JP4118784B2 - 排気ガス浄化装置の劣化診断装置 - Google Patents

排気ガス浄化装置の劣化診断装置 Download PDF

Info

Publication number
JP4118784B2
JP4118784B2 JP2003370551A JP2003370551A JP4118784B2 JP 4118784 B2 JP4118784 B2 JP 4118784B2 JP 2003370551 A JP2003370551 A JP 2003370551A JP 2003370551 A JP2003370551 A JP 2003370551A JP 4118784 B2 JP4118784 B2 JP 4118784B2
Authority
JP
Japan
Prior art keywords
exhaust gas
purification device
gas purification
catalyst
deterioration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003370551A
Other languages
English (en)
Other versions
JP2005133639A (ja
Inventor
秀隆 牧
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2003370551A priority Critical patent/JP4118784B2/ja
Priority to CNB2004100852879A priority patent/CN100419229C/zh
Priority to EP04025226A priority patent/EP1548256B1/en
Priority to DE602004004990T priority patent/DE602004004990T2/de
Priority to US10/972,776 priority patent/US8590289B2/en
Priority to CA2486221A priority patent/CA2486221C/en
Publication of JP2005133639A publication Critical patent/JP2005133639A/ja
Application granted granted Critical
Publication of JP4118784B2 publication Critical patent/JP4118784B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1454Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N11/00Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity
    • F01N11/007Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity the diagnostic devices measuring oxygen or air concentration downstream of the exhaust apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1454Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio
    • F02D41/1456Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio with sensor output signal being linear or quasi-linear with the concentration of oxygen
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Description

本発明は、内燃機関の排気通路内に設けられる排気ガス浄化装置の劣化の有無を判別する装置に関する。
車両の内燃機関の排気通路には、内燃機関からの排気ガスを浄化するための排気ガス浄化装置(触媒)が設けられている。触媒は、内燃機関から排出される3つの主要な汚染物質である炭化水素HC、窒素酸化物NOx、および一酸化炭素COを酸化または還元することにより浄化する。
しかしながら、触媒は使用時間が増えるにしたがって触媒有効表面積が減少して劣化を生ずる。劣化の状態が進むと上述の汚染物質の浄化が進まず、大気中に放出する汚染物質の割合を増やしてしまい、環境に悪影響を及ぼすこととなる。
したがって、触媒の劣化状況を把握することは排気ガスの浄化において重要である。このような触媒の劣化状況を診断する手法として、いくつかの技術が開示されている。特許文献1には、空燃比を振動的に変化させ、酸素センサの出力信号を使用して触媒コンバータの効率を評価する手法が開示されている。特許文献2には、フューエルカットなどで燃料にステップ状の変化を与えたときの、触媒下流の排気ガスセンサの応答時間によって触媒の応答性を評価する手法が開示されている。
一方、特許文献3では、触媒の下流側に設けられた空燃比センサの出力と、該出力のフィルタ値とを比較し、この比較結果に基づいて触媒の劣化を判定する手法が開示されている。また、特許文献4では、触媒の上流側のセンサ値と下流側のセンサ値の位相差に基づいて触媒の劣化を判定する手法が開示されている。
特表2001−522015号公報 特開平7−269330号公報 特許2,938,288号公報 特許3,216,067号公報
特許文献1に記載の手法は、センサ出力からフィルタリング後の出力を減算した残余信号における高周波成分の減衰に基づいて触媒の性能を判断している。しかしながら、この手法において、残余信号の正値信号のみに基づいて性能判断を行うこととしているため正確性に欠けるという問題があった。現在では、排気ガス規制の強化に対応するために、排気ガス浄化装置の劣化状態をより精度良く検知する必要性が高まっている。
また、特許文献2に記載の手法では、燃料をステップ状に変化させたときの応答時間に基づいて触媒の劣化状態を判定している。しかしながら、触媒がストレージしているO量など、そのときの触媒の状態によって応答時間が変化してしまうことがある。さらに、過渡運転による空燃比スパイクなどの影響によっても応答時間が変化し、検知精度を悪化させるという問題を有していた。
従って、本発明は、より精度良く触媒の劣化の有無を評価でき、さらに評価時における触媒状態の影響を受けにくい触媒の評価手法を提供することを目的とする。
本発明の排気ガス浄化装置の劣化判別装置は、発明の一形態(請求項1)によると、排気ガス浄化装置の下流側に設けられた排気ガスセンサのセンサ値に基づいて、排気通路内に設置された前記排気ガス浄化装置の劣化状態を診断する排気ガス浄化装置の劣化診断装置であって、特定の周波数成分を有する検知用信号を発生し、該検知用信号を基本燃料噴射量に乗算して燃料噴射量を算出する検知用信号発生手段と、前記燃料噴射量に対する前記内燃機関の排気ガスセンサの出力から前記検知用信号に対応する周波数応答を抽出し、該周波数応答に基づいて前記排気ガス浄化装置の状態を判定する排気ガス浄化装置評価手段と、を備える。この発明によると、特定の周波数の検知用信号を乗じた燃料供給を行うので、排気ガス中に含まれる特定の検知用周波数成分の割合を多く保つことができる。そしてこの状態で、排気ガスセンサの出力の前記周波数における周波数応答に基づいて排気ガス浄化装置の状態を診断することができるため、容易に排気ガス中に含まれるノイズ成分の割合を減少させることができ、排気ガス浄化装置の劣化判別精度を向上させることができる。
また、この発明のもう一つの形態(請求項2)による排気ガス浄化装置の劣化判別装置において、前記基本燃料噴射量に乗ずる前記検知用信号は、所定のオフセット値に単一の三角関数波、または少なくとも2つ以上の三角関数波からなる合成波を加算した信号である。この発明によると、生成が容易な信号を用い、検知用の周波数成分の割合を十分に多く、さらに排気ガス中の検知用周波数成分の大きさを保ちつつ、特定周波数の応答を評価に用いることができるため、排気ガス浄化装置の劣化検知精度をより向上させることができる。そして、特に検知が困難な運転領域などでは、周波数が異なる2以上の三角関数波の合成波を与え、2つ以上の周波数の応答を排気ガス浄化装置の状態の判定に用いることができる。さらに、排気ガス浄化装置の状態を判定しやすい所望の特定波形になるように三角関数波を合成し、燃料噴射量に反映させることができるため、排気ガス浄化装置の劣化判別精度をより向上させることができる。
また、この発明のもう一つの形態(請求項3)による排気ガス浄化装置の劣化判別装置において、前記排気ガス浄化装置評価手段は、前記排気ガス浄化装置の状態の判定を、前記燃料噴射量の供給後から所定時間経過後に行う。これにより、検知用信号が燃料に反映された直後である排気ガス空燃比の安定しない状態を回避して、排気ガス浄化装置の状態の判定を安定化できるので、排気ガス浄化装置の劣化検知精度をより向上させることができる。
また、この発明のもう一つの形態(請求項4)による排気ガス浄化装置の劣化判別装置において、前記排気ガス浄化装置評価手段は、バンドパスフィルタリング後の排気ガスセンサからの出力を用いて前記排気ガス浄化装置の状態を判定する。この発明によると、排気ガスに含まれる、検知用周波数以外の周波数成分、すなわち排気ガス浄化装置の状態を判定する際にノイズとなる成分を除去することができるので、排気ガス浄化装置の劣化判別精度をより向上させることができる。
また、この発明のもう一つの形態(請求項5)による排気ガス浄化装置の劣化判別装置において、前記排気ガス浄化装置評価手段は、排気ガスセンサからの出力をバンドパスフィルタに通し、該バンドパスフィルタに通した出力の絶対値を積分またはなまし計算した値が所定値を上回るときに前記排気ガス浄化装置の状態を故障と判定する。この発明によると、排気ガスセンサからの出力の変動を平均化させることができるため、排気ガス浄化装置の劣化判別精度をより向上させることができる。
また、この発明のもう一つの形態(請求項6)による排気ガス浄化装置の劣化判別装置において、排気通路の排気ガス浄化装置の上流側における第2の排気ガスセンサと、少なくとも前記第2の排気ガスセンサの出力に基づいて、前記内燃機関に供給する空燃比を所定値に制御する空燃比制御手段と、をさらに備え、前記燃料噴射量が前記第2の排気ガスセンサの出力に基づいて決定されたフィードバック係数に基づいて補正される。この発明によると、燃料噴射量を補正して、検知用信号を燃料噴射量に与えることにより生じる、リーンまたはリッチへのドリフトを抑制することができるため、本検知手法によって生じる触媒浄化率の低下を抑制しつつ触媒の劣化検知精度を保つことができる。
また、この発明のもう一つの形態(請求項7)による排気ガス浄化装置の劣化判別装置において、前記空燃比制御手段は、前記燃料噴射量を前記内燃機関に供給するときに、前記空燃比の制御を停止、またはフィードバック係数の変化速度を遅くするように該空燃比制御手段におけるパラメータを変更する。この発明によると、燃料噴射料を補正して、検知用信号を燃料噴射量に与えることにより生じる、リーンまたはリッチへのドリフトを抑制することができるため、本劣化判別手法によって生じる触媒浄化率の低下を抑制し、排気ガス中の有害成分の排出量が増加するのを防止したまま判別精度を保つことができる。
1.機能ブロックの説明
図1乃至図2を参照しつつ各機能ブロックについて説明する。図1は、この発明の概念を説明するための全体的な構成を示すブロック図である。
検知用信号発生部101は、オフセット値IDOFTに三角関数波FDSINなどを重ね合わせた所定の検知用信号KIDSINを発生する機能を有する。応答性評価部105は、触媒後排気ガスセンサ103からの出力を、バンドパスフィルタリングし、この値を絶対値へと変換し、さらに変換した値を所定の周期間にわたって積分し、触媒評価部へ送信する機能を有する。なお、触媒後排気ガスセンサ103の出力は、例えば、リニアAF(LAF)センサ出力である当量比KACTであってもよいし、酸素センサ出力の電圧SVO2、またはハイドロカーボンセンサや窒素酸化物センサなどでもよいが、ここでは酸素センサ出力電圧SVO2を用いて説明する。
触媒評価部は、これらの値に基づいて触媒の劣化を判定する機能を有する。これら触媒評価部、検知用信号発生部101、および応答性評価部105は、ECU(電子制御ユニット)において実現することができるため、これら各部の動作は後のECUの説明および触媒劣化診断プロセスにおいて詳述することとする。
内燃機関102は、燃料量計算部の演算値にもとづいてインジェクション・コントローラによって燃料噴射量が制御されることが可能な内燃機関である。
触媒前排気ガスセンサ109は、ここでは例としてLAFセンサ(広域空燃比センサ)であり、エンジン102から排出される排気ガスに対して、リーンからリッチにわたる広範囲の空燃比を検出し、当量比KACTを発生するセンサである。
フィードバック補償器104は、LAFセンサ109からの出力値に基づいて、空燃比を適正に保つようにフィードバック係数KAFを発生する機能を有する。
上述のこれら触媒評価部、検知用信号発生部101、および応答性評価部105の機能は、図2に示すECUによって統合的に実現することができる。図2は、電子制御ユニット(ECU)200の全体的なブロック図である。ECUは、触媒劣化診断専用のECUを設けることとしてもよいが、本実施形態では、燃料量計算部206などを含むエンジン系統を制御する通常のECUに、触媒評価部203、検知用信号発生部202および応答性評価部204の機能を組み込んでいる。ECU200は、演算を実行するプロセッサ、各種データを一時記憶する記憶領域およびプロセッサによる演算の作業領域を提供するランダム・アクセス・メモリ(RAM)、プロセッサが実行するプログラムおよび演算に使用する各種のデータが予め格納されている読み出し専用メモリ(ROM)、およびプロセッサによる演算の結果およびエンジン系統の各部から得られたデータのうち保存しておくものを格納する書き換え可能な不揮発性メモリを備えている。不揮発性メモリは、システム停止後も常時電圧供給されるバックアップ機能付きRAMで実現することができる。
入力インタフェース201は、ECU200とエンジン系統の各部とのインタフェース部であり、エンジン系統の様々な箇所から送られてくる車両の運転状態を示す情報を受け取って信号処理を行い、アナログ情報はデジタル信号に変換し、これらを燃料量計算部206、触媒評価部203、および応答性評価部204に渡す。図2では、触媒後排気ガスセンサ103の出力電圧SVO2、LAFセンサ109から出力されるKACT値、車速V、エンジン回転数Ne、およびエンジン負荷Wが示されているが、これに限定されるものではなく、その他種々の情報が入力される。
検知用信号発生部202は、触媒評価部203からの指令に基づいて、オフセット値IDOFTに三角関数波FDSINなどを加算した所定の検知用信号KIDSINを発生させる機能を有する。この、検知用信号KIDSINについては、触媒劣化診断プロセスにおいて詳述する。
触媒評価部203は、入力インタフェース201から渡されるデータに基づいて、後述の触媒劣化診断プロセスを実行すべく演算および条件判断を行い、さらに、検知用信号制御部202および応答性評価部204を制御する。
応答性評価部204は、触媒評価部203からの指令を受けて、触媒後排気ガスセンサ103からの出力SVO2を、バンドパスフィルタリングし、この値を絶対値へと変換し、さらに変換した値を所定の周期間にわたって積分する機能を有する。これらの機能については、触媒劣化診断プロセスにおいて詳述する。
燃料量計算部206は、検知用信号発生部202で演算した上記検知用信号KIDSINを受け取り、基本燃料噴射量に乗算を行って、出力インタフェース205に燃料噴射量INJを渡す機能を有する。
出力インタフェース205は内燃機関のインジェクションへ燃料噴射量INJを渡す機能を有する。また、出力インタフェース205は、触媒評価部203からの制御信号を受け取り、故障ランプへの出力を行う。しかしながらこれらに限定するものではなく出力インタフェース205には、他のコントローラ等を接続することもできる。
2.触媒劣化診断プロセスの説明
次に、触媒110の劣化故障を診断する触媒劣化診断プロセスについて説明する。
図3において、メインプログラムから、触媒劣化診断プロセスが呼び出されると、触媒評価部203は、触媒評価済みフラグを参照(S301)し、触媒が既に劣化の有無の評価済みであるか否かを判定する。ここでは、まだ触媒は評価されておらず、触媒評価済みフラグは0に設定されているため、触媒評価部203は、プロセスをS302へと進める。
次に触媒評価部203は、触媒後排気ガスセンサ103が活性済みであるか否かを判定する(S302)。ここで、エンジン始動から間もない場合には、触媒後排気ガスセンサ103は活性化していない。したがって、エンジン始動後所定の時間が経過していない場合では、触媒評価部203は、プロセスをS314へと進める。プロセスをS314へと進めると、触媒評価部203は、検知用信号発生部202に指令を送り、検知用信号発生部202にてIDOFTを定数1.0、FDSINを定数0に設定して、これらを加算した合成信号であるKIDSINを生成させる(この場合、KIDSINは1.0となる)。ここで、KIDSINとは、基本燃料噴射量に乗じて、実際のインジェクションに燃料噴射させる燃料噴射量を出力させるための係数である。よって、このようにKIDSINが1.0ときは、通常の運転時の基本燃料噴射量がインジェクションから噴射されることになる。
次に、触媒評価部203は、積分開始タイマーTM_SVO2FDに所定の時間をセットし、積分開始タイマーTM_SVO2FDのカウントダウンを開始する(S315)。ここで、積分開始タイマーTM_SVO2FDにセットされる所定の時間は、触媒評価を行う条件が成立して検知用信号が反映された燃料噴射が行われるようになってから、エンジンから検知用信号が反映された燃料噴射に対する応答が安定して出力されるまでの時間である。このように、所定時間経過後から後述する積分を開始するようにタイマーをセットすることで、検知用信号が燃料に反映された直後の安定しない出力状態を回避して応答を評価することができるため、評価精度を向上させることができる。
積分開始タイマーTM_SVO2FDにタイマー設定すると、触媒評価部203は、次に、積分期間タイマーTM_CATDETに所定の時間をセットし、カウントダウンを開始する(S316)。ここで、積分期間タイマーTM_CATDETに設定する時間は、触媒の劣化を判定するために、後に出力の絶対値を積分するための積分時間である。積分期間タイマーTM_CATDETに時間をセットすると、触媒評価部203は、触媒評価済みフラグを0にリセットして(S317)、本プロセスを終了する。
上述のプロセス終了後、メインプログラムにより再び触媒劣化診断プロセスが呼び出される。前述のプロセスにより触媒評価済みフラグがリセットされ、さらにエンジン始動後所定の時間が経過することによって触媒後排気ガスセンサ103が活性済みになると、触媒評価部203は、プロセスをS301からS303へと進め、評価条件が成立しているか否かを判定する。ここで、評価条件とは、車速V、エンジン回転数Ne、およびエンジン負荷Wが所定範囲内にある状態をいう。よって、触媒評価部203は、入力インタフェース201を介して、車速V、エンジン回転数Ne、およびエンジン負荷Wを取得し、これらのすべてが所定の範囲内にあるか否かを判定する。評価条件が満たされていない場合、触媒評価部203は、プロセスをS314へと進める。S314以降の動作は、上述したものと同様であるから説明を省略する。
一方、上述の評価条件がすべて満たされた場合、触媒評価部203は、検知用信号発生部202に対して三角関数波等を含んだ検知用信号KIDSINの算出要求を送信する。検知用信号KIDSINの算出要求が送信されると、検知用信号発生部は、まず周波数fid(ここでは3Hzを使用する)、振幅aid(ここでは0.03とする)の正弦波FDSINを発生させる。そして、発生させた正弦波FDSINにオフセット量IDOFT(ここでは1.0とする)を加算したKIDSIN(ここでは、1.0+0.03*sin 6πt)を作成する(S304)。そして、この正弦波を含んだ検知用信号KIDSINを継続的に燃料量計算部206に送信する。検知用信号KIDSINが送信されると、燃料量計算部206は、検知用信号KIDSINに基本燃料噴射量を乗じ、燃料噴射量INJを算出する。そして、この燃料噴射量INJは、出力インタフェース205を介してエンジン102のインジェクションに入力される。エンジンが燃料噴射量INJで運転すると、入力である燃料噴射量INJに応じた出力である排気ガスがエンジンの排気系から排出される。そして、触媒後排気ガスセンサ103は、触媒後の排気ガスを検知し、そのセンサ出力SVO2を入力インタフェース201を介して、応答性評価部204に入力する。センサ出力SVO2が入力されると、応答性評価部204は、下の式にSVO2を代入してバンドパスフィルタリング済みの出力SVO2_Fを算出する(S305)。
SVO2_F(k)=a1 SVO2_F(k-1)+a2 SVO2_F(k-2)+a3 SVO2_F(k-3)
+b0 SVO2(k)+b1 SVO2(k-1)+b2 SVO2(k-2)+b3 SVO2(k-3)
a1,a2,a3,b0,b1,b2,b3:フィルタ係数
ここで、バンドパスフィルタ周波数特性は、図4に示すような検知用信号周波数と同じ3Hzを通過させるフィルタである。
そして、フィルタリング済出力SVO2_F値を算出すると(図5)、応答性評価部204は、フィルタリング済出力SVO2_Fから絶対値に変換した絶対値出力SVO2_FAを算出(S306)する。触媒評価部203は、絶対値出力SVO2_FA算出終了の通知を応答性評価部204から受け取ると、積分開始タイマーTM_SVO2FDが0であるか否かを判定する(S307)。ここで、タイマーTM_SVO2FDが0ではない場合、触媒評価部203は、プロセスをS316へと進める。S316以降のプロセスは前述の動作と同様であるため説明を省略する。一方、積分開始タイマーTM_SVO2FDが0の場合、触媒評価部203は、応答性評価部204にタイマー条件がクリアされていることを通知し、応答性評価部204では、それを受けてSVO2_FAの積分値CAT_DLYPの逐次算出を開始する(S308)。すなわち、本プロセスが呼び出されプロセスS308を実行するたび、絶対値SVO2_FAに微小時間Δtを乗じた値を前回までに積分した値に加算することで積分が行われることとなる。横軸を連続的な時間に取った積分値CAT_DLYPの計算例を図6に示す。
次に、触媒評価部203は、応答性評価部204で積分値CAT_DLYPの計算を行うと、積分期間タイマーTM_CATDETが0であるか否かを判定する(S309)。ここで、積分期間タイマーTM_CATDETが0ではない場合は、プロセスをS317へと進める。S317以降のプロセスは前述と同様であるため説明を省略する。一方、積分期間タイマーTM_CATDETが0である場合、算出した積分値CAT_DLYPのその時点の値を触媒評価部203に送信し、プロセスをS310へと進める。そしてS310において、触媒評価部203は、積分値CAT_DLYPが所定値CAT_DLYP_OK以下であるか否かを判定する。ここで、判定値CAT_DLYP_OKは、積分値CAT_DLYPに基づいて触媒が劣化しているか否かを判定するためのしきい値である。
積分値CAT_DLYPが判定値CAT_DLYP_OK値以下である場合、触媒評価部203は、触媒は劣化を生じていないと判定して、触媒評価済みフラグを1にセットして(S311)本プロセスを終了する。
一方、積分値CAT_DLYPが判定値CAT_DLYP_OK値以下ではない場合、触媒評価部203は、触媒が劣化を生じていると判定して、出力インタフェース205を介して触媒異常記録故障ランプを点灯させる(S312)。そして、触媒評価済みフラグを1にセットして(S313)、本プロセスを終了する。
代替の劣化状態の判定方法として、S308において算出した積分値CAT_DLYP値に基づいて触媒の劣化状態を判定せずに、図7に示すように積分値出力SVO2_FA値の平滑平均値を算出するようになまし計算を行い、なまし計算値CAT_AVEに基づいて触媒の劣化故障を判定することもできる。たとえば、なまし計算値CAT_AVEを計算する式は以下のようになる。
CAT_AVE=(1-c1)・SVO2_FAi-1+C1・SVO2_FAi
ここで、c1は、なまし係数
この場合、S310において、触媒評価部203は、なまし計算値に対する判定値CAT_AVE_OK以下であるか否かを判定し、CAT_AVE_OK値以下ではない場合、触媒が劣化を生じていると判定する。一方、なまし計算値CAT_AVE値がCAT_AVE_OK以下である場合、触媒が劣化を生じていないと判定する。
本発明によれば、触媒を評価するための正弦波変動などの検知用信号を乗じた燃料噴射量をエンジンに与え、その後の排気ガスセンサ出力に基づいて触媒の劣化の有無を評価する。よって、過渡運転による空燃比変動や、触媒の酸素吸着状態の影響をより受けにくくなる。よって、検知精度を向上させることができるとともに、検知領域を広げることができる。
また、ここでは正弦波を検知用信号として使用したが、単一周波数の三角関数波、矩形波、または三角波のいずれか、もしくは、これら複数の波形を含む合成波としても、同様の効果を有する。いずれの場合も、検知用信号振幅に制限がある場合、所望の単一周波数もしくは複数の所望の周波数のスペクトル成分を大きくすることができ、ノイズに対する検知精度を高めることができる。
さらに、バンドパスフィルタリングを施した出力を用いることにより、上記の検知周波数を一定に保てる効果に加え、検知周波数以外の周波数成分を取り除けることにより、計測の際のノイズ成分を除去できる。特に過渡運転時に生じる空燃比変動などによって生じる他の周波数成分の影響を取り除けることにより、検知精度をより向上することができる。
また、バンドパスフィルタリングを施した出力波形の絶対値の所定期間におけるなまし計算値などの平均値、または積分値に基づいて、触媒の劣化故障判定を行うため、エンジン運転負荷の変動等によって生ずる他の周波数成分単発的な空燃比スパイクなどの影響を触媒劣化検知の評価から排除することができ、劣化故障判定の精度をより向上させることができる。
また必須ではないが、図1および図8に示したように、KACTをフィードバック補償器に入力し、エンジンに供給する空燃比を所定値に制御するようにフィードバック係数KAFを算出し、このKAF値を基本燃料噴射量に対するKIDSIN値の乗算値にさらに乗ずるようにフィードバックをかけることもできる。この場合、ECUを用いた実施形態では、さらにフィードバック補償部(不図示)を設け、燃料量計算部206に接続する構成をとる。
本発明によれば、燃料噴射量が、触媒前排気ガスセンサ出力もしくは触媒後排気ガスセンサ、または両者の出力に基づいて決定されたフィードバック係数に基づいて補正されることにより、検知用信号を燃料噴射量に与えることにより生ずるリーンまたはリッチへのドリフトを抑制することができるため、検知精度を保ったまま、触媒の劣化故障診断中において生ずる触媒浄化率の低下を抑制して、排気ガス中の有害成分の排出量増加を防止することができる。
ところで、上述において通常のLAFフィードバックとの組み合わせについて記載したが、フィードバック系の目標値や補正係数に検知用信号と同じ周波数fid近傍の成分を含む場合において、出力される応答の検知精度が劣り、劣化評価が正確に行われないことがある。これに対する対策として、図9のフィードバック停止判断プロセスに示すように、触媒劣化診断プロセス実行中は、排気ガスセンサの出力に基づいて決定される空燃比フィードバック演算や空燃比フィードバック目標値演算を停止、またはフィードバックの応答を遅くして、フィードバック系がfid近傍の周波数を含まないようにすることにより、この問題を解決することができる。
このフィードバック停止判断プロセスについて説明する。フィードバック停止判断プロセスがメインプログラムから呼び出されると、最初に触媒評価要求があるか否かを触媒評価要求フラグを参照して判定する(S901)。評価要求がない場合には、触媒評価部203は、プロセスをS906へと進め、フィードバック停止タイマーにタイマー時間を設定して、カウントダウンを開始させる。そして、本プロセスを終了する。
次に、再びフィードバック停止判断が呼び出されると、触媒評価部203は、再度触媒評価要求があるか否かを判定する(S901)。ここで、触媒評価要求フラグが1にセットされており評価要求がある場合は、触媒評価部203は、フィードバック補償部に対してフィードバックを停止させる(S902)。そしてS903において、触媒評価部203は、フィードバック停止タイマーが0であるか否かを判定する。ここで、触媒評価要求が出されてから所定の時間を経過しておらず、フィードバック停止タイマーは0ではないため、触媒評価部203はプロセスを終了させる。一方、フィードバック停止タイマーが0の場合、触媒評価部203は、触媒劣化診断プロセスを呼び出す(S904)。そして、呼び出した触媒劣化診断プロセスが終了すると、触媒評価部203は、プロセスをS905へと進め、触媒劣化診断プロセスにおいてセットまたはリセットされた触媒評価済みフラグを参照して、触媒劣化判定が終了したか否かを判定する。ここで触媒劣化判定が終了していない場合には、プロセスを終了する。一方、触媒劣化判定が完了している場合には、触媒評価部203は、プロセスをS907へと進め、フィードバック補償部に対してフィードバックの停止を解除し、再びフィードバックが燃料噴射量INJを補正するようにする。そしてプロセスを終了する。
また、触媒の前後に排気ガスセンサを有するとき、図8のように触媒後空燃比制御アルゴリズムを有するフィードバック目標値演算器、および出力されたフィードバック目標値KCMDと当量比KACTからフィードバック係数KAFを求める適応型触媒前空燃比制御を行うフィードバック補償器を備えることもできる。これらフィードバック目標値演算および適応型触媒前空燃比制御については、既に出願された特開2003−195907号などに記載されているので説明を省略する。
このような制御が行われるときも、フィードバック系の目標値などに検知用信号と同じ周波数fid近傍の成分を含む場合に出力される応答の検知精度が劣ることがある。このときは、次のように下記(1)から(6)の手法をS902の代替として行うことができる。
(1)触媒前排気ガスセンサフィードバックを停止させる。これにより、検知用周波数と同じ周波数成分がフィードバック係数に含まれることを防止し、検知精度の悪化を防ぐことができる。
(2)触媒後排気ガスセンサフィードバック目標値演算を停止することにより、フィードバック目標値に検知用周波数と同じ周波数成分が含まれることを防ぐことができる。したがって、触媒前排気ガスセンサを用るフィードバック係数がその目標値に追従しようとして検知用周波数を生成してしまうことを防止できると共に、触媒前排気ガスセンサを用いるフィードバックによって、空燃比のドリフトを防ぎ、排気ガス成分の増加を防止できる。
(3)上記(1)および(2)両演算停止によって、(1)と同様の効果が得られると共に、触媒前フィードバックが停止している一方で、その目標値を演算しているというECU演算パワーのリソースの無駄な消費を回避することもできる。
(4)触媒前排気ガスセンサフィードバック制御速度を決定するパラメータをフィードバックが遅くなるように変更することによって、フィードバック係数の変化速度を遅くすることができる。したがって、検知用周波数と同じ周波数成分がフィードバック係数に含まれることを防ぐことができるため、検知精度の悪化を防止することができると共に、触媒前排気ガスセンサを用いるフィードバックが動作することにより、フィードバックが停止しているときに比較して空燃比のドリフトを防止でき、排気ガス成分の増加を低減できる。
(5)触媒後排気ガスセンサフィードバック目標値演算制御速度を決定するパラメータを、目標値変化速度が遅くなるように変更することによって、検知用周波数と同じ周波数成分が目標値に含まれることを防止することが可能となる。したがって、触媒前排気ガスセンサを用いるフィードバック係数がその目標値に追従しようとして検知用周波数を生成してしまうことを防止し、検知精度の悪化を防止することができると共に、触媒前排気ガスセンサを用いるフィードバックによって、排気ガス成分の増加を低減できる。
(6)上記(4)および(5)両制御速度を決定するパラメータを制御速度が遅くなるように変更することにより、上記(4)、(5)の効果を併せ持つ。すなわち、検知用周波数と同じ周波数成分がフィードバック係数に含まれることを防止することが可能となるため、検知精度の悪化を防止することができると共に、触媒前排気ガスセンサを用いるフィードバックが動作することにより、フィードバックが停止しているときに比較して空燃比のドリフトを防止でき、排気ガス成分の増加を低減できる。
これらの手法などにより、上述と同様に検知精度悪化の問題を解決することができる。
本発明によれば、触媒の劣化故障判断における応答性評価中に上述の方法を採用することによって、フィードバック係数変化に含まれる検知用信号と同じ周波数fid近傍の成分の影響を除去することができるため、空燃比フィードバックと組み合わせることによる検知精度の悪化を防止し、触媒劣化故障の検知精度を向上させることができる。
この発明の一つの実施形態である触媒劣化判別装置のブロック図。 この発明の一つの実施形態である触媒劣化判別装置で使用するECUの一例を示す図。 本発明の実施形態を表すフローチャート。 本発明で使用するバンドパスフィルタ周波数特性例。 酸素センサ出力SVO2_Fの波形例。 触媒劣化パラメータCAT_DLYPの例。 触媒劣化パラメータCAT_AVEの例。 他のフィードバック係数算出手法を用いた場合の触媒劣化判別装置のブロック図。 フィードバック等を停止させるなどの本実施形態を表すフローチャート。
符号の説明
201 入力インタフェース
202 検知用信号発生部
203 触媒評価部
204 応答性評価部
205 出力インタフェース
206 燃料量計算部

Claims (6)

  1. 排気ガス浄化装置の下流側に設けられた第1の排気ガスセンサのセンサ値に基づいて、内燃機関の排気通路内に設置された前記排気ガス浄化装置の劣化状態を診断する排気ガス浄化装置の劣化診断装置であって、
    特定の周波数成分を有する検知用信号を発生し、該検知用信号を基本燃料噴射量に乗算して燃料噴射量を算出する検知用信号発生手段と、
    前記排気ガス浄化装置の上流側に設けられた第2の排気ガスセンサの出力に基づいて、前記内燃機関の空燃比を所定値に制御するためのフィードバック係数により前記燃料噴射量を補正する手段と、
    前記第1の排気ガスセンサの出力から前記検知用信号に対応する周波数応答を抽出し、該周波数応答に基づいて前記排気ガス浄化装置の状態を判定する排気ガス浄化装置評価手段と、
    を備える排気ガス浄化装置の劣化診断装置。
  2. 前記基本燃料噴射量に乗ずる前記検知用信号は、所定のオフセット値に単一の三角関数波、または少なくとも2つ以上の三角関数波からなる合成波を加算した信号である、請求項1記載の排気ガス浄化装置の劣化診断装置。
  3. 前記排気ガス浄化装置評価手段は、前記排気ガスセンサの状態の判定を、前記燃料噴射量の供給後から所定時間経過後に行う、請求項1記載の排気ガス浄化装置の劣化診断装置。
  4. 前記排気ガス浄化装置評価手段は、バンドパスフィルタリング後の排気ガスセンサからの出力を用いて前記排気ガス浄化装置の状態を判定する、請求項1記載の排気ガス浄化装置の劣化診断装置。
  5. 前記排気ガス浄化装置評価手段は、排気ガスセンサからの出力をバンドパスフィルタに通し、該バンドパスフィルタに通した出力の絶対値を積分またはなまし計算した値が所定値を上回るときに前記排気ガス浄化装置の状態を故障と判定する、請求項1記載の排気ガス浄化装置の診断装置。
  6. 排気ガス浄化装置の下流側に設けられた第1の排気ガスセンサのセンサ値に基づいて、内燃機関の排気通路内に設置された前記排気ガス浄化装置の劣化状態を診断する排気ガス浄化装置の劣化診断方法であって、
    特定の周波数成分を有する検知用信号を発生し、該検知用信号を基本燃料噴射量に乗算して燃料噴射量を算出するステップと、
    前記排気ガス浄化装置の上流側に設けられた第2の排気ガスセンサの出力に基づいて、前記内燃機関の空燃比を所定値に制御するためのフィードバック係数に基づいて前記燃料噴射量を補正するステップと、
    前記第1の排気ガスセンサの出力から前記検知用信号に対応する周波数応答を抽出し、該周波数応答に基づいて前記排気ガス浄化装置の状態を判定するステップと、
    を含む排気ガス浄化装置の劣化診断方法。
JP2003370551A 2003-10-30 2003-10-30 排気ガス浄化装置の劣化診断装置 Expired - Fee Related JP4118784B2 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2003370551A JP4118784B2 (ja) 2003-10-30 2003-10-30 排気ガス浄化装置の劣化診断装置
CNB2004100852879A CN100419229C (zh) 2003-10-30 2004-10-18 排气净化装置的劣化诊断装置
EP04025226A EP1548256B1 (en) 2003-10-30 2004-10-22 A deterioration diagnostic device for an exhaust gas purifier
DE602004004990T DE602004004990T2 (de) 2003-10-30 2004-10-22 Verfahren zur Verschlechterungsfeststellung eines Abgasreinigers
US10/972,776 US8590289B2 (en) 2003-10-30 2004-10-26 Deterioration diagnostic device for an exhaust gas purifier
CA2486221A CA2486221C (en) 2003-10-30 2004-10-28 A deterioration diagnostic device for an exhaust gas purifier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003370551A JP4118784B2 (ja) 2003-10-30 2003-10-30 排気ガス浄化装置の劣化診断装置

Publications (2)

Publication Number Publication Date
JP2005133639A JP2005133639A (ja) 2005-05-26
JP4118784B2 true JP4118784B2 (ja) 2008-07-16

Family

ID=34510404

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003370551A Expired - Fee Related JP4118784B2 (ja) 2003-10-30 2003-10-30 排気ガス浄化装置の劣化診断装置

Country Status (6)

Country Link
US (1) US8590289B2 (ja)
EP (1) EP1548256B1 (ja)
JP (1) JP4118784B2 (ja)
CN (1) CN100419229C (ja)
CA (1) CA2486221C (ja)
DE (1) DE602004004990T2 (ja)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4618220B2 (ja) * 2006-09-05 2011-01-26 株式会社デンソー ガスセンサの組み付け状態検出方法及びガスセンサの組み付け状態検出装置
JP4729518B2 (ja) * 2007-03-07 2011-07-20 トヨタ自動車株式会社 NOx触媒の劣化診断装置
JP4687681B2 (ja) * 2007-03-30 2011-05-25 トヨタ自動車株式会社 内燃機関の触媒劣化判定装置
DE102008042549B4 (de) * 2008-10-01 2018-03-22 Robert Bosch Gmbh Verfahren und Vorrichtung zur Diagnose einer Abgassonde
CN102656344B (zh) * 2010-08-06 2016-04-20 Avl测试系统公司 颗粒物测量系统
EP2694785B1 (en) * 2011-04-05 2018-04-04 Cummins Emission Solutions Inc. System, method, and apparatus for aftertreatment system monitoring
US8925300B2 (en) * 2012-12-17 2015-01-06 Chrysler Group Llc Zero ceria washcoat catalyst monitor
GB2518287A (en) 2014-07-28 2015-03-18 Daimler Ag Method and control assembly for operating an exhaust gas system
KR102237560B1 (ko) * 2017-03-14 2021-04-07 현대자동차주식회사 차량 엔진의 연료 분사량 보상 장치 및 그 방법
JP2019152137A (ja) * 2018-03-02 2019-09-12 トヨタ自動車株式会社 内燃機関の排気浄化装置
JP6881363B2 (ja) * 2018-03-16 2021-06-02 トヨタ自動車株式会社 異常診断装置
JP2020176586A (ja) * 2019-04-22 2020-10-29 トヨタ自動車株式会社 エンジン診断システム及び同エンジン診断システムに用いられる車両及びエンジン診断方法
DE102020100225A1 (de) * 2020-01-08 2021-07-08 Knorr-Bremse Systeme für Nutzfahrzeuge GmbH System und Verfahren zur Fahrzeugkomponentenverhaltensbewertung
JP7211388B2 (ja) * 2020-03-25 2023-01-24 トヨタ自動車株式会社 触媒の再利用評価システム
US11636870B2 (en) 2020-08-20 2023-04-25 Denso International America, Inc. Smoking cessation systems and methods
US12017506B2 (en) 2020-08-20 2024-06-25 Denso International America, Inc. Passenger cabin air control systems and methods
US11760169B2 (en) 2020-08-20 2023-09-19 Denso International America, Inc. Particulate control systems and methods for olfaction sensors
US11881093B2 (en) 2020-08-20 2024-01-23 Denso International America, Inc. Systems and methods for identifying smoking in vehicles
US11828210B2 (en) 2020-08-20 2023-11-28 Denso International America, Inc. Diagnostic systems and methods of vehicles using olfaction
US11813926B2 (en) 2020-08-20 2023-11-14 Denso International America, Inc. Binding agent and olfaction sensor
US11932080B2 (en) 2020-08-20 2024-03-19 Denso International America, Inc. Diagnostic and recirculation control systems and methods
US11760170B2 (en) 2020-08-20 2023-09-19 Denso International America, Inc. Olfaction sensor preservation systems and methods

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5363091A (en) * 1991-08-07 1994-11-08 Ford Motor Company Catalyst monitoring using ego sensors
US5319921A (en) 1992-08-04 1994-06-14 Ford Motor Company Catalytic converter efficiency monitoring
IT1257100B (it) * 1992-09-14 1996-01-05 Fiat Auto Spa Sistema di monitoraggio dell'efficienza di un catalizzatore, particolarmente per autoveicoli.
JP2938288B2 (ja) 1992-10-15 1999-08-23 三菱電機株式会社 内燃機関用触媒劣化検出装置
JP3162524B2 (ja) * 1992-12-29 2001-05-08 本田技研工業株式会社 内燃機関の空燃比制御装置
US5404718A (en) * 1993-09-27 1995-04-11 Ford Motor Company Engine control system
JPH07269330A (ja) 1994-03-30 1995-10-17 Nippon Soken Inc 触媒劣化判定装置
JP3216067B2 (ja) 1994-11-18 2001-10-09 本田技研工業株式会社 内燃機関の触媒劣化検出装置
US6151888A (en) * 1996-06-12 2000-11-28 Robert Bosch Gmbh Method of diagnosing a catalytic converter
JP2900890B2 (ja) * 1996-08-09 1999-06-02 トヨタ自動車株式会社 内燃機関の触媒劣化判別装置
JPH10159630A (ja) * 1996-11-29 1998-06-16 Nissan Motor Co Ltd エンジンの空燃比制御装置
DE19830829C1 (de) * 1998-07-09 1999-04-08 Siemens Ag Verfahren zur Regeneration eines NOx-Speicherkatalysators
JP3992925B2 (ja) * 1998-07-17 2007-10-17 本田技研工業株式会社 排ガス浄化用触媒装置の劣化判別方法
DE10017931A1 (de) * 2000-04-11 2001-12-06 Siemens Ag Verfahren zur Diagnose einer Abgasreinigungsanlage einer lambdageregelten Brennkraftmaschine
US6591605B2 (en) * 2001-06-11 2003-07-15 Ford Global Technologies, Llc System and method for controlling the air / fuel ratio in an internal combustion engine
JP2003193898A (ja) 2001-12-25 2003-07-09 Honda Motor Co Ltd 内燃機関の排気ガス浄化装置の劣化判別装置

Also Published As

Publication number Publication date
DE602004004990T2 (de) 2007-06-28
EP1548256B1 (en) 2007-02-28
CN1611751A (zh) 2005-05-04
US20050138917A1 (en) 2005-06-30
US8590289B2 (en) 2013-11-26
CN100419229C (zh) 2008-09-17
EP1548256A1 (en) 2005-06-29
CA2486221A1 (en) 2005-04-30
DE602004004990D1 (de) 2007-04-12
CA2486221C (en) 2012-12-18
JP2005133639A (ja) 2005-05-26

Similar Documents

Publication Publication Date Title
JP4118784B2 (ja) 排気ガス浄化装置の劣化診断装置
JP4459566B2 (ja) 排気ガスセンサの劣化故障診断装置
JP3957208B2 (ja) 排気ガスセンサの劣化故障診断装置
KR102601397B1 (ko) 질소산화물 저장 촉매 컨버터의 모니터링 방법
JP3667781B2 (ja) エンジンシステムの診断装置
US5272872A (en) Method and apparatus of on-board catalytic converter efficiency monitoring
JP2893308B2 (ja) 内燃機関の空燃比制御装置
JP4686431B2 (ja) 空燃比センサの劣化診断装置
JP6278039B2 (ja) 選択還元型触媒の劣化診断装置
JPH06193437A (ja) 内燃機関からの排気を処理する触媒コンバータの効率を監視する装置および方法
WO1997013058A1 (fr) APPAREIL ET PROCEDE DE DETECTION DE LA DETERIORATION DU CATALYSEUR ANTI-NOx D'UN MOTEUR DIESEL
US10815859B2 (en) Catalyst abnormality diagnostic device and catalyst abnormality diagnostic method
JP6018543B2 (ja) 内燃機関における触媒の酸素吸蔵量推定方法、内燃機関の空燃比制御方法、触媒の酸素吸蔵量推定装置、内燃機関の空燃比制御装置及び自動二輪車
JP2008517213A (ja) 排ガス浄化装置の診断方法および診断装置
KR20040084689A (ko) NOx흡장량의 추정방법
JP2002004915A (ja) 内燃機関の排気浄化装置
JP4872005B2 (ja) 排気ガスセンサの劣化故障診断装置
JP4030010B2 (ja) 排ガスセンサの劣化判定装置
JP4789991B2 (ja) 排気ガスセンサの劣化故障診断装置
JP2017115621A (ja) 排気浄化装置
JP2004308574A (ja) 排気ガスセンサの異常検出装置
JP7204426B2 (ja) 内燃機関の燃料噴射制御装置
JPH0650204A (ja) 内燃機関の空燃比制御装置
JP7045223B2 (ja) 内燃機関の制御装置
JP2006274963A (ja) エンジンの空燃比制御方法及びエンジンの空燃比制御装置

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070306

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070501

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080422

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080423

R150 Certificate of patent or registration of utility model

Ref document number: 4118784

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110502

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110502

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130502

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130502

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140502

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees