JP4119017B2 - 半導体装置 - Google Patents

半導体装置 Download PDF

Info

Publication number
JP4119017B2
JP4119017B2 JP28768098A JP28768098A JP4119017B2 JP 4119017 B2 JP4119017 B2 JP 4119017B2 JP 28768098 A JP28768098 A JP 28768098A JP 28768098 A JP28768098 A JP 28768098A JP 4119017 B2 JP4119017 B2 JP 4119017B2
Authority
JP
Japan
Prior art keywords
signal
data
circuit
clock signal
control circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP28768098A
Other languages
English (en)
Other versions
JP2000112563A (ja
Inventor
裕樹 高橋
和夫 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renesas Technology Corp
Original Assignee
Renesas Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renesas Technology Corp filed Critical Renesas Technology Corp
Priority to JP28768098A priority Critical patent/JP4119017B2/ja
Priority to US09/247,508 priority patent/US6345365B1/en
Publication of JP2000112563A publication Critical patent/JP2000112563A/ja
Application granted granted Critical
Publication of JP4119017B2 publication Critical patent/JP4119017B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/04Generating or distributing clock signals or signals derived directly therefrom
    • G06F1/10Distribution of clock signals, e.g. skew

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Information Transfer Systems (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、中央演算装置(CPU)を備える半導体装置に関し、特に、データ信号のホールドタイムを確保するための改良に関する。
【0002】
【従来の技術】
図19は、この発明の背景となる従来の半導体装置の構成を示すブロック図である。この従来装置150は、CPU91を備えたマイクロプロセッサ(MPU)、あるいは、CPU91に加えて図19には描かれない周辺回路をも備えたマイクロコンピュータ(MCU)として構成されている。
【0003】
装置150には、CPU91の他に、トライステートバッファ92が備わっている。CPU91が出力するデータ信号DIは、トライステートバッファ92へ入力される。トライステートバッファ92は、CPU91が出力する制御信号WR*(以下において、記号「*」は、信号がロウアクティブであることを表す)がアクティブであるときには、データ信号DIを通過させ、データ信号DEとして出力する。トライステートバッファ92は、制御信号WR*がノーマルであるときには、データ信号DIとは無関係に、出力をハイインピーダンス状態にする。
【0004】
このように、トライステートバッファ92は、CPU91からの制御信号WR*にもとづいて、装置150から、例えばメモリ装置などの外部装置へ伝送されるデータ信号DEの出力の時期を調整する。
【0005】
【発明が解決しようとする課題】
ところで、CPU91はクロック信号CLKに同期して動作するので、制御信号WR*も、クロック信号CLKに同期して、アクティブとノーマルの間を遷移する。したがって、データ信号DEは、装置150から、例えばメモリ装置などの外部装置へと、クロック信号CLKに同期して出力される。図20は、この動作を例示するタイミングチャートである。
【0006】
時刻T1〜T4は、クロック信号CLKが立ち上がる時刻を示している。時刻T1〜T3にわたるクロック信号CLKの2周期分の期間に、値”Z”を有するデータ信号DIが、CPU91から出力される。この期間の中で、クロック信号CLKが立ち上がる時刻T2に制御信号WR*がノーマルからアクティブへと遷移し、つぎにクロック信号CLKが立ち上がる時刻T3に、ノーマルへと復帰する。その結果、データ信号DEとして、時刻T2〜T3の期間にわたって、値”Z”が出力される。
【0007】
このように、データ信号DEの値”Z”の出力は、クロック信号CLKに同期して開始および停止する。一方、データ信号DEを受信するメモリ装置などの外部装置も、制御信号WR*に同期して動作するので、データ信号DEのホールドタイムを十分に長く必要とする外部装置を、装置150へ接続して使用することが困難であるという問題点があった。
【0008】
なお、単に、クロック信号の制御に関連した技術としては、特開平1-265351号公報、特開平8-123717号公報、特開平2-100750号公報、特開平9-319704号公報、特開平8-6896号公報、特開平6-291615号公報、特開平9-128333号公報、特開平5-257886号公報、特開昭62-281047号公報、特開平4-294442号公報、特開平2-171907号公報、および、特開平4-370862号公報が知られている。
【0009】
この発明は、従来の装置における上記した問題点を解消するためになされたもので、CPUと外部装置との間で伝送されるデータ信号のホールドタイムを長く確保し得る半導体装置を得ることを目的とする。
【0010】
【課題を解決するための手段】
第1の発明の装置は、半導体装置であって、内部クロック信号に同期して動作するCPUと、前記内部クロック信号を所定の遅延時間だけ遅延させ、遅延クロック信号として出力する遅延回路を、接続可能なように外部に露出した端子と、前記CPUと外部装置との間で伝送されるデータ信号を、前記端子を通じて供給される前記遅延クロック信号にもとづいて、前記遅延時間だけ遅延して中継するデータ伝送制御回路と、を備える。
【0011】
さらに、第1の発明の装置では、前記データ伝送制御回路が、データ保持回路と、トライステートバッファと、バッファ制御回路と、を備え、前記データ保持回路は、前記データ伝送制御回路へ入力された前記データ信号を、前記遅延クロック信号に同期して保持する。
そして、前記バッファ制御回路は、前記内部クロック信号に同期して前記CPUから送られ、前記データ信号の伝送の開始と終了とを通知する制御信号と、前記遅延クロック信号とにもとづいて、前記データ信号が入力される期間よりも前記遅延時間だけ遅延した期間にわたって、アクティブの制御信号を出力し、前記トライステートバッファは、前記データ保持回路が保持する前記データ信号を、前記バッファ制御回路が出力する前記制御信号がアクティブであるときに限って、前記データ伝送制御回路の外へ出力する
【0012】
の発明の装置では、第1の発明の半導体装置において、前記データ伝送制御回路が、前記バッファ制御回路と前記トライステートバッファとの間に介挿される選択回路を、さらに備え、前記選択回路は、選択信号にもとづいて、前記バッファ制御回路が出力する制御信号と、前記CPUが前記データ信号の伝送を前記外部装置へ通知する制御信号とのいずれかを選択して、前記トライステートバッファへ伝える。
【0013】
の発明の装置は、第1の発明の半導体装置において、前記CPUと別の外部装置との間での別のデータ信号の伝送を中継するトライステートバッファを、さらに備え、当該トライステートバッファは、前記CPUが前記別のデータ信号の伝送を前記別の外部装置へ通知する制御信号がアクティブであるときに限って、前記別のデータ信号を通過させる。
【0014】
の発明の装置は、第1、第、あるいは第の発明の半導体装置において、前記遅延回路を、さらに備え、当該遅延回路は、前記端子に接続されており、前記遅延時間が、前記内部クロック信号の1周期よりも短かく設定されている。
【0015】
【発明の実施の形態】
<1. 実施の形態1>
はじめに、実施の形態1の半導体装置について説明する。
【0016】
<1-1. 装置の概略>
図1は、実施の形態1の半導体装置の構成を示すブロック図である。この装置101は、半導体集積回路(IC)であり、CPU1、データ伝送制御回路2、および、内部クロック生成回路3を備えたMCUまたはMPUとして構成されている。CPU1は、例えば、外部のメモリ装置から供給されるプログラムにもとづいて、処理を実行する。
【0017】
装置101には、端子4〜8が、さらに備わっている。装置101は、好ましくは、例えば樹脂などによって封止されるが、端子4〜8は外部へ露出している。したがって、端子4〜8には、装置101が製品として完成した後に、例えばハンダ付けによって、外部装置を接続することが可能である。外部装置は端子4〜8へと、直接的に接続されてもよく、例えば回路基板に配設された配線を通じて、間接的に接続されてもよい。
【0018】
端子4を通じて、外部よりクロック信号CLKが供給される。クロック信号CLKは、内部クロック生成回路3によって、内部クロック信号Iclkへと変換される。クロック信号CLKは、例えば、発信回路によって供給される原発振クロック信号であり、内部クロック生成回路3は、例えば、クロック信号CLKへ波形成型および分周を施すことによって、内部クロック信号Iclkを生成する。
【0019】
内部クロック信号Iclkは、CPU1へと供給される。CPU1は、内部クロック信号Iclkに同期して動作する。CPU1は、メモリ装置などの外部装置へデータ信号DIを出力する際にも、出力の開始および停止を、内部クロック信号Iclkに同期して行う。CPU1は、さらに、データ信号DIとともに、制御信号WRおよび各種の制御信号CSを出力する。これらの制御信号WR,CSの出力の開始および停止も、内部クロック信号Iclkに同期して行われる。制御信号WRは、データ信号DIを受信する外部装置へ、データ信号DIの出力を報知する信号、すなわち、ライトイネーブル信号である。制御信号CSは、データ伝送制御回路2を制御するための信号である。
【0020】
内部クロック信号Iclkは、端子5を通じて、外部の遅延回路10へも伝えられる。遅延回路10は、内部クロック信号Iclkを遅延させることにより、遅延クロック信号Dclkを生成し、端子6を通じて、データ伝送制御回路2へ供給する。遅延回路10は、装置101の外部装置の一つであり、装置101が製品として完成した後に、端子5,6へ、例えばハンダ付け等によって取り付けられる。
【0021】
なお、半導体集積回路である装置101を主要な回路要素とする半導体装置として、端子5,6へ接続された遅延回路10を装置101とともに備える装置を、構成することも可能である。このような装置は、通例において、製品として完成した装置101のユーザが、回路基板の上に、装置101と遅延回路10とを搭載するという組立作業を通じて実現される。
【0022】
データ伝送制御回路2は、CPU1から出力される制御信号CSと、遅延回路10から出力される遅延クロック信号Dclkとにもとづいて、CPU1から外部装置へ伝送されるデータ信号DIを、遅延させて中継する。データ伝送制御回路2は、CPU1とは異なり、内部クロック信号Iclkではなく、遅延クロック信号Dclkに同期して動作する。それによって、データ信号DIは、内部クロック信号Iclkよりも遅延した遅延クロック信号Dclkに同期して、データ信号DEとして外部へ伝送される。データ信号DEおよび制御信号WRは、それぞれ、端子7,8を通じて、外部へ出力される。
【0023】
図2は、データ伝送制御回路2の内部構成を示すブロック図である。データ伝送制御回路2は、データ保持回路21、トライステートバッファ22、および、バッファ制御回路23を備えている。データ保持回路21は、例えばラッチ回路であり、遅延クロック信号Dclkに同期して、データ信号DIを保持し、保持したデータをデータ信号DHとして出力する。
【0024】
トライステートバッファ22は、バッファ制御回路23が出力する制御信号CNTLにもとづいて、データ信号DEの出力を制御する。すなわち、トライステートバッファ22は、制御信号CNTLがアクティブであるときには、データ信号DHを、そのまま、あるいは、電流増幅して、データ信号DEとして出力し、ノーマルであるときには、出力をハイインピーダンス状態とすることにより、データ信号DEの外部装置への伝送経路とCPU1との間を電気的に切り離す。バッファ制御回路23は、遅延クロック信号Dclkと制御信号CSにもとづいて制御信号CNTLを生成し、トライステートバッファ22へ伝える。
【0025】
図3は、データ伝送制御回路2の動作を説明するタイミングチャートである。CPU1は、内部クロック信号Iclkが立ち上がる時刻t1に、データ信号DIとして、値「Y」の出力を開始し、それより2周期後の立ち上がり時刻t6に、出力を終了する。遅延クロック信号Dclkは、内部クロック信号Iclkに対して、遅延時間DTだけ遅れている。したがって、遅延クロック信号Dclkに同期して動作するデータ保持回路21は、データ信号DHを、データ信号DIよりも、遅延時間DTだけ遅らせて出力する。
【0026】
バッファ制御回路23は、CPU1がデータ信号DIを出力する期間、言い換えると制御信号WRがアクティブである期間よりも、遅延時間DTだけ遅れた期間にわたって、制御信号CNTLをアクティブにする。したがって、トライステートバッファ22は、データ信号DIよりも遅延時間DTだけ遅延させて、値「Y」をデータ信号DEとして出力する。
【0027】
このようにして、CPU1が出力したデータ信号DIが、遅延時間DTだけ遅延して、データ信号DEとしてデータ伝送制御回路2から外部へと出力される。データ信号DEを受信するメモリ装置などの外部装置は、制御信号WRに同期して動作するので、遅延時間DTに相当するホールドタイムを確保することができる。このため、データ信号DEのホールドタイムを十分に長く必要とする外部装置を、装置101へ接続して使用することが可能となる。
【0028】
特に、メモリ装置などの外部装置は、CPU1に比べて動作速度が遅い場合が多く、そのために、装置101が出力するデータ信号DEを読み取る際に、十分に長いホールドタイムを必要とする場合が少なくない。装置101は、CPU1を備えるMCUあるいはMPUが、しばしば直面するこのような要求に、容易に応えることができる。
【0029】
遅延時間DTが長いほど、より長いホールドタイムを要求する外部装置が、装置101へ接続可能となる。しかしながら、遅延時間DTが内部クロック信号Iclkの1周期よりも遅れると、例えば、値「Y」につづく、つぎの値が、誤ってデータ信号DEとして出力される場合がある。したがって、遅延時間DTは、内部クロック信号Iclkの1周期よりも短かく設定される。
【0030】
上記したように、遅延回路10は、装置101が製品として完成した後に、外部装置として接続可能であるので、様々な遅延時間DTを有する遅延回路10を用いることによって、同一の装置101に対して、様々なホールドタイムを持たせることが可能である。すなわち、装置101の使用目的、接続すべき外部装置の特性に応じて、ホールドタイムを自在に設定することが可能である。
【0031】
<1-2. バッファ制御回路>
図4は、バッファ制御回路23の内部構成の一例を示す回路図である。この例では、バッファ制御回路23は、論理積回路24,25、および、S/Rフリップフロップ26を備えている。CPU1が出力する制御信号CSには、制御信号RWT*,ALEが含まれている。論理積回路24,25の各々には、制御信号RWT*,ALE、および、遅延クロック信号Dclkが入力される。ただし、制御信号RWT*は、論理積回路24,25へ、互いに反転されて入力される。
【0032】
論理積回路24,25の出力は、それぞれ、S/Rフリップフロップ26のセット入力およびリセット入力へ接続されている。その結果、S/Rフリップフロップ26から、制御信号CNTLが出力される。S/Rフリップフロップ26は、例えば、CPU1がリセットされるときなどに、リセット信号RESET*が入力されると、これに応答して、出力信号である制御信号CNTLを、初期値へ戻す。
【0033】
図5は、図4が例示するバッファ制御回路23の動作を説明するタイミングチャートである。時刻t1〜t8にわたるCPU1の動作は、図3と図5の間で同一である。CPU1は、データ信号DIとして値「Y」を出力する期間である時刻t1〜t6にわたって、制御信号WRをアクティブにする。
【0034】
CPU1は、さらに、データ信号DIの出力の開始と終了とを通知する制御信号ALEを、時刻t1から、つぎに内部クロック信号Iclkが立ち下がる時刻t2までの期間、および、時刻t6から、つぎに内部クロック信号Iclkが立ち下がる時刻t8までの期間にわたって、アクティブにする。CPU1は、さらに、データ信号DIの出力の終了を通知する制御信号RWT*を、時刻t6の直前に内部クロック信号Iclkが立ち下がる時刻t5からつぎの立ち下がり時刻t8までの期間にわたって、アクティブにする。すなわち、制御信号ALEと制御信号RWT*とを含む制御信号CSは、データ信号DIの出力の開始と終了とを通知する2ビット信号に相当する。
【0035】
論理積回路24は、制御信号RWT*がノーマルで、しかも、制御信号ALEがアクティブである期間、すなわち、時刻t1〜t3に限って、遅延クロック信号Dclkを、S/Rフリップフロップ26のセット入力へ伝達する。一方、論理積回路25は、制御信号RWT*とALEが、ともにアクティブである期間、すなわち、時刻t6〜t8に限って、遅延クロック信号Dclkを、S/Rフリップフロップ26のリセット入力へ伝達する。
【0036】
このため、S/Rフリップフロップ26は、時刻t1〜t3の間で遅延クロック信号Dclkが立ち上がる時刻、すなわち、時刻t2にセットされ、時刻t6〜t8の間で遅延クロック信号Dclkが立ち上がる時刻、すなわち、時刻t7にリセットされる。その結果、制御信号CNTLは、データ信号DIが出力される期間である時刻t1〜t6よりも、遅延時間DTだけ遅延した時刻t2〜t7の期間にわたって、アクティブとなる。
【0037】
図6は、S/Rフリップフロップ26の内部構成の一例を示す回路図である。この例では、S/Rフリップフロップ26は、インバータ36、MOSFET27,28、および、インバータ29,30を備えている。nチャネル型のMOSFET27とpチャネル型のMOSFET28とが、直列に、正電位電源線および接地電位電源線の間に介挿されることによって、インバータを形成している。MOSFET28のゲート電極に接続されたインバータ36の入力、および、MOSFET27のゲート電極は、それぞれ、セット入力およびリセット入力に相当している。
【0038】
MOSFET27,28が構成するインバータの出力は、インバータ29の入力へ接続されている。インバータ29の出力は、インバータ30を通じて、インバータ29の入力へと正帰還されている。しかも、インバータ29の電流駆動能力は、インバータ30よりも大きく設定されている。
【0039】
S/Rフリップフロップ26は、以上のように構成されているので、セット入力およびリセット入力に、アクティブの信号が入力されると、それに応答して、制御信号CNTLが、それぞれ、アクティブおよびノーマルへと遷移する。セット入力およびリセット入力に、ノーマルの信号が入力されている期間では、制御信号CNTLは値を変えない。
【0040】
<1-3. データ保持回路および遅延回路>
図7は、データ保持回路21の内部構成の一例を示す回路図である。この例では、データ保持回路21は、インバータ33,37、MOSFET31,32、および、インバータ34,35を備えている。MOSFET31,32は、それぞれ、トランスファーゲート素子を構成しており、直接またはインバータ33を通じて、ゲート電極へ入力される遅延クロック信号Dclkが、アクティブであるときに限り、インバータ37を通じて入力されたデータ信号DIの反転信号をインバータ34の入力へ伝送する。インバータ34の出力は、インバータ35を通じて、インバータ34の入力へと正帰還されている。しかも、インバータ34の電流駆動能力は、インバータ35よりも大きく設定されている。
【0041】
データ保持回路21は、以上のように構成されているので、遅延クロック信号Dclkがアクティブであるときには、データ信号DIを、データ信号DHとして出力する。データ保持回路21は、逆に、遅延クロック信号Dclkがノーマルであるときには、ノーマルに遷移する直前のデータ信号DIを保持し、データ信号DHとして出力し続ける。以上のように、データ伝送制御回路2は、簡単な回路で構成可能である。
【0042】
図8は、遅延回路10の内部構成の一例を示す回路図である。この例では、内部クロック信号Iclkが入力されるインバータ11の出力と、遅延クロック信号Dclkを出力するインバータ14の入力との間に、キャパシタ12と抵抗器13で構成される一次のロウパスフィルタが介挿されている。
【0043】
図9は、図8が例示する遅延回路10の動作を説明するタイミングチャートである。ロウパスフィルタからインバータ14へと入力される電圧信号Vは、抵抗器13の抵抗とキャパシタ12の容量とで定まる時定数をもって、内部クロック信号Iclkの変化に、緩やかに追随する。したがって、インバータ14は、内部クロック信号Iclkよりも、前述の時定数で定まる遅延時間DTだけ遅延した信号を、遅延クロック信号Dclkとして出力する。
【0044】
図9に例示する遅延回路10では、キャパシタ12および抵抗器13の素子定数を、変えることによって、遅延時間DTを様々に変えることが可能である。特に、内部クロック信号Iclkのデューティ比が50%であるときには、遅延時間DTは、0から内部クロック信号Iclkの半周期まで可変である。
【0045】
<1-4. 別の装置例>
装置101(図1)では、内部クロック信号Iclkは、外部から入力されるクロック信号CLKにもとづいて、装置101の内部で生成されたが、外部から直接に内部クロック信号Iclkを供給することも可能である。このとき、内部クロック生成回路3(図1)は、除去することができる。
【0046】
そのように構成された装置の例を、図10および図11に示す。図10が示す装置102では、内部クロック信号Iclkが、外部から端子4へ入力される。端子4へ入力された内部クロック信号Iclkは、CPU1と端子5の双方へ伝送される。すなわち、内部クロック信号Iclkが入力される端子4が、遅延回路10へ内部クロック信号Iclkを伝えるための端子5とは別個に設けられている。
【0047】
一方、図11が示す装置103では、端子4は備わらず、内部クロック信号Iclkは、端子5へと入力される。端子5へ入力された内部クロック信号Iclkは、CPU1へ伝送される。また、内部クロック信号Iclkは、端子5に接続された遅延回路10へも供給される。すなわち、内部クロック信号Iclkが入力される端子と、遅延回路10へ内部クロック信号Iclkを伝えるための端子とが、単一の端子5へ共通化されている。
【0048】
<2. 実施の形態2>
図12は、実施の形態2の半導体装置の構成を示すブロック図である。この装置104は、データ信号DI,DEを伝送する経路、すなわち、データバスを、二系統備えている点において、装置101(図1)とは特徴的に異なっている。
【0049】
第1のデータ信号DI1,DE1を伝送する経路は、装置101(図1)と同等に構成される。すなわち、CPU1から出力されたデータ信号DI1は、データ伝送制御回路2によって、遅延クロック信号Dclkに同期したデータ信号DE1として、端子7を通じて外部へ伝送される。CPU1は、データ信号DI1および制御信号CSとともに、データ信号DI1を受信する外部装置へ、データ信号DI1の出力を報知する制御信号WR1を出力する。制御信号WR1は、端子8を通じて、外部へと出力される。
【0050】
第2のデータ信号DI2,DE2を伝送する経路は、従来装置150と同等に構成される。すなわち、データ信号DI2は、CPU1から出力される制御信号WR2にもとづいて動作するトライステートバッファ38によって、内部クロック信号Iclkに同期したデータ信号DE2として、端子9を通じて外部へ伝送される。制御信号WR2は、データ信号DI2の出力を報知する信号であり、データ信号DI2を受信する外部装置へ、端子16を通じて伝送される。
【0051】
したがって、装置104には、長いホールドタイムを必要とする外部装置と、そうでない外部装置とのいずれをも接続することが可能であり、双方の外部装置を同時に接続することも可能である。すなわち、外部装置の特性に応じて、接続すべきデータバスを選択することが可能である。
【0052】
<3. 実施の形態3>
図13は、実施の形態3の半導体装置の構成を示すブロック図である。この装置105は、データ伝送制御回路2がデータ伝送制御回路40へと置き換えられ、それによって、CPU1から出力されたデータ信号DIが、内部クロック信号Iclkと遅延クロック信号Dclkとのいずれかに選択自在に同期して、データ信号DEとして外部へ伝送される点において、装置101(図1)とは特徴的に異なっている。
【0053】
CPU1が出力する制御信号WRは、端子8を通じて外部装置へ伝送されるだけでなく、データ伝送制御回路40へも入力される。CPU1は、レジスタ39を備えており、レジスタ39に保持される選択信号SELが、データ伝送制御回路40へ入力される。データ伝送制御回路40は、選択信号SELにもとづいて、データ信号DEが同期すべきクロック信号を選択する。
【0054】
図14は、データ伝送制御回路40の内部構成を示すブロック図である。データ伝送制御回路40は、バッファ制御回路23からトライステートバッファ22へと制御信号CNTLが伝送される経路に、選択回路41が介挿されている点において、データ伝送制御回路2(図2)とは特徴的に異なっている。選択回路41は、選択信号SELにもとづいて、CPU1が出力する制御信号WRと、バッファ制御回路23が出力する制御信号CNTLとのいずれかを選択して、トライステートバッファ22へ、制御信号として伝達する。
【0055】
したがって、トライステートバッファ22は、選択信号SELにもとづいて、装置101のトライステートバッファ22(図2)と同様に、遅延クロック信号Dclkに同期して動作するバッファ制御回路23によって制御されることも、従来装置150(図19)のトライステートバッファ92と同様に、内部クロック信号Iclkに同期した制御信号WRによって制御されることも、可能である。すなわち、装置105は、選択信号SELに応じて、装置101と従来装置150のいずれとも同等に動作する。
【0056】
したがって、装置105には、長いホールドタイムを必要とする外部装置と、そうでない外部装置とのいずれをも接続することが可能である。すなわち、外部装置の特性に応じて、ホールドタイムを選択することが可能である。
【0057】
図15は、選択回路41の内部構成の一例を示す回路図である。この例では、選択回路41は、論理積回路42,43、論理和回路44、および、インバータ45を備えている。論理積回路42は、制御信号CNTLと選択信号SELの論理積を出力する。論理積回路43は、制御信号WRと、インバータ45で得られる選択信号SELの反転信号との論理積を出力する。
【0058】
論理和回路44は、論理積回路42と43の出力の論理和を、制御信号としてトライステートバッファ22へ伝送する。したがって、選択信号SELがハイレベルであれば、論理和回路44からは制御信号CNTLが出力され、逆に、ロウレベルであれば、制御信号WRが出力される。
【0059】
上記のように、CPU1に備わるレジスタ39(図13)に一時的に格納された信号が、選択信号SELとしてデータ伝送制御回路40へ伝えられる。このため、CPU1の動作を規定するプログラムを変更することによって、選択信号SELを自在に変更することが可能である。
【0060】
これに対して、図示を略するが、外部へ露出する端子を通じて、選択信号SELを、外部からデータ伝送制御回路40へ直接に入力できるように、装置105を構成することも可能である。そのためには、端子4〜8とは別に、もう一つの端子を装置105へ追加し、選択信号SELをCPU1からデータ伝送制御回路40へ伝送する経路を、追加された端子からデータ伝送制御回路40へ選択信号SELを伝送する経路へ、置き換えると良い。
【0061】
また、データ信号DI,DEの伝送経路、すなわち、データバスを、複数に拡張し、それぞれに、データ伝送制御回路40を介挿することも可能である。それによって、複数のデータバスを通じて伝送される複数のデータ信号DEを、それぞれ受信する複数の外部装置の特性に応じたホールドタイムを、データバスごとに選択することが可能となる。
【0062】
<4. 実施の形態4>
図16は、実施の形態4の半導体装置の構成を示すブロック図である。この装置106は、データ伝送制御回路2が、外部装置からCPU1へと伝送されるデータ信号DE,DI、すなわち、入力データ信号を、遅延させて中継する点において、装置101(図1)とは特徴的に異なっている。このように、データ伝送制御回路2は、一般に、CPU1と外部装置との間のデータ信号の伝送、すなわち、データ信号の入力と出力のいずれをも、制御可能である。
【0063】
CPU1は、入力データ信号を受信する際に、データ信号DEの出力を外部装置へ指示するための制御信号RD、すなわち、リードイネーブル信号を出力する。制御信号RDは、端子51を通じて、データ信号DEを出力する外部装置へ伝送される。外部装置は、制御信号RDに同期してデータ信号DEを出力する。制御信号RDは、CPU1によって生成されるので、内部クロック信号Iclkに同期する。したがって、データ信号DEも、内部クロック信号Iclkに同期して外部装置から出力される。
【0064】
図17は、データ伝送制御回路2の内部構成を示すブロック図である。図17が示すように、データ伝送制御回路2は、図2のデータ伝送制御回路2と同一に構成される。ただし、データ信号DIの代わりにデータ信号DEが入力され、データ信号DEの代わりにデータ信号DIが出力されている。すなわち、図2と図17の例では、データ信号DIとデータ信号DEとが、互いに置き換えられている。
【0065】
図18は、図17が示すデータ伝送制御回路2の動作を説明するタイミングチャートである。CPU1は、内部クロック信号Iclkが立ち上がる時刻t1から、2周期後の立ち上がり時刻t6にわたって、制御信号RDをアクティブにする。外部装置は、それに応答して、時刻t1に、データ信号DIとして、値「Y」の出力を開始し、時刻t6に、出力を終了する。遅延クロック信号Dclkに同期して動作するデータ保持回路21は、データ信号DHを、データ信号DIよりも、遅延時間DTだけ遅らせて出力する。
【0066】
バッファ制御回路23には、図2のバッファ制御回路23と同様に、遅延クロック信号Dclkおよび制御信号CSが入力される。この場合、制御信号ALEと制御信号RWT*とを含む制御信号CSは、外部装置からのデータ信号DEの出力の開始と終了とを通知する2ビットの信号に相当する。その結果、バッファ制御回路23は、CPU1が制御信号RDを出力する期間よりも遅延時間DTだけ遅れた期間、すなわち、時刻t2〜t7にわたって、制御信号CNTLをアクティブにする。したがって、トライステートバッファ22は、データ信号DEよりも遅延時間DTだけ遅延させて、値「Y」をデータ信号DIとして出力する。
【0067】
このようにして、外部装置が出力したデータ信号DEが、遅延時間DTだけ遅延して、データ信号DIとしてCPU1へ入力される。したがって、CPU1は、遅延時間DTに相当するホールドタイムを確保することができる。このため、データ信号DEのホールドタイムを十分に長く必要とするCPU1を、装置106へ組み込むことが可能となる。装置106は、CPU1として動作速度の遅い安価なCPUを用い、動作速度の速い最新鋭の外部装置を接続するときに、特に、利点を発揮する。
【0068】
【発明の効果】
第1の発明の装置では、データ伝送制御回路が、CPUと外部装置との間で伝送されるデータ信号を、遅延して中継するので、データ信号に対するホールドタイムを確保することができる。しかも、外部に露出する端子に遅延回路が接続可能であるために、半導体装置が製品として完成した後に、使用条件に応じて、様々な遅延時間を任意に設定することが可能である。
【0069】
さらに、第1の発明の装置では、データ伝送制御回路が、データ保持回路と、トライステートバッファと、バッファ制御回路とによって、最も簡単に構成される。
【0070】
の発明の装置では、トライステートバッファが、選択回路を通じて、二種類の制御信号のいずれかによって、選択的に制御されるので、接続される外部装置の特性に応じて、ホールドタイムを選択することが可能である。
【0071】
の発明の装置では、ホールドタイムの異なる二系統のデータ信号の伝送経路が備わるので、ホールドタイムに関して特性の異なる外部装置を接続することが可能であり、それらを同時に接続することも可能である。
【0072】
の発明の装置では、遅延回路がすでに備わるので、使用に際して、新たに遅延回路を付加する必要がない。また、遅延時間が、内部クロックの1周期よりも短く設定されるので、CPUと外部装置との間で、誤ったデータ信号が伝送される恐れがない。
【図面の簡単な説明】
【図1】 実施の形態1の装置のブロック図である。
【図2】 図1のデータ伝送制御回路のブロック図である。
【図3】 図2のデータ伝送制御回路のタイミングチャートである。
【図4】 図2のバッファ制御回路の回路図である。
【図5】 図4のバッファ制御回路のタイミングチャートである。
【図6】 図4のS/Rフリップフロップの回路図である。
【図7】 図2のデータ保持回路の回路図である。
【図8】 図1の遅延回路の回路図である。
【図9】 図8の遅延回路のタイミングチャートである。
【図10】 実施の形態1の別の装置例のブロック図である。
【図11】 実施の形態1のさらに別の装置例のブロック図である。
【図12】 実施の形態2の装置のブロック図である。
【図13】 実施の形態3の装置のブロック図である。
【図14】 図13のデータ伝送制御回路のブロック図である。
【図15】 図14の選択回路の回路図である。
【図16】 実施の形態4の装置のブロック図である。
【図17】 図16のデータ伝送制御回路のブロック図である。
【図18】 図17のデータ伝送制御回路のタイミングチャートである。
【図19】 従来の装置のブロック図である。
【図20】 図19の装置のタイミングチャートである。
【符号の説明】
1 CPU、2 データ伝送制御回路、6 端子、10 遅延回路、21 データ保持回路、22,38 トライステートバッファ、23 バッファ制御回路、CS,CNTL,WR2 制御信号、Dclk 遅延クロック信号、DI,DE,DH,DE1,DI1,DI2,DE2 データ信号、DT 遅延時間、Iclk 内部クロック信号、SEL 選択信号。

Claims (4)

  1. 内部クロック信号に同期して動作するCPUと、
    前記内部クロック信号を所定の遅延時間だけ遅延させ、遅延クロック信号として出力する遅延回路を、接続可能なように外部に露出した端子と、
    前記CPUと外部装置との間で伝送されるデータ信号を、前記端子を通じて供給される前記遅延クロック信号にもとづいて、前記遅延時間だけ遅延して中継するデータ伝送制御回路と、を備え、
    前記データ伝送制御回路が、データ保持回路と、トライステートバッファと、バッファ制御回路と、を備え、
    前記データ保持回路は、前記データ伝送制御回路へ入力された前記データ信号を、前記遅延クロック信号に同期して保持し、
    前記バッファ制御回路は、前記内部クロック信号に同期して前記CPUから送られ前記データ信号の伝送の開始と終了とを通知する制御信号と、前記遅延クロック信号とにもとづいて、前記データ信号が入力される期間よりも前記遅延時間だけ遅延した期間にわたって、アクティブの制御信号を出力し、
    前記トライステートバッファは、前記データ保持回路が保持する前記データ信号を、前記バッファ制御回路が出力する前記制御信号がアクティブであるときに限って、前記データ伝送制御回路の外へ出力する、
    半導体装置。
  2. 前記データ伝送制御回路が、前記バッファ制御回路と前記トライステートバッファとの間に介挿される選択回路を、さらに備え、
    前記選択回路は、選択信号にもとづいて、前記バッファ制御回路が出力する制御信号と、前記CPUが前記データ信号の伝送を前記外部装置へ通知する制御信号とのいずれかを選択して、前記トライステートバッファへ伝える請求項1に記載の半導体装置
  3. 前記CPUと別の外部装置との間での別のデータ信号の伝送を中継するトライステートバッファを、さらに備え、
    当該トライステートバッファは、前記CPUが前記別のデータ信号の伝送を前記別の外部装置へ通知する制御信号がアクティブであるときに限って、前記別のデータ信号を通過させる請求項1に記載の半導体装置
  4. 前記遅延回路を、さらに備え、
    当該遅延回路は、前記端子に接続されており、前記遅延時間が、前記内部クロック信号の1周期よりも短く設定されている請求項1ないし請求項3のうち、いずれか1項に記載の半導体装置
JP28768098A 1998-10-09 1998-10-09 半導体装置 Expired - Fee Related JP4119017B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP28768098A JP4119017B2 (ja) 1998-10-09 1998-10-09 半導体装置
US09/247,508 US6345365B1 (en) 1998-10-09 1999-02-10 Semiconductor device with an external delay circuit that delays an internal clock

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28768098A JP4119017B2 (ja) 1998-10-09 1998-10-09 半導体装置

Publications (2)

Publication Number Publication Date
JP2000112563A JP2000112563A (ja) 2000-04-21
JP4119017B2 true JP4119017B2 (ja) 2008-07-16

Family

ID=17720343

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28768098A Expired - Fee Related JP4119017B2 (ja) 1998-10-09 1998-10-09 半導体装置

Country Status (2)

Country Link
US (1) US6345365B1 (ja)
JP (1) JP4119017B2 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7017086B2 (en) * 2002-06-18 2006-03-21 Sun Microsystems, Inc. Round-robin updating for high speed I/O parallel interfaces
US7062688B2 (en) * 2002-07-16 2006-06-13 Sun Microsystems, Inc. Updating high speed parallel I/O interfaces based on counters
US7043379B2 (en) * 2002-10-22 2006-05-09 Sun Microsystems, Inc. Method for quantifying I/O chip/package resonance
US7043683B2 (en) * 2003-02-07 2006-05-09 Sun Microsystems, Inc. Data transmission update technique in low power modes
JP4576862B2 (ja) * 2004-03-22 2010-11-10 株式会社デンソー 集積回路装置
US20080191797A1 (en) * 2007-02-08 2008-08-14 Mediatek Inc. High pass filter circuit with low corner frequency
JP2011130319A (ja) * 2009-12-21 2011-06-30 Renesas Electronics Corp 半導体装置
CN112711296B (zh) * 2020-12-25 2023-07-21 北京航天测控技术有限公司 一种校准系统

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01265351A (ja) 1988-04-18 1989-10-23 Matsushita Electric Ind Co Ltd Mpuシステム
JPH1091270A (ja) * 1996-09-13 1998-04-10 Sanyo Electric Co Ltd クロック制御方法およびその方法を用いた集積回路素子
US6269451B1 (en) * 1998-02-27 2001-07-31 Micron Technology, Inc. Method and apparatus for adjusting data timing by delaying clock signal

Also Published As

Publication number Publication date
JP2000112563A (ja) 2000-04-21
US6345365B1 (en) 2002-02-05

Similar Documents

Publication Publication Date Title
US5542083A (en) Information processor and information processing system utilizing clock signal
JP3553988B2 (ja) 同期ディジタル論理回路
JP3560997B2 (ja) マイクロプロセッサ回路
EP0825513A2 (en) Clock distribution in a large scale integrated circuit
KR920003446B1 (ko) 단일 출력단에서 정부 펄스를 발생하는 출력회로
US20090121756A1 (en) Pseudo-synchronous small register designs with very low power consumption and methods to implement
JP4119017B2 (ja) 半導体装置
JP2000324135A (ja) 信号切り替え回路及び信号切り替え方法
JP3878320B2 (ja) 出力回路、パルス幅変調回路および半導体集積回路
TW437169B (en) Reset circuit for flip-flop
JP3567601B2 (ja) 入出力バッファ回路及び出力バッファ回路
US5767701A (en) Synchronous contention prevention logic for bi-directional signals
US7073078B2 (en) Power control unit that provides one of a plurality of voltages on a common power rail
JPH022416A (ja) 分布プリチヤージ・ワイヤor母線
JPH0585082B2 (ja)
JP2008535305A (ja) 非同期遅延を実現する電子回路
EP0183582A1 (en) Clock buffer circuit with non-saturated pull-up transistor to avoid hot electron effects
JP2845251B2 (ja) 集積回路装置
JPH0962649A (ja) 信号入出力回路
US7010072B2 (en) Aligned clock forwarding scheme
US5502407A (en) Low-power-dissipation CMOS circuits
JPH0232786B2 (ja)
JP3727670B2 (ja) マイクロコントローラ
KR19990005459A (ko) 플립 플롭 회로
US5648737A (en) Method of setting the polarity of a digital signal, and integrated circuits implementing the method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071227

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20071227

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080222

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080404

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080422

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080424

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110502

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110502

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110502

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120502

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120502

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130502

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140502

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees