JP4107875B2 - 建造物塗装面の劣化診断方法 - Google Patents

建造物塗装面の劣化診断方法 Download PDF

Info

Publication number
JP4107875B2
JP4107875B2 JP2002135101A JP2002135101A JP4107875B2 JP 4107875 B2 JP4107875 B2 JP 4107875B2 JP 2002135101 A JP2002135101 A JP 2002135101A JP 2002135101 A JP2002135101 A JP 2002135101A JP 4107875 B2 JP4107875 B2 JP 4107875B2
Authority
JP
Japan
Prior art keywords
building
deterioration
painted surface
image
image sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002135101A
Other languages
English (en)
Other versions
JP2003329594A (ja
Inventor
幸吉 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2002135101A priority Critical patent/JP4107875B2/ja
Publication of JP2003329594A publication Critical patent/JP2003329594A/ja
Application granted granted Critical
Publication of JP4107875B2 publication Critical patent/JP4107875B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Image Processing (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、建物、船、塔、コンビナート用集合煙突などのように大規模な建造物に対し、現在の建造物塗装面の劣化程度を知る劣化診断方法および塗装補修工事に適切な時期を予測する建造物塗装面の劣化予測方法に関する。
【0002】
【従来の技術】
一般に、建物、船、塔、巨大煙突などのように全表面を一見して観察することが難しい大規模な建造物の防食塗装は、経年劣化を考慮して適切な時期に補修工事を行なう必要があるが、その費用が莫大であるため、できるだけ効率の良い塗装更新時期を予測する必要がある。
【0003】
鋼材塗装面の劣化程度を検査する方法として、特開平5−79992号公報には、直接に対象物を目で見た結果を予めグレード分けされた判断基準に照らして経験的に判断するバラツキを避け、塗装面のカラー画像を画像処理することにより塗装面の劣化状態を客観的に判断する方法が開示されている。
【0004】
このような塗装劣化診断方法によれば、診断対象物を撮影したカラー写真を適当な画像読み取り装置、例えばイメージスキャナで読み取り、これをパーソナルコンピュータに入力し、周知の画像処理プログラムで塗装面のカラー画像の色彩グループごとの面積割合を求め、各色彩グループとその面積の関係から塗装面の劣化状態を判定することができる。
【0005】
【発明が解決しようとする課題】
しかし、上記した従来の塗装面の劣化程度を診断する方法では、判定の元となるデータに検査する者の心理的な要因が影響しやすく、具体的には塗装状態が悪くて目立つ部分について画像標本を採取しやすい傾向があり、そのために診断対象物を撮影した写真の無作為抽出サンプルとしての客観性が充分でないという問題がある。
【0006】
また、撮影されたカラー写真などの画像標本の一部を画像標本として切り取る際にも、心理的な要因が働いて標本の一部分の劣化状態の激しい箇所を強調するような選択的な採取がなされやすく、充分に客観性のあるデータ入力が困難であった。
【0007】
そこで、この発明の課題は上記した課題を解決して、塗装劣化の診断対象物を撮影した画像標本のサンプル(標本)の採取時の客観性を充分に確保すると共に、コンピュータに画像標本のデータを入力する時の客観性を確保し、これにより判定結果が客観性を有するものとして、正しい判断により信頼性を担保できる塗装劣化診断方法とすることである。
【0008】
【課題を解決するための手段】
上記の課題を解決するために、この発明においては、建造物塗装面の複数箇所を撮影した画像標本をコンピュータで画像処理することにより、各画像標本に現れた塗装面の劣化部と正常部を識別し、さらに統計処理により建造物の塗装面全体の劣化状態を診断する方法において、前記画像標本が、建造物の塗装面全体または建造物が集合物である場合には集合単位から選択される区画を、乱数に基づいて無作為に選択して撮影された画像標本であり、かつ各画像標本内で識別用区域を乱数に基づいて無作為に抽出し、この識別用区域について劣化部と正常部とを識別することを特徴とする建造物塗装面の劣化診断方法としたのである。
【0009】
上記した工程を必須とする建造物塗装面の劣化診断方法は、画像標本が、建造物の塗装面全体などからその複数箇所を乱数に基づいて無作為に撮影された画像標本であるから、画像標本を選択する時に無意識に働くヒトの心理学的な影響は排除されている。
【0010】
また、各画像標本について、ヒトが注意を惹かれる部分のみが強調されやすいとしても、各画像標本について識別用区域を乱数で指定することにより無作為抽出して劣化部と正常部を識別することによって、前記心理的な傾向が排除され、サンプル(標本)としての客観性は充分に確保され、信頼性が保てる塗装面の劣化診断方法になる。
【0011】
このような塗装面の劣化診断方法は、建造物が、全体の外周または集合単位の外周に沿って螺旋状に階段が付設された建造物であり、かつ複数箇所を無作為に撮影する方法が、塗装面を撮影する位置を前記階段の段数で定め、その段数を乱数に基づいて選択する方法である上記建造物塗装面の劣化診断方法とすることが好ましい。
【0012】
通常、建造物の検査のための螺旋状の階段は、建造物の高さ方向および外周方向のいずれについても偏りがない位置に設けられており、このような螺旋状の階段について任意の位置(階段の段数)から建造物外側面を撮影することにより、画像標本の無作為抽出が可能である。
【0013】
また、画像標本をコンピュータに入力し、適当なプログラムで画像処理を行なって劣化部と正常部を識別するには、画像標本が、腐蝕した塗膜を剥離して塗装表面と下塗り面とを明瞭に識別可能な状態で撮影された画像標本であることが好ましい。
【0014】
このような画像標本を採用することにより、より確実で明確な判定結果が得られ、さらに充分な信頼性を担保できる建造物塗装面の劣化診断方法になる。
【0015】
そして、上記したような建造物塗装面の劣化診断を複数回行なうことにより塗膜劣化率の経時的変化を調べ、この経時的変化から将来の塗膜劣化率を予測することによって建造物塗装面の劣化予測方法とすることができる。
【0016】
【発明の実施の形態】
この発明でいう建造物は、前述のように建物、船、塔、コンビナート用集合煙突などのように大規模で塗装が非容易な建造物であり、特に巨大なコンビナート用の集合煙突などでは、煙突の表面積は広大であり、全表面の塗装状態を正確に把握することは極めて困難である。
【0017】
この発明に用いる画像標本は、汎用のカメラで撮影されたイメージデータであり、アナログ写真またはデジタル写真のいずれであってもよい。アナログ写真の場合は、コンピュータに取り込んで画像処理する場合にスキャナを用いて取り込めばよく、デジタル写真の場合は直接に取り込むことができる。
【0018】
画像標本は、カラー画像であることが多くの情報を得るために好ましく、明度、彩度、色相の違いの程度を「しきい値」と関連させてコンピュータの周知の画像解析プログラムによって判別させると、錆の発生の有無や割れや剥離の有無などの劣化状態を2値化によって明確に判別することができる。
【0019】
建造物の塗装面全体からその複数箇所を無作為に撮影した画像標本を作製するには、建造物の全表面のイメージデータを母集団として、ある部分に偏しないように乱数に基づいてランダムに画像標本を選出する。適当な乱数を選択するためには、周知の乱数表や乱数を表示するコンピュータプログラムを用いることができる。
【0020】
画像標本をサンプリングする建造物の表面の位置を決定するには、建造物の塗装面全体またはその一部(建造物が複数の管や煙突などを単位とする集合体である場合には、その集合単位であってもよい。)をできるだけ多くの区画に分け、各区画に番号を付してその番号を乱数表を用いて選出し、該当する番号に対応する区画の塗装状態を撮影した画像標本を作成することが好ましい。
【0021】
また、巨大な建造物の全表面の任意の位置をカメラで撮影するのは困難な場合があり、そのような場合には建造物の外側に点検等のために付設されている階段などを利用することが実用上好ましい。
【0022】
すなわち、図1に示されるような三脚型集合煙突のような建造物である場合には、通常、その集合単位の1本の煙突1の外周に沿って螺旋状に階段2が付設されているから、この階段2の任意の段数を乱数に基づいて決めることにより複数箇所を無作為に選出し、そこから建造物を直視するように撮影すれば、建造物の塗装面の複数箇所を無作為に撮影することができる。
【0023】
因みに、集合煙突は、複数の煙突を先端で一つの出口になるようにまとめたものであるが、先端部以外はそれぞれ独立した煙突であるといえる。
【0024】
また、画像標本を得る場合には、撮影前に腐蝕して下地から浮き上がっている塗膜を金槌で叩いて落とす「ケレン処理」によって剥離しておき、塗装表面と下塗り面とを明瞭に識別可能な状態として撮影することが好ましい。このように前処理をして画像標本を作成することにより、正確に塗膜劣化部分の面積を計算でき、より正確な診断結果が得られる。
【0025】
画像標本を解析するために用いるコンピュータは、汎用のパーソナルコンピュータであってもよい。ソウトウェアの画像処理・解析プログラムは、周知のプログラミング言語である「C」や「パスカル」、「ベーシック」などを用いて簡単に作製することができるが、市販の画像処理・解析ソフトウェアを利用することもできる。
【0026】
また、画像処理・解析について特に定めた複数の色彩ごとの面積割合を求め、各色彩とその面積割合との組み合わせから塗装面の劣化状態を判別する方法としては、特開平5−79992号公報に記載されているような演算ネットワークを用いることもできる。
【0027】
さらにまた、上述したような建造物塗装面の劣化診断を経時的に適当な間隔を開けて複数回行なって塗膜劣化率の経時的変化を調べ、その傾向をグラフ化することによって将来の建造物塗装面の劣化の程度を予測することができる。
【0028】
【実施例】
図1に示す三脚型集合煙突(高さ160m、各脚の直径4.2m)を被診断用建造物とし、その塗装面を所定距離からデジタルカメラで50箇所をカラー画像で撮影した。撮影は、1つの煙突の外周に沿って地上から排気口近くまで螺旋状に付設されている階段2を徒歩で移動しながら行なったが、合計640段の階段のうち、予め、撮影予定の50箇所の段数を乱数表によって定めておき、それぞれの各段数で定まる高さと煙突の外周位置において、塗装面を同じ距離から同じ焦点距離で撮影した。
【0029】
その際、図2(a)に示すように、表面の塗膜3にクラック4が発生し、かつ「浮き」がある場合にはその箇所を金槌で叩いて剥離し、図2(b)に示す下地の面(錆止め層)5から浮いた塗膜3を剥離する処理(ケレン)を行ない、図2(b)に示す状態としてから撮影した。
【0030】
次に、撮影された50枚の画像(10cm× 10cm)をパーソナルコンピュータの画像処理・解析プログラムにデータ(画像標本)として入力し、所定区域の発錆率を算出した。
【0031】
すなわち、図3(a)に示すように、各画像標本6と相似形で面積が1/4に指定された枠7で囲まれるコンピュータ画像(5cm×5cm)を識別用区域8とし、各画像標本6から選択する枠7の位置(座標)をコンピュータプログラムに組み込んだ乱数(一様乱数)によってランダムに位置決めさせ、識別用区域8の選択時に心理的な偏りがないようにした。
【0032】
続いて図3(b)に示すように、方形状の識別用区域8内における黒褐色の錆および錆止め層5の部分を黒色化処理し、白色または赤色の健全な塗膜3からなる塗装部分を白色化処理するという2値化処理(この場合のしきい値=160)を行なうと共に、黒色域と白色域の面積を計算し、(各画像標本の黒色化部分の面積/各画像標本の全面積)×100(%)を発錆率とした。
【0033】
そして、50枚の画像標本のそれぞれについて、上記と同様にして識別用区域8のランダムな位置選択と共に、黒色域と白色域の2値化処理、およびそれらの面積の比率から発錆率をそれぞれ計算し、度数分布図を作成し、これを図4に示した。
【0034】
この度数分布の傾向からみて、標本から母数の平均値を求める統計処理を行なう場合の分布モデルを典型例(2項分布、ポアソン分布、指数分布、t分布)の指数分布モデルであると判断し、建造物全体の推定発錆率(=塗膜劣化率)を計算し、8.4〜14.6%(信頼性=95%、平均値10.9%)との結果を得た。
【0035】
このようにして診断時の建造物全体の推定発錆率(=塗膜劣化率)を得て、例えばASTM−D610の基準に従い、塗膜劣化率が30%以上を劣化度1、5%以上30%未満を劣化度2、0.1%以上5%未満を劣化度3、0.1%未満(おおよそ塗膜の色が褪せて、小さな割れ、膨れ、剥がれ、錆が発錆しかかった状態)を劣化度4、0%(異常なし)を劣化度5と評価した。
【0036】
このようにして客観性の高い発錆率の評価に基づいて、劣化度1〜3の範囲で塗装更新の要否を判断することができた。
【0037】
次に、上記建造物塗装面の劣化診断を複数回行なうことにより塗膜劣化率の経時的変化から将来の塗膜劣化率を予測した。
【0038】
すなわち、上記診断を2年の間隔を開けて再び全く同じ条件で行い、建造物全体の推定発錆率(=塗膜劣化率)を計算し、例えば18.6〜32.5%(信頼性=95%、平均値24.1%)との結果を得た。
【0039】
塗装時(塗膜劣化率0%)および複数回の診断時での塗膜劣化率の平均値をグラフにプロットし、塗膜劣化率=Y、年次=Xとして前記プロットされた点を通る指数関数式をY=0.374e0.3767Xであるとの建造物塗装面の劣化予測の診断結果を図5に示した。
【0040】
図5の結果からも明らかなように、当初の塗装後から4年目までは劣化がなく、劣化度3を超えた場合に塗装を更新することが適当であるとの判断される場合には、当初塗装後から約12年経過後であることがわかる。
【0041】
【発明の効果】
この発明は、以上説明したように、建造物の塗装面全体からその複数箇所を無作為に撮影した画像標本をコンピュータで画像処理する際に、各画像標本内で識別用区域を無作為に抽出し、この識別用区域における劣化部と正常部とを識別し統計処理により塗装面全体の劣化状態を診断するので、画像標本を選択する時および各画像標本について識別用区域を抽出するときに、無意識に働くヒトの心理学的な影響は相当な程度にまで排除されるから、塗装劣化の診断対象物を撮影した画像標本のサンプル(標本)としての客観性が確保され、判定結果に充分な信頼性を担保できる塗装劣化診断方法になり、またその経時的な傾向をグラフ化することによって将来の建造物塗装面の劣化の程度を予測することができるという利点がある。
【図面の簡単な説明】
【図1】三脚型集合煙突の正面図
【図2】(a)塗膜の腐蝕部の外観
(b)ケレン処理後の塗膜の腐蝕部の外観
【図3】(a)実施例に用いた画像の標本化を示す説明図
(b)実施例に用いた画像標本の識別用区域の2値化を示す説明図
【図4】実施例に用いた画像標本の発錆率とその標本数の関係を示す度数分布図
【図5】建造物塗装面の劣化予測を説明する塗膜劣化度の経時変化を示す図表
【符号の説明】
1 煙突
2 階段
3 塗膜
4 クラック
5 錆止め層
6 画像標本
7 枠
8 識別用区域

Claims (3)

  1. 建造物塗装面の複数箇所を撮影した画像標本をコンピュータで画像処理することにより、各画像標本に現れた塗装面の劣化部と正常部を識別し、さらに統計処理により建造物の塗装面全体の劣化状態を診断する方法において、
    前記建造物が、全体の外周または集合単位の外周に沿って螺旋状に階段が付設された建造物であり、前記画像標本が、建造物の塗装面全体または建造物が集合物である場合には集合単位から選択される区画を、乱数に基づいて無作為に選択して撮影された画像標本であり、前記乱数に基づく無作為の選択が、前記塗装面の区画を撮影する位置を前記階段の段数で定め、その段数を乱数に基づいて選択する無作為の選択であり、各画像標本内で識別用区域を乱数に基づいて無作為に抽出し、この識別用区域について劣化部と正常部とを識別することを特徴とする建造物塗装面の劣化診断方法。
  2. 画像標本が、腐蝕した塗膜を剥離して塗装表面と下塗り面とを明瞭に識別可能な状態で撮影された画像標本である請求項1に記載の建造物塗装面の劣化診断方法。
  3. 請求項1または2に記載の建造物塗装面の劣化診断を複数回行なうことにより塗膜劣化率の経時的変化を調べ、この経時的変化から将来の塗膜劣化率を予測することからなる建造物塗装面の劣化予測方法。
JP2002135101A 2002-05-10 2002-05-10 建造物塗装面の劣化診断方法 Expired - Fee Related JP4107875B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002135101A JP4107875B2 (ja) 2002-05-10 2002-05-10 建造物塗装面の劣化診断方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002135101A JP4107875B2 (ja) 2002-05-10 2002-05-10 建造物塗装面の劣化診断方法

Publications (2)

Publication Number Publication Date
JP2003329594A JP2003329594A (ja) 2003-11-19
JP4107875B2 true JP4107875B2 (ja) 2008-06-25

Family

ID=29697509

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002135101A Expired - Fee Related JP4107875B2 (ja) 2002-05-10 2002-05-10 建造物塗装面の劣化診断方法

Country Status (1)

Country Link
JP (1) JP4107875B2 (ja)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4594184B2 (ja) * 2005-07-22 2010-12-08 新日本製鐵株式会社 鋼構造物のライフサイクルコスト評価システム
JP5085860B2 (ja) * 2005-11-28 2012-11-28 株式会社名南製作所 木材の検査方法及び装置及びプログラム
JP5090062B2 (ja) * 2007-05-24 2012-12-05 株式会社パスコ 建物屋根の劣化判定方法
JP5780817B2 (ja) * 2011-04-20 2015-09-16 国立大学法人福島大学 塗膜劣化予測方法、塗膜劣化予測装置及びコンピュータプログラム
JP6943725B2 (ja) * 2017-11-07 2021-10-06 ヤンマーパワーテクノロジー株式会社 生長状態予測装置
CN111566696A (zh) 2017-12-25 2020-08-21 富士通株式会社 图像处理程序、图像处理方法以及图像处理装置
JP7205696B2 (ja) * 2019-02-20 2023-01-17 株式会社Ihi 劣化検出装置
JP6815431B2 (ja) * 2019-03-26 2021-01-20 株式会社ダイヘン 塗装面検査装置、及びプログラム
WO2021186989A1 (ja) * 2020-03-16 2021-09-23 日本電気株式会社 劣化診断装置、劣化診断システム、劣化診断方法、及び、記録媒体
CN117121043A (zh) * 2021-03-30 2023-11-24 富士胶片株式会社 结构物的状态预测装置、方法及程序

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61160037A (ja) * 1985-01-09 1986-07-19 Hitachi Ltd 構造物の余寿命診断装置
JPH0579992A (ja) * 1991-09-19 1993-03-30 Mitsubishi Kasei Corp 塗装の劣化診断方法
JPH07193709A (ja) * 1993-12-27 1995-07-28 Canon Inc 画像評価方法及び装置
JP2949329B2 (ja) * 1996-01-29 1999-09-13 日本道路公団 塗膜下のさび検知方法及びさび検知液並びにさび補修方法

Also Published As

Publication number Publication date
JP2003329594A (ja) 2003-11-19

Similar Documents

Publication Publication Date Title
JP4107875B2 (ja) 建造物塗装面の劣化診断方法
JP2001266121A (ja) 塗装された鋼材の塗装劣化の診断方法
JP6767490B2 (ja) 欠陥検査装置、欠陥検査方法、およびプログラム
US11237117B2 (en) Apparatus and method for inspection of a film on a substrate
CN112534470A (zh) 用于基于图像的目标对象检验的系统及方法
JP2023139099A (ja) 学習用データ収集装置、学習用データ収集方法、及びプログラム
KR102321249B1 (ko) 인공지능 기반의 시설물 외관 분석 방법
CN108332927A (zh) 一种桥梁表面裂缝检测装置
EP2605213A1 (en) Methods and systems for processing images for inspection of an object
JP2007256050A (ja) 金属材料表面の劣化度評価方法及び評価装置
JP5973214B2 (ja) 構造物の不具合確率演算方法および不具合確率演算装置、構造物の不具合範囲判定方法および不具合範囲判定装置
CN117169086A (zh) 一种建筑物地下防水层施工质量检测方法、介质及系统
JP2003035528A (ja) ひび割れ画像計測による構造物の損傷度評価システム及び方法
JP2010271062A (ja) コンクリート診断システム
JP4604357B2 (ja) 補修コスト計算システム、補修コスト計算システムをコンピュータにより実現するためのプログラム、およびこのプログラムを記録したコンピュータ読取可能な記録媒体
JP2001264260A (ja) 管内面腐食点検における劣化度合評価方法
WO2020130786A1 (en) A method of analyzing visual inspection image of a substrate for corrosion determination
CN115393270B (zh) 建筑遗产病害自动识别预测方法、装置及设备
JP3491147B2 (ja) 欠陥検出方法及び欠陥検出装置
JP3396960B2 (ja) 塗膜劣化自動診断方法
JP2004279317A (ja) 塗装管理システム
JP3342581B2 (ja) 塗膜劣化自動診断方法及び装置
JPH07318510A (ja) 建物屋根材の劣化度評価方法
JP2003065959A (ja) 非破壊検査装置
JP2013096741A (ja) 構造物の赤外線調査方法及び赤外線調査用演算装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050510

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071225

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080325

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080401

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110411

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4107875

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130411

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130411

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130411

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130411

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140411

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees