JP4124533B2 - 強磁性トンネル接合素子及びその製造方法 - Google Patents

強磁性トンネル接合素子及びその製造方法 Download PDF

Info

Publication number
JP4124533B2
JP4124533B2 JP05397499A JP5397499A JP4124533B2 JP 4124533 B2 JP4124533 B2 JP 4124533B2 JP 05397499 A JP05397499 A JP 05397499A JP 5397499 A JP5397499 A JP 5397499A JP 4124533 B2 JP4124533 B2 JP 4124533B2
Authority
JP
Japan
Prior art keywords
layer
ferromagnetic
tunnel junction
voltage
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP05397499A
Other languages
English (en)
Other versions
JP2000251230A (ja
Inventor
雅重 佐藤
英幸 菊地
和雄 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP05397499A priority Critical patent/JP4124533B2/ja
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to PCT/JP2000/000351 priority patent/WO2000052489A1/ja
Priority to CNB2004100058314A priority patent/CN1267895C/zh
Priority to DE10080670T priority patent/DE10080670T1/de
Priority to CNB008004595A priority patent/CN1165777C/zh
Priority to KR1020007012085A priority patent/KR100722334B1/ko
Publication of JP2000251230A publication Critical patent/JP2000251230A/ja
Priority to US09/704,010 priority patent/US6741434B1/en
Application granted granted Critical
Publication of JP4124533B2 publication Critical patent/JP4124533B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Magnetic Heads (AREA)
  • Hall/Mr Elements (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、高密度磁気記録の読み出しヘッドや、磁場感知用の磁気センサ等に用いられる強磁性トンネル接合素子に関する。
【0002】
【従来の技術】
金属と絶縁体と金属とを積層した構造(この明細書では、このような積層構造を、「金属/絶縁体/金属」のように表すことにする)をもつ接合で、絶縁体が数Å〜数十Å(数百pm〜数千pm)程度に薄い場合には、両側の金属間に電圧を印加したときに、わずかな電流が流れることが知られている。この現象は、トンネル効果と呼ばれ、量子力学的に説明される。また、この電流をトンネル電流と呼ぶ。
【0003】
ここで、絶縁体の両側の金属を強磁性体とした、強磁性金属/絶縁体/強磁性金属の構造を持つ接合を強磁性トンネル接合という。このとき、トンネル電流の大きさは両方の強磁性金属層の磁化状態に依存することが知られている。両方の磁化の方向が同じ向きの場合に最も多くのトンネル電流が流れ、両方の磁化が反対方向の場合にトンネル電流は小さくなる。これは、強磁性体内の伝導電子が分極しており、電子がこの分極を保ったままトンネルすることに起因すると説明される。一方向に分極した電子は、その方向に分極された状態にしかトンネルできず、逆方向に分極した電子は、逆方向に分極された状態にしかトンネルできない。絶縁層を挟んだ両方の金属層の強磁性体の磁化方向が同じ場合には、同じ状態から同じ状態にトンネルできるために、トンネル電流が多く流れる(トンネル確率が高い)が、互いに逆方向の場合には、一方向に分極している状態の電子と逆方向に分極している状態の電子のそれぞれのトンネル先の状態に空きがなければトンネルすることができず、通常、トンネル電流は小さくなる(トンネル確率が小さい)。
【0004】
抵抗値を使って表すと、絶縁体を挟む両側の強磁性体の磁化方向が同じ場合の抵抗をRp 、反対の場合の抵抗をRapとしたとき、
抵抗変化率MR=〔(Rap−Rp )/Rp 〕×100(%)
で表される。
【0005】
磁性層にCo、Fe、Ni等の強磁性金属を用いた場合には、抵抗変化率は20〜50%程度の値が得られることが理論的に予測されており,実験的にもそれに近い値が得られている。トンネル効果におけるこの抵抗変化率は、従来の異方性磁気抵抗効果(AMR)や、巨大磁気抵抗効果(GMR)と比べて大きいので、強磁性トンネル接合素子は次世代の磁気センサとしての応用が期待されている。
【0006】
【発明が解決しようとする課題】
強磁性トンネル接合素子を磁気センサとして使用する場合には、通常、一定の電流(センス電流)を流して磁場をかけ、抵抗値の変化を検出して、これを電圧に変換して出力する。ところが、強磁性トンネル効果は、印加電圧依存性をもつことが知られており、抵抗変化率は印加電圧に応じて変化する。図1に、強磁性トンネル効果における抵抗変化率の印加電圧依存性の測定結果の例を示す。図1から明らかなように、強磁性トンネル接合素子は微小電圧で大きな抵抗変化率をもっても、0.4V程度の電圧を印加すると、抵抗変化率は半分程度まで低下してしまう。強磁性トンネル効果におけるこの電圧依存性は、強磁性体と絶縁体の界面に生じるマグノン(磁気モーメントの揺らぎ)に起因すると考えられている。
【0007】
一般に、素子に大きな電圧を印加したほうが大きな出力が得られるが、強磁性トンネル接合素子ではこの印加電圧依存性によって、大きな電圧を印加すると実際に得られる出力は小さくなってしまう。これを解決するための手段として、トンネル接合を複数個直列に接続して、各素子にかかる電圧を分散させることでバイアス特性を改善する方法が開示されている(平成9年特許出願第268732号明細書)。しかし、この方法によると接合を直列につなぐために、全体の抵抗値が大きくなってしまうという問題点があった。
【0008】
また、強磁性トンネル接合特有の性質として、電圧−電流(V−I)特性が非線形であることが挙げられる。図2に、強磁性トンネル接合のV−I特性の例を示す。これに対応して、電気抵抗(トンネル抵抗)の値も電圧に依存して大きく変化し、図3に見られるような電圧−抵抗(V−R)特性を示す。これから、強磁性トンネル接合では抵抗値が大きな電圧依存性を持っていることがわかる。従って、この抵抗値の大きな電圧依存性が、回路設計上の制約となる可能性がある。
【0009】
そこで、本発明は、抵抗値と抵抗変化率の電圧依存性を低減あるいは抑制した強磁性トンネル接合素子を提供することを目的とする。
【0010】
【課題を解決するための手段】
この目的を達成するための本発明の強磁性トンネル接合素子は、強磁性材料/絶縁体/強磁性材料の積層構造のトンネル接合を含み、このトンネル接合が電圧印加方向に非対称な電圧−抵抗特性をもつことを特徴とする。すなわち、強磁性トンネル接合においては抵抗値・抵抗変化量ともに電圧依存性をもつが、この抵抗値・抵抗変化量の電圧依存性を印加電圧の正電圧側と負電圧側で異なる特性となるようにすることで、本発明のトンネル接合素子は抵抗変化量が減少すると同時に、抵抗値も減少するようになる。
【0011】
また、本発明では、(1)トンネル接合の障壁層である絶縁体層において電圧印加方向に関し組成分布を非対称にした材料を用い、あるいは、(2)絶縁体層に接する両側の層において異なる材料を用いることで、上述の特性をもつ接合を作製することができる。
【0012】
更に、一つの素子において二つ以上の接合をそれらの電圧増加に対する抵抗変化が反対向きになるように直列に接続させて、素子の抵抗値の電圧依存性を緩和するようにしてもよい。
【0013】
本発明によれば、強磁性トンネル接合において電圧印加方向に非対称な電圧−抵抗特性(V−R特性)をもつようにすることで、強磁性トンネル接合素子の抵抗変化量(△R)が電圧の印加とともに減少する一方で、抵抗値(R)も電圧の印加とともに大きく減少することにより、素子の抵抗変化率(△R/R)の減少を小さくすることができる。また、このような接合を電圧増加に対する抵抗の変化方向が逆になるように直列に接続した素子とした場合、電圧印加時の各接合の抵抗変化が互いに打ち消しあい、素子としての抵抗の変化が小さくなる。
【0014】
このようにして、本発明によれば、印加電圧によってトンネル抵抗値と抵抗変化率が大きく変化することを避けることができる。
【0015】
【発明の実施の形態】
本発明の強磁性トンネル接合素子は、強磁性材料/絶縁体/強磁性材料の積層構造を含み、強磁性材料は、強磁性を示す材料であればどのようなものを用いてもよいが、一般にはニッケル(Ni)、鉄(Fe)、コバルト(Co)等の金属、又はこれらの金属の合金が使用される。また、絶縁体としては、電気絶縁性を備えた任意の非磁性材料が使用可能であり、一例としてアルミナ(Al2 3 )等の絶縁性材料を挙げることができる。更に、本発明の強磁性トンネル接合素子は、トンネル接合を構成する積層した強磁性材料/絶縁体/強磁性材料の層のほかに、別の材料層を含むこともできる。
【0016】
本発明においては、トンネル接合部の電圧−抵抗特性が電圧印加方向に関して非対称となるようにすることが重要である。以下、本発明の第一の態様として、Co/Al酸化物/Coの接合構造を含む強磁性トンネル接合素子を例に、これを説明することにする。
【0017】
まず、シリコン基板上に、スパッタ法によりNiFe(50nm)/Co(3.3nm)/Al(1.3nm)の連続膜を作製し、酸素プラズマによりAl表面を酸化させた。ここで、NiFeはニッケルと鉄との合金(パーマロイ)を示している。また、各膜材料の後の括弧内の数値は膜厚を表しており、同様の表記法を以下の説明において採用することにする。その後、更にCo(3.3nm)/NiFe(20nm)/FeMn(45nm)/NiFe(20nm)を成膜して、Co/Al酸化物/Coの構造のトンネル接合を含むトンネル接合素子を形成した。この素子は、約16%の抵抗変化率を示した。この接合素子のV−R特性は図4に示したとおりであり、従来と同様に原点を中心としたほぼ対称の特性を示した。
【0018】
次に、この接合素子に250℃で1時間の熱処理を施したところ、抵抗変化率は16%のままであった。しかし、この熱処理後の接合素子のV−R特性は、図5に示したように、原点に対して大きな非対称性を持つようになった。このシフト量はおよそ300〜400mVである。
【0019】
このように、熱処理後の素子は、V−R曲線において抵抗値が最大となる点がシフトしているために、原点近傍では電圧印加に対して抵抗値が単調に減少する特性を持っている。この特性は、障壁層である絶縁層、及びその絶縁層と強磁性材料層との界面の状態に依存する。
【0020】
一方、熱処理後の素子のV−△R曲線を図6に示す。この曲線は、従来のものと変わらず、原点を中心としてほぼ対称であり、素子は原点近傍で最も大きな抵抗変化量を有する。これは、抵抗変化の減少が障壁(バリア)層の特性よりむしろ、界面でのマグノン励起に起因するためであると考えられる。
【0021】
次に、熱処理後の素子のV−MR特性を図7に示す。図5のV−R特性の非対称性に起因して、印加電圧に対する抵抗変化率の減少の仕方が、正電圧側と負電圧側で異なり、正電圧側では変化率の滅少が抑えられており、すなわちV−MR特性がシフトしていることがわかる。
【0022】
この例におけるV−MR特性のシフトのメカニズムは以下の通りと考えられる。
成膜直後では、絶縁体のAl酸化物を生成させるためAlの表面から酸化させるために、絶縁層の上部は酸化物に変化しているのに対し、下部は酸化度が小さく、Alがそのまま残存していると考えられる。図8(a)に模式的に示したこの状態(図中においてAl−AlOと表記)の絶縁層を熱処理した場合、絶縁層の表面は安定なAl2 3 が形成されているために、熱処理の影響は少ない。しかし、絶縁層の下部では、残存しているAlと更にその下に位置するCo層(1)中のCoの一部が熱処理により拡散して固溶体を生じ、両層の境界領域において、図8(b)に模式的に示したように、両者が混在するCo−Al層を形成すると考えられる。こうして、トンネル障壁層であるアルミニウム酸化物の絶縁層の両側に組成の異なる層(Co−Al層及びCo層(2))が存在するようになり、それに応じて非対称なV−R特性が生じると考えられる。
【0023】
図8(a)と図8(b)において、横軸zはトンネル接合の厚さ方向を表しており、同時に素子の電圧印加方向を表している。ここでは、Al酸化物を主とする絶縁層の左側のCo層(1)が最初に形成された強磁性材料層を示し、右側のCo層(2)がAl膜の酸化後に形成された強磁性材料層を示している。
【0024】
上述のように、絶縁体材料を、それと接する強磁性材料層で用いられる材料と固溶体を形成するものとすれば、絶縁材料層と一方の強磁性材料層との界面近傍に両者の材料の固溶体を生じさせることができ、それにより絶縁材料層に接する両側の層の材料を異なるものとすることが可能である。このような固溶体は、例えば、強磁性材料であるCo、Fe、Ni及びこれらの金属の合金と固溶体を形成する非磁性金属から形成した絶縁材料層を形成後、自然酸化あるいはプラズマ酸化等によりその表面近傍を酸化して下方に酸化不十分な部分を設け、その後熱処理を施すことで、先に説明したように絶縁層と接する一方の磁性層側にだけ形成することが可能である。
【0025】
もう一つの態様において、絶縁体材料が酸化アルミニウムのような酸化物である場合に、絶縁障壁内の酸素濃度分布を制御することで同様な効果を得ることができる。図9に示したように、成膜したAlの表面から内部に向かって酸素濃度が小さくなるような障壁層を作製することで、非対称なV−R特性を有する接合素子が実現される。この酸素濃度分布は、Alを成膜した後に、表面から酸化を行うだけでもある程度は生じるが、酸化条件を制御したり、熱処理を行うことでより大きな濃度分布を生じさせることができる。酸化条件の制御は、例えば、プラズマ酸化の条件(プラズマ装置のパワー、ガス量、処理時間等)を制御することで行うことができる。図9では、縦軸が酸素濃度を示しており、横軸zは図8と同様にトンネル接合の厚さ方向を表すとともに素子の電圧印加方向を表している。
【0026】
次に、熱処理によらずに、絶縁層の成膜時に膜厚方向に組成分布を形成する例を説明する。
例えば、図10に示すように、2種類以上のターゲット11、12を同時にスパッタしておき、基板13の位置を右向きの矢印で示す移動方向に移動させることで、基板13上に形成する絶縁層の膜厚方向に組成分布を形成することが可能である。また、図11に示したように、2種類以上のターゲット11’、12’に対する投入電力の比を下方のグラフに例示したように時間とともに変化させて、それぞれのターゲットから絶縁層を形成する基板13’への元素の飛来頻度を制御することで、形成する絶縁層の膜厚方向に組成分布を生じさせてもよい。ここで例示したスパッタ法のほかに、例えば蒸着法や分子線エピタキシー法によっても、同様に膜厚方向の組成分布を有する絶縁層を形成可能である。
【0027】
本発明のもう一つの態様では、組成もしくは構造の異なる複数の膜を積層して絶縁層を形成することができる。例えば、図12に示すように、強磁性材料層21と22の間に、組成の異なる三つの膜23、24、25を積層して、絶縁層26を形成することが可能である。この図において、強磁性材料層21/絶縁層26/強磁性材料層22の積層体が本発明における強磁性トンネル接合を構成している。
【0028】
このようにして組成的に異なる膜23、24、25を積層して形成した絶縁層26は、特定成分(一例として酸化アルミニウム絶縁層における酸素)の濃度について、図13(a)に示したように、絶縁層(トンネル障壁層)における電圧印加方向を表すz軸に沿って連続的な分布をもっていないが、非対称の濃度分布であるので、接合素子におけるV−R特性はやはり非対称となり、素子の抵抗値の電圧依存性を緩和する効果を得ることができる。また、図12の三つの膜を積層して形成した絶縁層26を熱処理することで、この積層絶縁層26における特定成分の濃度分布曲線を図13(a)における階段状から、図13(b)に例示したように連続に近いものにすることも可能である。
【0029】
次に、絶縁膜の膜厚方向に組成分布を形成する更にもう一つの態様を説明する。この態様では、例えば酸化物の絶縁層を形成する際に、酸素を含む雰囲気中でAlなどの金属を成膜する。図14に示すように、チャンバ31内でAlターゲット32を用いてスパッタ法で基板33上に絶縁層(図示せず)を形成する際に、チャンバ31内に酸素を供給してAlを酸化しながら成膜し、供給酸素量を流量制御装置34により、下方に示したグラフに見られるように制御することで、絶縁層内部の酸素分布を調節することができ、それにより非対称のV−R特性を備えた素子が得られる。
【0030】
これまで説明したように、本発明では、種々の方法により非対称のV−R特性を有する強磁性トンネル接合素子が実現可能である。本発明の強磁性トンネル接合素子は、図12に模式的に示したように、強磁性材料層21と22の間に絶縁層26が配置された接合構造を有する。図12の絶縁層26は組成を異にする絶縁材料の膜23、24、25を積層して構成されているが、本発明においては絶縁層26を一つの材料から成膜して電圧印加方向の組成を変化させることで形成することもできることは、上記の説明から言うまでもなく明らかである。
【0031】
更に、本発明の強磁性トンネル接合素子は、トンネル接合を構成する強磁性材料/絶縁体/強磁性材料の積層構造のほかに、先に例示したように別の材料層を含むこともできる。
【0032】
電圧印加方向に関し非対称のV−R特性を備え、それにより抵抗値と抵抗変化率の電圧依存性が低減した本発明の強磁性トンネル接合素子は、磁場感知用の磁気センサとして利用することができ、あるいは高密度磁気記録の読み出し等に用いられる磁気ヘッドで利用することができる。
【0033】
本発明では、電圧の印加方向に関し非対称のV−R特性をもつ、強磁性材料/絶縁体/強磁性材料の構造のトンネル接合を二つ以上含む態様も可能であり、このような構成により抵抗値と抵抗変化率の電圧依存性を緩和することで、抵抗の変化のより小さい強磁性トンネル素子を実現することも可能である。
【0034】
このように複数のトンネル接合を含む素子の一例として、磁性層1/絶縁層1/磁性層2/絶縁層2/磁性層3の積層構造を有するものを挙げることができる。この場合には、磁性層1/絶縁層1/磁性層2で一つのトンネル接合が構成され、磁性層2/絶縁層2/磁性層3でもう一つのトンネル接合が構成されている。そしてこれら二つのトンネル接合は、互いの抵抗の電圧依存性が対称的となって、抵抗値と抵抗変化率の電圧依存性を緩和することができるように組み合わされている。この構造の素子においては、外側に位置する二つの磁性層1と3の磁化方向が固定されている。
【0035】
更に、上述の二つのトンネル接合を含む素子においては、磁性層1、3の端部から発生する磁界のため、磁性層2の磁化方向が影響を受けることがあり、これを回避するために、磁性層1、3をそれぞれ、強磁性層a/非磁性層b/強磁性層cの三層構造とすることもできる。この場合、強磁性層aと強磁性層cは、非磁性層bを介して反強磁性的に結合している。
【0036】
次に、このような複数の接合を含む態様を説明する。
このような態様においては、V−R曲線において抵抗値が最大となる点が、図15に示したように正の電圧側にシフトしている強磁性トンネル接合1と、負の電圧側にシフトしている強磁性トンネル接合2を、直列に接続して素子を形成する。
【0037】
この構造の強磁性トンネル接合素子の合成のV−R特性を、抵抗値が最大となる点が原点からシフトしていない従来の素子のV−R特性と比較して、図16に示す。この図において、破線で表した曲線Aは、先に図3を参照して例示したような従来の素子のシフトのないV−R特性を示しており、実線で示した曲線Bは、上述の接合1と2とを直列に接続して形成した本発明の強磁性トンネル接合素子の合成のV−R特性を示している。本発明の接合素子においては、接合1と2の電圧印加に対して抵抗Rが増加する方向の作用と減少する方向の作用が互いに打ち消しあうために、従来の素子に比べ広い電圧範囲において、抵抗の電圧依存性が小さく抑えられている。
【0038】
また、このように二つの接合を逆極性となるよう直列接続した本発明の強磁性トンネル接合素子では、直列接続のために各接合に電圧が分配されるために、抵抗変化率の電圧依存性は、二つの素子の接続による合成前に比べて1/2に改善される。同様に、二つの接合を並列接続した場合も、2種類の接合が互いに反対方向に抵抗変化するために、合成した抵抗の変化も小さく抑えられる。
【0039】
図17に、非対称のV−R特性をもち互いに逆極性となるように直列に接続した二つの接合を含む本発明の強磁性トンネル接合素子を磁気センサとして用いた、磁気記録の読み出し用ヘッドを模式的に示す。通常、このような読み出しヘッドでは、上部シールド41と下部シールド42の間のリードギャップ43内に、磁場を感知する素子50を挿入する。ここで説明する例では、この素子50が本発明の強磁性トンネル接合素子であり、そしてこの素子50は、図に示したとおり、反強磁性層51/磁性層52/絶縁層53/磁性層54/絶縁層55/磁性層56/反強磁性層57の積層構造をもつ。磁性層52、54、56に示されている矢印は、それぞれの層における磁化方向を指示しており、磁性層52と56の磁化方向は固定されている。
【0040】
磁性層52と56は、Fe、Co、Ni又はこれらの金属の合金を主成分とした強磁性材料であれば、特に種類を問わないが、分極率の高い金属材料であるほうが、抵抗変化率が大きいため望ましい。そのような分極率の高い金属材料の例としては、Co−Fe合金が挙げられる。反強磁性層51、57には、例えばFeMn、IrMn、PdPtMn、NiO、RhMnなどの、磁性層52、56の金属材料に一方向異方性を誘起する組成の材料を用いる。また、中間の磁性層54は、外部磁界に対して磁化方向を容易に変化させる特性を持つ軟質磁性材料から作製され、そのような材料の例としては、例えばNiFe合金が挙げられる。また、磁性層52、54、56は、それぞれ単層膜から構成する必要はなく、磁性層52と56は組成の異なる2種類以上の強磁性金属の多層膜であってもよく、磁性層54は軟質磁性材料の膜を含む多層膜であってもよい。例えば、磁性層52、56は、反強磁性層51、57に接する側に、NiFe等の一方向異方性を誘起しやすい材料を用い、絶縁層53、55に接する側に、CoFe等の分極率の大きい材料を用いることで、更に良い素子特性が得られる。また、磁性層54は、中央部分をNiFe合金のような軟質磁性材料とし、両側をCoFe合金のような分極率の大きな強磁性材料とすることで、更に良い素子特性が得られる。このように、この例の磁気ヘッドで用いる素子は、絶縁層53と絶縁層55のそれぞれの両側を強磁性層で挟んだ構造の接合から構成してもよく、あるいは絶縁層53と55を含む積層構造の外側の磁性層52と56を強磁性層とし、中間の磁性層54を軟質磁性層とする構造の接合から構成してもよい。
【0041】
また、絶縁層53と55は、V−R曲線において抵抗値が最大となる点が互いに逆の電圧側にシフトするように作られている。すなわち、磁性層52/絶縁層53/磁性層54で構成される第一のトンネル接合と、磁性層54/絶縁層55/磁性層56で構成される第二のトンネル接合が、互いに抵抗の電圧依存性が対称的となるように作られている。
【0042】
磁気ヘッドで使用する素子を、図17に示した膜構造とした場合には、特にリードギャップ幅が小さくなった場合、外側に位置する磁性層52、56の端部から発生する磁界のために、中間の磁性層54の磁化方向が影響を受けてしまい、十分な磁場感度が得られなくなる。このような場合には、図17の素子50の磁性層52と56に相当する部分を、強磁性層/非磁性層/強磁性層の3層構造とすることで、磁場感度の不足を補うことができる。
【0043】
外側に位置する磁性層52と56に相当する部分をこのような3層構造とした素子を使用した磁気ヘッドを、図18に模式的に示す。この図において、図17の磁気ヘッドにおけるのと同じ部材については、図17で使用したのと同じ参照符号を使用している。この図に示したように、この態様の磁気ヘッドにおいては、図17の素子50の磁性層52に相当する部分を強磁性層62a/非磁性層62b/強磁性層62cの3層構造とし、同様に磁性層56に相当する部分を強磁性層66a/非磁性層66b/強磁性層66cの3層構造とすることを除いて、図17を参照して説明したのと同様の強磁性トンネル接合素子60を使用している。このような強磁性層/非磁性層/強磁性層の3層構造では、中間の非磁性層62b、66bの厚さを10Å(1nm)程度とすることで、両側の磁性層の磁化が反強磁性的に結合することが知られている。すなわち、磁性層62a(あるいは66a)と磁性層62c(あるいは66c)の磁化は、図18に矢印で示したように反対方向に向くことになる。こうすることで、磁性層62a(あるいは66a)と磁性層62c(あるいは66c)との間で磁場が閉じるために、磁性層54の磁化回転に影響を与えることがなくなる。
【0044】
ここで、非磁性層62b及び66bには、Cu、Ruなどの遷移金属元素を用いることができる。素子60における非磁性層62b及び66b以外の各層では、図17に示した磁気ヘッドについて先に説明したのと同様の材料を使用すればよい。
【0045】
図17と18で説明した磁気ヘッドで使用する強磁性トンネル接合素子50、60においては、中間の磁性層54の厚さを調節することで、共鳴トンネル効果を起こさせることができる。共鳴トンネル効果が生ずると、トンネルする電子の波動関数が磁性層54の内部で定在波を形成するために、トンネル確率が変化する。磁性層54の膜厚を、共鳴トンネル効果でトンネル確率が大きくなるように設定することで、トンネル抵抗を低減させることができる。
【0046】
強磁性トンネル接合素子には、このような磁気ヘッドへの応用のほかに、強磁性トンネル接合素子の有するトンネル接合の2層の磁化状態を記憶状態(オン/オフ)に対応させて、トンネル抵抗の大小で読み出しを行うものへの応用があり得る。本発明の強磁性トンネル接合素子は、そのようなものへも応用可能である。
【0047】
【発明の効果】
以上説明したように、本発明によれば、抵抗値と抵抗変化率の電圧依存性の低減した強磁性トンネル接合素子と、この素子を使用した磁気センサの利用が可能となる。
【図面の簡単な説明】
【図1】強磁性トンネル接合における抵抗変化率の印加電圧依存性を示す測定例のグラフである。
【図2】強磁性トンネル接合の電圧−電流(V−I)特性の例を示すグラフである。
【図3】強磁性トンネル接合の電圧−抵抗(V−R)特性の例を示すグラフである。
【図4】本発明の第一の態様の強磁性トンネル接合素子の熱処理前の電圧−抵抗(V−R)特性を示すグラフである。
【図5】本発明の第一の態様の強磁性トンネル接合素子の熱処理後の電圧−抵抗(V−R)特性を示すグラフである。
【図6】本発明の第一の態様の強磁性トンネル接合素子の熱処理後の電圧−抵抗変化(V−△R)特性を示すグラフである。
【図7】本発明の第一の態様の強磁性トンネル接合素子の熱処理後の電圧−抵抗変化率(V−MR)特性を示すグラフである。
【図8】本発明の第一の態様の強磁性トンネル接合素子における、熱処理前後の膜を説明する模式図である。
【図9】絶縁障壁層における酸素分布を説明する模式図である。
【図10】絶縁層に組成分布を付与する方法の一つを説明する図である。
【図11】絶縁層に組成分布を付与するもう一つの方法を説明する図である。
【図12】組成の異なる膜を積層して形成した絶縁層を有する、本発明における強磁性トンネル接合を示す図である。
【図13】本発明の強磁性トンネル接合素子の絶縁層における濃度分布を説明する図である。
【図14】絶縁層に組成分布を付与する更にもう一つの方法を説明する図である。
【図15】本発明の強磁性トンネル接合素子を形成するのに直列に接続して使用する二つの接合の、非対称の電圧−抵抗(V−R)特性を示すグラフである。
【図16】非対称の電圧−抵抗(V−R)特性をもつ二つの接合を直列に接続して形成した強磁性トンネル接合素子の合成抵抗の電圧−抵抗(V−R)特性を示すグラフである。
【図17】本発明の強磁性トンネル接合素子を用いた磁気ヘッドの一つを説明する図である。
【図18】本発明の強磁性トンネル接合素子を用いたもう一つの磁気ヘッドを説明する図である。
【符号の説明】
21、22…強磁性層
26…絶縁層
41…上部シールド
42…下部シールド
43…リードギャップ
50、60…強磁性トンネル接合素子
51、57…反強磁性層
52、54、56…磁性層
53、55…絶縁層
62a、62c、66a、66c…強磁性層
62b、66b…非磁性層

Claims (8)

  1. 強磁性材料/絶縁体/強磁性材料の積層構造のトンネル接合を含み、このトンネル接合が電圧印加方向に非対称な電圧−抵抗特性をもち、前記絶縁体の層と、この層と接する片方の強磁性材料の層との境界領域に、当該絶縁体の構成成分と当該強磁性材料との固溶体が存在することにより、前記絶縁体の層と接する両側の層の材料が異なっていることを特徴とする強磁性トンネル接合素子。
  2. 複数の前記トンネル接合を含み、これらの接合を、それらの電圧増加に対する抵抗変化が反対向きになるように直列に接続させて構成されている、請求項記載の強磁性トンネル接合素子。
  3. 複数の前記トンネル接合を含み、これらの接合を、それらの電圧増加に対する抵抗変化が反対向きになるように並列に接続させて構成されている、請求項記載の強磁性トンネル接合素子。
  4. 磁性層1/絶縁層1/磁性層2/絶縁層2/磁性層3の積層構造を有し、そして磁性層1/絶縁層1/磁性層2で一つのトンネル接合を構成し、磁性層2/絶縁層2/磁性層3でもう一つのトンネル接合を構成していて、これら二つのトンネル接合は、互いの抵抗の電圧依存性が対称的となってトンネル接合素子の抵抗値及び抵抗変化率の電圧依存性を緩和することができるように組み合わされており、且つ、外側に位置する磁性層1と磁性層3の磁化方向が固定されている、請求項記載の強磁性トンネル接合素子。
  5. 磁性層1及び磁性層3がそれぞれ、強磁性層a/非磁性層b/強磁性層cの三層構造を有し、強磁性層a及び強磁性層cが、非磁性層bを介して反強磁性的に結合している、請求項記載の強磁性トンネル接合素子。
  6. 磁性層2が量子共鳴トンネリングを生じさせる膜厚である、請求項又は記載の強磁性トンネル接合素子。
  7. 強磁性材料/絶縁体/強磁性材料の積層構造のトンネル接合を含み、このトンネル接合が電圧印加方向に非対称な電圧−抵抗特性をもつ強磁性トンネル接合素子を製造する方法であって、
    (1)第一の強磁性材料の層の表面に、絶縁体の材料となり、第一の強磁性材料と固溶体を形成できる非磁性材料の層を被着形成する工程、
    (2)上記非磁性材料の層の表面から酸素を作用させてこの層の表面側の領域を酸化し、絶縁体とする工程、
    (3)酸化した上記非磁性材料の層の表面に、第二の強磁性材料の層を被着形成する工程、
    (4)熱処理により、工程(2)で絶縁体とされた領域の下部に、第一の強磁性材料と上記非磁性材料との固溶体を形成させる工程、
    を含む、強磁性トンネル接合素子の製造方法。
  8. 強磁性材料/絶縁体/強磁性材料の積層構造のトンネル接合を含み、このトンネル接合が電圧印加方向に非対称な電圧−抵抗特性をもつものである強磁性トンネル接合素子であり、上記絶縁体が酸化物であってこの酸化物の酸素濃度が当該素子の電圧印加方向に関し非対称である強磁性トンネル接合素子の製造方法であって、当該絶縁体の層を酸素雰囲気中で成膜し、成膜中の雰囲気の酸素分圧を時間とともに変化させることを特徴とする強磁性トンネル接合素子製造方法。
JP05397499A 1999-03-01 1999-03-02 強磁性トンネル接合素子及びその製造方法 Expired - Fee Related JP4124533B2 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP05397499A JP4124533B2 (ja) 1999-03-02 1999-03-02 強磁性トンネル接合素子及びその製造方法
CNB2004100058314A CN1267895C (zh) 1999-03-01 2000-01-25 磁检测器及其制造方法,铁磁隧道结器件及其制造方法,以及使用它的磁头
DE10080670T DE10080670T1 (de) 1999-03-01 2000-01-25 Magnetsensor und Herstellungsverfahren dafür, ferromagnetisches Tunnelübergangselement und Magnetkopf
CNB008004595A CN1165777C (zh) 1999-03-01 2000-01-25 磁检测器及其制造方法,以及使用它的磁头
PCT/JP2000/000351 WO2000052489A1 (fr) 1999-03-01 2000-01-25 Capteur magnetique et son procede de fabrication, dispositif de liaison a tunnel ferromagnetique et son procede de fabrication, tete magnetique comportant ces organes
KR1020007012085A KR100722334B1 (ko) 1999-03-01 2000-01-25 자기 센서 및 강자성 터널 접합 소자
US09/704,010 US6741434B1 (en) 1999-03-01 2000-11-01 Magnetic sensor and production method thereof, ferromagnetic tunnel junction element, and magnetic head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05397499A JP4124533B2 (ja) 1999-03-02 1999-03-02 強磁性トンネル接合素子及びその製造方法

Publications (2)

Publication Number Publication Date
JP2000251230A JP2000251230A (ja) 2000-09-14
JP4124533B2 true JP4124533B2 (ja) 2008-07-23

Family

ID=12957630

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05397499A Expired - Fee Related JP4124533B2 (ja) 1999-03-01 1999-03-02 強磁性トンネル接合素子及びその製造方法

Country Status (1)

Country Link
JP (1) JP4124533B2 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002314164A (ja) * 2001-02-06 2002-10-25 Sony Corp 磁気トンネル素子及びその製造方法、薄膜磁気ヘッド、磁気メモリ、並びに磁気センサ
JP3576111B2 (ja) 2001-03-12 2004-10-13 株式会社東芝 磁気抵抗効果素子
JP2002314166A (ja) * 2001-04-16 2002-10-25 Nec Corp 磁気抵抗効果素子及びその製造方法
WO2007038971A1 (en) * 2005-09-20 2007-04-12 Freescale Semiconductor, Inc. Spin-dependent tunnelling cell and method of formation thereof
FR2892231B1 (fr) * 2005-10-14 2008-06-27 Commissariat Energie Atomique Dispositif magnetique a jonction tunnel magnetoresistive et memoire magnetique a acces aleatoire

Also Published As

Publication number Publication date
JP2000251230A (ja) 2000-09-14

Similar Documents

Publication Publication Date Title
US7989223B2 (en) Method of using spin injection device
JP5570824B2 (ja) 磁気抵抗効果素子およびその形成方法
JP3137580B2 (ja) 磁性多層膜、磁気抵抗効果素子および磁気変換素子
US6947263B2 (en) CPP mode magnetic sensing element including a multilayer free layer biased by an antiferromagnetic layer
EP3467891A1 (en) Reduction of barrier resistance x area (ra) product and protection of perpendicular magnetic anisotropy (pma) for magnetic device applications
US20090039879A1 (en) Low noise magnetic field sensor using a lateral spin transfer
JP3593472B2 (ja) 磁気素子とそれを用いた磁気メモリおよび磁気センサ
JPH11175920A (ja) 磁気抵抗効果型複合ヘッドおよびその製造方法
JPH11134620A (ja) 強磁性トンネル接合素子センサ及びその製造方法
JPH11354859A (ja) 磁気抵抗素子と磁気ヘッド
JP2001176034A (ja) 磁気抵抗構造の製造方法および磁気抵抗型ヘッドの製造方法
JPH11135857A (ja) 磁気抵抗効果素子及びその製造方法
JP3697369B2 (ja) 磁気素子、磁気メモリ装置、磁気抵抗効果ヘッド、磁気ヘッドジンバルアッセンブリ、及び磁気記録システム
JPH10198927A (ja) 磁気抵抗効果膜およびその製造方法
US20050105221A1 (en) Magnetoresistive-effect thin film, magnetoresistive-effect element, and magnetoresistive-effect magnetic head
JP4061590B2 (ja) 磁性薄膜及びそれを用いた磁気抵抗効果素子並びに磁気デバイス
KR100722334B1 (ko) 자기 센서 및 강자성 터널 접합 소자
JP3473016B2 (ja) 強磁性トンネル接合素子と磁気ヘッドと磁気メモリ
JP2005228998A (ja) 磁性薄膜及びそれを用いた磁気抵抗効果素子並びに磁気デバイス
JP2001266566A (ja) 磁気メモリ素子及びそれを用いた磁気メモリ
JP3587792B2 (ja) 磁気検出素子及びその製造方法
JP4124533B2 (ja) 強磁性トンネル接合素子及びその製造方法
JP3520192B2 (ja) 磁気素子とそれを用いた磁気部品および電子部品
JP2000150985A (ja) 磁気抵抗効果素子
JP2001202604A (ja) 磁気抵抗効果ヘッド及び磁気記録再生装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050615

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080313

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080408

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080502

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110516

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees