JP4127007B2 (ja) 2008-07-30

Family

ID=32280072

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002287199A Expired - Fee Related JP4127007B2 (ja) 2002-09-30 2002-09-30 半導体装置

Country Status (3)

Country Link
US (1) US6952037B2 (ja)
JP (1) JP4127007B2 (ja)
CN (1) CN1324704C (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005284544A (ja) * 2004-03-29 2005-10-13 Ricoh Co Ltd 基準電圧発生回路
JP4845410B2 (ja) * 2005-03-31 2011-12-28 株式会社リコー 半導体装置
JP5295603B2 (ja) * 2008-03-27 2013-09-18 ラピスセミコンダクタ株式会社 Esd保護素子及びその製造方法
US8749930B2 (en) * 2009-02-09 2014-06-10 Semiconductor Energy Laboratory Co., Ltd. Protection circuit, semiconductor device, photoelectric conversion device, and electronic device
JP5697882B2 (ja) * 2010-03-26 2015-04-08 セミコンダクター・コンポーネンツ・インダストリーズ・リミテッド・ライアビリティ・カンパニー 半導体集積回路
EP3163618A1 (en) * 2015-10-27 2017-05-03 Nexperia B.V. Electrostatic discharge protection device
WO2022124121A1 (ja) * 2020-12-08 2022-06-16 ローム株式会社 保護素子

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4072976A (en) * 1976-12-28 1978-02-07 Hughes Aircraft Company Gate protection device for MOS circuits
US4930036A (en) * 1989-07-13 1990-05-29 Northern Telecom Limited Electrostatic discharge protection circuit for an integrated circuit
KR100271690B1 (ko) * 1992-01-31 2000-11-15 스즈키 진이치로 보호회로를 구비하는 반도체 장치 및 전자시스템
US5563525A (en) * 1995-02-13 1996-10-08 Taiwan Semiconductor Manufacturing Company Ltd ESD protection device with FET circuit
JP3331881B2 (ja) * 1995-12-21 2002-10-07 三菱電機株式会社 インバータ装置、圧縮機
KR100214566B1 (ko) * 1997-04-22 1999-08-02 구본준 입력 보호회로
JP2959528B2 (ja) * 1997-06-09 1999-10-06 日本電気株式会社 保護回路
JP3237110B2 (ja) * 1998-03-24 2001-12-10 日本電気株式会社 半導体装置
TW399337B (en) * 1998-06-09 2000-07-21 Koninkl Philips Electronics Nv Semiconductor device
JP2000216277A (ja) * 1999-01-20 2000-08-04 Nec Corp 半導体装置及びその製造方法
JP2001077305A (ja) * 1999-08-31 2001-03-23 Toshiba Corp 半導体装置
JP2002076282A (ja) * 2000-08-30 2002-03-15 Nec Corp 半導体集積回路装置及びその設計方法
US6559508B1 (en) * 2000-09-18 2003-05-06 Vanguard International Semiconductor Corporation ESD protection device for open drain I/O pad in integrated circuits with merged layout structure
JP3983067B2 (ja) * 2001-03-19 2007-09-26 Necエレクトロニクス株式会社 半導体集積回路の静電保護回路
JP2003007833A (ja) * 2001-06-25 2003-01-10 Nec Corp 半導体装置
US6573566B2 (en) * 2001-07-09 2003-06-03 United Microelectronics Corp. Low-voltage-triggered SOI-SCR device and associated ESD protection circuit

Also Published As

Publication number Publication date
CN1494147A (zh) 2004-05-05
JP2004128052A (ja) 2004-04-22
US20040124471A1 (en) 2004-07-01
CN1324704C (zh) 2007-07-04
US6952037B2 (en) 2005-10-04

Similar Documents

Publication Publication Date Title
US9209620B2 (en) Combination ESD protection circuits and methods
US5440162A (en) ESD protection for submicron CMOS circuits
US5430595A (en) Electrostatic discharge protection circuit
JP3926975B2 (ja) スタック型mosトランジスタ保護回路
US5442217A (en) Semiconductor apparatus including a protection circuit against electrostatic discharge
US20060091464A1 (en) Electrostatic protection circuit
US20060065933A1 (en) ESD protection circuit with floating diffusion regions
JP2008235310A (ja) 半導体集積回路
US7800180B2 (en) Semiconductor electrostatic protection device
US20060092592A1 (en) ESD protection circuit with adjusted trigger voltage
US5710452A (en) Semiconductor device having electrostatic breakdown protection circuit
JP4127007B2 (ja) 半導体装置
KR100387189B1 (ko) 절연체상반도체장치및그보호회로
US5579200A (en) Electrostatic discharge protection for metal-oxide-silicon feedback elements between pins
JP3317345B2 (ja) 半導体装置
JP3559075B2 (ja) Cmos技術の集積電子回路用の極性反転保護装置
JP3019760B2 (ja) 半導体集積回路装置
JP4888424B2 (ja) 半導体装置
JPH07263633A (ja) 半導体装置の対静電気放電保護装置
JP3033739B2 (ja) 静電気保護回路
KR100608437B1 (ko) 다이오드를 이용한 정전 방전 보호회로
JP4368014B2 (ja) シュミット回路
JPH0374870A (ja) 半導体装置
JPH0240960A (ja) 入力保護回路装置
JPS60120569A (ja) 入力回路

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060623

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060704

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060822

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070821

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071010

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080307

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080328

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080422

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080505

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110523

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4127007

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees