JP4116429B2 - 紫外線放射を用いて流体中の微生物を不活性化する方法 - Google Patents

紫外線放射を用いて流体中の微生物を不活性化する方法 Download PDF

Info

Publication number
JP4116429B2
JP4116429B2 JP2002540772A JP2002540772A JP4116429B2 JP 4116429 B2 JP4116429 B2 JP 4116429B2 JP 2002540772 A JP2002540772 A JP 2002540772A JP 2002540772 A JP2002540772 A JP 2002540772A JP 4116429 B2 JP4116429 B2 JP 4116429B2
Authority
JP
Japan
Prior art keywords
fluid
flow
reaction chamber
source
reactor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002540772A
Other languages
English (en)
Other versions
JP2004512905A (ja
Inventor
カイザー クラウス
カウリング イェルク
ヘンツラー ハンス−ユルゲン
エム レミントン キャスリン
トレックマン ロルフ
ジェイ ギャロウェイ シンシア
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bayer AG
Original Assignee
Bayer AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayer AG filed Critical Bayer AG
Publication of JP2004512905A publication Critical patent/JP2004512905A/ja
Application granted granted Critical
Publication of JP4116429B2 publication Critical patent/JP4116429B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/12Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electromagnetic waves
    • B01J19/122Incoherent waves
    • B01J19/123Ultra-violet light
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L3/00Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs
    • A23L3/26Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs by irradiation without heating
    • A23L3/28Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs by irradiation without heating with ultraviolet light
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K41/00Medicinal preparations obtained by treating materials with wave energy or particle radiation ; Therapies using these preparations
    • A61K41/10Inactivation or decontamination of a medicinal preparation prior to administration to an animal or a person
    • A61K41/17Inactivation or decontamination of a medicinal preparation prior to administration to an animal or a person by ultraviolet [UV] or infrared [IR] light, X-rays or gamma rays
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/0005Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor for pharmaceuticals, biologicals or living parts
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/0005Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor for pharmaceuticals, biologicals or living parts
    • A61L2/0011Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor for pharmaceuticals, biologicals or living parts using physical methods
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/02Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor using physical phenomena
    • A61L2/08Radiation
    • A61L2/10Ultra-violet radiation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/36Other treatment of blood in a by-pass of the natural circulatory system, e.g. temperature adaptation, irradiation ; Extra-corporeal blood circuits
    • A61M1/3681Other treatment of blood in a by-pass of the natural circulatory system, e.g. temperature adaptation, irradiation ; Extra-corporeal blood circuits by irradiation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/36Other treatment of blood in a by-pass of the natural circulatory system, e.g. temperature adaptation, irradiation ; Extra-corporeal blood circuits
    • A61M1/3681Other treatment of blood in a by-pass of the natural circulatory system, e.g. temperature adaptation, irradiation ; Extra-corporeal blood circuits by irradiation
    • A61M1/3683Other treatment of blood in a by-pass of the natural circulatory system, e.g. temperature adaptation, irradiation ; Extra-corporeal blood circuits by irradiation using photoactive agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/24Stationary reactors without moving elements inside
    • B01J19/2405Stationary reactors without moving elements inside provoking a turbulent flow of the reactants, such as in cyclones, or having a high Reynolds-number
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • C02F1/32Treatment of water, waste water, or sewage by irradiation with ultraviolet light
    • C02F1/325Irradiation devices or lamp constructions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/05General characteristics of the apparatus combined with other kinds of therapy
    • A61M2205/051General characteristics of the apparatus combined with other kinds of therapy with radiation therapy
    • A61M2205/053General characteristics of the apparatus combined with other kinds of therapy with radiation therapy ultraviolet
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00139Controlling the temperature using electromagnetic heating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00164Controlling or regulating processes controlling the flow
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00168Controlling or regulating processes controlling the viscosity
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/32Details relating to UV-irradiation devices
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/32Details relating to UV-irradiation devices
    • C02F2201/322Lamp arrangement
    • C02F2201/3223Single elongated lamp located on the central axis of a turbular reactor
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/32Details relating to UV-irradiation devices
    • C02F2201/328Having flow diverters (baffles)
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S422/00Chemical apparatus and process disinfecting, deodorizing, preserving, or sterilizing
    • Y10S422/905Miscellaneous liquid sterilization means

Description

【0001】
属する技術分野
本発明は、流体中の望ましくない微生物、たとえばウイルスを不活性化するための、一般に流体、たとえば生物学的流体の滅菌化に関する。特に、本発明は、調整された紫外線照射によって、流体を滅菌化することに関する。
【0002】
背景技術
流体の滅菌は、多くの医薬品および食品の製造における必須の工程である。その目的は、製品の好ましい成分をできるかぎり傷つけることなく保存しながら、ウイルスを含む微生物の確実な排除を達成することである。滅菌は、生物学的流体、たとえば、発酵のための栄養媒体、種々の血液生成物、および製薬学的に活性のタンパク質を有する流体に関して必要とされる。食品工業においては、流体、たとえば乳製品の滅菌は一般的である。
【0003】
食品の滅菌に関して、特に滅菌技術の選択は、工程が食品の包装寿命または嗜好性に影響を与えるかどうかによって調整される。食品工業において最も考えられるのは、細菌またはカビのコンタミネーションであるけれども、日用品に関しては、ウイルス性かまたはプリオン性のコンタミネーションの付加的なリスクを有しうる。このような微生物の排除または不活性化は、これら製品の商業的流通に関する前提条件である。
【0004】
食品工業とは対照的に、製薬工業における滅菌技術の選択および使用は、直接的に動物またはヒトに投与すべきすべての薬剤に対して加えられる厳密な要求および調整が課される。特に、生物学的流体、たとえば薬剤のウイルスによるコンタミネーションが特に考えられ、この場合、これらは天然源から同時に単離されたものであるかまたは生物工学的工程中において導入されたものである。薬剤の滅菌に関して、多段階工程は、歴史的にウイルスのコンタミネーションを不活性化するか、除去するか、または減少させるために使用されている。方法のそれぞれの工程は、異なる操作原理に基づき、流体中のウイルス量を少なくとも4オーダーの大きさで減少させることを確実にし、その一方でタンパク質および流体の他の好ましい成分のバイアビリティーを維持する。
【0005】
生物学的流体および他の流体の紫外線(UV)での照射は、望ましくない微生物を不活性化するための方法として使用されている。たとえば、ウイルスを不活性化するために、UV−光を用いて血漿および血液生成物を照射することは、WW II中で公知であった。血液誘導体のUV処理は、特に、被膜のない熱安定性のウイルスを処理するのに特に有用である。したがって、Chinら、Photochem. & Photobiol.65、432−435(1997)は、UV−光での血漿生成物の照射が、A型肝炎ウイルスおよびパルボウイルスの不活性化を導くことを教示している。
【0006】
UV−光は、これらの遺伝的材料の突然変異を生じさせることによって微生物および/またはウイルスを不活性化することができる。照射の最小限の線量を超えた場合には、微生物はその繁殖能力を失う。UV−照射は、鎖内のニックを形成し、かつヌクレオチドの光二重化を誘発することによって核酸にダメージを与え、この場合、これら双方は、核酸の複製を中断させるものである。このような機序によって、UV照射は生物学的流体および他の流体中の望ましくない微生物を不活性化させる効果的な方法であってもよい。残念なことに、短波長のUV光線のエネルギーは、硫黄含有システイン架橋およびメチオニンペプチド結合にダメージを与えてしまい、かつ芳香族アミノ酸副次的反応を誘発し、これによって、しばしば照射された流体の好ましい最終生成物である、種々のタンパク質の構造的および機能的結合性を破壊する。したがって、UV−照射技術を適用させるための固有の問題は、流体中で望ましくない微生物を不活性化するために十分な照射暴露を確実なものとする程度に、流体への照射を調整し、その一方で同時に、流体中において望ましくない、タンパク質および他の成分に対するUV照射ダメージを最小限にするかまたは排除することである。
【0007】
従来的には、UV反応器は、生物学的流体のUV滅菌のために使用されている。一般に、UV反応器は、UV照射源、たとえば、一つまたはそれ以上の長形の管形バルブまたはランプを含む。一つの形状において、予め定められた幅を有する環状(annular)反応チャンバーを、ランプの周囲を取り囲むように形成し、かつ、照射すべき流体を、ポンプによって供給するかまたはチャンバーを介して移動させ、その際、ランプからのUV光に暴露する。もう一つの形状において、1個または複数個のUV源が取り囲み、中央の管形反応チャンバーへ、内部に照射することができる。それぞれの場合において、流量、光強度、チャンバー幅または直径、および反応器の長さは、特定の流体に対して、可能な限り、望ましくない微生物を不活性化すると同時に、流体の望ましい成分のバイアビリティーを維持するのに最も効果的なUV照射量を確実にするよう選択される。
【0008】
紫外線で流体を照射するために、UV反応器を使用することについての問題は、反応チャンバーの制限された幅およびチャンバーに沿っての流体流の層状の性質によるものである。特に、流体がチャンバーに沿って流れる場合に、処理される流体中のUV照射強度は、放射源からの距離の関数として、かなり急速に減少する。これは、源からの距離を関数としての照射強度の自然な逆二乗則、および流体の吸収特性および感染性粒子を支持するタンパク様材料を含む、多くのファクターによる。任意の場合において、照射源から離れて反応チャンバーの外則に沿って流れる流体層中の微生物およびウイルスは、照射を全く受けないかまたは減少した線量でした受けない。したがって、これらの微生物は、ゆっくり不活性化されるかまたはまったく不活性化されない。他方において、照射源にごく近い反応チャンバーの内側に沿って流れる流体層中の微生物は、増加した線量を受け、多くの場合において照射が過剰量になり、この線量は、いくつかの場合において、流体のこれらの層中の望ましいタンパク質および他の成分に対して著しいダメージを与えるのに十分に高いものである。結果は、予測不可能な効果のない滅菌法であって、かつ、望ましい成分に対して高いレベルのダメージを与えるものであった。
【0009】
これらの制限に関する試みによって、薄層または薄膜UV反応器が開発され、この場合、これは、反応チャンバーの幅およびこのようなUV源に隣接する流体層の厚さをかなり薄くすることによって、流体中での放射強度勾配の悪影響を減少させるものである(たとえば、Kallenbachら、Cur.Stud.Hermatol. Blood Transfus. Basel 56, 70-82, (1989) ; Habel et al., J. Immunol. 56, 273-279 (1947); Milzer et al., J. Immunol 50, 331-340 (1945). Oppenheimer et al., Am., J. Pub. Health. 49, 903-923, (1959))。目的は、流体のすべてが、放射源に沿って移動することによってかなり小さい放射強度変化の範囲にすることである。したがって、流体流中の種々の層での強度の変化は、理論的に制御される。
【0010】
薄膜反応器が、少量のスケールであっても多少は有効であるが問題があり、それは、困難を伴ってのみ工業的生産の流量にスケールアップすることができるためである。それというのも、膜の厚さを薄くかつ一定に維持するのは、反応器の直径を増加させることによってのみ実現することができ、そのために、望ましい高い流量を提供するために薄膜の断面積が増加するためである。工業的規模におけるこの必須の条件は、取り扱いが困難な大きい反応器を必要とする。この問題を回避するための一つの試みは、US特許第5133932号明細書に示唆されており、この場合、これは、円筒状の薄膜UV放射反応器を開示し、その際、UV光に暴露される薄膜の範囲は、反応チャンバーの表面を波形をつけることによって増加する。しかしながら、このような装置を用いて流量において実現された増加は、最良状態において限界があり、依然として大きいスケールの工業的生産に提供するには十分ではない。
【0011】
従来のUV放射型反応器の他の制限および問題は、放射源に沿って層状に流れる場合の望ましくないフロープロフィールおよび流体薄膜の動的状態である。特に、層流においては、流の方向に対して正常な流体の交換がないかまたはわずかである。したがって、前記に示したように、源から離れた流体層は、源に近い流体層よりも少ない線量を受ける。さらに、制限された層流中の流速プロフィールは、流速が、反応チャンバーの壁に近い場合にはかなり低く、かつ壁の中間部では本質的に高い。したがって、光源に近接した反応チャンバーの壁に最も近い流体は、よりゆっくりと流れ、かつ、本質的に、反応チャンバーの壁間の流体よりも長くUV放射に対して暴露される。したがって、最も急速に流れる流体層中で微生物性の異物を不活性化するための必要な最小限の線量を生じるために、反応器中での流体の平均滞在時間を増加させなければならない。しかしながら、これは、流体流のゆっくりと移動する境界層中での線量を増加させ、引き続いて、これらの層中の望ましい成分に対して、増加した確率での好ましくない増加したダメージを導く。したがって、過剰暴露による境界層中の好ましい成分の破壊は、実際には避けられない。
【0012】
流体の幾つかの層中での過剰暴露の一つの悪影響は、フリーラジカルの生成であり、この場合、これは流中に生じ、かつ流体の好ましくい成分上への悪影響を有するものである。過剰暴露の結果として起こるフリーラジカル生成によって生じるダメージを最小限にするために、典型的には、流体中でフリーラジカル捕捉剤の使用が試みられている。以前の研究において、フリーラジカル捕捉剤がタンパク質に対するダメージを間接的に減少しうることが示唆された(Chin et al., Photochem. Photobiol. 65, 432 (1997). )Champmanらは、米国特許第5922278号明細書中において、生物学的流体のUV放射による滅菌法を開示しており、その際、フリーラジカルは、捕捉剤によって除去される。Clarkらによる米国特許第5786598号明細書において、微生物を不活性化させる短波長光線の高い強度のパルスが開示されている。Morgalis−Nunnoら、米国特許第6087141号明細書において、約280nmまたはそれ未満の短波長よりもむしろ、340〜400nm(UVA)の範囲の波長における光線の使用が開示されている。流体の好ましい機能の保護は、ソラレンの形でのフリーラジカル捕捉剤を添加することによって付与される。Morowitzら、米国特許第5981163号明細書において、照射によるウイルスの不活性化中でのクエンチング保護剤の添加が教示されている。このような技術は、流体中に生成されたフリーラジカルを取り扱うことを試みているけれども、過剰暴露のような問題は全く示されておらず、結果として、最初の領域でのこのようなフリーラジカルの形成を生じる。
【0013】
UV反応器中での層状流体流の崩壊は、前記問題のいくつかを解決する手段として提案されている。たとえば、タンジャンシャルフローリングスロット反応器は、UV反応器の層流層を崩壊させ、かつ混合を誘導する手段として提案されている。EP803472A1は、UV放射源を取り巻く環状反応チャンバーまたはリング−スロット反応チャンバーを有する流体のUV放射のための反応器を開示している。反応器チャンバー中の流体の入口は、流体のクロスミキシングを生じさせる目的で、流体をチャンバー中に接線に沿って装入されるように配置される。米国特許第5433738号明細書では、流体のクロスミキシングを生じさせる目的で、円形断面を有するヘリカルガイドを含む、水の照射のためのUV照射型反応器が開示されている。
【0014】
接線に沿った流入の解決法は、流体が、壁での摩擦およびチャンバーの軸線に沿って示された十分な軸的および層状プロフィールに関しての他の流体力学的ファクターによって、反応チャンバー中を急速に戻って流れるといった問題点を証明している。少なくとも接線に沿った流入範囲に対して理論的に仮定され、かつ、反応チャンバー中での反応媒体のクロス−エクスチェンジを促進するであろうディーン渦(dean vortices)は、驚くべきことに、視覚的試験およびCFD試験(フローシュミレーション)においては存在しない。したがって、接線に沿って装入されるリング−スロット反応器は、前記に示した問題に対しての制限された解決法のみを提供する。
【0015】
したがって、生物学的流体のような流体をUV放射によって滅菌する方法に必要であるのは、望ましくない微生物を不活性化させるための適切な暴露を確立することであり、それと同時に、流体中の望ましい成分に対するダメージを最小限にするかまたは排除することである。
【0016】
さらに必要とされるのは、フリーラジカル捕捉剤またはクエンチング剤の使用の必要なしに、UV放射によって、流体反応媒体中の微生物を不活性化するための改善された方法である。
【0017】
さらに、望ましくない微生物を不活性化するのに効果的であると同時に、捕捉剤を使用することなく望ましい成分のバイアビリティーを維持し、さらに商業的に実現可能な生産流量にスケールアップ可能な、生物学的流体を滅菌化するための方法が必要とされる。
【0018】
したがって、本発明によって最初に示されたこれらの必要性および付加的な必要性を示唆する方法を提供する。
【0019】
発明の開示
本発明は、UV光を用いて流体を照射することによって、流体中に懸濁された微生物、たとえばウイルスを不活性化する方法である。方法は、生物学的生成物および食品の滅菌化に適用することが可能であり、この場合、これらは、制限されないが、血液成分、組み換え技術のための培養液、乳および乳製品、飲料水、フルーツジュースおよび他のソフトドリンクのような飲料、化学製品および薬品、ウイルスワクチン、遺伝的に製造された薬剤およびタンパク質、トランスジェニック動物およびトランスジェニック植物からの薬剤およびタンパク質、ならびに血漿および血漿からの生成物を含む。本発明を実施するための最良の形態において、UV暴露は、一般的には管形反応器中で達成され、その際、流体は、長形管形UV光源を取り囲む反応チャンバー中を流れる。
【0020】
一般に、方法は、UV光源の放射表面に沿っての第1の方向で、流体の第1フローを確立し、かつ、第1フロー上に、流体の循環する第2フローを重ねる工程を含む。第2フローは、本質的にUV源の放射表面に対して横方向に循環するため、流体の全量は、第1フローが源の長さにのって流体を移動させると同時に、UV源に反復して近づいたり離れたりして循環する。その結果、すべての流体は、一定の平均的なUV照射線量を受け、かつ従来のような、UV反応器中の層流に関連する問題、すなわち放射表面近くでの過剰暴露および放射表面から離れての過小暴露の問題は回避される。
【0021】
さらに、薄膜反応器とは全く対照的に、本発明の方法を実施するための反応器中での反応チャンバーは、照射強度が通常の不活性化限界値を上廻る、UV光源の放射表面に直に接する効果的な“死滅化領域(kill zone)”よりもより広幅であってもよい。それというのは、流体が循環する第2フロー中で源に近づいたり離れたりして循環するように、すべての流体は源表面に接する死滅化領域に効果的に出入りするように移動するためである。死滅化領域中の流体の平均滞留時間およびこれによって受ける照射線量は、処理される特定の流体中の死滅化領域の厚さ、UV光源の強度および第1フローおよび第2フローの特性のようなその他のパラメーターにおける関数である。
【0022】
重要であるのは、これらのパラメーターは、本発明によれば、予め必要とされるUV照射線量に応じて、流体の全量のための平均死滅化領域滞留時間を確立かつ維持するために、必要に応じて制御することができることである。
【0023】
さらに、反応チャンバーは、薄膜反応器中よりもより広幅であってもよいが、商業的生産流量にスケール可能な適度な大きさの高容量反応器が考えられうる。最終的に、すべての流体が受ける平均照射線量は一定であり、すなわち、流体の部分または層が過剰暴露および過小暴露されることなく、従来のUV反応器において一般的なフリーラジカルの形成は実際に回避される。したがって、本発明による方法は、フリーラジカル捕捉剤の使用を必要とすることなく、生物学的流体または他の流体を滅菌するために使用することができる。
【0024】
本発明の方法は、第1フロー上に重ねられた循環する第2フローを確立しかつ維持することを含み、種々の反応器および反応チャンバーの形状中で実施することができる。このようないくつかの形状は、前記に詳細に示したいくつかの点で明らかにされたものである。しかしながら、本発明の方法は、他の反応器デザインおよび形状によっても良好に実施することができると解されるが、本発明の方法論の本質は、実際には同じである。本発明の条件を確立しかつ維持するための装置デザインに関して、方法は、フリーラジカル捕捉剤を使用することなく、望ましい成分への最小限のダメージで、かつ、商業的に実施可能な流量に関する可能性を有し、制御可能でありかつ期待される不活性化を提供することについて試験された。本発明の付加的な目的、特徴および利点は、前記の詳細な記載ならびに以下に簡単に説明した付属の図面によって明らかになると解される。
【0025】
図面の簡単な説明
図1は、流体の層状の流れの特徴を示す典型的なリング−スロットUV反応器の略図である。
【0026】
図2は、本発明の基本的原理を示すUV反応器の一部分の簡略化された断面図である。
【0027】
図3〜図7は、本発明の方法を実施するのに有用な回転式撹拌機を有するUV反応器の一つの実施態様を示す断面図である。
【0028】
図8および図9は、本発明の方法を実施するのに有用なUV反応器の他の実施態様を示す断面図である。
【0029】
図10および図11は、本発明の方法を実施するのに有用なUV反応器の他の実施態様を示す断面図である。
【0030】
図12および図13は、本発明の方法を実施するのに有用なUV反応器の他の実施態様を示す断面図である。
【0031】
図14および図15は、本発明の方法を実施するのに有用なUV反応器の他の実施態様を示す断面図である。
【0032】
図16および図17は、本発明の方法を実施するのに有用なUV反応器の他の実施態様を示す断面図である。
【0033】
図18は、種々の∀PI濃度でフルエンスの関数として、∀PI効力およびブタパルボウイルス(PPV)減少を示す2個のグラフ図であり、かつ、UV滅菌法の評価における限界パラメーターの測定を示す。
【0034】
図19は、時間の関数として、5mg/mlの∀PIプロテアーゼインヒビター溶液中でのPPV減少を示すグラフ図であり、かつ、本発明の方法に適用させたIVIG試験のUVC不活性化の結果を示す。
【0035】
図20は、フルエンスの関数として、5mg/mlの∀PIプロテアーゼインヒビター溶液中でのPPV減少および∀PI活性の百分率を示すグラフであり、かつ、本発明の方法に適用させた他のUVC不活性化試験の結果を示す。
【0036】
図21は、フルエンスの関数として、5mg/mlの∀PIプロテアーゼインヒビター溶液中でのPPV減少および∀PI活性の百分率を示すグラフであり、かつ、本発明の方法に適用させた他のUVC不活性化試験の結果を示す。
【0037】
本発明の好ましい実施態様に関する詳細な説明
図面に関してより詳細に説明するが、この場合、任意の数字は、いくつかの図面中を通しての任意の部分に適切に引用されているものであり、図1は、従来の管形UV反応器またはリング−スロット型UV反応器中での流体の流れの一般的な原理、ならびにこれに関連する問題および欠点を例証する。明瞭性のために簡略化された図で示された反応器11は、中心に配置された長形の管形UVランプ12の形での紫外線放射源を含む。UVランプ12は、外壁14おび内壁16を有する円筒型ハウジング13によって取り囲まれており、この場合、これらは結合し、ランプ12を取り囲む環状またはリング状の反応チャンバー17を定義している。ハウジングの内壁16は、ランプ12からのUV光が反応チャンバー17に照射される程度に、紫外線に対して透過性である。反応チャンバー17は、それぞれその外壁14と内壁16との間の距離によって定められた予定された幅を有する。流体入口18は、一つの末端で、図1の下部で、反応チャンバー17と連結しており、かつ、流体出口は、反対側の末端で、図1の上部で、反応チャンバー17と連結している。
【0038】
滅菌すべき流体は、ポンプによって供給されるかまたは流体入口18に供給され、反応チャンバー17中を、矢印21によって示されたようにUVランプの長さに沿って、流体出口19を介して反応チャンバーから搬出されるまで、上向きに流れる。反応チャンバー中を流体が流れる際に、UVランプ12からのUV放射に暴露され、この場合、これは、流体中の望ましくない成分を不活性化することによって流体を滅菌する。生物学的流体、たとえば血液生成物中のウイルスを不活性化する場合には、たとえばUV照射は、理論的には、流体が反応チャンバー中を流れる場合に、流体中のウイルス粒子を不活性化するかまたは“死滅させる”。
【0039】
図1の拡大された装入口は、より詳細に、反応チャンバー17中の流体のフローパターンおよびチャンバー中のUV照射強度のプロフィールとのその関連性を示し、さらには、従来の反応器およびUV不活性化技術で基本的に生じる問題を明らかにする。特に流体は、反応チャンバー中およびUVランプ12の長さに沿って本質的に層流で移動し、この場合、これは、任意の流体の移動がランプに対して横方向であることはほとんどないことを意味する。いいかえれば、反応チャンバー中の流体層は、流体がチャンバーの全長に沿って移動する場合に、UVランプからのその相対距離を維持しうる。したがって、外壁14に近い流体層は、外壁の近くに留まる傾向にあり、かつ、内壁16の近くの流体層は内壁の近くに留まる傾向にある。さらに、一般に、制限された層流は、チャンバーの内壁および外壁の近くの流体の境界層は、壁の中間部の流体層よりもよりゆっくりと移動するといった事実が、速度プロフィールの矢印21によって図1中で例証されている。したがって、境界層中の流体の反応チャンバー中での滞留時間は、フローの中間層中の流体の滞留時間よりも大きい。
【0040】
曲線22は、UVランプ12からの距離の関数としての、反応チャンバー17中の照射強度または光強度を示す。UVランプに直に接する初期強度は極めて高く、かつ本質的にはランプ自身の表面の強度である。しかしながら、前記に示したように、光強度は、ランプからの距離の関数として、放射強度の自然な逆二乗則および流体の光吸収特性を含む種々のファクターによって急速に低下する。図1の23として示された、ランプからのいくつかの限界距離において、光の強度は“限界”強度と等しく、それを下廻る場合には、UV放射レベルは流体中のウイルスを不活性化するには十分ではない。この限界距離は、ウイルスの不活性化が生じ、かつこの外側においては流体のウイルス以外のものは本質的にUV照射よる影響を受けない、“死滅化領域”24の外側の境界線を定める。このように、反応チャンバー17中を流れる従来の層流流体では、死滅化領域の範囲内の流体層は滅菌されるが、死滅化領域の外側の流体層は、滅菌されることなく反応器中を通過することがわかる。その結果、このような反応器中でのウイルス量の減少は、流体の一部分のみがUV照射によって影響を受けるといった事実によって制限される。
【0041】
この問題に関する試みにおいて、薄膜反応器は、反応チャンバー自体の幅が死滅化領域の幅と同じであるかまたはそれ未満であるよう改善された。このような反応器に関して、理論的には、流体のすべてが、反応器中を移動すると同時に必然的に死滅化領域中に存在し、したがって滅菌作用のための十分な照射線量を受けられる。しかしながら、前記に示したように、このような薄膜反応器は、適切な大きさの反応器で、商業的実施可能な流体流量に適合させるためのスケールアップが不可能である。さらに、実際にアップスケールが可能であったとしても、依然として薄膜反応器においては問題が存在し、その問題というのは、流体の流れの本質的な層流特性および反応チャンバーの幅を横切る流速プロフィールの性質である。特に、薄膜反応器中では、UV源に近接する流体層は、反応チャンバーの外側の境界での流体層よりも、本質的に高い照射線量に暴露される。さらに、制限された層流の流速プロフィールのために、UV源に近接する流体層は、さらにチャンバーの壁の中間の流体層よりも反応チャンバー中での長い滞在時間を示す。これら条件の結果として、UV源に近接する流体層は、過剰暴露する傾向にあり、この場合、これは、結果として、タンパク質のような好ましい成分に対する相当高いダメージの程度を生じる。過剰暴露は、流体中に存在するフリーラジカルの推定量(likelihood)を増加させ、この場合、これ自体は、結果として流体の好ましい成分のさらなる破壊を生じる。フリーラジカル捕捉剤の使用は、これらの問題に対する解決法として通常教示されるものであるが、これは、解決法よりもむしろ事後の処理(after-the-fact patch)であり、かつ滅菌法の効率を減少させる。
【0042】
前記背景を考慮して、図2は簡略化された図面の形で、薄膜反応器を含む従来のUV反応器の厄介な問題を取り扱いかつ排除するための本発明の独自の方法を例証している。本発明は、図2において、予め定められた周波数帯域で紫外線を放射するように適合させた軸方向に長いUVランプを有する簡略化されたUV反応器31において例証される。好ましい実施態様において、ランプ32はUVC放射を照射し、この場合、これは、約180〜320nm、より好ましくは約225〜290nm、さらに好ましくは約254nmの波長を有する放射である。UVC放射は、処理すべき流体中のタンパク質のような好ましい成分に対する有害な作用が少ない傾向にあり、その一方で流体中のウイルスおよび他の標的微生物を不活性化するための十分なエネルギーを維持することから好ましい。しかしながら、UV放射の他の型、たとえばUVAおよびUVBも可能であり、かつ、これらも本発明の範囲内である。
【0043】
UVランプ32は、外壁34および内壁36を有する一般的な管形ハウジング33の中心軸に沿って配置され、この場合、外壁34と内壁36は連結しており、かつ、長形の環状反応チャンバー37を定義している。ハウジングの内壁36は、ランプ32からのUV光がチャンバー37に照射される程度に、UV放射に対して透過性であることが明らかである。たとえば生物学的流体のような処理すべき流体は、ポンプによって供給されるか、あるいは適切なポンプ(示されていない)によって環状反応チャンバー37中を移動し、したがって、流体は反応チャンバーの底部から反応チャンバーの頭部に移動し、そこで、出口(示されていない)を介してチャンバーから搬出される。一般的に、流体が反応チャンバー37中およびUVランプ32の長さに沿って移動する際に、UV源からのUV放射で照射され、流体中に含まれる微生物、たとえばウイルスを不活性化する。
【0044】
前記に示したように、不活性化領域または死滅化領域38は、反応チャンバーの内壁36に沿って定義される。死滅化領域の幅は、ランプの強度、流体の組成物および光学的特性等を含む多くのファクターによって定められるが、しかしながら、一般には、UV照射が、流体中の微生物を不活性化させる作用に要求される限界値を上廻る範囲の領域を示す。死滅化領域38の外側においては、一般に、放射強度は不活性化作用のためには低すぎ、かつこれは、過去において前記に示したような薄膜反応器を改善させるに導いた。
【0045】
本発明の方法において、処理すべき流体は、反応チャンバー37の長さに沿って第1フロー39で移動し、これによって、UVランプ32の表面に沿って移動する。しかしながら、従来の方法とは異なって、循環する第2フロー41が流体中で確立され、かつ第1の流39上に重ねられる。好ましくは、循環する第2フロー41は、一般にはUVランプの表面に対して放射線状であるかまたは横行である。したがって、流体が、第1フロー39の一般的な方向でUVランプに沿って移動する際に、さらに反応チャンバー外壁34から内壁36へ反復的に循環し、かつ再度、循環する第2フロー41に戻される。結果として、流体は、死滅化領域38外側の反応チャンバー中の領域から反復的に、死滅化領域38を介して反応チャンバーの内壁36に移動し、その後に内壁から離れて、死滅化領域中に戻り、かつ死滅化領域外側の領域に戻し入れられる。
【0046】
ここで流体中で運ばれる流体の液滴または粒子が、反応チャンバー中を流れると仮定する。液滴は好ましくない微生物、たとえばウイルスならびに好ましい成分、たとえばタンパク質を含有していてもよい。液滴が、一般的に、反応チャンバーの長さに沿って、第1フロー39の方向に移動すると同時に、さらに、反復的に、限界放射強度を受ける死滅化領域の境界を最初に横切る、重ねられた第2フローと一緒に循環し、その後に、反応チャンバーの内壁37に達するまで著しく増加した放射強度を受ける死滅化領域38を通り、その際、最大の放射強度を受ける。内壁から、仮定される液滴は、内壁36から離れて第2フローで移動しつづけ、かつ死滅化領域38に戻り、その際、死滅化領域からでて死滅化領域外側の反応チャンバーの不活性化領域の移動するまでは、順次弱い放射強度を受けている。
【0047】
以上のことから、死滅化領域中のそれぞれのサイクルにおいて、仮定された流体の液滴は、UV放射の平均的な強度または線量を受けており、この場合、これは、死滅化領域38の境界での限界強度よりも大きく、かつ死滅化領域の内壁36での最大強度よりも小さい。したがって、反応チャンバー中でそれが滞留する間の、液滴によって“推測される”全放射は、循環する第2フロー41中のそれぞれのサイクル数のそれぞれのサイクルにおいて受ける平均放射におおよそ等しい。有利な結果は、流体のそれぞれの液滴、またはいいかえれば、流体の全量が、一定の平均的なUV照射線量を、それが反応チャンバー中を移動する間に受けることによって生じる。さらに、その線量自体は、UVランプ32の強度を制御することによって極めて簡単に調整することができ、この場合、これは、死滅化領域の幅、および第1フロー39および重ねられた循環する第2フロー41の性質に影響する。したがって、全流体が一定の平均照射線量に暴露されるばかりでなく、線量が制御可能であり、かつ好ましくない微生物の最適な不活性化を達成するために調整することができ、その一方で、流体中の好ましい成分を可能な限り完全に維持することができる。
【0048】
図2に例証したように本発明の方法は、従来の層流UV反応器による方法、この場合、これは、前記に示したように、反応チャンバーの内壁に近接する流体層が過剰放射される傾向にあり、結果として望ましい成分に対する望ましくないダメージおよびフリーラジカルの形成が生じ、その一方で内壁と最も離れた層は、過小放射の傾向があり、結果として低い微生物不活性化の割合が生じる方法とは全く異なるものである。したがって、本発明の方法によれば、4オーダーまたはそれ以上の大きさでの生物学的流体のウイルスの不活性化のような、高い不活性化レベルが得られてもよく、かつ一貫して維持される。さらに、不活性化のこのレベルは、フリーラジカル捕捉剤を流体中に導入する必要なく達成される。これは、本発明の方法を実施する際にほとんどフリーラジカルの形成がおこらないためであるが、それというのは、従来のUV反応器のように、流体の一部分が過剰放射されることはないからである。最終的に重要であるのは、本発明の方法による循環する第2フローが、反応チャンバーの全幅に関係なく、死滅化領域を反復的に出入りするが、薄膜反応器に改善を与えるために従来与えられたような制約は存在しない。したがって、本発明を実施するための反応器中の反応チャンバーは、死滅化領域自体の厚さよりも著しく幅広く、このような反応器は、簡単に商業的生産流量にスケールアップすることが可能であり、その一方で、リーズナブルな大きさの反応器を維持することも可能である。したがって、本発明は、従来のUVによる不活性化方法およびUVによる不活性化装置よりもかなり有利であることが見出された。
【0049】
本発明の方法論は、前記に示したように、本発明を実施するのに有用ないくつかの例証される反応器の形状に関して記載している。しかしながら、本発明は、例証した反応器の形状によって制限されるかまたは強制されることはないと解されるが、しかしながら、このような例は、本発明のよりより理解のために提供され、かつその実施における開示を可能にする。これに関して、ドイツ特許出願___号明細書の開示は、前記において十分示したように参考のためにここで記載されている。
【0050】
図3〜図5は、本発明による方法を実施するのに有用な回転式撹拌反応器を例証している。反応器は、ガラスマントルまたは内部ハウジング47中に配置された軸的に配置された長形UVランプ46を含む。管形ハウジング48は、ガラスマントル47を包囲しており、かつ、その中を流体が流れていてもよい反応チャンバー49は、管形ハウジング内壁とガラスマントルとの間に定義される。ハウジングはキャップされ、かつその頭部末端でヘッドカバー64によって密閉され、かつO−リング62と連結しており、かつその底部末端でベースカバー52を有し、O−リング62と連結している。入口59は、流体を反応チャンバーに装入するために反応チャンバー49の下部と連結しており、かつ出口61は、反応チャンバーから流体を搬出するために、反応チャンバーの頭部と連結している。
【0051】
回転式アンカー撹拌機51は、ガラスマントル47を包囲している反応チャンバー中に配置され、かつ、約4〜約10個、好ましくは約8個の、ガラスマントル47を囲む羽根で形成されている。アンカー撹拌機51は、摺動ベアリング65中のその頭部末端で、回転可能なようにジャーナルされており、かつ、テーパーされた位置決めチップ53中で終わる撹拌機シャフト54のその底部末端で回転可能なように支持されており、かつ位置決めされている。位置決めチップ53は、ベースカバー52の下部において、適切な形状にされたくぼみ(depression)に位置し、かつのせることによって、アンカー撹拌機は、おおよそガラスマントル47を、反応チャンバー49中でその羽根を反復的にガラスマントルを回転するように回転可能である。
【0052】
直径方向に細長いマグネット式カプラーアーム57は、撹拌機シャフトに接合され、マグネット式装置58のマグネット式カプラーと、磁気的に結合するように適応された。マグネット式装置58のアクティブにすることによって、反応チャンバー49中でアンカー撹拌機51の回転が生じる。位置決めピン56は、ガラスマントル47の下部に存在し、かつ、アンカー撹拌機に対してマントルを中心に維持し、かつ、撹拌機の羽根とガラスマントルの表面との間のかなり小さい間隔を保つために、アンカー撹拌機51の底部55中の相当する位置に配置された。好ましくは、必ずしも必要ではないが、内部に突起したフローブレーカー63の配列を、ハウジング48の内壁の周囲に配置させる。
【0053】
図4は、本発明による方法を実施するための反応器44の使用を例証している。照射されるべき流体は、入口59を介してポンプによって供給され、UVランプ46の長さに沿って第1フロー66を確立する出口61から搬出される。したがって、流体は、反応チャンバー49の長さに沿って上方に流れると同時に、ガラスマントル47を介してUV放射に暴露される。同時に、アンカー撹拌機51は、その羽根をガラスマントル47の周囲で動かすことによって回転させた。撹拌機の運動は、UVランプ47に対して横方向に配置された主要な成分を有する流体の循環する第2フロー67を確立する。フローブレーカー63は、より横行のフロー方向かまたは放射線状のフロー方向のために、接線成分を確立するために第2フローを弱める傾向を示している。したがって、流体は、反応チャンバーの長さに沿って第1フローで移動する際に、循環する第2フロー67中で、UV源に近づくまたは離れて反復的に移動し、前記に示したような本発明の利点を実現する。撹拌機の回転速度、ランプ強度、および流速は、反応器中で処理されるべき流体を生じるための最適化された照射を得るためにすべて調整することが可能である。
【0054】
図6および図7は、図3〜図5のアンカー撹拌機のための他の装置機序を例証している。密閉されていない装置機序71は、内部の円筒状インペラーチャンバー75および外部の環状チャネル78を定義するドライブハウジング70を含む。接線的に配置されたスロット77の配列は、外部チャネル78とインペラーチャンバー75との間に連結される。入口73は、外部チャネル78と連結し、かつ示したように外部チャネルに接線的に流体を直接配置させる。この形状に関して、流体は、外部チャネル周囲に移動し、かつ、図7中の矢印によって示されたように一般的に接線方向で、インペラーチャンバーに装入する。
【0055】
アンカー撹拌機51の撹拌シャフト54は、ドライブハウジング70の底部での相当するくぼみ中のそのテーパーした末端上で、アンカー撹拌機が前記に示したように反応器中で回転可能であるように位置する。弓状の羽根72の配列は、撹拌機シャフト54からインペラーチャンバー75に外向きに突出させ、かつ一緒になってインペラーを形成する。
【0056】
処理すべき流体が、外部チャンネル78に接線的に移動し、かつスロット77を介してインペラーチャンバー75中に接線的に移動し、流体が羽根72に衝突し、この場合、これはシャフト54に対して回転運動を付与し、このようにして、アンカー撹拌機51に回転を生じさせる。流体の運動自体が、アンカー撹拌機の回転を生じるけれども、補助的駆動機序、たとえば図3の撹拌装置は必要とされない。流体がインペラーチャンバーから、反応器の反応チャンバーに移動する場合には、回転式アンカー撹拌機は、前記の図3および4に相当する第1のフロー上に重ねられた循環する第2のフローを生じる。
【0057】
図8および図9は、本発明の方法を実施するのに有用なUV反応器の他の実施態様を例証する。長形UVランプ81は、UV透過性らせん状巻線形フローチューブ82(好ましくは石英)によって包囲されており、この場合、これは、複数個の独立した巻線86を定義している。らせん状巻線形チューブ82は、チューブ82の底部末端で連結している入口83中のその底部末端、ならびにチューブ82の頭部末端で連結している出口84のその頭部末端で終わっている。図8中の矢印によって示されているように、処理すべき流体は、入口83中にポンプによって供給され、さらにUVランプ81を取り囲むらせん状巻線形チューブ82によって移動させ、その際、これは、ランプからのUV放射に暴露される。
【0058】
図9中で最良の形態が例証されているように、チューブ82の巻線86は、一般的にUVランプと近接する直線的または平らな表面を有する一般的なD−形状断面およびカーブした外表面で形成されている。第1フロー87の一般的方向で、流体がチューブ中を流れる場合には、表面張力、壁の摩擦、および流体がチューブの外部周囲を横行しなければならない大きい距離の組合せは、結果として、チューブ中で、循環する第2フロー88の形成を生じ、これはディーン渦として知られている。循環する第2フロー88は、一般には、第1フローに対して横行に、かつ重ねられて配置されているので、一般的にはUVランプ81に対して横行に配置されている。
【0059】
したがって、流体が、UVランプの表面に沿って、第1フロー方向に移動する場合には、循環する第2フローは、前記に示した多くの利点を有する本発明の方法にしたがって、UV源に近づいたり離れたりして流体を運搬する。図8および図9の反応器の形状に関する利点は、運動部分または駆動機序を含まないことであるのは明らかである。第1フロー87および第2フロー88のそれぞれの性質、および流体によって試みられたUV照射線量は、調整によって制御されてもよく、その際、流体の粘度、らせん状巻線形チューブ82、およびチューブ中の流体の流速を調整することが可能である。
【0060】
図10および11は、図8および9と同様のUV反応器の形状を例証しているが、しかしながら、D−形状断面よりもむしろ一般的な直線形状断面を有する反応器のらせん状巻線形フローチューブを有する反応器を例証している。長形UVランプ91が配置され、かつ、複数個の別個の巻線93を定めるらせん状巻線形石英チューブ92によって包囲されている。入口94は、フロ−チューブ92とその底部末端で連結しており、かつ、出口96はその頭部末端でフローチューブ92と連結している。処理すべき流体は、入口にポンプによって供給され、かつ、らせん状巻線形チューブ92を介して、第1フロー97の方向で、UVランプの表面に沿って、らせん状パターンで移動し(図11)、かつUV放射に対して暴露される。
【0061】
図8および図9の実施態様に示すように、チューブ92中の表面張力、摩擦、および巻き路の長さの勾配が組合わさって、第1フロー97上に重ねられた循環する第2フロー98として、それ自体を明らかにするディーン渦を生じる。循環する第2フロー98は、UVランプに対して本質的に横行に配置され、これによって、流体は、本発明の方法にしたがって、かつ、前記に示したこれらの利点を伴い、ランプに近づいたり離れたりして流体を運搬する。再度、照射線量を、流体の性質、ランプ強度、および反応器中の流速を調整することによって制御する。
【0062】
さらに、図12および図13は、本発明の方法を実施するのに有用な他のUV反応器の形状を例証する。反応器100は、管形石英(または他のUV透過性材料)のインナーチューブ102中に配置された長形UVランプ101を含む。外部ハウジング103は、石英チューブ102を包囲しており、これと連結して、UVランプ101の長さに沿って細長い反応チャンバー102を定義している。ハウジング103は、その頭部でヘッドキャップ106によってキャップされており、かつ、その底部103でそのベースキャップ108によってキャップされており、この場合、それぞれは、ハウジング103および石英チューブ102に対して、適切なO−リングシール107を用いて密閉されている。ハウジング103の内部表面は、反応器底部から頭部に、石英チューブ102の周囲を連続的にらせん状に描く一般的なヘリカルチャネル109を定義するように加工されている。ヘリカルチャネルは、石英チューブ102と接近しているものの連結されることなく、したがって、ヘリカルチャネルのそれぞれの回転と石英チューブ102との間の一連のかなり狭い流路111を定義している。入口112は、反応器底部で反応チャンバー104と連結されており、かつ出口113は反応チャンバー104と反応器頭部で連結されている。
【0063】
本発明の方法を実施するための使用において、処理されるべき流体は、入口を介して反応器中にポンプによって供給され、かつ一般的にはヘリカルチャネル周囲を、かつUVランプの表面に沿って、第1のフロー114で流れる。この第1フローの動きは、D−形状チャネル中の流体の動的干渉の結果としてディーン渦の形で循環する第2フローを生じる。循環する第2フロー116は、第1フロー114上に重ねられ、かつ、本発明の方法にしたがって、UV源に近づいたり離れたりして運搬される。
【0064】
同時に、空間111は、少量の流体を、フリージェットフロー116中で反応器の長さに沿って接線的に流れることを可能にする(図13)。フリージェットフロー116中の流体は、らせんを描く第1フロー114上にほぼ垂直に方向付けられる。2つのフロー間の干渉は、干渉フローによって生じる流体の動力の結果として、第2フロー116の循環運動を増強させる。これは、順に、流体が反応器中を移動する場合の、改善されたより一定の流体への照射を導く。UV照射線量は調整することができ、かつ、ヘリカルチャネルの直径、空間111の大きさ、流体の粘度、ランプ101の強度および反応器中の流体の流速によって制御することができる。
【0065】
さらに、図14および図15は、本発明の方法を実施するための有用なUV反応器の他の実施態様を例証している。反応器119は、図12および図13の反応器と幾つかの点で類似しており、かつ、石英チューブ122によって包囲された長形のUVランプ121を含む。外部ハウジング123は、石英チューブ122を包囲しており、かつこれと連結して、UVランプ121の長さに沿って延びる反応チャンバー124を定義している。ハウジングは、その頭部末端で、ヘッドチャップ126によってキャップされており、かつ底部末端でベースキャップ127によってキャップされており、この場合、これらはそれぞれ、適切なO−リング128でハウジングおよび石英チューブに対して封止されている。入口129は、これらの底部で反応チャンバーと連結し、かつ出口はその頭部末端で反応チャンバーと連結する。
【0066】
ハウジング123の内壁は加工されるか、あるいは、内方突起135によって分離されている、一連の一般に環状のチャネル132を用いて形成されている。内部突起135は、石英チューブ近くに存在するが接触しておらず、これによって、チャネル132間のかなり狭い流路134を定義している。一般的にリング形状のバッフル133の配列は、石英チューブ122から外部に突き出し、その際、それぞれのバッフルは、環状のチャネル132の一つに相当する範囲内に配置されている。
【0067】
本発明を実施するための使用において、処理すべき流体は、入口129中にポンプで供給され、かつ、反応器119に沿って移動し、出口131で搬出される。図15中に例証された最良の形態において、流体は、一般的に、UVランプの長さに沿って、かつ空間134を介して、第1フロー136で移動し、この場合、これらは、流れをUV源に近接した範囲に制限する。しかしながら、第1フローがバッフル133に衝突する場合に、反応チャンバーの外側に向かって、UV源から離れた方向に流れを変える。バッフル133の他の側において、第1フローは再度、UV源の方向に流れを変え、その後に、次の空間134を介して、後続のチャネルおよびバッフルの組合せに流れる。
【0068】
したがって、第1フロー136それ自体が、反復的にUV源に近づいたり離れたりして移動することによって、本発明の利点が得られることが見出された。さらに、それぞれのチャンバー中の第1フロー136の移動および置換によって、循環する第2フロー137を生じ、この場合、このフローは、UVランプに対して一般的に横行に配置されており、これによって、本発明の原理によれば、流体をUV源に近づいたり離れたりして流体を運搬する。したがって、循環する第2フローは、本発明の特徴点であるクロスミキシングを増強させ、結果としてこれによって本発明による利点を得る。
【0069】
さらに、図16および17は、本発明の方法を実施することができるUV反応器の他の実施態様を例証している。反応器140は、図14および図15の反応器119と幾つかの点で類似しており、かつ、石英チューブ142中に配置された長形UVランプ141を含む。ハウジング143は、石英チューブ142を包囲しており、かつ、これと連結して、反応チャンバー148を定める。ハウジングはその頭部末端でヘッドキャップ144によってキャップされ、かつその底部末端でベースキャップ146によってキャップされ、これらはそれぞれの場合において、ハウジングおよび石英チューブに対して適切なO−リング147によって密閉されている。流体入口153は、反応チャンバー148の底部と連結し、かつ出口154は反応チャンバー頭部と連結されており、この場合、これらは、それぞれ処理すべき流体を装入しかつ搬出させるためのものである。
【0070】
ハウジング143の内壁は加工されているか、あるいは、それぞれ突起151によって分離された一般的に環状のチャンバー149の配列で形成されている。石英チューブ142方向に伸びているが連結していない突起は、突起と石英との間でかなり狭い流路152を定めている。使用において、処理すべき流体は、入口153を介してポンプで供給され、かつ、UVランプの長さに沿って上向きに移動し、出口154を介して抽出される。図17中で例証されているように、流体は、管路152を介して、ランプ142の長さに沿って、第1フロー156で移動する。第1フロー中の流体の動きは、環状のチャネル149のこれまでの逐次的なものが渦を生じ、この場合、これは結果として、それぞれの環状のチャンバー中の第1フロー上に重ねられた、循環する第2フロー157を生じる。循環する第2フローは、UVランプに対して本質的に横行に配置され、したがって、本発明による方法によれば、第2フローは、UVランプに反復的に近づいたり離れたりして移動する。再度、結果として、流体の全量の均等かつ一定の放射が得られ、詳細には前記に示したようにこれに付随するすべての利点が得られた。
【0071】
本発明は、発明者によっておこなわれた実験および臨床試験を示す種々の実施例の範囲内で記載され、かつさらに特徴付けられる。実施例と一緒に組み合わせて示された技術およびデータは、本発明による方法のよりより理解およびより完全な開示のためであって、これに制限されるものではない。ここで示されている実施例に対して多くの改変がなされてもよく、かつ、以下に示されていない他の試験も、本発明の範囲内で実施されてもよい。
【0072】
実施例
例1
UV照射によってウイルス粒子を不活性化するための方法における限界パラメータ
UVC照射によるウイルス不活性化の目的は、タンパク質または重要な機能にダメージを与えることなく、ウイルスの高いレベルでの不活性化を達成することである。2個のパラメーターは、この目的を達成するのに決定的であることが見出され、すなわちこれらのパラメーターは、流体中のタンパク質濃度およびUVフルエンスである。フルエンスは、UV照射器の物理的形状に依存するが、それというのもし、インターナルフローパターンは、懸濁液中の任意のタンパク質分子またはウイルス粒子が受けるUV光の線量にかなり影響するためである。
【0073】
タンパク質は、UVの範囲で吸収されるが、高いタンパク質濃度は、UVCダメージからの大量の標的タンパク質を保護するのに役立つ。しかしながら、高いタンパク質濃度は、ウイルスをも保護する。したがって、タンパク質結合性およびウイルス不活性化の双方を、種々のタンパク質濃度で別個に評価することが必要であり、その後に、標的タンパク質の結合性を最大限に保護し、さらにウイルスを減少させるであろう、不活性化方法のためのタンパク質濃度を選択する。
【0074】
したがって、UVCによって誘発された効力損失を、タンパク質濃度の関数として、図18、チャートAに示したように測定した。UVC−誘発による効力損失は、12.5mg/ml濃度のαプロテアーゼインヒビターでは最も少ないが、しかしながら、7.0、5.0および4.0mg/mlのタンパク質濃度で増加する。効力上での最良の効果は、最も低いタンパク質濃度、2.5mg/lでみられた。それとは対照的に、図9Bに示したように、ウイルス感染性における最も低い減少は、最も高いαプロテアーゼインヒビター濃度 12.5mg/mlで観察され、かつ最も高い不活性化濃度は、最も低い濃度で、すなわち2.5mg/mlで観察された。これらのデーターに基づいて、αプロテアーゼインヒビター 5mg/mlは、許容可能なタンパク質効力と良好なウイルスの不活性化との間の歩み寄りの結果として、UVC不活性化のために使用された。
【0075】
モデルウイルス試験
ウイルスストック。ブタパルボウイルス(PPV)、テネシー菌株(strain Tennessee)、エンベロープをもたない一本鎖DNAウイルスを、ヒトパルボウイルスB19のためのモデルとして、これらの試験に使用した。このウイルスは、低温殺菌および乾熱殺菌を含む種々の方法による不活性化に対しての耐性を示した。
【0076】
ウイルスストックは、ブタ精巣(PT)細胞のインフェクションによって製造された。ウイルスは、インフェクションの低い多重性で、PT細胞のサブコンスフルエントな単層を感染させることによって増殖させ、増殖媒体を添加し、その後に、5%CO中で、37℃で、有利な細胞病理学が観察されるまで細胞をインキュベートした。ウイルスの増殖媒体は、本質的な最小培地から成り、イーグルS塩を、7.5%のウシ胎児血清およびNHGと一緒に添加した。NHGは、コンタミネーションを防ぎ、かつ、この細胞系の要求する付加的な培地を供給するために添加し、かつ、0.1mM非必須アミノ酸、10mM HEPES(N−[2−ヒドロキシエチル])ピペラジン−N−[2−エタンスルホン酸]、0.05mg/mlゲンタマイシンおよびフンギソン(2.5mg/ml アンホテリシンB)から成る。感染細胞を、凍結乾燥によって粉砕し、かつ細胞溶解物を使用時まで約−70℃で保存した。それぞれの実験のためのウイルススパイクは、ウイルス感染細胞溶解物を融解し、低速で遠心分離し(4000xg)、細胞崩壊物を除去し、かつ透明な上清を捕集することによって製造された。
【0077】
ウイルスアッセイ
UVCによるウイルスの不活性化は、PT細胞が播種された96−穴マイクロタイタープレート中で、7.5%FBSおよびNHGを含有するMEMを用いて、エンドポインド希釈することによって測定された。ウイルスは、ハンクス液(HBSS)中での試験試料またはポジティブコントロール一連の半対数的希釈を用いて希釈した。ポジティブコントロールは、ウイルススパイクとして使用したウイルスと同ロットから構成される。スパイクのないHBSSをネガティブコントロールとして使用した。それぞれの希釈は、96−穴マイクロタイタープレートの8穴を播種するのに使用した。37℃で、5%CO中で7日間に亘ってインキュベーションの後に、細胞病理学的に評価した。結果を、SpearmanおよびKarberの方法によってタイター(log 平均 組織培養感染量/ml;TCID50/ml)に変換した(Cavalli-Sfpraza, L. Biometrie Grundzuge biologisch-medizinischer Statistik[Biometry, the basics of biological and medical statistics], Gustav Fischer Verlag Stuttgart, 1974, p. 171-173.)。
【0078】
種々のウイルス種は、これらの相対的な不活性化感受性に関して試験した。
【0079】
【表1】
Figure 0004116429
【0080】
第1表に示したように、本発明の方法は、他のウイルスよりも小さいフルエンスでPPVを不活性化するが、0.014〜9.0ジュール/cmの範囲でのフルエンスに暴露する場合には、少なくとも4オーダーの大きさですべてウイルスが不活性化された。さらに、ウイルスのゲノムが小さくなればなるほど、典型的には効果的なフルエンスの値は小さくなる。
【0081】
例2
タンパク質結合性
UVC暴露に引き続いて、免疫グロブリン結合性の維持について、分子のアグリゲーションおよびフラグメンテーションの程度を評価することによって評価した。これは、TSK−G3000(Toso-Haas)カラムおよび0.91M NaHPO、pH5.2−0.2M NaClバッファーを用いてのゲル濾過クロマトグラフィーによっておこなわれた。免疫グロブリン結合性は、単量体タンパク質の面積%として示された。
【0082】
αPIに関して、タンパク質結合性は、ブタエラスターゼを抑制する酵素の能力を測定することによって評価した。タンパク質結合性は、UVC暴露前の活性の百分率として示された。
【0083】
IGIV中のPPVの不活性化
予め調製されたIGIVを、水で0.8%に希釈し、pH4.2に調整し、かつ10%のPPVでスパイクした。タンパク質結合上でのUVC暴露の効果を評価するために、スパイクのないIGIV溶液を使用した。IGIV溶液を、管形UV反応器中に、蠕動ポンプで供給し、運転を100ml/分に調整した。タンパク質溶液を装置を介してポンプで供給し、試料を含有する撹拌型受け器中に再度循環させた。タンパク質溶液を、5、10、15、30および60分に亘っての完全な組み立て(assembly)中に再循環し、この場合、これは、それぞれ、2.8、5.6、8.4、16.9および33.8ジュール/cmに相当する。この場合において、フルエンスは、UV源に最も近い反応チャンバー表面(この場合、これらは、UVランプ周囲の石英スリーブの表面であってもよい)でUV光強度によって多重化された平均滞在時間(かさ流量によって分配された反応器容量)として定められる。これらの計算のために、理想的なプラグフローが仮定された。図19に示されているように、再循環の5分後に、4logのPPV減少が観察され、かつ30分後には、7logを超えての不活性化が観察された。UVC暴露の60分後に、95%の単量体IgGが維持されていた。
【0084】
例3
αプロテアーゼインヒビター中でのPPVの不活性化
αプロテアーゼインヒビター(∀PI)を、20mM リン酸ナトリウムpH7.0および100mM NaCl中 5mg/mlに希釈し、かつ、例1で使用したように同じ装置中でUVCに暴露した。しかしながら、この試験において、溶液を装置を介して単一の経路で、25〜1200ml/分の流量でポンプで供給し、結果として、0.19〜18ジュール/cmのフルエンスが生じた。
【0085】
ウイルスの減少を評価するために、タンパク質溶液を、PPVで10%スパイクし、かつタンパク質結合性を評価し、スパイクされていない溶液をUVCに対して暴露した。図20から、約0.6ジュール/cmで、少なくとも4logsのPPVが不活性化されることが見出される。さらに、第2表に示されているように、高いフルエンスでPPVは、検出を下廻るレベルに減少され;log減少の多様性は、スパイクされたウイルスの出発タイター中の多様性によって観察された。少なくとも95%の∀PI活性が、2.3ジュール/cm以下のフルエンスに暴露した後に維持された。
【0086】
【表2】
Figure 0004116429
【0087】
例4
αプロテアーゼインヒビター中のPPVの不活性化
20mMリン酸ナトリウム、pH7.0 100mM NaCl中 5mg/mlに希釈された∀PI溶液は、管形反応器の第2の型中でUVCに対して暴露され、その際、入口および出口は相殺される。これは、主に接線的であるが、しかしながら反応器中の環状のフローに対して放射線状の成分を含むフローパターンを生じる(タンジェンシャルフロー反応器)。ウイルス減少の評価のために、タンパク質溶液は、PPVで10%スパイクされる。図21中に示されたデータは、この反応器中で、4logのPPV不活性化が、例10および例11中で使用された管形反応器よりも低いフルエンスで不活性化させることが可能であると示している。最初の∀PI活性の少なくとも95%が、2ジュール/cm以下のフルエンスで観察された。同様のUVランプおよび同様の光強度が、すべての試験において使用されているが、これは、特に、第1フロー中の循環する第2フローを含む、改善された流体力学的条件(混合)が、適切なウイルスの不活性化を得るために必要な反応器中でのタンパク質溶液の全滞在時間を減少させることを示した。
【0088】
例5
【0089】
【表3】
Figure 0004116429
【0090】
グラフ図Aは、3種の異なる反応器の形状において、5mg/mlのα−プロテアーゼインヒビターの溶液中で、ブタパルボウイルス(PPV)の不活性化を評価する試験結果を示す。これは、4−logのウイルス減少の限界値は、図1で示すような従来の反応器に類似する、簡単な管形反応器中で、約0.7J/cmのフルエンスで達成されてもよい。改善された流体力学的条件、特に、タンジャンシャルフロー特性を有する反応器およびらせん状巻線形反応チャンバーを有する反応器(図8参照)中のラジカルフロー成分の増加は、血漿溶液を滅菌するために必要なUV光エネルギーの著しい減少を導く。これらのデーターは、PPV不活性化の4−logが接線の入口および出口aを有する管形反応器中で約0.15J/cmで達成することができる。らせん状巻線形反応チャンバーを有する反応器中において、0.1J/cm未満は、4−logのPPVの不活性化するのに十分である。4.5〜5のlog減少値が、ウイルスアッセイの検出限界にほぼ等しく、かつ、正確なウイルスの減少はさらに高いこともありえると解される。
【0091】
これらの結果は、ウイルスの代わりにUV光感受性物質を用いて得られるデータから構成される。この場合において、UVによって誘発されたヨウ化物イオンからの3ヨウ化物イオンの形成が使用され、引き続いて、Rahmによって記載された試みを行う(Rahm, R. O.; Photochemistry and Photobiology 58(1993)6, 874-880, ibid 66(1997)4, 450-455)。ここで、ヨウ化カリウムを、UV光感受性成分として、254nmでのUV光強度を測定するために使用され、グラフA図で使用されたのと同様の3種の反応器中での反応媒体に対して提供した。測定された光強度と、UVバルブによって放射された光強度との比較によって、UV光収量が得られる。ヨウ化カリウム中のUV光透過度は、与えられた条件下で特に小さいが(1mm未満)、ヨウ化物の変換は、UVバルブを包囲する石英スリーブの表面でのみ直接的に生じるように近づけることができる。したがって、このような流体力学的条件、特に、循環する第2フローパターンの結果としてのラジカル混合が、光収量を定めることは明らかである。グラフB中で示されたデータは、明らかにこれを確認している。優れた流体力学的条件によって、最も高い光収量は、他の2個の反応器と比較して、らせん状巻線形反応チャンバーを有する反応器中で見出された。グラフB中のデータは、ラジカル混合、特に、循環する第2フローの増加が、流量の増加によって増加することを示す。らせん状巻線形チャンバーを有する反応器中において、
【0092】
【表4】
Figure 0004116429
【0093】
しかしながら、混合の程度は、1000ml/分よりも高い流量において低下するとみられる。それというのも、ラジカル混合は、接線の入口および出口を有する反応器中でより良好であるが、光収率は、簡単な管形反応器と比較して高くなる。
【0094】
例6
グラフ図Cは、らせん状巻線形反応チャンバーを有するUV反応器中で、αプロテアーゼインヒビター 5mg/mlの溶液中のReo−ウイルス3の不活性化を評価する試験結果を示す。これによれば、Reo不活性化が、フルエンスの増加と一緒に増加し、約0.15J/cmでの4−log減少を達成することが見出されている。同時に、タンパク質活性はダメージを受けないが、0.15J/cmを上廻るフルエンスで減退する。0.15J/cmのフルエンス値は、1000ml/分の流量に相当する。図に示されているように、YYY混合は、明らかにこの装置において1000ml/分を上廻る流量での限界およびプラトーに近づいている。したがって、さらなる流量の増加(フルエンス減少)は、反応器の死滅化領域でのウイルスの全滞留時間を減少させ、したがって、ウイルスの不活性化の減少を導く。同時に、タンパク質活性は、減少した流量で減退する(フルエンス増加)。この試験は、流体力学的条件が、適切な混合を保証するように適応される最適化された流量を示唆するが、しかしながら、同時に、全滞留時間はさらにウイルスを効果的に死滅させるのに十分であり、かつ十分に高いタンパク質活性を留めている。この流量は、試験したような反応器のデザインおよび形状のみならず、前記に示したようにウイルスおよびタンパク質の特性およびそれぞれの濃度に依存する。したがって、最適な流量は、それぞれ示された系のために実験的に測定するのに必要である。
【0095】
【表5】
Figure 0004116429
【0096】
本発明は、好ましい実施態様、形状、方法および実施例によって記載されている。しかしながら、種々の付加、削除および変更が、前記請求項に示したような本発明の精神および範囲から逸脱することなく、例証された実施態様に関しておこなわれてもようことは当業者の当然とするところである。
【図面の簡単な説明】
【図1】 流体の層状流の特徴を示す、先行技術によるリングスロットUV反応器を示す略図
【図2】 本発明によるUV反応器の一部分を簡略化した断面図
【図3】 本発明による回転式撹拌機を有するUV反応器の一つの態様を示す断面図
【図4】 本発明による回転式撹拌機を有するUV反応器の一つの態様を示す断面図
【図5】 本発明による回転式撹拌機を有するUV反応器の一つの態様を示す断面図
【図6】 本発明による回転式撹拌機を有するUV反応器の一つの態様を示す断面図
【図7】 本発明による回転式撹拌機を有するUV反応器の一つの態様を示す断面図
【図8】 本発明によるUV反応器の一つの態様を示す断面図
【図9】 本発明によるUV反応器の一つの態様を示す断面図
【図10】 本発明によるUV反応器の一つの態様を示す断面図
【図11】 本発明によるUV反応器の一つの態様を示す断面図
【図12】 本発明によるUV反応器の一つの態様を示す断面図
【図13】 本発明によるUV反応器の一つの態様を示す断面図
【図14】 本発明によるUV反応器の一つの態様を示す断面図
【図15】 本発明によるUV反応器の一つの態様を示す断面図
【図16】 本発明によるUV反応器の一つの態様を示す断面図
【図17】 本発明によるUV反応器の一つの態様を示す断面図
【図18】 種々の∀PI濃度でのフルエンスの関数として∀PI効力およびPPV減少を示すグラフ図
【図19】 時間の関数として、∀PI溶液中でのPPV減少を示すグラフ図
【図20】 フルエンスの関数として、∀PI溶液中でのPPV減少を示すグラフ図
【図21】 フルエンスの関数として、∀PI溶液中でのPPV減少および∀PI活性の百分率を示すグラフ図
【符号の説明】
11 反応器、 12 管形UVランプ、 13 円筒型ハウジング、 14 外壁、 16 内壁、 17 反応チャンバー、 18 入口、 19 出口、 21 矢印、 22 曲線、 23 ランプからの距離限界、 24 死滅化領域の外側境界線、 31 UV反応器、 32 ランプ、 33 管形ハウジング、 34 外壁、 36 内壁、 37 反応チャンバー、 38 死滅化領域、 39 第1フロー、 41 第2フロー、 46 UVランプ、 47 ガラスマントル、 48 管形ハウジング、 49 反応チャンバー、 51 回転式アンカー撹拌機、 52 ベースカバー、 53 位置決めチップ、 54 撹拌機シャフト、 55 アンカー撹拌機底部、 56 位置決めピン、 57 マグネット式カプラーアーム、 58 マグネット式装置、 59 入口、 61 出口、 62 O−リング、 63 フローブレーカー、 64 ヘッドカバー、 65 摺動ベアリング、 66 第1フロー、 67 第2フロー、 70 ドライブハウジング、 71 シールされていない装置機序、 72 羽根、 73 入口、 75 円筒状インペラーチャンバー、 77 スロット、 78 外部チャネル、 81 長形UVランプ、 82 らせん状巻線形チューブ、 83 入口、 84 出口、 86 巻線、 87 第1フロー、 88 第2フロー、 91 長形ランプ、 92 らせん状巻線形石英チューブ、 93 巻線、 94 入口、 96 出口、 97 第1フロー、 98 第2フロー、 100 反応器、 101 インナーチューブ、 102 石英チューブ、 103 外部ハウジング、 106 ヘッドキャップ、 107 O−リングシール、 108 ベースキャップ、 109 ヘリカルチャネル、 111 スペース、 112 入口、 113 出口、 114 第1フロー、 116 第2フロー、 119 反応器、 121 UVランプ、 122 石英チューブ、 123 ハウジング、 124 反応チャンバー、 126 ヘッドキャップ、 127 ベースキャップ、 128 O−リング、 129 入口、 131 出口、 132 チャネル、 133 バッフル、 134 流路、 136 第1フロー、 137 第2フロー、 140 反応器、 142 石英チューブ、 143 ハウジング、 144 ヘッドキャップ、 146 ベースキャップ、 147 O−リング、 148 反応チャンバー、 149 チャンバー、 151 突起、 152 流路、 153 入口、 154 出口、 156 第1フロー、 157 第2フロー

Claims (15)

  1. UV源からの紫外線放射を用いて、生物学的流体を照射する方法において、前記方法が:
    (a)流体をUV源に沿って第1フローで移動させ、かつ、
    (b)第1フロー上に重ねられた循環する第2フローを流体中に引き起こし、その際、循環する第2フローは、UV源の放射表面に対して横方向に流体を移動する、工程を含み;
    その際、UV源が少なくとも一つの長形のUVランプであり、かつ、その際、工程(a)は、UVランプ周囲にらせん状の巻線形フローチューブを配置させ、かつ、らせん状の巻線形フローチューブを通して流体を第1フローの方向で移動させ、工程(b)の循環する第2フローを引き起こし、かつ、それによって、らせん状の巻線形フローチューブは、UVランプと近接する直線的または平らな表面およびカーブした外表面を有するD−形状断面を有するか、あるいは、角形断面を有することを特徴とする、UV源からの紫外線放射を用いて、生物学的流体を照射する方法
  2. UV源からの紫外線放射を用いて、生物学的流体を照射する方法において、前記方法が:
    (a)流体をUV源に沿って第1フローで移動させ、かつ、
    (b)第1フロー上に重ねられた循環する第2フローを流体中に引き起こし、その際、循環する第2フローは、UV源の放射表面に対して横方向に流体を移動する、工程を含み;
    その際、UV源が少なくとも一つの長形のUVランプであり、かつ、工程(a)はUVランプを取り囲む反応チャンバーを有し、かつ反応チャンバーに沿って流体を第1フローで移動させることを含み、その際、工程(b)は、反応チャンバー内部でアンカー撹拌機を回転させることを含むことを特徴とする、UV源からの紫外線放射を用いて、生物学的流体を照射する方法
  3. 照射が、生物学的流体中の微生物を不活性化する、請求項1または2に記載の方法。
  4. 微生物がウイルスである、請求項1または2に記載の方法。
  5. 流体が食料流体である、請求項1または2に記載の方法。
  6. 生物学的流体中の微生物を不活性化させる方法において、前記方法が、
    (a)紫外線を流体に照射するための反応器を提供し、その際、反応器は、流体のための少なくとも一つの入口および一つの出口と連結している反応チャンバー、および紫外線放射源を有しており;
    (b)反応チャンバーを通して、紫外線放射源に沿って流体を第1フローで移動させ;かつ、
    (c)第1フロー上に重ねられた循環する第2フローを生じさせ、その際、第2フローは、紫外線放射源に対して横行に移動している、工程を含み;
    その際、UV源が少なくとも一つの長形のUVランプであり、かつ、その際、反応チャンバーは、らせん状の巻線形フローチューブによって形成され、かつ、らせん状の巻線形フローチューブは、紫外線照射源周囲をらせん状に描き、かつ、それによって、らせん状の巻線形フローチューブ、UVランプと近接する直線的または平らな表面およびカーブした外表面を有するD−形状断面を有するか、あるいは、角形断面を有することを特徴とする、生物学的流体中の微生物を不活性化させるための方法。
  7. 生物学的流体中の微生物を不活性化させる方法において、前記方法が、
    (a)紫外線を流体に照射するための反応器を提供し、その際、反応器は、流体のための少なくとも一つの入口および一つの出口と連結している反応チャンバー、および紫外線放射源を有しており;
    (b)反応チャンバーを通して、紫外線放射源に沿って流体を第1フローで移動させ;かつ、
    (c)第1フロー上に重ねられた循環する第2フローを生じさせ、その際、第2フローは、紫外線放射源に対して横行に移動している、工程を含み;
    その際、UV源が少なくとも一つの長形のUVランプであり、かつ、その際、反応チャンバーはUVランプを取り囲み、かつ反応チャンバーに沿って流体を第1フローで移動させることを含み、かつ、それによって、アンカー撹拌機が、反応チャンバー内部で回転することを特徴とする、生物学的流体中の微生物を不活性化させるための方法。
  8. 反応器の照射空間が、ハウジングとインナーチューブによって定義されるリング形状の管形空間であり、かつその中に軸線を有する、請求項1から7までのいずれか1項に記載の方法。
  9. 反応チャンバーが、外側の円筒壁とUV透過性内側の円筒壁との間に定義されており、その際、紫外線源は、内側の円筒壁によって包囲されている、請求項1から8までのいずれか1項に記載の方法。
  10. 不活性化されるべき微生物がウイルスである、請求項1から9までのいずれか1項に記載の方法。
  11. 紫外線がUVC線である、請求項1から10までのいずれか1項に記載の方法。
  12. 紫外線放射の波長が254nmである、請求項1から11までのいずれか1項に記載の方法。
  13. ウイルスの不活性化のために、流体を、30ジュール/cm未満のフルエンスに暴露する、請求項1から12までのいずれか1項に記載の方法。
  14. ウイルスの不活性化のために、流体を、0.01ジュール/cm〜10ジュール/cmのフルエンスに暴露する、請求項1から13までのいずれか1項に記載の方法。
  15. ウイルスの不活性化のために、流体を、0.02ジュール/cm〜5ジュール/cmのフルエンスに暴露する、請求項1から14までのいずれか1項に記載の方法。
JP2002540772A 2000-11-13 2001-11-12 紫外線放射を用いて流体中の微生物を不活性化する方法 Expired - Lifetime JP4116429B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US71178000A 2000-11-13 2000-11-13
PCT/EP2001/013058 WO2002038191A2 (en) 2000-11-13 2001-11-12 Method of inactivating microorganisms in a fluid using ultraviolet radiation

Publications (2)

Publication Number Publication Date
JP2004512905A JP2004512905A (ja) 2004-04-30
JP4116429B2 true JP4116429B2 (ja) 2008-07-09

Family

ID=24859497

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002540772A Expired - Lifetime JP4116429B2 (ja) 2000-11-13 2001-11-12 紫外線放射を用いて流体中の微生物を不活性化する方法

Country Status (9)

Country Link
US (2) US20030049809A1 (ja)
EP (1) EP1337280B1 (ja)
JP (1) JP4116429B2 (ja)
CN (1) CN1289150C (ja)
AU (2) AU2954502A (ja)
CA (1) CA2428332C (ja)
DK (1) DK1337280T3 (ja)
HK (1) HK1079716A1 (ja)
WO (1) WO2002038191A2 (ja)

Families Citing this family (97)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2003232031A1 (en) * 2002-05-03 2003-11-17 Gambro, Inc. Fluid mixing and irradiation device and method of using the device especially for biological fluids
AU2003228861A1 (en) * 2002-05-08 2003-11-11 Millipore Corporation Light decontamination of fermentation media
US20030230477A1 (en) * 2002-06-14 2003-12-18 Fink Ronald G. Environmental air sterilization system
AU2003201835B2 (en) * 2002-07-17 2008-11-13 Vast Light Ltd Turbine-boosted ultraviolet-radiation sterilizing fluid processor
JP2004050169A (ja) * 2002-07-17 2004-02-19 Vast Light Ltd 渦流加速紫外線殺菌滅藻液体処理器
US6784440B2 (en) * 2002-07-26 2004-08-31 Boc, Inc. Food sanitizing cabinet
US20040056201A1 (en) * 2002-09-19 2004-03-25 Fink Ronald G. Food surface sanitation hood
CN1298422C (zh) * 2002-11-27 2007-02-07 株式会社日本光电科技 光化学反应处理装置和光化学反应处理方法
GB0229870D0 (en) 2002-12-21 2003-01-29 Intersurgical Ltd Improvements relating to closure devices
US7160566B2 (en) * 2003-02-07 2007-01-09 Boc, Inc. Food surface sanitation tunnel
US8986607B2 (en) 2003-02-27 2015-03-24 Baxter International Inc. Method for the validatable inactivation of pathogens in a biological fluid by irradiation
DE10312765A1 (de) * 2003-03-21 2004-09-30 Bayer Technology Services Gmbh Vorrichtung und Verfahren zur Sterilisation flüssiger Medien mittels UV-Bestrahlung und Kurzzeiterhitzung
US8296071B2 (en) 2004-03-15 2012-10-23 Terumo Bct Biotechnologies, Llc Methods for uniformly treating biological samples with electromagnetic radiation
US7993580B2 (en) 2004-08-24 2011-08-09 Baxter International Inc. Methods for the inactivation of microorganisms in biological fluids, flow through reactors and methods of controlling the light sum dose to effectively inactivate microorganisms in batch reactors
NZ542509A (en) * 2005-09-20 2008-01-31 Logistic Solutions Ltd A treatment system
JP2007144386A (ja) 2005-11-02 2007-06-14 Toshiba Corp 紫外線照射水処理装置
DE102006008125A1 (de) 2006-02-20 2007-09-06 Bayer Technology Services Gmbh Reinigbare Wendelmodule
DE102006018824A1 (de) 2006-04-22 2007-10-25 Bayer Technology Services Gmbh Einweg-Bioreaktor
US9011697B2 (en) * 2006-06-16 2015-04-21 Drexel University Fluid treatment using plasma technology
DK2251306T3 (da) 2006-11-14 2020-05-25 Atlantium Tech Ltd Fremgangsmåde og apparat til væskedesinfektion under anvendelse af UV-lystransparent ledning
US7652265B2 (en) * 2006-12-11 2010-01-26 General Electric Company Air treatment system
US20080305018A1 (en) * 2007-06-11 2008-12-11 Albonia Innovative Technologies Ltd. Photosterilization Reactor
DE202008003806U1 (de) 2007-09-14 2009-02-12 Nordmark Arzneimittel Gmbh & Co. Kg Extrakt für die Herstellung von pharmazeutischen Therapeutika und dessen Verwendung als Nahrungs- oder Lebensmittel oder Nahrungsergänzungsmittel
DE102007044100A1 (de) 2007-09-14 2009-03-19 Nordmark Arzneimittel Gmbh & Co. Kg Verfahren zur Reduktion der Viren- und Mikroorganismen-Belastung feststoffhaltiger biologischer Extrakte
DK2276850T5 (da) * 2008-04-14 2013-12-02 Irx Therapeutics Inc Irx-2-modificeret fremstillingsfremgangsmåde
US8766211B2 (en) * 2008-07-15 2014-07-01 Trojan Technologies Fluid treatment system
US8581522B2 (en) * 2008-09-19 2013-11-12 Mathew Inskeep Countertop decontaminating device
EP2394963B1 (en) * 2008-11-21 2016-02-17 The University of Tokushima Ultraviolet sterilization device for outdoor water
US8017073B2 (en) 2008-11-28 2011-09-13 Life Spring Limited Partnership High intensity air purifier
FR2941866B1 (fr) * 2009-02-09 2011-05-13 Maco Pharma Sa Procede pour modifier les proprietes d'un fluide par irradiation et systeme pour sa mise en oeuvre
DE102009009108B3 (de) 2009-02-16 2010-06-17 Bayer Technology Services Gmbh Verfahren und Vorrichtung zum Verbinden eines flexiblen profilierten Hohlzylinders mit einem zylinderförmigen Körper, sowie danach hergestellte Bestrahlungsmodule
GB0907338D0 (en) 2009-04-28 2009-06-10 Snowball Malcolm R Fluid disinfector
EP2284126A1 (en) 2009-08-13 2011-02-16 Koninklijke Philips Electronics N.V. Device comprising flow guides and a source for emitting ultraviolet light
ES2431826T3 (es) * 2009-10-13 2013-11-28 Bayer Intellectual Property Gmbh Procedimiento para la inactivación de contaminantes no deseados en extractos de sanguijuelas
GB2487035B (en) * 2009-10-22 2015-01-28 Jong Seop Shim Microbicidal purification device employing ultraviolet light from which ultraviolet-light-irradiation dead areas have been eliminated
JP5945228B2 (ja) * 2010-01-19 2016-07-05 バイオリテック ファーマ マーケティング リミテッド 増強された抗菌pdt
WO2011123578A1 (en) * 2010-03-30 2011-10-06 Life Spring Limited Partnership Photo-catalyzing fluid mobilizing system and method
KR100971177B1 (ko) * 2010-04-07 2010-07-20 (주)유브이플러스 자외선 투과율이 낮은 유체를 살균하는데 적합한 자외선 유체 살균기
GB201006753D0 (en) 2010-04-22 2010-06-09 Biotest Ag Process for preparing an immunolobulin composition
MX338064B (es) 2010-06-07 2016-04-01 Genzyme Corp Dispositivo para la inactivación viral de medios líquidos.
WO2012067918A1 (en) * 2010-11-17 2012-05-24 Kci Licensing, Inc. Reduced-pressure systems and methods employing an ultraviolet light source for reducing bioburden
US9199026B2 (en) 2011-01-07 2015-12-01 Somerset Group Enterprises, Inc. Modular extracorporeal systems and methods for treating blood-borne diseases
GB2494448A (en) * 2011-09-09 2013-03-13 Steriflow Ltd Ultra-violet liquid steriliser
US9375525B2 (en) * 2012-01-09 2016-06-28 Somerset Group Enterprises, Inc. Modular extracorporeal systems and methods for treating blood-borne diseases
US8968578B1 (en) * 2012-03-02 2015-03-03 Verity Farms LLC Water treatment system and method
KR20170090521A (ko) * 2012-08-14 2017-08-07 쥬코쿠 덴료쿠 가부시키 가이샤 부착기 유생의 유영 또는 포복 정지 방법
US9150434B2 (en) 2012-11-09 2015-10-06 International Business Machines Corporation Electricity-less water disinfection
US9227855B2 (en) * 2012-11-09 2016-01-05 International Business Machines Corporation Large-scale electricity-less disinfection of fluent water
JP2015536681A (ja) * 2012-12-18 2015-12-24 カラク アーゲー 人乳の殺菌装置及び方法
US20140221692A1 (en) * 2013-02-04 2014-08-07 Chevron Phillips Chemical Company Lp Flow Reactor Vessels and Reactor Systems
WO2015126982A2 (en) 2014-02-18 2015-08-27 Rolf Engelhard High efficiency ultra-violet reactor
EP2918294A1 (de) 2014-03-11 2015-09-16 Bayer Technology Services GmbH Vorrichtung und Verfahren zur kontinuierlichen Virusinaktivierung
WO2015145526A1 (ja) 2014-03-24 2015-10-01 中国電力株式会社 付着期幼生の遊泳または匍匐停止方法
US11134669B2 (en) 2014-03-24 2021-10-05 The Chugoku Electric Power Co., Inc. Method for killing Pteriomorphia and barnacles using light irradiation
US20150284265A1 (en) * 2014-04-03 2015-10-08 Eaton Corporation Ultraviolet fluid treatment system
EP2957177A1 (en) 2014-06-16 2015-12-23 Carag AG Device for pasteurization of human milk
CN104255909A (zh) * 2014-10-14 2015-01-07 荣成炭谷有限公司 一种牛奶杀菌消毒方法及其设备
USD843554S1 (en) 2014-10-14 2019-03-19 Rolf Engelhard Air purifier
US9265876B1 (en) * 2014-10-22 2016-02-23 Hemalux Technologies LLC Systems and methods for pathogen inactivation in blood using UV irradiation while minimizing heat transfer thereto
WO2016092619A1 (ja) 2014-12-08 2016-06-16 中国電力株式会社 フジツボ類の付着抑制方法
SG11201702476RA (en) 2015-03-27 2017-10-30 Chugoku Electric Power Method of preventing settlement of sessile organisms
EP3088006A1 (de) 2015-04-28 2016-11-02 Bayer Technology Services GmbH Verfahren zur kontinuierlichen virusinaktivierung in einem mikroreaktor
JP6814200B2 (ja) * 2015-05-14 2021-01-13 ユニバーシティ オブ サウス アフリカ 廃棄ビール回収
CN107852151B (zh) * 2015-07-29 2023-07-28 胜艺科研发私人有限公司 用于向目标物体或目标区域施加叠加的时变频率电磁波的方法和系统
JP6654832B2 (ja) * 2015-09-03 2020-02-26 日機装株式会社 殺菌装置
GB201516697D0 (en) * 2015-09-21 2015-11-04 Rix Stuart D Serillization of liquids
TWI565487B (zh) 2015-09-25 2017-01-11 財團法人工業技術研究院 殺菌裝置
TWD179237S (zh) 2016-03-31 2016-11-01 財團法人工業技術研究院 容器之部分
WO2017186510A1 (en) * 2016-04-28 2017-11-02 Unilever N.V. Device for uv-treatment of aqueous fluid
CN109843906B (zh) 2016-08-16 2023-09-01 建新公司 处理包含重组治疗性蛋白质的流体的方法及其用途
CN110382418B (zh) 2017-02-23 2022-12-13 默克专利股份公司 流通式流体纯化设备和用于容纳辐射源的装置
EP3585733B1 (en) 2017-02-23 2023-12-06 Merck Patent GmbH Flow-through fluid purification device
US11312642B2 (en) 2017-03-31 2022-04-26 Industrial Technology Research Institute Fluid sterilizing device
JP2020515359A (ja) * 2017-04-04 2020-05-28 ユニバーシティー ヘルス ネットワーク 臓器潅流液を照射処理するための装置および方法
JP6892788B2 (ja) * 2017-05-26 2021-06-23 ウシオ電機株式会社 殺菌方法、殺菌装置
EP3630205A4 (en) * 2017-05-26 2021-02-24 Acuva Technologies Inc. LIQUID DISINFECTING DEVICE AND PROCEDURE
IL253336A0 (en) * 2017-07-05 2017-09-28 Koren Mordechai Liquid handling system and method
CN107496950B (zh) * 2017-08-18 2021-02-02 广州市众为生物技术有限公司 一种紫外线照射灭活蛋白溶液中病毒的方法
DK179693B1 (en) * 2017-09-21 2019-03-27 Lyras ApS Photobioreactor for bactericidal treatment of fluids
EP3498106A1 (en) 2017-12-13 2019-06-19 Bayer Healthcare LLC Unit operation and use thereof
KR20200094156A (ko) 2017-12-13 2020-08-06 바이엘 악티엔게젤샤프트 단위 작동체 및 그의 용도
TWI641411B (zh) * 2018-02-01 2018-11-21 匠萌技研股份有限公司 Drinking fountain instant sterilization structure
TWM565577U (zh) * 2018-05-28 2018-08-21 奇麟光電股份有限公司 改善照射流體效果的管路裝置
KR102218711B1 (ko) * 2018-12-18 2021-02-22 세메스 주식회사 오존 분해 유닛 및 이를 포함하는 기판 처리 장치, 기판 처리 방법
WO2020154331A1 (en) * 2019-01-21 2020-07-30 Greengield Jon Treatment and agitation device for ultraviolet, temperature and gaseous controlled sterilization, curing and treatment of agricultural products including cannabis, and methods for treatment
US11832606B1 (en) * 2019-02-20 2023-12-05 Scanlogx, Inc. Organism eradication system and method of use
KR102213392B1 (ko) * 2019-03-22 2021-02-08 경북대학교 산학합력단 빛 조사를 통한 미생물의 정족수 감지 억제방법 및 생물오염 제어방법
TW202128567A (zh) 2019-07-31 2021-08-01 美商通路實業集團國際公司 水處理系統
NL2024320B1 (en) * 2019-11-27 2021-08-30 Dinnissen B V Ultraviolet radiation-based surface disinfection and/or surface processing system
US20230064241A1 (en) 2020-02-03 2023-03-02 Merck Patent Gmbh Modular incubation chamber and method of virus inactivation
DE102020108265A1 (de) * 2020-03-25 2021-09-30 Hytecon Ag Vorrichtung zum Desinfizieren eines Fluids
US20210338860A1 (en) 2020-05-01 2021-11-04 Uv Innovators, Llc Ultraviolet (uv) light emission device employing visible light for operation guidance, and related methods of use, particularly suited for decontamination
KR20220034456A (ko) * 2020-09-11 2022-03-18 주식회사 싸이큐어 표면 및 공간 led 살균 조명장치
CA3198127A1 (en) 2020-11-14 2022-05-19 Tracy L. THOMPSON Methods for sterilizing fermented beverages
CN114057346B (zh) * 2021-11-22 2022-09-13 山东新生泰水处理设备股份有限公司 一种具有大范围消毒功能的纯化水设备及其使用方法
WO2023106971A1 (ru) * 2021-12-07 2023-06-15 Гаррий Дмитриевич IVASHCHENKO Устройство для патогенной редукции компонентов крови
WO2023115198A1 (en) * 2021-12-22 2023-06-29 Ghomi Osgoei Kamyar Disinfection apparatus and method of use

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB639467A (en) * 1946-07-10 1950-06-28 Michel Pequignot Improved apparatus for treating fluids by radiation
US2636991A (en) * 1950-05-12 1953-04-28 Hanovia Chemical & Mfg Co Method and apparatus for irradiating liquids
US4321919A (en) * 1979-12-11 1982-03-30 Leukocyte Research, Inc. Method and system for externally treating human blood
GB8513170D0 (en) * 1985-05-24 1985-06-26 Still & Sons Ltd W M Water purifiers
US4769131A (en) * 1986-05-09 1988-09-06 Pure Water Technologies Ultraviolet radiation purification system
AU1090995A (en) * 1993-11-16 1995-06-06 Whitehall Water Filtration Systems Water treatment device
CA2132930A1 (en) * 1993-12-03 1995-06-04 Louis Szabo Uv water sterilizer with turbulence generator
US5466425A (en) * 1994-07-08 1995-11-14 Amphion International, Limited Biological decontamination system
ES2210375T3 (es) * 1995-05-17 2004-07-01 Hans Muller Dispositivo para irradiar liquidos corporales con luz uv.
ATE197285T1 (de) * 1995-08-30 2000-11-15 Uv Systems Technology Inc Uv-entkeimungssystem für abwasser
AUPO566097A0 (en) * 1997-03-17 1997-04-10 Browne, John Phillip Fluid mixer and water oxygenator incorporating same
AUPP158098A0 (en) * 1998-01-29 1998-02-26 Arnold, Geoffery Peter Laser alignment apparatus and method
GB9821342D0 (en) * 1998-10-02 1998-11-25 Common Services Agency Device for treatment of biological fluids
WO2001037675A2 (en) * 1999-10-12 2001-05-31 Hydrozone (Proprietary) Limited Sterilization of liquids using ultra-violet light
GB0007681D0 (en) * 2000-03-31 2000-05-17 Iatros Ltd Micro-organism inactivation system

Also Published As

Publication number Publication date
US20030049809A1 (en) 2003-03-13
EP1337280A2 (en) 2003-08-27
JP2004512905A (ja) 2004-04-30
CN1655828A (zh) 2005-08-17
CA2428332C (en) 2010-05-25
CN1289150C (zh) 2006-12-13
HK1079716A1 (en) 2006-04-13
EP1337280B1 (en) 2013-09-04
WO2002038191A2 (en) 2002-05-16
US20070003430A1 (en) 2007-01-04
WO2002038191A3 (en) 2002-09-26
DK1337280T3 (da) 2013-12-02
CA2428332A1 (en) 2002-05-16
AU2002229545B2 (en) 2007-08-30
US7695675B2 (en) 2010-04-13
AU2954502A (en) 2002-05-21

Similar Documents

Publication Publication Date Title
JP4116429B2 (ja) 紫外線放射を用いて流体中の微生物を不活性化する方法
JP4365089B2 (ja) 液体に照射するための装置
US7381976B2 (en) Monochromatic fluid treatment systems
JP4939418B2 (ja) 生物学的流体、フロー型反応器において微生物を不活性化するための方法およびバッチ式反応器中の微生物を効果的に不活性化するために総光線量を制御する方法
CN107496950B (zh) 一种紫外线照射灭活蛋白溶液中病毒的方法
JPH11514277A (ja) 高輝度パルス多色光を用いて微生物を不活化させる改善方法
EP1261699A1 (en) Protecting molecules in biologically derived compositions while treating with broad-spectrum pulsed light
US9421288B2 (en) Cuvette apparatus
US6312593B1 (en) Ultraviolet blood irradiation chamber
JP2008510538A5 (ja)
US20170028089A1 (en) Systems and methods of microbial sterilization using polychromatic light
ES2244193T5 (es) Método para evitar la replicación en cryptosporidium parvum utilizando luz ultravioleta
AU779193B2 (en) Methods of inactivating pathogens using broad-spectrum pulsed light
US20140091045A1 (en) Systems and methods for reduction of pathogens in a biological fluid using variable fluid flow and ultraviolet light irradiation
JP3037936B2 (ja) 光照射による殺菌方法
JP6117318B2 (ja) 医療用ヒル抽出物における望ましくない混入物の不活性化方法
US20180007936A1 (en) Systems and methods of microbial sterilization using polychromatic light
AU2007237275A1 (en) Method of inactivating microorganisms in a fluid using ultraviolet radiation
CN212973633U (zh) 一种用于动物血液病毒灭活的装置
US20030161756A1 (en) Microdispersion treatment of a protein or pharmaceutical
EP3328445A1 (en) Systems and methods of microbial sterilization using polychromatic light
US20200113211A1 (en) Systems and methods of microbial sterilization using polychromatic light
JPS6179461A (ja) 液体の殺菌方法及びその装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040730

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061004

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070112

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20070327

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20070403

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070712

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070914

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080319

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080417

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110425

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4116429

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110425

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120425

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120425

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130425

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130425

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130425

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130425

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140425

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D02

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term