JP4113822B2 - エッジ露光装置、エッジ露光方法およびそれを備える基板処理装置 - Google Patents

エッジ露光装置、エッジ露光方法およびそれを備える基板処理装置 Download PDF

Info

Publication number
JP4113822B2
JP4113822B2 JP2003329016A JP2003329016A JP4113822B2 JP 4113822 B2 JP4113822 B2 JP 4113822B2 JP 2003329016 A JP2003329016 A JP 2003329016A JP 2003329016 A JP2003329016 A JP 2003329016A JP 4113822 B2 JP4113822 B2 JP 4113822B2
Authority
JP
Japan
Prior art keywords
substrate
rotation
amount
exposure
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003329016A
Other languages
English (en)
Other versions
JP2005093951A (ja
Inventor
一也 秋山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Screen Semiconductor Solutions Co Ltd
Original Assignee
Screen Semiconductor Solutions Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Screen Semiconductor Solutions Co Ltd filed Critical Screen Semiconductor Solutions Co Ltd
Priority to JP2003329016A priority Critical patent/JP4113822B2/ja
Publication of JP2005093951A publication Critical patent/JP2005093951A/ja
Application granted granted Critical
Publication of JP4113822B2 publication Critical patent/JP4113822B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Description

本発明は、基板周縁部を露光するエッジ露光装置、エッジ露光方法およびそれを備える基板処理装置に関する。
半導体ウェハ、フォトマスク用ガラス基板、液晶表示装置用ガラス基板または光ディスク用ガラス基板等の各種基板の処理工程において、基板上に回路パターンを形成するためレジスト塗布処理が行われる。
レジスト塗布処理後の基板にはその全面にレジスト膜が形成される。ここで、基板周縁部に形成されたレジスト膜は、基板搬送時の機械的な接触により剥離され、パーティクルとなる場合がある。パーティクルの発生等を防止するため、基板周縁部に形成されたレジスト膜を予め除去する処理が行われている。
レジスト膜の除去は、例えば、レジスト塗布処理後の基板を回転させつつ基板周縁部に形成されたレジスト膜を露光(エッジ露光処理)し、現像することにより行われる。
エッジ露光処理は、エッジ露光装置により行われる。従来の一般的なエッジ露光装置においては、次のようにエッジ露光処理が行われる。
初めに、基板が基板回転保持台により回転可能に保持される。次に、基板周縁部の上方に、基板の露光に用いられる光(以下、露光用光と呼ぶ。)を投光可能な投光装置が配置される。そこで、基板回転保持台により保持された基板を回転させる。そして、投光装置から露光用光が投光される。その結果、基板周縁部が露光用光により露光される。
ところで、このようなエッジ露光処理の分野では、従来より基板周縁部の露光幅が一定にならないという問題が指摘されてきた。この問題は、例えば、基板に予め設けられるノッチまたはオリエンテーションフラットの形状、および基板が基板回転保持台の回転中心から偏心して保持されること等により発生する。
このような問題を解決すべく、比較的簡単な構成で、基板回転保持台に載置された基板周辺の位置情報を得て基板周縁部を精度よく露光することを目的としたエッジ露光装置がある(例えば、特許文献1参照)。
このエッジ露光装置は、基板を回転駆動する基板回転駆動手段と、基板回転駆動手段を所定の角度でステップ送りする回転駆動制御手段と、露光用光を照射するための投光装置と、投光装置と基板との位置関係を相対的に変位させる投光装置変位手段と、基板の周辺位置を検出する一次元イメージセンサと、ステップ送りの停止時に一次元イメージセンサからの周辺位置データを取り込むタイミングを与えるデータ取り込みタイミング制御手段と、取り込まれた周辺位置データを記憶する記憶手段と、基板回転駆動手段の露光時のステップ送りごとに、記憶手段に記憶された基板の周辺位置データに基づき投光装置変位手段の変位量を制御する投光装置変位制御手段とを備える。
上記のエッジ露光装置は、例えば次のように動作する。
初めに、基板周辺位置データのサンプリングが行われる。基板周辺位置データのサンプリング時において、基板回転駆動手段は、回転駆動制御手段からの指令に基づいて基板を所定の角度でステップ送りする。データ取り込みタイミング制御手段は、一次元イメージセンサから連続的に出力されている周辺位置データのうち、ステップ送りが停止したときの周辺位置データを取り囲むようにデータ取り込みタイミングを制御する。取り囲まれた周辺位置データは、各々のステップ角度に対応付けて記憶手段に記憶される。
次に、記憶手段に記憶された周辺位置データに基づいて基板の露光が行われる。露光時において、投光装置変位制御手段は、回転駆動制御手段による露光時のステップ送りごとに記憶手段から各ステップ角度に対応した周辺位置データを記憶手段から読み出し、その周辺位置データに基づいて露光用の投光装置の変位量を算出して投光装置変位手段を制御する。これにより、露光用の投光装置が基板の周辺形状に応じて移動されることにより、基板周辺に沿って露光用光が照射される。
ここで、投光装置変位手段による投光装置の移動は、具体的には、基板回転駆動手段のスピンチャックの回転中心を通る一方向に行われる。
以上の構成および動作により、正確な基板の周辺位置データが得られるとともに、その周辺位置データに基づいて投光装置が移動し、基板周縁部が一定の露光幅で露光される。
特開平3−11726号公報
ところで、基板周縁部の露光は常に基板の全周に対して行われるとは限らない。例えば、基板にナンバリングを行う場合、その対象個所に位置するレジスト膜を局部的に露光する必要がある。
しかしながら、上記のエッジ露光装置では、基板回転駆動手段のスピンチャックの回転中心に対して基板が偏心して保持されている場合、露光幅は一定になるが露光長さが所望の長さからずれる場合がある。
この場合の露光長さのずれについて説明する。図13は、従来のエッジ露光装置の露光長さのずれを説明するための図である。
図13(a)においては、基板回転駆動手段のスピンチャック943上に基板Wが載置された場合の平面図が模式的に表されている。基板Wの周縁部には、一次元イメージセンサ953と投光装置910とが基板Wの中心を挟んで反対側の位置となるように設けられている。
投光装置910は図示しない投光装置変位手段により、スピンチャック943の所定の半径方向(矢印Yの方向)に移動可能に保持されている。
スピンチャック943が回転することにより基板Wが回転する。一次元イメージセンサ953により得られる基板Wの周辺位置データに基づいて、投光装置910が矢印Yの方向に移動する。
それにより、投光装置910から投光される露光用光の光スポットLPが移動する。その結果、斜線部に示すように所望の露光幅で基板Wの周縁部が露光される。
図13(b)に示すように、このようなエッジ露光装置において、例えば、基板Wの周縁部の4分の1の長さの領域(破線で示す位置P90からP180までの領域)を露光する場合を考える。この場合、基板回転駆動手段のスピンチャック943は90度回転するように制御される。
しかしながら、基板Wが偏心してスピンチャック943に保持されると、スピンチャック943の回転中心CCが基板Wの中心WCからずれているので、スピンチャック943が回転中心CCを基準に90度回転した場合、基板中心WCを基準とする基板Wの回転角度αは、90度とならない。このような、スピンチャック943の回転中心CCを基準とする基板Wの回転角度と基板中心WCを基準とする基板Wの回転角度とのずれにより、基板Wの周縁部は斜線で示される範囲しか露光されない。
本発明の目的は、簡単な構成で基板の周縁部の所定領域に露光処理を正確に行うことが可能なエッジ露光装置、エッジ露光方法およびそれを備える基板処理装置を提供することである。
第1の発明に係るエッジ露光装置は、基板の周縁部を露光するエッジ露光装置であって、基板を保持して回転させる回転保持手段と、回転保持手段に保持される基板の回転中心を通りかつ基板の表面に平行な一方向において、回転中心を基準とする基板の外周部の位置を検出し、検出された位置を位置データとして出力する検出手段と、回転保持手段に保持された基板の周縁部に露光用の光を照射する光照射手段と、光照射手段と回転保持手段とを相対的に基板の表面と平行な第1の方向に移動させる第1の移動手段と、光照射手段と回転保持手段とを相対的に基板の表面と平行で第1の方向に交差する第2の方向に移動させる第2の移動手段と、回転保持手段、光照射手段、第1の移動手段および第2の移動手段を制御する制御手段とを備え、制御手段は、回転保持手段により基板を回転させつつ検出手段により出力される基板の外周部の位置データを一定の回転角度ごとに収集し、収集された位置データに基づいて、回転保持手段により保持される基板の回転中心に対する基板の中心の偏心量および偏心方向を算出し、算出された偏心量および偏心方向に基づいて基板の回転角度ごとに第1の方向における基板の外周部の変位量および第2の方向における基板の外周部の変位量を算出し、回転保持手段により基板を回転させるとともに、第1の移動手段による移動量を算出された第1の方向における変位量に制御しかつ第2の移動手段による移動量を算出された第2の方向における変位量に制御しつつ、光照射手段により基板の周縁部へ光を照射させるものである。
第1の発明に係るエッジ露光装置においては、回転保持手段により基板が保持されて回転し、回転保持手段に保持された基板の回転中心を通りかつ基板の表面に平行な一方向において、回転中心を基準とする基板の外周部の位置が検出手段により検出され、検出された位置が位置データとして出力される。回転保持手段により基板が回転されつつ検出手段により出力される基板の外周部の位置データが一定の回転角度ごとに制御手段により収集される。
位置データに基づいて、制御手段により、基板の回転中心に対する基板の中心の偏心量および偏心方向が算出され、算出された偏心量および偏心方向に基づいて基板の回転角度ごとに第1の方向における基板の外周部の変位量および第2の方向における基板の外周部の変位量が算出される。
回転保持手段により基板が回転されるとともに、第1の移動手段による第1の方向への光照射手段と回転保持手段との相対的な移動量が算出された第1の方向における変位量に制御されかつ第2の移動手段による第2の方向への光照射手段と回転保持手段との相対的な移動量が算出された第2の方向における変位量に制御されつつ、光照射手段により基板の周縁部へ光が照射される。
これにより、基板が回転保持手段に偏心して保持された場合であっても、第1の方向への光照射手段と回転保持手段との位置関係の変位および第2の方向への光照射手段と回転保持手段との位置関係の変位により、露光領域の露光幅および露光長さ(基板の回転角度)が補正される。したがって、基板の周縁部の所定の領域に露光幅が一定でかつ位置ずれのない正確な露光処理を行うことが可能となる。
また、本発明に係るエッジ露光装置は、第1の移動手段を備えた既存のエッジ露光装置に対して、第2の移動手段を追加するとともに制御手段の動作を変更することにより、非常に簡単な構成により実現することができる。
第1の方向は、回転保持手段により保持される基板の回転中心と基板の外周部とを通る方向であり、第2の方向は、第1の方向に直交する方向であってもよい。
この場合、基板の回転中心と基板の外周部とを通る方向に光照射手段と回転保持手段との位置関係を変位させることにより、露光幅を補正することができる。また、第1の方向に直交する方向に光照射手段と回転保持手段との位置関係を変位させることにより、露光長さを補正することができる。したがって、基板周縁部の所定の領域に、露光幅が一定で、かつ位置ずれのない正確な露光処理を行うことが可能となる。
第2の発明に係るエッジ露光方法は、基板の周縁部を露光するエッジ露光方法であって、回転保持手段により基板を保持して回転させつつ、基板の回転中心を通りかつ基板の表面に平行な一方向において、回転中心を基準とする基板の外周部の位置を一定の回転角度ごとに検出し、検出された位置を位置データとして収集するステップと、収集された位置データに基づいて、回転保持手段により保持される基板の回転中心に対する基板の中心の偏心量および偏心方向を算出し、算出された偏心量および偏心方向に基づいて基板の回転角度ごとに第1の方向における基板の外周部の変位量および第2の方向における基板の外周部の変位量を算出するステップと、回転保持手段により基板を保持して回転させつつ、光照射手段と回転保持手段とを相対的に基板の表面と平行な第1の方向に移動させるとともに基板の表面と平行で第1の方向に交差する第2の方向に移動させ、第1の方向における移動量を算出された第1の方向における変位量に制御しかつ第2の方向における移動量を算出された第2の方向における変位量に制御しつつ、光照射手段により基板の周縁部に露光用の光を照射するステップとを備えたものである。
第2の発明に係るエッジ露光方法においては、回転保持手段により基板が保持されて回転し、回転保持手段に保持された基板の回転中心を通りかつ基板の表面に平行な一方向において、回転中心を基準とする基板の外周部の位置が検出され、検出された位置が位置データとして出力される。回転保持手段により基板が回転されつつ出力される基板の外周部の位置データが一定の回転角度ごとに収集される。
収集された位置データに基づいて、基板の回転中心に対する基板の中心の偏心量および偏心方向が算出され、算出された偏心量および偏心方向に基づいて基板の回転角度ごとに第1の方向における基板の外周部の変位量および第2の方向における基板の外周部の変位量が算出される。
回転保持手段により基板が回転されるとともに、第1の方向への光照射手段と回転保持手段との相対的な移動量が算出された第1の方向における変位量に制御されかつ第2の方向への光照射手段と回転保持手段との相対的な移動量が算出された第2の方向における変位量に制御されつつ、光照射手段により基板の周縁部へ光が照射される。
これにより、基板が回転保持手段に偏心して保持された場合であっても、第1の方向への光照射手段と回転保持手段との位置関係の変位および第2の方向への光照射手段と回転保持手段との位置関係の変位により、露光領域の露光幅および露光長さ(基板の回転角度)が補正される。したがって、基板の周縁部の所定の領域に露光幅が一定でかつ位置ずれのない正確な露光処理を行うことが可能となる。
第3の発明に係る基板処理装置は、基板に処理を行う基板処理装置であって、基板に処理液の塗布処理を行う塗布装置と、塗布装置により処理液が塗布された基板の周縁部を露光する第1の発明に係るエッジ露光装置とを備えたものである。
第3の発明に係る基板処理装置においては、塗布装置により基板に処理液の塗布処理が行われ、処理液が塗布された基板の周縁部が、第1の発明に係るエッジ露光装置により露光される。
この場合、第1の発明に係るエッジ露光装置が用いられるので、基板の周縁部の所定の領域に露光幅が一定でかつ位置ずれのない正確な露光処理を行うことが可能となる。
本発明に係るエッジ露光装置においては、回転保持手段により基板が保持されて回転し、回転保持手段に保持された基板の回転中心を通りかつ基板の表面に平行な一方向において、回転中心を基準とする基板の外周部の位置が検出手段により検出され、検出された位置が位置データとして出力される。回転保持手段により基板が回転されつつ検出手段により出力される基板の外周部の位置データが一定の回転角度ごとに制御手段により収集される。
位置データに基づいて、制御手段により、基板の回転中心に対する基板の中心の偏心量および偏心方向が算出され、算出された偏心量および偏心方向に基づいて基板の回転角度ごとに第1の方向における基板の外周部の変位量および第2の方向における基板の外周部の変位量が算出される。
回転保持手段により基板が回転されるとともに、第1の移動手段による第1の方向への光照射手段と回転保持手段との相対的な移動量が算出された第1の方向における変位量に制御されかつ第2の移動手段による第2の方向への光照射手段と回転保持手段との相対的な移動量が算出された第2の方向における変位量に制御されつつ、光照射手段により基板の周縁部へ光が照射される。
これにより、基板が回転保持手段に偏心して保持された場合であっても、第1の方向への光照射手段と回転保持手段との位置関係の変位および第2の方向への光照射手段と回転保持手段との位置関係の変位により、露光領域の露光幅および露光長さ(基板の回転角度)が補正される。したがって、基板の周縁部の所定の領域に露光幅が一定でかつ位置ずれのない正確な露光処理を行うことが可能となる。
また、本発明に係るエッジ露光装置は、第1の移動手段を備えた既存のエッジ露光装置に対して、第2の移動手段を追加するとともに制御手段の動作を変更することにより、非常に簡単な構成により実現することができる。
以下、本発明の一実施の形態に係るエッジ露光装置、エッジ露光方法およびそれを備える基板処理装置について図1〜図12に基づき説明する。
以下の説明において、基板とは、半導体ウェハ、液晶表示装置用ガラス基板、PDP(プラズマディスプレイパネル)用ガラス基板、フォトマスク用ガラス基板、光ディスク用基板等をいう。
図1は本発明の一実施の形態に係るエッジ露光装置の一側面を示す図であり、図2は本発明の一実施の形態に係るエッジ露光装置の他の側面を示す図である。また、図3は本発明の一実施の形態に係るエッジ露光装置の上面図である。
以下、図1〜図3の説明においては、各図中の矢印X,Yで示すように後述の基板回転ユニット40に載置される基板Wに平行な所定の方向をY方向として定義し、Y方向と直交する方向をX方向として定義する。
図1および図2に示すように、本実施の形態に係るエッジ露光装置100は、投光部10、投光部保持ユニット20、基板回転ユニット40および基板周縁部検出ユニット50を備える。
投光部10は、光ファイバケーブル等からなるライトガイドを介して図示しない後述の露光用光源と接続されている。これにより、投光部10はライトガイドを介して露光用光源より送られる光を基板Wの周縁部に照射する。以下、基板W上のレジスト膜を露光するために投光部10により基板Wに照射される光を露光用光と呼ぶ。
投光部保持ユニット20は、Y方向駆動モータ21、Y方向ボールネジ22、投光部保持ガイド23、支柱24、X方向駆動モータ31、支柱保持ガイド32およびX方向ボールネジ33を備える。
投光部保持ユニット20において、投光部保持ガイド23は投光部10をY方向に移動可能に保持する。また、Y方向ボールネジ22は投光部10に設けられた図示しない連結部に螺合されている。
Y方向ボールネジ22はY方向に延びるように設けられており、Y方向駆動モータ21の動作に伴って、矢印R1の方向に回転する。これにより、投光部10は、Y方向ボールネジ22の回転に伴ってY方向に移動する。
Y方向駆動モータ21および投光部保持ガイド23は、支柱24により所定の高さに支持されている。
支柱24は、その下端部が支柱保持ガイド32により保持されている。支柱保持ガイド32は、支柱24をX方向に移動可能に保持する。また、X方向ボールネジ33は、支柱24に設けられた図示しない連結部に螺合されている。
X方向ボールネジ33は、X方向に延びるように設けられており、X方向駆動モータ31の動作に伴って矢印R3の方向に回転する。これにより、支柱24は、X方向ボールネジ33の回転に伴ってX方向に移動する。
このような、投光部保持ユニット20の各部の動作により、投光部10はX方向およびY方向に移動する。
なお、投光部保持ユニット20のY方向駆動モータ21およびX方向駆動モータ31は、図示しない後述の中央演算処理装置(以下、CPUと略記する。)に接続されている。CPUは、Y方向駆動モータ21およびX方向駆動モータ31の動作を制御することにより、投光部10を所望の平面位置に移動させる。
基板回転ユニット40は、基板回転モータ41、基板回転軸42およびスピンチャック43を備える。基板周縁部の露光処理(エッジ露光処理)時において、スピンチャック43上には基板Wが載置される。そこで、スピンチャック43は基板Wを吸着保持する。スピンチャック43は、基板回転モータ41より突出して設けられた基板回転軸42に接続されている。
基板回転モータ41が基板回転軸42を矢印R2の方向に回転させる。それにより、スピンチャック43が回転し、吸着保持された基板Wが回転する。
なお、基板回転モータ41は、Y方向駆動モータ21およびX方向駆動モータ31と同様に図示しない後述のCPUに接続されている。CPUは基板回転モータ41の動作を制御することにより基板Wを回転させる。さらに、基板回転モータ41には図示しない後述のカウンタが設けられており、基板Wの回転角度についてのデータがCPUに送られる。
基板周縁部検出ユニット50は、センサ光源51、レンズ52および電荷結合素子(以下、CCDと略記する。)ラインセンサ53を備え、基板回転ユニット40を中心として投光部保持ユニット20と対向するように配置されている。さらに、基板周縁部検出ユニット50において、レンズ52およびCCDラインセンサ53は、互いがスピンチャック43に載置された基板Wの中心に対向するように配置されている。
特に、エッジ露光時においては、投光部保持ユニット20により投光部10がX方向およびY方向に移動される。これにより、図3に示すように基板Wの中心に関して基板周縁部検出ユニット50と投光部10とが対称位置となる。そして、露光用光の光スポットLPにより、スピンチャック43に吸着保持され、回転される基板Wの周縁部が露光される。
センサ光源51から基板周縁部の形状を得るための光(以下、センサ用光と呼ぶ。)が発生される。センサ用光はレンズ52を通過することにより整形される。整形されたセンサ用光は、CCDラインセンサ53に投光される。
ここで、CCDラインセンサ53は基板Wの周縁部がCCDラインセンサ53の有効画素領域内となるように配置されている。これにより、CCDラインセンサ53に投光されるセンサ用光はその一部が基板Wの周縁部により遮光される。したがって、CCDラインセンサ53は、基板周縁部の形状に応じた光量を受光する。
CCDラインセンサ53は、図示しない後述のCPUに接続されている。その結果、CPUは、CCDラインセンサ53によるセンサ用光の受光量に基づいて基板Wの周縁部の形状を後述の周辺位置データとして得ることができる。詳細については後述する。
図4は、本発明の一実施の形態に係るエッジ露光装置100の構成を示す模式図である。
図4に示すように、本実施の形態に係るエッジ露光装置100は、Y方向駆動モータ21、X方向駆動モータ31、基板回転モータ41、パルス発生回路20a,30a,40a、モータ駆動回路20b,30b,40b、カウンタ40c、CCDラインセンサ53、アナログデジタル(以下、A/Dと略記する。)コンバータ50a、信号処理回路50b、CCD駆動回路50c、CPU60、ランダムアクセスメモリ(以下、RAMと略記する。)61および露光用光源70を備える。
CPU60は、後述のフローチャートで示されるプログラムをRAM61上で実行する。エッジ露光装置100の各構成部は、CPU60より与えられる各種信号に応答して動作する。
CCD駆動回路50cには、CPU60からA/Dコンバータ50aおよび信号処理回路50bを介してCCDラインセンサ53を動作させるための指令信号が与えられる。
CCD駆動回路50cはCPU60からの指令信号に応答して、CCDラインセンサ53を動作させる。これにより、CCDラインセンサ53は、Y方向駆動モータ21、X方向駆動モータ31および基板回転モータ41の動作と無関係(非同期)かつ、連続的に基板Wの周縁部を検出する。基板周縁部は、上述のように、CCDラインセンサ53によるセンサ用光の受光量に基づいて検出される。
CCDラインセンサ53によるセンサ用光の受光量のデータ(以下、受光量データと呼ぶ。)DA1はCCD駆動回路50cを介して、信号処理回路50bに順次与えられる。
信号処理回路50bは、CCD駆動回路50cからの受光量データDA1に基づいてCCDラインセンサ53の画素数に比例したアナログの受光量データDA2を生成する。CCD駆動回路50cにより生成されたアナログの受光量データDA2はA/Dコンバータ50aへ与えられる。
A/Dコンバータ50aには、CPU60からデータの取り込みタイミングを示すデータ取り込みタイミング信号DTが与えられている。
A/Dコンバータ50aは、データ取り込みタイミング信号DTに基づいて、アナログの受光量データDA2をデジタルの受光量データDA3に変換する。変換されたデジタルの受光量データDA3は、所定のタイミングでCPU60へ与えられる。CPU60は、与えられたデジタルの受光量データDA3を基板Wの周辺位置データ(基板周縁部の形状を示すデータ)として、RAM61に記憶させる。
上述のように、基板回転モータ41の動作はCPU60により制御される。CPU60は、基板回転モータ41の所定の回転数のデータ(以下、回転数データと呼ぶ。)RD1をパルス発生回路40aへ与える。パルス発生回路40aは、与えられた回転数データRD1に基づいて、所要個数のパルス信号RP1をモータ駆動回路40bおよびカウンタ40cに与える。
また、CPU60は上記の回転数データRD1をプリセット信号PRとしてカウンタ40cに与える。カウンタ40cはプログラマブルカウンタであり、パルス発生回路40aから与えられるパルス信号RP1をカウントする。カウンタ40cは、これにより得られるカウントアップ信号CPをCPU60に与える。その結果、CPU60はカウンタ40cから与えられるカウントアップ信号CPに基づいて、回転数データRD1のパルス発生回路40aへの出力を調整する。
モータ駆動回路40bは、パルス信号RP1に応答して基板回転モータ41を動作させる。それにより、基板回転モータ41による基板Wの所望の回転が実現される。
上述のように、Y方向駆動モータ21の動作はCPU60により制御される。CPU60は、Y方向駆動モータ21の所定の回転数データRD2をパルス発生回路20aへ与える。パルス発生回路20aは、与えられた回転数データRD2に基づいて、所要個数のパルス信号RP2をモータ駆動回路20bに与える。
モータ駆動回路20bは、パルス信号RP2に応答してY方向駆動モータ21を動作させる。それにより、図1に示すような、Y方向駆動モータ21による投光部10のY方向の移動が実現される。
上述のように、X方向駆動モータ31の動作はCPU60により制御される。CPU60は、X方向駆動モータ31の所定の回転数データRD3をパルス発生回路30aへ与える。パルス発生回路30aは、与えられた回転数データRD3に基づいて、所要個数のパルス信号RP3をモータ駆動回路30bに与える。
モータ駆動回路30bは、パルス信号RP3に応答してX方向駆動モータ31を動作させる。それにより、図2に示すような、X方向駆動モータ31による投光部10のX方向の移動が実現される。
露光用光源70はCPU60と接続されている。露光用光源70は、CPU60から与えられる制御信号に基づいて露光用光を図1の投光部10へ送る。これにより、基板周縁部の露光が行われる。
上記において、CPU60によるRAM61への受光量データDA3の記憶は、基板回転モータ41の動作を制御する回転数データRD1、プリセット信号PRおよびカウンタ40cより与えられるカウントアップ信号CPに基づいて、基板Wの回転位置と対応させて行われる。このCPU60の動作は、後述のフローチャートに示されるプログラムに基づく。
ここで、図5〜図8に基づいて図1の基板回転ユニット40のスピンチャック43上に基板Wが偏心して吸着保持された場合の基板Wの回転およびそれに基づく基板Wの位置ずれについて説明する。
図5および図6は、図1のスピンチャック43に偏心して吸着保持された基板Wの所定の回転角度毎の位置ずれを示す模式図である。
図5および図6の各図において、スピンチャック43の中心、すなわち基板Wの回転中心CCを基準として、x軸座標およびy軸座標を定義する。また、図5および図6では、偏心されない状態でスピンチャック43に吸着保持された基板Wの位置が破線で示されている。なお、基板Wのオリエンテーションフラットまたはノッチ等の位置決め部は省略する。
初めに、図5(a)に示すように、基板Wがスピンチャック43に偏心して吸着保持された場合、基板Wの基板中心WCは回転中心CCからx軸方向にずれている。この場合のx軸方向のずれを「X0」とし、y軸方向のずれを「Y0」とする。
ここで、図5(a)においては、基板中心WCがx軸上で正の方向にずれている。したがって、基板Wの回転角度が0度の場合、x軸方向のずれX0は正の最大変位量となり、y軸方向のずれY0は0となる。基板Wの回転が開始されることにより、基板中心WCは矢印r1の方向に回転する。
次に、図5(b)に示すように、基板Wが90度回転された場合、基板Wの基板中心WCは回転中心CCからy軸方向にずれている。この場合のy軸方向のずれを「X90」とし、y軸方向のずれを「Y90」とする。
ここで、図5(b)においては、基板中心WCがy軸上で負の方向にずれている。したがって、基板Wが90度回転された場合、x軸方向のずれX90は0となり、y軸方向のずれY90は負の最大変位量となる。続いて基板Wの回転が継続されることにより、基板中心WCは矢印r2の方向に回転する。
さらに、図5(c)に示すように、基板Wが180度回転された場合、基板Wの基板中心WCは回転中心CCからx軸方向にずれている。この場合のx軸方向のずれを「X180」とし、y軸方向のずれを「Y180」とする。
ここで、図5(c)においては、基板中心WCがx軸上で負の方向にずれている。したがって、基板Wが180度回転された場合、x軸方向のずれX180は負の最大変位量となり、y軸方向のずれY180は0となる。続いて基板Wの回転が継続されることにより、基板中心WCは矢印r3の方向に回転する。
また、図5(d)に示すように、基板Wが270度回転された場合、基板Wの基板中心WCは回転中心CCからy軸方向にずれている。この場合のx軸方向のずれを「X270」とし、y軸方向のずれを「Y270」とする。
ここで、図5(d)においては、基板中心WCがy軸上で負の方向にずれている。したがって、基板Wが270度回転された場合、x軸方向のずれX270は0となり、y軸方向のずれY270は正の最大変位量となる。続いて基板Wの回転が継続されることにより、基板中心WCは矢印r4の方向に回転する。
このように、基板Wはスピンチャック43による回転中心CCを中心として矢印r1,r2,r3,r4の方向に回転する。
図7は、図5および図6に示すように図1のスピンチャック43に偏心して吸着保持された基板Wの回転角度毎のx軸方向およびy軸方向の変位量を示すグラフである。図7において、縦軸はx軸方向およびy軸方向の変位量を表す。また、グラフ中の実線LXは基板Wのx軸座標の変位量の変化を表し、破線LYは基板Wのy軸座標の変位量の変化を表す。なお、実線LXおよび破線LY上には、図5および図6に示した基板Wのx軸方向およびy軸方向のずれX0、X90、X180、X270、Y0、Y90、Y180およびY270がプロットされている。
図7の実線LXおよび上述の図5および図6に示すように、x軸方向の変位量は基板Wの回転角度が0度のときに正の最大変位量を示す。x軸方向の変位量は基板Wの回転角度が180度になるまで減少し、180度のときに負の最大変位量を示す。その後、x軸方向の変位量は基板Wの回転角度が360度(0度)になるまで増加し、360度のときに再び正の最大変位量を示す。
一方、図7の実線LYおよび上述の図5および図6に示すように、y軸方向の変位量は基板Wの回転角度が0ときの時に0を示す。y軸方向の変位量は0度から基板Wの回転角度が90度になるまで増加し、90度のときに正の最大変位量を示す。その後、y軸方向の変位量は基板Wの回転角度が270度になるまで減少し、270度のときに負の最大変位量を示す。その後、y軸方向の変位量は基板Wの回転角度が360度(0度)になるまで増加し、360度のときに再び0を示す。
上記のように、スピンチャック43に偏心して吸着保持された基板Wの回転時における位置ずれは、x軸方向およびy軸方向に常に変動する。
その結果、本実施の形態では基板Wの偏心によるx軸方向およびy軸方向のずれのみならず、上述の図13(b)に示すように、基板Wの基板中心WCを基準とした基板Wの回転角度とスピンチャック43の回転中心CCを基準とした基板Wの回転角度との間でのずれが発生する。
これら、偏心した基板Wの回転によるx軸方向、y軸方向および回転角度のずれを補正するために、本実施の形態に係るエッジ露光装置100は投光部保持ユニット20が投光部10をx軸方向およびy軸方向に移動させる。
以下、本実施の形態に係るエッジ露光装置100のエッジ露光処理の動作について図8および図9のフローチャートに基づき説明する。なお、エッジ露光装置100のエッジ露光処理の動作は、図1のスピンチャック43に吸着保持された基板Wの周辺位置データを取得するためのエッジサンプリング処理動作および基板Wの周縁部を露光する露光処理動作からなる。初めに、エッジサンプリング処理が行われ、続いて、露光処理動作が行われる。
図8は、本発明の一実施の形態に係るエッジ露光装置100のエッジサンプリング処理動作を示すフローチャートである。
初めに、図1の基板回転ユニット40のスピンチャック43上に基板Wが載置される。そして、スピンチャック43は基板Wを吸着保持する。
図4のCPU60は、基板Wの周縁部のうち、図1のCCDラインセンサ53に初めに対向するサンプリング点を回転角度が0度のときの周辺位置データとして図4のRAM61に記憶させる(ステップS11)。
ここで、周辺位置データは上述のように基板Wの周縁部の形状を示すが、正確には基板Wの回転中心からCCDラインセンサ53上に位置する基板周縁部までの距離に基づいて作成される。
次に、CPU60は基板Wの周辺位置データのサンプリング用の所定のステップ送り角度に対応した回転数を示す回転数データRD1を図4のパルス発生回路40aに与えるとともに、この回転数データRD1をプリセット信号PRとしてカウンタ40cに与える(ステップS12)。
回転数データRD1がパルス発生回路40aに与えられることにより、パルス発生回路40aから回転数データRD1に対応した個数のパルス信号RP1が図1のモータ駆動回路40bに与えられ、基板回転モータ41が駆動される。その結果、基板Wが所定角度だけステップ送りで回転される。
なお、サンプリング用の所定のステップ送り角度は、例えば9度である。この場合、基板Wの周縁部について40点のサンプリングを行うことができる。
また、プリセット信号PRがカウンタ40cに与えられることにより、カウンタ40cがプリセットされる。
上記において、パルス発生回路40aはカウンタ40cに対してもパルス信号RP1を与える。ここで、カウンタ40cは、所定の個数のパルス信号RP1が与えられることによりカウントアップ信号CPをCPU60に与える。
CPU60は、カウントアップ信号CPが与えられたか否かに基づいて基板回転モータ41の停止を判別する(ステップS13)。
基板回転モータ41が停止した場合、CPU60は、A/Dコンバータ50aにデータ取り込みタイミング信号DTを与える(ステップS14)。これにより、CCDラインセンサ53により得られる受光量データDA1に基づく次のサンプリング点の周辺位置データをRAM61に記憶させる(ステップS15)。
この場合の周辺位置データのRAM61への記憶は、そのサンプリング点における回転角度と対応付けて行われる。
続いて、CPU60は、対象となる全てのサンプリング点について周辺位置データをRAM61に記憶させたか否か(基板回転モータ41が360度回転駆動されたか否か)を判別する(ステップS16)。
全てのサンプリング点について周辺位置データがRAM61に記憶されていない場合、CPU60は上記ステップS12の動作を繰り返す。
一方、全てのサンプリング点について周辺位置データがRAM61に記憶された場合、CPU60はRAM61に記憶された各周辺位置データ間の補間処理を行う(ステップS17)。各周辺位置データ間の補間処理の方法は特に限定されない。
上記ステップS11〜S17の動作によりCPU60はエッジサンプリング処理動作を終了する。
図9は、本発明の一実施の形態に係るエッジ露光装置100の露光処理動作を示すフローチャートである。
以下の説明において、RAM61には予め基板Wの露光対象となる領域が記憶されている。以下、RAM61に記憶された露光対象となる領域のデータを露光領域データと呼ぶ。露光領域データは、基板Wの回転角度に基づき設定される。
また、上記のエッジサンプリング処理により得られた周辺位置データに基づいて、スピンチャック43の回転中心CCに対する基板Wの基板中心WCの偏心量が算出される。なお、エッジ露光装置100においては、予め図5に示すように基板Wの回転中心CCを基準にxy座標が定義されている。
周辺位置データのサンプリングのために、基板Wが1回転することにより、基板Wは最初の状態に戻っている。図3に示すように、最初のサンプリング点(回転角度の0度位置)に位置するCCDラインセンサ53は、エッジ露光時において回転中心CCを挟んで投光部10と反対側の位置にある。
したがって、下記露光処理時において、CPU60は、露光対象となる領域に対して180度ずれた位置における周辺位置データをRAM61から読み出す。
初めに、CPU60はRAM61から予め定められた露光領域データを読み出し、露光領域データに基づいて周辺位置データを読み出す(ステップS21)。そして、読み出した周辺位置データに基づいて露光開始時の図1の投光部10の位置を決定する(ステップS22)。
ここで、投光部10の位置の決定は、次のように行われる。
CPU60は、RAM61に記憶された周辺位置データのうち露光領域データにより定められる回転角度の周辺位置データを読み出す。そして、読み出した周辺位置データおよび基板Wの回転中心CCに対する基板中心WCの偏心量および偏心方向に基づいて、露光対象となる基板周縁部のx座標方向およびy座標方向における変位量を算出する。それにより、投光部10の位置の決定が行われる。
上記ステップS22においては、投光部10の位置の決定の他、次の動作が平行して行われてもよい。
CPU60は、ステップS22の動作と平行して、エッジサンプリング処理により得られた周辺位置データからオリエンテーションフラットまたはノッチ等の位置を算出する。そして、RAM61に記憶されている露光領域データ(露光開始時の回転角度と露光終了時の回転角度)に基づいて、露光対象開始時のオリエンテーションフラットまたはノッチの位置決め(基板Wの回転)を行う。
続いて、CPU60は、決定した投光部10の位置に基づいて、図4のパルス発生回路20aおよびパルス発生回路30aに回転数データRD2および回転数データRD3をそれぞれ与える(ステップS23)。これにより、図4のY方向駆動モータ21およびX方向駆動モータ31が駆動され、投光部10が最初の露光位置に移動される。
次に、CPU60は露光用光源70に露光用光を投光部10へ送る旨の制御信号を与える(ステップS24)。それにより、露光用光が投光部10に送られ、投光部10から基板Wへ露光用光が照射される。
CPU60は、露光領域データにより定められた最初の露光位置から、例えば1度のステップで基板Wを回転させるための回転数データRD1をパルス発生回路40aおよびカウンタ40cに与える(ステップS25)。
回転数データRD1がパルス発生回路40aに与えられることにより、パルス発生回路40aから回転数データRD1に対応した個数のパルス信号RP1が図1のモータ駆動回路40bに与えられ、基板回転モータ41が駆動される。その結果、基板Wが1度だけステップ送りで回転される。
また、プリセット信号PRがカウンタ40cに与えられることにより、カウンタ40cがプリセットされる。
パルス発生回路40aはカウンタ40cに対してもパルス信号RP1を与える。カウンタ40cは、予め設定された個数のパルス信号RP1が与えられることによりカウントアップ信号CPをCPU60に与える。
CPU60は、カウントアップ信号CPが与えられたか否かを判別する(ステップS26)。
カウントアップ信号CPが与えられた場合、CPU60は、前回の回転角度から1度移動した次の回転角度の周辺位置データを読み出す(ステップS27)。そして、読み出した次の周辺位置データに基づいて次の回転角度における投光部10の位置を決定する(ステップS28)。
ここで、CPU60は露光領域データに基づいて、現在の回転角度が露光対象となる領域の露光終了時の回転角度であるか否かを判別する(ステップS29)。
CPU60は、現在の回転角度が露光対象となる領域の露光終了時の回転角度でない場合、上記ステップS25の動作を繰り返す。
一方、CPU60は、現在の回転角度が露光対象となる領域の露光終了時の回転角度である場合、露光用光源70に露光用光を投光部10へ送らない旨の制御信号を与える(ステップS30)。それにより、露光用光が投光部10に送られず、投光部10から基板Wへの露光用光の照射が停止される。
上記ステップS21〜S30の動作により、基板Wの周縁部の露光処理動作が終了する。なお、上記ステップS30の後に再び基板周縁部の周辺位置データをサンプリングし、露光処理の露光誤差の有無を確認してもよい。
以上、本発明の一実施の形態に係るエッジ露光装置100によれば、エッジ露光処理時において、投光部10が投光部保持ユニット20により図1および図2のX方向およびY方向に移動する。
すなわち、投光部10による基板W上の露光用光の光スポットLPが、基板Wの回転中心CCから露光対象部(基板周縁部)への半径方向および露光対象部(基板周縁部)における基板Wの接線方向に移動する。
その結果、基板Wが図1のスピンチャック43に偏心して吸着保持された場合であっても、露光幅が投光部10の上記半径方向への移動により補正され、露光領域の長さ(基板Wの回転角度)が投光部10の上記接線方向への移動により補正される。したがって、基板周縁部の全周および局部に対して露光幅が一定で、かつ位置ずれのない正確な露光処理が可能となっている。
また、エッジ露光装置100は、従来の投光部10を一方向に移動可能なエッジ露光装置に対して、投光部保持ユニット20にさらに一方向の移動が可能となるような駆動部(図1および図2のX方向駆動モータ31)を設け、CPU60のプログラムを変更することにより実現されている。
したがって、従来のエッジ露光装置に対して、一つの駆動系を設け、プログラムを変更するだけで実現されているので、非常に簡単な構成となっている。
なお、エッジ露光装置100においては、投光部10が投光部保持ユニット20により移動されることにより露光幅の補正および露光領域の長さの補正が行われているが、これに代えて、投光部10を固定し、基板回転ユニット40を移動させることにより、スピンチャック43の平面位置を移動させてもよい。この場合、スピンチャック43の移動により露光幅の補正および露光領域の長さの補正が行われる。
上記の実施の形態に係るエッジ露光装置100を備えた基板処理装置について説明する。
図10は、本発明の一実施の形態に係るエッジ露光装置100を備える基板処理装置の平面図である。
図10から後述の図12までの各図には、位置関係を明確にするために互いに直交するX方向、Y方向およびZ方向を示す矢印を付している。X方向およびY方向は水平面内で互いに直交し、Z方向は鉛直方向に相当する。なお、各方向において矢印が向かう方向を+方向、その反対の方向を−方向とする。また、Z方向を中心とする回転方向をθ方向としている。以下の説明におけるX方向およびY方向は、上記図1〜図3の説明に用いたX方向およびY方向と同じであってもよいし、異なってもよい。
図10に示すように、基板処理装置500は、インデクサブロック509、反射防止膜用処理ブロック510、レジスト膜用処理ブロック511、現像処理用ブロック512およびインターフェースブロック513を含む。インターフェースブロック513に隣接するようにステッパ部514が配置される。
インデクサブロック509は、複数のキャリア載置台560およびインデクサロボットIRを含む。インデクサロボットIRは、基板Wを受け渡すためのハンドIRHを有する。また、インデクサブロック509には、後述する熱処理ユニットの動作を制御するベークユニットコントローラ530が設けられる。反射防止膜用処理ブロック510は、反射防止膜用熱処理部550,551、反射防止膜用塗布処理部570および第1のセンターロボットCR1を含む。反射防止膜用塗布処理部570は、第1のセンターロボットCR1を挟んで反射防止膜用熱処理部550,551に対向して設けられる。第1のセンターロボットCR1は、基板Wを受け渡すためのハンドCRH1を有する。
レジスト膜用処理ブロック511は、レジスト膜用熱処理部552,553、レジスト膜用塗布処理部580および第2のセンターロボットCR2を含む。レジスト膜用塗布処理部580は、第2のセンターロボットCR2を挟んでレジスト膜用熱処理部552,553に対向して設けられる。第2のセンターロボットCR2は、基板Wを受け渡すためのハンドCRH2を有する。
現像処理用ブロック512は、現像用熱処理部554,555、現像処理部590および第3のセンターロボットCR3を含む。現像処理部590は、第3のセンターロボットCR3を挟んで現像用熱処理部554,555に対向して設けられる。第3のセンターロボットCR3は、基板Wを受け渡すためのハンドCRH3を有する。
インターフェースブロック513は、第4のセンターロボットCR4、バッファSBF、インターフェース用搬送機構IFRおよび図1のエッジ露光装置100を含む。第4のセンターロボットCR4は、基板Wを受け渡すためのハンドCRH4を有する。インターフェース用搬送機構IFRは、後述する基板載置部PASS8とステッパ部514との間で基板Wの受け渡しを行う。
本実施の形態に係る基板処理装置500においては、Y方向に沿ってインデクサブロック509、反射防止膜用処理ブロック510、レジスト膜用処理ブロック511、現像処理用ブロック512およびインターフェースブロック513の順に並設されている。
以下、インデクサブロック509、反射防止膜用処理ブロック510、レジスト膜用処理ブロック511、現像処理用ブロック512およびインターフェースブロック513の各々を処理ブロックと呼ぶ。
基板処理装置500には、各処理ブロックの動作を制御するメインコントローラ(図示せず)が設けられている。
また、各処理ブロックの間には隔壁が設けられている。この各隔壁には、各処理ブロック間に基板Wの受け渡しを行うための基板載置部PASS1〜PASS6が2個ずつ上下に近接して設けられている。
また、現像処理用ブロック512の現像用熱処理部555には、後述するように、基板載置部PASS7が設けられ、インターフェースブロック513のエッジ露光装置100には、後述するように、基板載置部PASS8が設けられている。基板載置部PASS1〜PASS8には、固定設置された複数本の支持ピンが設けられている。また、基板載置部PASS1〜PASS8には、基板Wの有無を検出する光学式のセンサ(図示せず)が設けられている。それにより、基板載置部PASS1〜PASS8において基板Wが載置されているか否かの判定を行うことが可能となる。
基板載置部PASS1,PASS3,PASS5は、未処理の基板Wを受け渡す場合に用いられ、基板載置部PASS2,PASS4,PASS6は、処理済みの基板Wを受け渡す場合に用いられる。
次に、本実施の形態に係る基板処理装置500の動作について簡潔に説明する。
インデクサブロック509のキャリア載置台560の上には、複数枚の基板Wを多段に収納するキャリアCが搬入される。インデクサロボットIRは、基板Wの受け渡しをするためのハンドIRHを用いてキャリアC内に収納された未処理の基板Wを取り出す。その後、インデクサロボットIRは±X方向に移動しつつ±θ方向に回転移動し、未処理の基板Wを基板載置部PASS1に移載する。
また、本実施の形態においては、キャリアCとしてFOUP(front opening unified pod)を採用しているが、これに限定されず、SMIF(Standard Mechanical Inter Face)ポッドや収納基板Wを外気に曝すOC(open cassette)等を用いてもよい。さらに、インデクサロボットIR、第1〜第4のセンターロボットCR1〜CR4およびインターフェース用搬送機構IFRには、それぞれ基板Wに対して直線的にスライドさせてハンドの進退動作を行う直動型搬送ロボットを用いているが、これに限定されず、関節を動かすことにより直線的にハンドの進退動作を行う多関節型搬送ロボットを用いてもよい。
基板載置部PASS1に移載された未処理の基板Wは、反射防止膜用処理ブロック510の第1のセンターロボットCR1のハンドCRH1により受け取られる。第1のセンターロボットCR1は、基板Wを反射防止膜用塗布処理部570に搬入する。この反射防止膜用塗布処理部570では、露光時に発生する在波やハレーションを減少させるためフォトレジスト膜の下部に反射防止膜が後述の塗布ユニットBARCにより塗布形成される。
その後、第1のセンターロボットCR1は、反射防止膜用塗布処理部570から基板Wを取り出し、反射防止膜用熱処理部550,551に搬入する。反射防止膜用熱処理部550,551において所定の処理が施された後、第1のセンターロボットCR1は、反射防止膜用熱処理部550,551から基板Wを取り出し、基板載置部PASS3に移載する。
基板載置部PASS3に移載された基板Wは、レジスト膜用処理ブロック511の第2のセンターロボットCR2のハンドCRH2により受け取られる。第2のセンターロボットCR2は、基板Wをレジスト膜用塗布処理部580に搬入する。このレジスト膜用塗布処理部580では、反射防止膜が塗布形成された基板W上にフォトレジスト膜が後述の塗布ユニットRESにより塗布形成される。その後、第2のセンターロボットCR2は、レジスト膜用塗布処理部580から基板Wを取り出し、レジスト膜用熱処理部552,553に搬入する。レジスト膜用熱処理部552,553において所定の処理が施された後、第2のセンターロボットCR2は、レジスト膜用熱処理部552,553から基板Wを取り出し、基板載置部PASS5に移載する。
基板載置部PASS5に移載された基板Wは、現像処理用ブロック512の第3のセンターロボットCR3のハンドCRH3により受け取られる。第3のセンターロボットCR3は、基板Wを基板載置部PASS7に移載する。基板載置部PASS7に移載された基板Wは、インターフェースブロック513の第4のセンターロボットCR4のハンドCRH4により受け取られる。第4のセンターロボットCR4は、基板Wをエッジ露光装置100に搬入する。エッジ露光装置100において所定の処理が施された後、第4のセンターロボットCR4は、エッジ露光装置100から基板Wを取り出し、エッジ露光装置100に設けられた基板載置部PASS8に移載する。
基板載置部PASS8に移載された基板Wは、インターフェース用搬送機構IFRにより受け取られる。インターフェース用搬送機構IFRは、基板Wをステッパ部514に搬入する。ステッパ部514において、所定の処理が基板Wに施される。その後、インターフェース用搬送機構IFRは、ステッパ部514より基板Wを受け取り、エッジ露光装置100に設けられた基板載置部PASS8に移載する。
基板載置部PASS8に移載された基板Wは、インターフェースブロック513の第4のセンターロボットCR4のハンドCRH4により受け取られる。第4のセンターロボットCR4は、基板Wを現像用熱処理部555に搬入する。現像用熱処理部555においては、基板Wに対して熱処理が行われる。その後、第4のセンターロボットCR4は、現像用熱処理部555から基板Wを取り出し、基板載置部PASS7に移載する。
基板載置部PASS7に移載された基板Wは、現像処理ブロック12の第3のセンターロボットCR3のハンドCRH3により受け取られる。第3のセンターロボットCR3は、基板Wを現像処理部590に搬入する。現像処理部590においては、露光された基板Wに対して現像処理が施される。その後、第3のセンターロボットCR3は、現像処理部590から基板Wを取り出し、現像用熱処理部554に搬入する。現像用熱処理部554において所定の処理が施された後、第3のセンターロボットCR3は、現像用熱処理部554から基板Wを取り出し、レジスト膜用処理ブロック511に設けられた基板載置部PASS6に移載する。
基板載置部PASS6に移載された基板Wは、レジスト膜用処理ブロック511の第2のセンターロボットCR2により基板載置部PASS4に移載される。基板載置部PASS4に移載された基板Wは反射防止膜用処理ブロック510の第1のセンターロボットCR1により基板載置部PASS2に移載される。
基板載置部PASS2に移載された基板Wは、インデクサブロック509のインデクサロボットIRによりキャリアC内に収納される。
次に、図11は、図10の基板処理装置500を−X方向から見た側面図である。
インデクサブロック509のキャリア載置台560上に基板Wを収納したキャリアCが載置される。インデクサロボットIRのハンドIRHは、±θ方向に回転または±Y方向に進退してキャリアC内の基板Wを受け取る。
反射防止膜用処理ブロック510の反射防止膜用熱処理部550には、2個の受け渡し部付き熱処理ユニットPHP(以下、単に熱処理ユニットと呼ぶ。)と3個のホットプレートHPが上下に積層配置され、反射防止膜用熱処理部551には、2個の密着強化剤塗布処理部AHLおよび4個のクーリングプレートCPが上下に積層配置される。また、反射防止膜用熱処理部550,551には、最上部に熱処理ユニットPHP、ホットプレートHP、密着強化剤塗布処理部AHLおよびクーリングプレートCPの温度を制御するローカルコントローラLCが各々配置される。
レジスト膜用処理ブロック511のレジスト膜用熱処理部552には、6個の熱処理ユニットPHPが上下に積層配置され、レジスト膜用熱処理部553には、4個のクーリングプレートCPが上下に積層配置される。また、レジスト膜用熱処理部552,553には、最上部に熱処理ユニットPHPおよびクーリングプレートCPの温度を制御するローカルコントローラLCが各々配置される。
現像処理用ブロック512の現像用熱処理部554には、4個のホットプレートHPおよび4個のクーリングプレートCPが上下に積層配置され、現像熱処理部555には、基板載置部PASS7、5個の熱処理ユニットPHPおよびクーリングプレートCPが上下に積層配置されている。また、現像用熱処理部554,555には、最上部に熱処理ユニットPHP、ホットプレートHPおよびクーリングプレートCPの温度を制御するローカルコントローラLCが各々配置される。
インターフェースブロック513には、2個のエッジ露光装置100、バッファ部BF、基板載置部PASS8が上下に積層配置されるとともに、第4のセンターロボットCR4およびインターフェース搬送機構IFR(図示せず)が配置される。
図12は、図10の基板処理装置500を+X方向から見た側面図である。
インデクサブロック509の上方には、ベークユニットコントローラ530が配置されている。反射防止膜用処理ブロック510の反射防止膜用塗布処理部570には、3個の塗布ユニットBARCが上下に積層配置されている。レジスト膜用処理ブロック511のレジスト膜用塗布処理部580には、3個の塗布ユニットRESが上下に積層配置されている。現像処理用ブロック512の現像処理部590には、5個の現像処理装置DEVが上下に積層配置されている。
上記のように、基板処理装置500には図1のエッジ露光装置100が設けられている。したがって、基板処理装置500においては、精度の高いエッジ露光処理が行われ、基板Wの円周方向に対する局部的な露光であっても露光幅が一定で、かつ位置ずれのない正確な露光処理が行われる。
以上、本発明の一実施の形態において、エッジ露光装置100はエッジ露光装置に相当し、基板処理装置500は基板処理装置に相当し、基板回転ユニット40のスピンチャック43が回転保持手段に相当し、受光量データDA1,DA2,DA3および周辺位置データは位置データに相当し、CCDラインセンサ53、A/Dコンバータ50a、信号処理回路50bおよびCCD駆動回路50cが検出手段に相当し、投光部10および露光用光源70が光照射手段に相当する。
また、図1〜図3のY方向および基板Wの回転中心CCから露光対象部(基板周縁部)への半径方向は第1の方向に相当し、投光部保持ユニット20のY方向駆動モータ21、Y方向ボールネジ22および投光部保持ガイド23は第1の移動手段に相当し、図1〜図3のX方向および露光対象部(基板周縁部)における基板Wの接線方向は第2の方向に相当し、投光部保持ユニット20の支柱24、X方向駆動モータ31、支柱保持ガイド32およびX方向ボールネジ33は第2の移動手段に相当する。
さらに、投光部10の図1〜図3のY方向への変位量が第1の方向への位置関係の変位に相当し、投光部10の図1〜図3のX方向への変位量が第2の方向への位置関係の変位に相当し、CPU60が制御手段に相当し、レジスト膜用塗布処理部580は塗布装置に相当する。
本発明は、基板の周縁部を局部的に露光するエッジ露光装置、エッジ露光方法およびそれを備える基板処理装置として有用である。
本発明の一実施の形態に係るエッジ露光装置の一側面を示す図である。 本発明の一実施の形態に係るエッジ露光装置の他の側面を示す図である。 本発明の一実施の形態に係るエッジ露光装置の上面図である。 本発明の一実施の形態に係るエッジ露光装置の構成を示す模式図である。 図1のスピンチャックに偏心して吸着保持された基板Wの所定の回転角度毎の位置ずれを示す模式図である。 図1のスピンチャックに偏心して吸着保持された基板Wの所定の回転角度毎の位置ずれを示す模式図である。 図5および図6に示すように図1のスピンチャックに偏心して吸着保持された基板Wの回転角度毎のx軸方向およびy軸方向の変位量を示すグラフである。 本発明の一実施の形態に係るエッジ露光装置のエッジサンプリング処理動作を示すフローチャートである。 本発明の一実施の形態に係るエッジ露光装置の露光処理動作を示すフローチャートである。 本発明の一実施の形態に係るエッジ露光装置を備える基板処理装置の平面図である。 図10の基板処理装置を−X方向から見た側面図である。 図10の基板処理装置を+X方向から見た側面図である。 従来のエッジ露光装置の露光長さのずれを説明するための図である。
符号の説明
10 投光部
20 投光部保持ユニット
21 Y方向駆動モータ
22 Y方向ボールネジ
23 投光部保持ガイド
24 支柱
31 X方向駆動モータ
32 支柱保持ガイド
33 X方向ボールネジ
40 基板回転ユニット
43 スピンチャック
50a A/Dコンバータ
50b 信号処理回路
50c CCD駆動回路
53 CCDラインセンサ
60 CPU
70 露光用光源
100 エッジ露光装置
500 基板処理装置
580 レジスト膜用塗布処理部
CC 回転中心
WC 基板中心
DA1,DA2,DA3 受光量データ
EER エッジ露光部
W 基板

Claims (4)

  1. 基板の周縁部を露光するエッジ露光装置であって、
    基板を保持して回転させる回転保持手段と、
    前記回転保持手段に保持される基板の回転中心を通りかつ基板の表面に平行な一方向において、前記回転中心を基準とする基板の外周部の位置を検出し、検出された位置を位置データとして出力する検出手段と、
    前記回転保持手段に保持された基板の周縁部に露光用の光を照射する光照射手段と、
    前記光照射手段と前記回転保持手段とを相対的に基板の表面と平行な第1の方向に移動させる第1の移動手段と、
    前記光照射手段と前記回転保持手段とを相対的に基板の表面と平行で前記第1の方向に交差する第2の方向に移動させる第2の移動手段と、
    前記回転保持手段、前記光照射手段、前記第1の移動手段および前記第2の移動手段を制御する制御手段とを備え
    前記制御手段は、
    前記回転保持手段により基板を回転させつつ前記検出手段により出力される基板の外周部の位置データを一定の回転角度ごとに収集し、収集された位置データに基づいて、前記回転保持手段により保持される基板の回転中心に対する基板の中心の偏心量および偏心方向を算出し、算出された偏心量および偏心方向に基づいて基板の回転角度ごとに前記第1の方向における基板の外周部の変位量および前記第2の方向における基板の外周部の変位量を算出し、前記回転保持手段により基板を回転させるとともに、前記第1の移動手段による移動量を前記算出された前記第1の方向における変位量に制御しかつ前記第2の移動手段による移動量を前記算出された前記第2の方向における変位量に制御しつつ、前記光照射手段により基板の周縁部へ光を照射させることを特徴とするエッジ露光装置。
  2. 前記第1の方向は、前記回転保持手段により保持される基板の回転中心と基板の外周部とを通る方向であり、
    前記第2の方向は、前記第1の方向に直交する方向であることを特徴とする請求項記載のエッジ露光装置。
  3. 基板の周縁部を露光するエッジ露光方法であって、
    回転保持手段により基板を保持して回転させつつ、基板の回転中心を通りかつ基板の表面に平行な一方向において、前記回転中心を基準とする基板の外周部の位置を一定の回転角度ごとに検出し、検出された位置を位置データとして収集するステップと、
    前記収集された位置データに基づいて、前記回転保持手段により保持される基板の回転中心に対する基板の中心の偏心量および偏心方向を算出し、算出された偏心量および偏心方向に基づいて基板の回転角度ごとに前記第1の方向における基板の外周部の変位量および前記第2の方向における基板の外周部の変位量を算出するステップと、
    前記回転保持手段により基板を保持して回転させつつ、光照射手段と前記回転保持手段とを相対的に基板の表面と平行な第1の方向に移動させるとともに基板の表面と平行で前記第1の方向に交差する第2の方向に移動させ、前記第1の方向における移動量を前記算出された前記第1の方向における変位量に制御しかつ前記第2の方向における移動量を前記算出された前記第2の方向における変位量に制御しつつ、前記光照射手段により基板の周縁部に露光用の光を照射するステップとを備えたことを特徴とするエッジ露光方法。
  4. 基板に処理を行う基板処理装置であって、
    基板に処理液の塗布処理を行う塗布装置と、
    前記塗布装置により処理液が塗布された基板の周縁部を露光する請求項1または2記載のエッジ露光装置とを備えたことを特徴とする基板処理装置。
JP2003329016A 2003-09-19 2003-09-19 エッジ露光装置、エッジ露光方法およびそれを備える基板処理装置 Expired - Lifetime JP4113822B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003329016A JP4113822B2 (ja) 2003-09-19 2003-09-19 エッジ露光装置、エッジ露光方法およびそれを備える基板処理装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003329016A JP4113822B2 (ja) 2003-09-19 2003-09-19 エッジ露光装置、エッジ露光方法およびそれを備える基板処理装置

Publications (2)

Publication Number Publication Date
JP2005093951A JP2005093951A (ja) 2005-04-07
JP4113822B2 true JP4113822B2 (ja) 2008-07-09

Family

ID=34458408

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003329016A Expired - Lifetime JP4113822B2 (ja) 2003-09-19 2003-09-19 エッジ露光装置、エッジ露光方法およびそれを備える基板処理装置

Country Status (1)

Country Link
JP (1) JP4113822B2 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4665037B2 (ja) * 2009-02-06 2011-04-06 東京エレクトロン株式会社 基板処理システム
JP2018047419A (ja) * 2016-09-21 2018-03-29 株式会社Screenホールディングス 周縁部処理装置、基板処理装置および周縁部処理方法
JP6923344B2 (ja) * 2017-04-13 2021-08-18 株式会社Screenホールディングス 周縁処理装置および周縁処理方法
CN118588534A (zh) * 2024-08-06 2024-09-03 宁波润华全芯微电子设备有限公司 一种晶圆边缘曝光装置及其控制方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02292843A (ja) * 1989-05-02 1990-12-04 Hitachi Electron Eng Co Ltd ウエハ位置決め装置
JP2602415B2 (ja) * 1994-06-16 1997-04-23 山形日本電気株式会社 ウェーハ位置決め装置
JPH11162833A (ja) * 1997-11-25 1999-06-18 Nikon Corp 基板周縁露光方法
JP2003173955A (ja) * 2001-12-05 2003-06-20 Ushio Inc ウエハ周辺露光方法および装置

Also Published As

Publication number Publication date
JP2005093951A (ja) 2005-04-07

Similar Documents

Publication Publication Date Title
JP4799325B2 (ja) 基板受け渡し装置,基板処理装置,基板受け渡し方法
KR101015778B1 (ko) 기판 처리장치 및 기판 수수 위치의 조정 방법
US5982474A (en) Periphery exposing apparatus and method
JP6285275B2 (ja) 基板処理装置および基板処理方法
JP2008060302A (ja) 基板処理装置
JP3757430B2 (ja) 基板の位置決め装置及び露光装置
KR102560788B1 (ko) 주변 노광 장치, 주변 노광 방법, 프로그램, 및 컴퓨터 기억 매체
KR100708318B1 (ko) 기판처리 장치 및 기판처리 방법
JP2018121007A (ja) 基板搬送装置、検出位置較正方法および基板処理装置
US20040075822A1 (en) Exposure apparatus and its making method, substrate carrying method, device manufacturing method and device
JPH11219894A (ja) ウエハ周辺露光装置
JP4113822B2 (ja) エッジ露光装置、エッジ露光方法およびそれを備える基板処理装置
JP7374683B2 (ja) 基板搬送装置および基板搬送装置のハンドの位置補正方法
CN112965343A (zh) 工件台结构及包含该结构的光刻系统及其曝光方法
JP2007005617A (ja) 進捗状況表示方法、表示プログラム、及び表示装置、並びにデバイス製造方法
JP3276477B2 (ja) 基板処理装置
CN116364622A (zh) 基板处理设备和基板处理方法
JP2003156322A (ja) 位置計測方法及び装置、位置決め方法、露光装置、並びにマイクロデバイスの製造方法
JP3004828B2 (ja) 回転処理装置、基板処理システム、位置決め方法及び基板処理方法
JPH053153A (ja) ウエハ上の不要レジスト露光装置
JP2004513527A (ja) 基板周辺を露光するためのシステムおよび方法
CN114690581A (zh) 一种自动调焦装置、曝光装置、光刻装置及曝光方法
KR102406275B1 (ko) 로봇암의 오차 보정 장치
KR102719735B1 (ko) 얼라이너 장치 및 얼라인먼트 방법
CN112585539A (zh) 用于校准物体装载过程的平台设备和方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051129

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20061003

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071029

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080408

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080414

R150 Certificate of patent or registration of utility model

Ref document number: 4113822

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110418

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120418

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130418

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130418

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140418

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250