WO2021186989A1 - 劣化診断装置、劣化診断システム、劣化診断方法、及び、記録媒体 - Google Patents

劣化診断装置、劣化診断システム、劣化診断方法、及び、記録媒体 Download PDF

Info

Publication number
WO2021186989A1
WO2021186989A1 PCT/JP2021/005687 JP2021005687W WO2021186989A1 WO 2021186989 A1 WO2021186989 A1 WO 2021186989A1 JP 2021005687 W JP2021005687 W JP 2021005687W WO 2021186989 A1 WO2021186989 A1 WO 2021186989A1
Authority
WO
WIPO (PCT)
Prior art keywords
deterioration
degree
reliability
image
calculated
Prior art date
Application number
PCT/JP2021/005687
Other languages
English (en)
French (fr)
Inventor
千里 菅原
和樹 稲垣
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to US17/801,041 priority Critical patent/US20230081098A1/en
Priority to JP2022508146A priority patent/JP7367849B2/ja
Publication of WO2021186989A1 publication Critical patent/WO2021186989A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8851Scan or image signal processing specially adapted therefor, e.g. for scan signal adjustment, for detecting different kinds of defects, for compensating for structures, markings, edges
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring
    • G05B23/0205Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults
    • G05B23/0259Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterized by the response to fault detection
    • G05B23/0283Predictive maintenance, e.g. involving the monitoring of a system and, based on the monitoring results, taking decisions on the maintenance schedule of the monitored system; Estimating remaining useful life [RUL]
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C23/00Auxiliary devices or arrangements for constructing, repairing, reconditioning, or taking-up road or like surfaces
    • E01C23/01Devices or auxiliary means for setting-out or checking the configuration of new surfacing, e.g. templates, screed or reference line supports; Applications of apparatus for measuring, indicating, or recording the surface configuration of existing surfacing, e.g. profilographs
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N17/00Investigating resistance of materials to the weather, to corrosion, or to light
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8851Scan or image signal processing specially adapted therefor, e.g. for scan signal adjustment, for detecting different kinds of defects, for compensating for structures, markings, edges
    • G01N2021/8854Grading and classifying of flaws
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8851Scan or image signal processing specially adapted therefor, e.g. for scan signal adjustment, for detecting different kinds of defects, for compensating for structures, markings, edges
    • G01N2021/8854Grading and classifying of flaws
    • G01N2021/8877Proximity analysis, local statistics
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8851Scan or image signal processing specially adapted therefor, e.g. for scan signal adjustment, for detecting different kinds of defects, for compensating for structures, markings, edges
    • G01N2021/8887Scan or image signal processing specially adapted therefor, e.g. for scan signal adjustment, for detecting different kinds of defects, for compensating for structures, markings, edges based on image processing techniques
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/60Specific applications or type of materials
    • G01N2223/614Specific applications or type of materials road surface

Definitions

  • the present invention relates to a diagnosis using an image, and more particularly to a diagnosis of deterioration.
  • the road surface, signs installed on the road side, and structures such as ceilings and side walls of tunnels deteriorate over time.
  • Patent Document 1 a device for measuring deterioration of structures and the like has been proposed (see, for example, Patent Document 1).
  • the information processing system described in Patent Document 1 detects the road condition by using the rotation speed of the wheels.
  • the information processing device described in Patent Document 2 calculates the degree of deterioration of the structure based on the captured image of the structure. Then, the information processing apparatus described in Patent Document 2 additionally calculates the degree of necessity to be measured based on the degree of deterioration calculated in a plurality of times.
  • the accuracy of the diagnosis of deterioration using an image changes according to the situation in which the image was taken. That is, the reliability of the diagnosis of deterioration using an image changes depending on the state of the image, and therefore differs for each image.
  • the information processing apparatus described in Patent Document 2 determines the degree of necessity by using the degree of deterioration at a plurality of measurement times. That is, the information processing apparatus described in Patent Document 2 is a technique for evaluating the deterioration of a structure to be diagnosed by using a plurality of deterioration degrees over a certain period of time. Therefore, the information processing apparatus described in Patent Document 2 cannot provide reliability for deterioration diagnosis using individual images.
  • Patent Document 1 Since the information processing system described in Patent Document 1 is not a technique related to images, it cannot provide reliability for deterioration diagnosis using individual images.
  • Patent Documents 1 and 2 have a problem that they cannot provide reliability of deterioration diagnosis using images.
  • An object of the present invention is to provide a deterioration diagnosis device or the like that solves the above problems and provides reliability for diagnosis of deterioration using images.
  • the deterioration diagnostic apparatus is An image acquisition means for acquiring an image including a part to be diagnosed in a structure, Deterioration degree calculation means for calculating the degree of deterioration, which is the degree of deterioration of a part, using an image, A reliability calculation means that calculates the reliability of the degree of deterioration based on the shooting information, which is information related to image shooting, and Includes an output means that outputs the degree of deterioration in association with the degree of reliability.
  • the deterioration diagnosis system in one embodiment of the present invention is With the above deterioration diagnostic equipment, An image pickup device that sends an image to a deterioration diagnosis device, and Includes a display device that displays the degree of deterioration and reliability output by the deterioration diagnosis device in association with each other.
  • the deterioration diagnosis method in one embodiment of the present invention is Acquire an image including the part to be diagnosed in the structure, Using the image, calculate the degree of deterioration, which is the degree of deterioration of the part, The reliability for the degree of deterioration is calculated based on the shooting information, which is the information related to the shooting of the image. The degree of deterioration is associated with the degree of reliability and output.
  • the recording medium in one embodiment of the present invention is The process of acquiring an image including the part to be diagnosed in the structure, Using images to calculate the degree of deterioration, which is the degree of deterioration of parts, The process of calculating the reliability of the degree of deterioration based on the shooting information, which is information related to the shooting of images, and Record a program that causes a computer to execute a process that associates the degree of deterioration with the degree of reliability and outputs it.
  • FIG. 1 is a block diagram showing an example of the configuration of a deterioration diagnosis system including the deterioration diagnosis device according to the first embodiment.
  • FIG. 2 is a diagram showing an example of display of the degree of deterioration and the degree of reliability.
  • FIG. 3 is a diagram showing an example of a display of the degree of deterioration calculated by the deterioration diagnosis device.
  • FIG. 4 is a diagram showing an example of a plurality of deterioration degrees and reliability.
  • FIG. 5 is a flow chart showing an example of the operation of the deterioration diagnosis device.
  • FIG. 6 is a block diagram showing an example of the hardware configuration of the deterioration diagnosis device.
  • FIG. 7 is a block diagram showing the configuration of the deterioration diagnosis device according to the second embodiment.
  • FIG. 8 is a block diagram showing an example of the configuration of a deterioration diagnosis system including the deterioration diagnosis device according to the third embodiment.
  • FIG. 9 is a sequence diagram for explaining a first example of the linked operation.
  • FIG. 10 is a sequence diagram for explaining a second example of the linked operation.
  • FIG. 11 is a diagram showing an outline of ITS.
  • the "deterioration degree” is the result of the deterioration diagnosis (for example, the degree of deterioration) in the part of the structure to be diagnosed.
  • a numerical value is used as the "deterioration degree”.
  • a value other than a numerical value may be used.
  • characters such as ⁇ small, medium, large ⁇ may be used.
  • a predetermined analysis method is applied to an image including a part to be diagnosed in a structure (for example, a road surface, a sign, and a ceiling and a side wall such as a tunnel) to determine the degree of deterioration of each part. calculate.
  • the degree of deterioration may be calculated for the entire structure, not for each part.
  • the range of deterioration degree values is arbitrary.
  • the crack rate of the road surface may be used as the degree of deterioration.
  • the deterioration degree value is in the range of 0.0 to 1.0 (0% to 100%).
  • the amount of rutting may be used as the degree of deterioration.
  • the deterioration degree value is generally an integer of 0 or more (unit: mm).
  • a rational number may be used as the value of the rut digging amount.
  • each embodiment may use the International Roughness Index (IRI: International Roughness Index) as the degree of deterioration.
  • IRI International Roughness Index
  • the value of the degree of deterioration is a rational number (unit: mm / m) of 0 or more.
  • the range of deterioration degree values is arbitrary.
  • the user of each embodiment may appropriately select the degree of deterioration according to the target deterioration.
  • the crack rate will be used as an example of the degree of deterioration.
  • the value of the degree of deterioration increases when it deteriorates.
  • a numerical value may be used so that the value becomes smaller when the degree of deterioration is deteriorated due to the processing using the degree of deterioration.
  • Reliability is the degree of reliability for the calculated degree of deterioration. More specifically, in each embodiment, the reliability is a value calculated based on the degree of whether or not the image used for calculating the degree of deterioration is an image suitable for calculating the degree of deterioration.
  • the reliability is calculated based on the information regarding the shooting situation (hereinafter, referred to as "shooting information"). However, this does not limit the reliability value to the value calculated based on the shooting information.
  • the range of reliability values is in the range of 0.0 to 1.0 (0% to 100%). However, this is just an example. Each embodiment may use confidence in a range of different values.
  • the reliability value becomes higher when the deterioration degree is more reliable.
  • a numerical value may be used so that the value becomes high when the reliability is unreliable due to the processing using the reliability.
  • FIG. 1 is a block diagram showing an example of the configuration of the deterioration diagnosis system 10 including the deterioration diagnosis device 100 according to the first embodiment.
  • the deterioration diagnosis system 10 includes a deterioration diagnosis device 100, an image pickup device 200, and a display device 300.
  • the image pickup device 200 captures an image including a portion of a structure (for example, a road surface, a sign, a ceiling, and / or a side wall) to be diagnosed.
  • a structure for example, a road surface, a sign, a ceiling, and / or a side wall
  • the deterioration diagnosis system 10 can use any device as the image pickup device 200 as long as it can acquire an image including a portion to be diagnosed.
  • the deterioration diagnosis system 10 may use a drive recorder installed for the purpose of recording a situation at the time of a car accident as the image pickup device 200.
  • the deterioration diagnosis system 10 may use a camera that captures a landscape (for example, an omnidirectional camera) as the image pickup device 200.
  • the image pickup device 200 may be an image pickup device mounted on a vehicle used in an intelligent transportation system (ITS) or the like.
  • Intelligent Transport Systems is a transportation system that uses information technology (IT: Information Technology).
  • FIG. 11 is a diagram showing an outline of ITS.
  • the information processing device 410 collects information from the vehicle 440 via the network 420 and / or the communication path 430. Then, the information processing device 410 controls the equipment 450 installed on the road or the like based on the collected information to execute a predetermined process (for example, support for safe driving or management of the road).
  • the equipment 450 is optional.
  • FIG. 16 shows a traffic light and an electronic toll collection system (Electronic Toll Collection System (ETC in FIG. 11)) as an example of the equipment 450.
  • ETC Electronic Toll Collection System
  • the deterioration diagnosis system 10 may use a camera used for automatic driving of a vehicle or the like as the image pickup device 200. As described above, the deterioration diagnosis system 10 may be used in an automatic driving system.
  • the image pickup device 200 transmits the captured image to the deterioration diagnosis device 100.
  • the imaging device 200 may transmit at least a part of the captured information to the deterioration diagnosis device 100.
  • the deterioration diagnosis device 100 may include the image pickup device 200.
  • the display device 300 displays the output (at least the degree of deterioration and the reliability) of the deterioration diagnosis device 100, which will be described later.
  • the deterioration diagnosis system 10 can use any device as the display device 300 as long as it can display the output of the deterioration diagnosis device 100.
  • the deterioration diagnosis system 10 may use as the display device 300 a display device included in a system for managing road repairs and repairs.
  • the deterioration diagnosis system 10 may use the display device of the terminal device carried by the user (for example, the liquid crystal display of the terminal) as the display device 300.
  • the deterioration diagnosis device 100 may include the display device 300.
  • the display device 300 may be a liquid crystal display, an organic electroluminescence display, or electronic paper.
  • the deterioration diagnosis device 100 acquires an image from the image pickup device 200. Then, the deterioration diagnosis device 100 calculates the degree of deterioration of the portion to be diagnosed included in the image. Further, the deterioration diagnosis device 100 calculates the reliability corresponding to the calculated deterioration degree. Then, the deterioration diagnosis device 100 outputs the degree of deterioration and the degree of reliability in association with each other.
  • the deterioration diagnosis device 100 includes an image acquisition unit 110, a deterioration degree calculation unit 120, a reliability calculation unit 130, and an output unit 140.
  • the image acquisition unit 110 acquires an image including a part of the structure to be diagnosed (for example, a road surface or a side wall and a ceiling of a tunnel).
  • the image acquisition unit 110 may acquire information regarding the position of the portion to be diagnosed (hereinafter, referred to as “position information”).
  • position information is, for example, latitude and longitude.
  • the position information may include the direction of the portion.
  • the deterioration degree calculation unit 120 calculates the deterioration degree of the part to be diagnosed included in the image by using a predetermined method.
  • the method used by the deterioration degree calculation unit 120 to calculate the deterioration degree is arbitrary.
  • the deterioration degree calculation unit 120 calculates the area of the road surface and the area of cracks included in the image by using a predetermined image recognition. Then, the deterioration degree calculation unit 120 calculates the crack rate of the road surface based on the calculated crack area and the road surface area as the deterioration degree.
  • the deterioration degree calculation unit 120 may calculate the deterioration degree by using predetermined machine learning or artificial intelligence.
  • the image may contain multiple parts to be diagnosed.
  • the deterioration degree calculation unit 120 may calculate the deterioration degree for all the parts.
  • the deterioration degree calculation unit 120 may calculate the deterioration degree for a part of the portion according to a predetermined selection rule.
  • the reliability calculation unit 130 calculates the reliability using the shooting information.
  • the shooting information used to calculate the reliability is arbitrary.
  • the user of the deterioration diagnostic apparatus 100 may select the information to be used for calculating the reliability by using the past knowledge or the experimental result.
  • the deterioration diagnosis device 100 can use the following information as the photographing information.
  • Information about the shooting environment weather, shooting time, latitude / longitude of the shooting location, etc.
  • Information about movement movement speed and acceleration (front-back, left-right, up-down).
  • Information on the amount of vehicles equipped with the image pickup device 200 Vehicle type (large vehicle, medium-sized vehicle, ordinary vehicle, small vehicle, light vehicle), drive engine (gasoline vehicle or electric vehicle), load (fuel load, etc.) ).
  • Information on image capture height and orientation in which the image pickup device 200 is installed, number of pixels, frame rate, shutter speed, aperture, and the like.
  • Information on the part to be diagnosed traffic volume, lane, straight / curve, flat / slope, road structure (tunnel / grade separation), road surface structure (manhole, road marking, etc.), and Type of road pavement (asphalt, concrete, etc.).
  • Information about the surrounding area Surrounding structures (for example, building streets in urban areas or cultivated land in rural areas) and topography (mountainous areas or plain areas).
  • the source of shooting information is arbitrary.
  • the deterioration diagnosis device 100 may acquire shooting information using the acquired image. For example, the deterioration diagnosis device 100 may apply a predetermined image recognition process to the acquired image to detect a lane or the like.
  • the deterioration diagnosis device 100 may acquire imaging information from a predetermined device.
  • the deterioration diagnosis apparatus 100 may acquire imaging information such as an imaging time from the imaging apparatus 200.
  • the deterioration diagnosis device 100 may acquire information such as speed and acceleration, and a vehicle type from a vehicle equipped with a drive recorder.
  • the deterioration diagnosis device 100 may acquire shooting information (for example, weather) from an external system (not shown) via a predetermined communication path.
  • shooting information for example, weather
  • the reliability calculation unit 130 calculates the reliability based on the shooting information.
  • the method of calculating the reliability is arbitrary.
  • the reliability may be a value corresponding to the shooting information.
  • the reliability calculation unit 130 may calculate the reliability by using a plurality of shooting information.
  • the time zone near the mid-south time of the sun is a time zone that is not suitable for taking images used for diagnosis of deterioration.
  • the period from sunset to sunrise is not suitable for taking an image used for diagnosing deterioration. That is, the shooting time is one of the shooting information having a large influence on the reliability of the calculated deterioration degree.
  • the image pickup device 200 When the moving speed of the image pickup device 200 is high, the image tends to be unclear. Alternatively, when the vibration of the image pickup apparatus 200 is large (or when the change in acceleration is large), the image tends to be blurred due to blurring or the like.
  • the reliability calculation unit 130 may use the following reliability.
  • the reliability value is set to 0.0 to 1.0 (0% to 100%). Therefore, the reliability of each shooting information in the following equation is the reliability normalized to the range of 0.0 to 1.0.
  • Reliability weather reliability x time zone reliability x max (speed reliability, acceleration reliability)
  • max () is a function that outputs the larger value in parentheses.
  • the above reliability uses at least one of the weather at the time of shooting the image, the shooting time of the image, and the moving speed and acceleration of the image pickup device that captured the image as the shooting information for calculating the reliability. ..
  • the reliability calculation unit 130 may calculate the reliability by using predetermined machine learning or artificial intelligence.
  • the reliability calculation unit 130 may use predetermined machine learning or artificial intelligence to eliminate the influence of the road surface structure that is not deteriorated.
  • the reliability calculation unit 130 may detect a structure on the road surface (for example, a manhole and / or a road marking) using an image, and calculate the reliability after correcting the influence of the structure.
  • the reliability calculation unit 130 may select the shooting information used for calculating the reliability for at least a part of the images based on the instruction from the user.
  • the reliability calculation unit 130 may calculate the reliability for a predetermined section (for example, a section from one intersection to the next intersection) by using the reliability for a plurality of parts. For example, the reliability calculation unit 130 may use the average value of the reliability of the portion included in the section as the reliability of the section.
  • the deterioration degree calculation unit 120 may calculate the deterioration degree for a predetermined section. For example, the deterioration degree calculation unit 120 may use the average value of the deterioration degree of the portion included in the section as the deterioration degree of the section.
  • Another configuration may calculate the degree of deterioration and the degree of reliability in a predetermined section.
  • the output unit 140 may calculate the degree of deterioration and the degree of reliability in a predetermined section.
  • the output unit 140 outputs the degree of deterioration and the degree of reliability in association with each other. For example, the output unit 140 outputs the degree of deterioration and the degree of reliability to the display device 300. However, the output unit 140 may output the degree of deterioration and the degree of reliability to another device. For example, the output unit 140 may output the degree of deterioration and the degree of reliability in association with each other in a storage device (not shown).
  • the display device 300 displays the deterioration degree and the reliability output by the deterioration diagnosis device 100.
  • the output unit 140 may further output the position information of the portion in association with the degree of deterioration and the degree of reliability to be output.
  • the display device 300 may display the degree of deterioration and the degree of reliability by using the position information corresponding to the received portion.
  • the display device 300 may display the degree of deterioration and the degree of reliability by grouping the parts included in the predetermined section. For example, the display device 300 displays the maximum degree of deterioration of a portion included in a predetermined section (for example, a section from one intersection to the next intersection) and the reliability corresponding to the maximum degree of deterioration. May be good.
  • FIG. 2 is a diagram showing an example of display of the degree of deterioration and the degree of reliability.
  • FIG. 2 is an example of displaying the reliability for a predetermined section.
  • the display device 300 may display the reliability based on the instruction of the user or the like.
  • FIG. 3 is a diagram showing an example of a display of the degree of deterioration calculated by the deterioration diagnosis device 100.
  • each rectangle (for example, a rectangle of 100 m) indicates a unit to be diagnosed by the deterioration diagnosis device 100.
  • each arrow indicates the state of deterioration diagnosed by the deterioration diagnosis device 100.
  • the numerical value shown at each arrow is the degree of deterioration calculated by the deterioration diagnosis device 100.
  • the color of each arrow corresponds to the degree of deterioration. In FIG. 3, the higher the degree of deterioration, the darker the color of the arrow.
  • FIG. 3 is an example of displaying the degree of deterioration in the display device 300.
  • the display of the display device 300 is not limited to FIG.
  • the display device 300 may use another display as a display of the degree of deterioration.
  • the display device 300 may use symbols or figures corresponding to the degree of deterioration.
  • the display device 300 may display the reliability in response to the operation of the user. For example, the display device 300 may display the reliability corresponding to the degree of deterioration that overlaps with the mouse pointer that moves according to the mouse operation of the user.
  • FIG. 3 shows, as an example, the reliability (85%) corresponding to the degree of deterioration (50%) in which the mouse pointers (white arrows) overlap.
  • the deterioration diagnosis device 100 may calculate the reliability for a plurality of deteriorations. For example, the deterioration diagnosis device 100 may calculate the reliability with respect to the IRI, the crack rate, and the rutting amount as the reliability with respect to the degree of deterioration.
  • FIG. 4 is a diagram showing an example of a plurality of deterioration degrees and reliability.
  • FIG. 4 shows a case where IRI, a crack rate, and a rutting amount are used as deterioration.
  • the display device 300 may display the degree of deterioration and the degree of reliability for a plurality of deteriorations as shown in FIG. 4 as the degree of deterioration and the degree of reliability of each section shown in FIG.
  • the output unit 140 may output at least a part of shooting information in addition to the degree of deterioration and reliability.
  • the output unit 140 may output position information in addition to the degree of deterioration and reliability.
  • the display device 300 may display the degree of deterioration and / or the degree of reliability at an appropriate position on the map by using the position information.
  • the output unit 140 may output information about the detected structure.
  • the display device 300 may display the detected structure in addition to the degree of deterioration and reliability.
  • the user can determine whether or not the degree of deterioration and reliability are influenced by the structure by referring to the displayed structure (for example, a manhole).
  • the deterioration that occurs in a manhole is different from that of the surrounding road surface.
  • a manhole may rise or sink with respect to the surrounding road surface.
  • vibration is generated when the road surface passes through the manhole.
  • the reliability may be calculated low. That is, the reliability may be low in the vicinity of the manhole regardless of the deterioration state of the road surface. In this way, the reliability may change due to factors other than the shooting conditions of the image.
  • the display device 300 may display the position of the road surface structure (for example, a manhole) detected by the deterioration diagnosis device 100 and the type of the structure in addition to the degree of deterioration and reliability.
  • the user can refer to the displayed structure and grasp whether or not the reliability is affected by the structure.
  • FIG. 5 is a flow chart showing an example of the operation of the deterioration diagnosis device 100.
  • the image acquisition unit 110 acquires an image including a portion to be diagnosed (step S501).
  • the deterioration degree calculation unit 120 calculates the deterioration degree of the portion to be diagnosed by using the image (step S503).
  • the reliability calculation unit 130 calculates the reliability with respect to the deterioration degree using the shooting information (step S505).
  • the output unit 140 outputs the degree of deterioration and the degree of reliability in association with each other (step S507).
  • the deterioration diagnosis device 100 outputs the degree of deterioration and the degree of reliability.
  • the deterioration diagnosis device 100 can obtain the effect of providing reliability for deterioration diagnosis using an image.
  • the deterioration diagnosis device 100 includes an image acquisition unit 110, a deterioration degree calculation unit 120, a reliability calculation unit 130, and an output unit 140.
  • the image acquisition unit 110 acquires an image including a portion of the structure to be diagnosed.
  • the deterioration degree calculation unit 120 calculates the degree of deterioration, which is the degree of deterioration of the portion, using the image.
  • the reliability calculation unit 130 calculates the reliability with respect to the deterioration degree based on the shooting information which is the information related to the shooting of the image.
  • the output unit 140 outputs the degree of deterioration in association with the degree of reliability.
  • the deterioration degree calculation unit 120 calculates the deterioration degree of the portion to be diagnosed included in the image acquired by the image acquisition unit 110.
  • the captured information of the image has a great influence on the reliability in the diagnosis of deterioration using the image. Therefore, the reliability calculation unit 130 calculates the reliability using the shooting information of the image used for calculating the deterioration degree. Then, the output unit 140 outputs the degree of deterioration and the degree of reliability in association with each other.
  • the deterioration diagnosis device 100 can provide the degree of deterioration calculated based on the image and the degree of reliability thereof.
  • the deterioration diagnosis system 10 includes an image pickup device 200 and a display device 300 in addition to the deterioration diagnosis device 100.
  • the image pickup apparatus 200 acquires an image including a portion to be diagnosed and outputs the image to the deterioration diagnosis apparatus 100.
  • the display device 300 displays the degree of deterioration and the degree of reliability output by the deterioration diagnosis device 100 in association with each other. Therefore, the user of the deterioration diagnosis system 10 can easily grasp the degree of deterioration of the portion to be diagnosed and the reliability of the degree of deterioration.
  • Each component of the deterioration diagnosis device 100 may be composed of a hardware circuit.
  • each component may be configured by using a plurality of devices connected via a network.
  • a plurality of components may be configured by one piece of hardware.
  • the deterioration diagnosis device 100 may be realized as a computer device including a CPU (Central Processing Unit), a ROM (Read Only Memory), and a RAM (Random Access Memory).
  • the deterioration diagnosis device 100 may be realized as a computer device including a network interface circuit (NIC: Network Interface Circuit) in addition to the above configuration.
  • NIC Network Interface Circuit
  • the deterioration diagnosis device 100 may be realized as a computer device including a GPU (Graphics Processing Unit) in order to speed up the deterioration diagnosis process.
  • FIG. 6 is a block diagram showing the configuration of the information processing device 600, which is an example of the hardware configuration of the deterioration diagnosis device 100.
  • the information processing device 600 includes a CPU 610, a ROM 620, a RAM 630, a storage device 640, and a NIC 680, and constitutes a computer device.
  • the CPU 610 reads the program from the ROM 620 and / or the storage device 640. Then, the CPU 610 controls the RAM 630, the storage device 640, and the NIC 680 based on the read program. Then, the computer including the CPU 610 controls these configurations, and each function as the image acquisition unit 110, the deterioration degree calculation unit 120, the reliability calculation unit 130, and the output unit 140 shown in FIG. To realize.
  • the CPU 610 may use the RAM 630 or the storage device 640 as a temporary storage medium for the program when realizing each function.
  • the CPU 610 may read the program included in the storage medium 690 that stores the program so that it can be read by a computer by using a storage medium reading device (not shown).
  • the CPU 610 may receive a program from an external device (not shown) via the NIC 680, store the program in the RAM 630 or the storage device 640, and operate based on the stored program.
  • the ROM 620 stores a program executed by the CPU 610 and fixed data.
  • the ROM 620 is, for example, a P-ROM (Programmable-ROM) or a flash ROM.
  • the RAM 630 temporarily stores the program and data executed by the CPU 610.
  • the RAM 630 is, for example, a D-RAM (Dynamic-RAM).
  • the storage device 640 stores data and programs stored in the information processing device 600 for a long period of time. Further, the storage device 640 may operate as a temporary storage device of the CPU 610.
  • the storage device 640 is, for example, a hard disk device, a magneto-optical disk device, an SSD (Solid State Drive), or a disk array device.
  • the ROM 620 and the storage device 640 are non-volatile storage media.
  • the RAM 630 is a volatile storage medium. Then, the CPU 610 can operate based on the program stored in the ROM 620, the storage device 640, or the RAM 630. That is, the CPU 610 can operate using a non-volatile storage medium or a volatile storage medium.
  • the NIC 680 mediates the transmission and reception of data between the information processing device 600 and the image pickup device 200, and between the information processing device 600 and the display device 300.
  • the NIC680 is, for example, a LAN (Local Area Network) card. Further, the NIC680 is not limited to the wired one, and the wireless one may be used.
  • the information processing device 600 configured in this way can obtain the same effect as the deterioration diagnosis device 100.
  • the reason is that the CPU 610 of the information processing device 600 can realize the same function as the deterioration diagnosis device 100 based on the program.
  • FIG. 7 is a block diagram showing the configuration of the deterioration diagnosis device 100 according to the second embodiment, which is an outline of the first embodiment.
  • the deterioration diagnosis device 100 according to the second embodiment includes the same configuration as the deterioration diagnosis device 100 according to the first embodiment.
  • the deterioration diagnosis device 100 includes an image acquisition unit 110, a deterioration degree calculation unit 120, a reliability calculation unit 130, and an output unit 140.
  • the image acquisition unit 110 acquires an image including a portion of the structure to be diagnosed.
  • the deterioration degree calculation unit 120 calculates the degree of deterioration, which is the degree of deterioration of the portion, using the image.
  • the reliability calculation unit 130 calculates the reliability with respect to the deterioration degree based on the shooting information which is the information related to the shooting of the image.
  • the output unit 140 outputs the degree of deterioration in association with the degree of reliability.
  • the deterioration degree calculation unit 120 calculates the deterioration degree of the portion to be diagnosed included in the image acquired by the image acquisition unit 110.
  • the captured information of the image has a great influence on the reliability in the diagnosis of deterioration using the image. Therefore, the reliability calculation unit 130 calculates the reliability using the shooting information of the image used for calculating the deterioration degree. Then, the output unit 140 outputs the degree of deterioration and the degree of reliability in association with each other.
  • the deterioration diagnosis device 100 can provide the degree of deterioration calculated based on the image and the degree of reliability thereof.
  • the deterioration diagnosis device 100 in FIG. 7 has the minimum configuration in the first embodiment.
  • the deterioration diagnosis device 100 according to the second embodiment may be realized by using a computer device as shown in FIG. 6, as in the first embodiment.
  • ⁇ Third embodiment> Repairs, etc. will be carried out over a predetermined period. Therefore, it is desirable that the deterioration diagnosis system 10 saves the diagnosis result (deterioration degree and reliability) of the deterioration diagnosis device 100. Therefore, as a third embodiment, an embodiment in which the diagnosis result is stored will be described.
  • FIG. 8 is a block diagram showing an example of the configuration of the deterioration diagnosis system 11 including the deterioration diagnosis device 101 according to the third embodiment.
  • the deterioration diagnosis system 11 includes a deterioration diagnosis device 101, an image pickup device 200, and a display device 300.
  • the deterioration diagnosis device 101 includes an information storage unit 150 in addition to the configuration of the deterioration diagnosis device 100.
  • an information storage unit 150 in addition to the configuration of the deterioration diagnosis device 100.
  • the deterioration degree calculation unit 120 stores the calculated deterioration degree in the information storage unit 150.
  • the reliability calculation unit 130 stores the calculated reliability in the information storage unit 150.
  • the information storage unit 150 stores the degree of deterioration and the degree of reliability in association with each other.
  • the information storage unit 150 may store at least a part of shooting information in addition to the degree of deterioration and reliability.
  • the information storage unit 150 may store at least a part of the shooting information in association with the degree of deterioration and the reliability.
  • the shooting information includes the position information of the part and the shooting time of the image
  • the information storage unit 150 may save the deterioration degree and the reliability of each part as a history by using the shooting time.
  • a device may execute a predetermined process (for example, time series data process) using the degree of deterioration and the degree of reliability saved as a history.
  • the deterioration degree calculation unit 120 or the reliability calculation unit 130 may update the deterioration degree and the reliability stored in the information storage unit 150 based on a predetermined condition.
  • the deterioration degree calculation unit 120 and the reliability calculation unit 130 may always store the calculated deterioration degree and reliability in the information storage unit 150.
  • the information storage unit 150 stores the latest deterioration degree and reliability.
  • the deterioration degree calculation unit 120 and the reliability calculation unit 130 may cooperate to store the deterioration degree and the reliability in the information storage unit 150.
  • FIG. 9 is a sequence diagram for explaining the first example of the linked operation. It is assumed that the deterioration degree calculation unit 120 and the reliability calculation unit 130 have already calculated the deterioration degree and the reliability, respectively.
  • the reliability calculation unit 130 calculates the reliability, it determines whether or not the reliability has improved (S701). Specifically, the reliability calculation unit 130 compares the stored reliability with the calculated reliability. If the calculated reliability is higher than the stored reliability, the reliability calculation unit 130 determines that the reliability is improved.
  • the reliability calculation unit 130 requests the deterioration degree calculation unit 120 to update the deterioration degree (S703).
  • the reliability calculation unit 130 updates the reliability stored in the information storage unit 150 with the calculated reliability (S705).
  • the reliability calculation unit 130 adds the calculated reliability to the history without updating the stored reliability.
  • the deterioration degree calculation unit 120 Upon receiving the request from the reliability calculation unit 130, the deterioration degree calculation unit 120 updates the deterioration degree stored in the information storage unit 150 with the calculated deterioration degree (S707).
  • the deterioration degree calculation unit 120 adds the calculated deterioration degree to the history without updating the stored deterioration degree.
  • the deterioration diagnosis device 101 can store a highly reliable degree of deterioration.
  • FIG. 10 is a sequence diagram for explaining a second example of the linked operation. It is assumed that the deterioration degree calculation unit 120 and the reliability calculation unit 130 have already calculated the deterioration degree and the reliability, respectively.
  • the degree of deterioration calculation unit 120 determines whether or not the degree of deterioration has deteriorated (S711). Specifically, the deterioration degree calculation unit 120 compares the stored deterioration degree with the calculated deterioration degree. Then, when the calculated degree of deterioration is higher than the stored degree of deterioration, the degree of deterioration calculation unit 120 determines that the degree of deterioration has deteriorated.
  • the deterioration diagnosis device 101 ends the process.
  • the deterioration degree calculation unit 120 requests the reliability calculation unit 130 to confirm the reliability (S713).
  • the reliability calculation unit 130 determines whether or not the reliability is appropriate based on the request.
  • the determination of whether or not the reliability is appropriate in the reliability calculation unit 130 is arbitrary.
  • the reliability calculation unit 130 may determine that it is appropriate when the calculated reliability is higher than a predetermined threshold value. Alternatively, the reliability calculation unit 130 may determine that the calculated reliability is appropriate when the calculated reliability is the same as or higher than the stored reliability.
  • the reliability calculation unit 130 transmits the determination result to the deterioration degree calculation unit 120 (S715).
  • the deterioration degree calculation unit 120 determines whether or not the reliability determination result is "appropriate reliability" (S717).
  • the deterioration degree calculation unit 120 ends the process.
  • the deterioration degree calculation unit 120 updates the deterioration degree stored in the information storage unit 150 with the calculated deterioration degree.
  • the deterioration degree calculation unit 120 adds the calculated deterioration degree to the history without updating the stored deterioration degree.
  • the deterioration degree calculation unit 120 ends the process.
  • the reliability calculation unit 130 determines whether or not the calculated reliability is appropriate (S721).
  • the reliability calculation unit 130 ends the process.
  • the reliability calculation unit 130 updates the reliability stored in the information storage unit 150 with the calculated reliability (S723).
  • the reliability calculation unit 130 adds the calculated reliability to the history without updating the stored reliability.
  • the deterioration diagnosis device 101 can store the deterioration degree when the deterioration degree is deteriorated and the reliability is appropriate.
  • the deterioration diagnosis device 101 may be realized by using a computer device as shown in FIG. 6, as in the first embodiment.
  • the deterioration diagnosis device 101 according to the third embodiment can obtain the effect of preserving a more appropriate degree of deterioration and reliability in addition to the effect of the first embodiment.
  • the information storage unit 150 stores the degree of deterioration and the degree of reliability. Then, the deterioration degree calculation unit 120 and / or the reliability calculation unit 130 compares the calculated deterioration degree and / or reliability with the stored deterioration degree and / or reliability, and makes an appropriate deterioration degree and / or reliability. This is to preserve the reliability.
  • the present invention can be used for a transportation system using information technology (IT: Information Technology) such as an intelligent transportation system (ITS).
  • IT Information Technology
  • ITS intelligent transportation system
  • Deterioration diagnosis system 11 Deterioration diagnosis system 100 Deterioration diagnosis device 101 Deterioration diagnosis device 110 Image acquisition unit 120 Deterioration degree calculation unit 130 Reliability calculation unit 140 Output unit 150 Information storage unit 200 Imaging device 300 Display device 410 Information processing device 420 Network 430 Communication path 440 Vehicle 450 Equipment 600 Information processing device 610 CPU 620 ROM 630 RAM 640 storage device 680 NIC 690 storage medium

Landscapes

  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Immunology (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Signal Processing (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Automation & Control Theory (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Ecology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Environmental Sciences (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)

Abstract

画像を用いた劣化の診断に対する信頼度を提供するため、本発明の劣化診断装置は、構造物における診断の対象となる部分を含む画像を取得する画像取得手段と、画像を用いて、部分の劣化の程度である劣化度を算出する劣化度算出手段と、画像の撮影に関連する情報である撮影情報に基づいて劣化度に対する信頼度を算出する信頼度算出手段と、劣化度と信頼度とを関連付けて出力する出力手段とを含む。

Description

劣化診断装置、劣化診断システム、劣化診断方法、及び、記録媒体
 本発明は、画像を用いた診断に関し、特に、劣化の診断に関する。
 道路の路面、路側に設置された標識、並びに、トンネルなどの天井及び側壁などのような構造物は、経年劣化する。
 そこで、構造物などの劣化を測定する装置が提案されている(例えば、特許文献1を参照)。
 特許文献1に記載の情報処理システムは、車輪の回転速度を用いて、道路の状況を検知する。
 しかし、車輪を用いた検知は、車輪が通らない路面の状態を検知できない。また、近年は、カメラなどの撮像装置の大きさ及び価格が手ごろとなってきている。
 そこで、カメラが撮影した画像を用いて劣化を測定することが行われるようになっている(例えば、特許文献2を参照)。
 特許文献2に記載の情報処理装置は、撮像された構造物の画像に基づいて、構造物の劣化度を算出する。そして、特許文献2に記載の情報処理装置は、複数の時間において算出された劣化度に基づいて、追加して測定すべき必要度を算出する。
特開2019-049952号公報 特開2018-031664号公報
 劣化の診断に用いられる画像は、様々な状況において撮影される。
 例えば、深夜など照明光が乏しい状態において画像が撮影された場合、劣化部分を含め画像全体が、黒つぶれ状態となる。そのため、その画像を用いた劣化の診断は、精度が低くなる。
 あるいは、画像が晴れた日に撮影された場合、ひびなどの劣化の診断時に悪影響を及ぼす影が、撮影されやすくなる。そのため、その場合も、画像を用いた劣化の診断は、精度が低くなる。
 このように、画像を用いた劣化の診断は、画像が撮影された状況に対応して、精度が変化する。つまり、画像を用いた劣化の診断の信頼度は、画像の状態に対応して変化するため、画像ごとに異なる。
 そこで、画像を用いた劣化診断の結果の利用者に対して、劣化診断の信頼度を提供することが望まれている。
 特許文献2に記載の情報処理装置は、複数の測定時刻における劣化度を用いて必要度を判定する。つまり、特許文献2に記載の情報処理装置は、ある程度の期間における複数の劣化度を用いて、診断の対象となる構造物の劣化を評価する技術である。従って、特許文献2に記載の情報処理装置は、個別の画像を用いた劣化診断に対する信頼度を提供できない。
 特許文献1に記載の情報処理システムは、画像に関連する技術ではないため、個別の画像を用いた劣化診断に対する信頼度を提供できない。
 このように、特許文献1及び2に記載の技術は、画像を用いた劣化診断の信頼度を提供できないという問題点があった。
 本発明の目的は、上記問題点を解決し、画像を用いた劣化の診断に対する信頼度を提供する劣化診断装置などを提供することにある。
 本発明の一形態における劣化診断装置は、
構造物における診断の対象となる部分を含む画像を取得する画像取得手段と、
画像を用いて、部分の劣化の程度である劣化度を算出する劣化度算出手段と、
画像の撮影に関連する情報である撮影情報に基づいて劣化度に対する信頼度を算出する信頼度算出手段と、
劣化度と、信頼度とを関連付けて出力する出力手段と
を含む。
 本発明の一形態における劣化診断システムは、
上記の劣化診断装置と、
劣化診断装置に画像を送信する撮像装置と、
劣化診断装置が出力する劣化度と信頼度とを関連付けて表示する表示装置と
を含む。
 本発明の一形態における劣化診断方法は、
構造物における診断の対象となる部分を含む画像を取得し、
画像を用いて、部分の劣化の程度である劣化度を算出し、
画像の撮影に関連する情報である撮影情報に基づいて劣化度に対する信頼度を算出し、
劣化度と、信頼度とを関連付けて出力する。
 本発明の一形態における記録媒体は、
構造物における診断の対象となる部分を含む画像を取得する処理と、
画像を用いて、部分の劣化の程度である劣化度を算出する処理と、
画像の撮影に関連する情報である撮影情報に基づいて劣化度に対する信頼度を算出する処理と、
劣化度と、信頼度とを関連付けて出力する処理と
をコンピュータに実行させるプログラムを記録する。
 本発明によれば、画像を用いた劣化診断に対する信頼度を提供するとの効果を奏することができる。
図1は、第1の実施形態にかかる劣化診断装置を含む劣化診断システムの構成の一例を示すブロック図である。 図2は、劣化度と信頼度との表示の一例を示す図である。 図3は、劣化診断装置が算出した劣化度の表示の一例を示す図である。 図4は、複数の劣化度と信頼度との一例を示す図である。 図5は、劣化診断装置の動作の一例を示すフロー図である。 図6は、劣化診断装置のハードウェア構成の一例を示すブロック図である。 図7は、第2の実施形態にかかる劣化診断装置の構成を示すブロック図である。 図8は、第3の実施形態にかかる劣化診断装置を含む劣化診断システムの構成の一例を示すブロック図である。 図9は、連係動作の第1の例を説明するためのシーケンス図である。 図10は、連係動作の第2の例を説明するためのシーケンス図である。 図11は、ITSの概要を示す図である。
 次に、本発明における実施形態について図面を参照して説明する。
 なお、各図面は、本発明の実施形態を説明するためのものである。ただし、本発明は、各図面の記載に限られるわけではない。また、各図面の同様の構成には、同じ番号を付し、その繰り返しの説明を、省略する場合がある。また、以下の説明に用いる図面において、本発明の説明に関係しない部分の構成については、記載を省略し、図示しない場合もある。
 <用語>
 まず、本実施形態の説明に用いる用語について説明する。
 「劣化度」とは、構造物における診断の対象となる部分における劣化診断の結果(例えば、劣化の程度)である。なお、以下の説明において、「劣化度」として、数値を用いる。ただし、劣化度として、数値以外が用いられてもよい。例えば、劣化度として、{小、中、大}のような文字が用いられてもよい。
 各実施形態は、構造物(例えば、路面、標識、並びに、トンネルなどの天井及び側壁)における診断の対象となる部分を含む画像に、所定の解析手法を適用して、各部分の劣化度を算出する。
 ただし、各実施形態は、部分ごとではなく、構造物全体に対して、劣化度を算出してもよい。
 なお、劣化度の値の範囲は、任意である。
 例えば、各実施形態は、劣化度として、路面のひび割れ率を用いてもよい。この場合、劣化度の値は、0.0から1.0(0%から100%)の範囲となる。
 あるいは、各実施形態は、劣化度として、わだち掘れ量を用いてもよい。この場合、劣化度の値は、一般的に、0以上の整数(単位は、mm)となる。なお、わだち掘れ量の値としては、有理数が用いられてもよい。
 あるいは、各実施形態は、劣化度として、国際ラフネス指数(IRI:Internaional Roughness Index)を用いてもよい。この場合、劣化度の値は、0以上の有理数(単位は、mm/m)となる。
 このように、劣化度の値の範囲は、任意である。各実施形態の利用者が、適宜、対象となる劣化に沿って、劣化度を選択すればよい。
 なお、以下の説明では、劣化度の一例として、ひび割れ率を用いて説明する。
 また、以下の説明において、劣化度の値は、悪化した場合に大きくなる。ただし、劣化度の値としては、劣化度を用いる処理の関係で、悪化した場合にその値が小さくなるような数値が用いられてもよい。
 「信頼度」とは、算出された劣化度に対する信頼の程度である。より詳細には、各実施形態において、信頼度は、劣化度の算出に用いられた画像が劣化度の算出に適している画像であるか否かの度合いに基づいて算出される値である。
 画像を解析して劣化度を算出するためには、解析に適した画像であることが望ましい。画像の撮影の状況は、解析に用いられる画像が解析に適した画像となるか否かに対して、大きな要因である。そこで、以下で説明する各実施形態は、一例として、撮影の状況に関する情報(以下、「撮影情報」と呼ぶ)に基づいて、信頼度を算出する。ただし、これは、信頼度の値を、撮影情報に基づいて算出する値に限定するものではない。
 なお、以下の説明において、信頼度の値の範囲は、0.0から1.0(0%から100%)の範囲とする。ただし、これは、一例である。各実施形態は、異なる値の範囲の信頼度を用いてもよい。
 また、以下の説明において、信頼度の値は、劣化度がより信頼できる場合に高くなる。ただし、信頼度としては、信頼度を用いる処理の関係で、信頼できない場合にその値が高くなるような数値が用いられてもよい。
 <第1の実施形態>
 以下、図面を参照して、第1の実施形態について説明する。
 [構成の説明]
 まず、第1の実施形態にかかる劣化診断装置100の構成について、図面を参照して説明する。
 図1は、第1の実施形態にかかる劣化診断装置100を含む劣化診断システム10の構成の一例を示すブロック図である。
 劣化診断システム10は、劣化診断装置100と、撮像装置200と、表示装置300とを含む。
 撮像装置200は、構造物(例えば、路面、標識、天井、及び/又は、側壁)における診断の対象となる部分を含む画像を撮影する。
 劣化診断システム10は、撮像装置200として、診断の対象となる部分を含む画像を取得できれば、任意の装置を利用可能である。例えば、劣化診断システム10は、撮像装置200として、自動車事故発生時の状況記録を目的に設置されているドライブレコーダを用いてもよい。あるいは、劣化診断システム10は、撮像装置200として、風景を撮影するカメラ(例えば、全天球カメラ)を用いてもよい。
 あるいは、撮像装置200は、高度道路交通システム(ITS:Intelligent Transport System)などに用いられる車両に搭載された撮像装置でもよい。なお、高度道路交通システム(ITS)とは、情報技術(IT:Information Technology)を利用した交通システムである。
 図11は、ITSの概要を示す図である。
 情報処理装置410は、ネットワーク420及び/又は通信路430を介して、車両440から情報を収集する。そして、情報処理装置410は、収集した情報に基づいて、道路などに設置された設備450を制御して、所定の処理(例えば、安全運転の支援、又は、道路の管理)を実行する。なお、設備450は、任意である。図16は、設備450の一例として、信号機、及び、電子料金収受システム(Electronic Toll Collection System(図11ではETC))を示している。
 あるいは、劣化診断システム10は、撮像装置200として、車両などの自動運転に用いられるカメラを用いてもよい。このように、劣化診断システム10は、自動運転のシステムに用いられてもよい。
 図1を参照した説明に戻る。
 そして、撮像装置200は、撮影した画像を、劣化診断装置100に送信する。なお、撮像装置200は、撮影した画像に加え、少なくとも一部の撮影情報を、劣化診断装置100に送信してもよい。
 なお、劣化診断装置100が、撮像装置200を含んでいてもよい。
 表示装置300は、後ほど説明する劣化診断装置100の出力(少なくとも、劣化度及び信頼度)を表示する。
 なお、劣化診断システム10は、表示装置300として、劣化診断装置100の出力を表示できれば、任意の装置を利用可能である。例えば、劣化診断システム10は、表示装置300として、道路の修繕及び補修を管理するシステムに含まれる表示装置を用いてもよい。あるいは、劣化診断システム10は、表示装置300として、利用者が携帯する端末装置の表示機器(例えば、端末の液晶ディスプレイ)を用いてもよい。
 なお、劣化診断装置100が、表示装置300を含んでいてもよい。例えば、表示装置300は、液晶ディスプレイ、有機エレクトロルミネッセンス・ディスプレイ、又は、電子ペーパーでもよい。
 劣化診断装置100は、撮像装置200から画像を取得する。そして、劣化診断装置100は、画像に含まれる診断の対象となる部分の劣化度を算出する。さらに、劣化診断装置100は、算出した劣化度に対応する信頼度を算出する。そして、劣化診断装置100は、劣化度と信頼度とを関連付けて出力する。
 次に、劣化診断装置100の構成について説明する。
 劣化診断装置100は、画像取得部110と、劣化度算出部120と、信頼度算出部130と、出力部140とを含む。
 画像取得部110は、構造物における診断の対象となる部分(例えば、道路の路面、又は、トンネルの側壁及び天井)を含む画像を取得する。画像取得部110は、診断の対象となる部分の位置に関する情報(以下、「位置情報」と呼ぶ)を取得してもよい。位置情報は、例えば、緯度及び経度である。位置情報は、その部分の方向を含んでいてもよい。
 劣化度算出部120は、所定の手法を用いて、画像に含まれる診断の対象となる部分の劣化度を算出する。なお、劣化度算出部120が劣化度の算出に用いる手法は、任意である。例えば、劣化度算出部120は、所定の画像認識を用いて画像に含まれる路面の面積とひび割れの面積とを算出する。そして、劣化度算出部120は、劣化度として、算出したひび割れの面積及び路面の面積に基づいて、路面のひび割れ率を算出する。
 劣化度算出部120は、所定の機械学習又は人工知能を用いて、劣化度を算出してもよい。
 なお、画像に、複数の診断の対象となる部分が含まれる場合がある。その場合、劣化度算出部120は、全ての部分に対して、劣化度を算出してもよい。あるいは、劣化度算出部120は、所定の選択規則に沿って、一部の部分に対して、劣化度を算出してもよい。
 信頼度算出部130は、撮影情報を用いて、信頼度を算出する。
 信頼度を算出するために用いられる撮影情報は、任意である。例えば、劣化診断装置100の利用者が、過去の知見又は実験結果を用いて、信頼度の算出に用いる情報を選択してもよい。
 例えば、劣化診断システム10が撮像装置200として車載のカメラを用いる場合、劣化診断装置100は、撮影情報としては、次のような情報を用いることができる。
(1)撮影環境に関する情報:天候、撮影時間、及び、撮影場所の緯度/経度など。
(2)移動に関する情報:移動速度、及び、加速度(前後、左右、上下)。
(3)撮像装置200を搭載する車量に関する情報:車種(大型自動車、中型自動車、普通自動車、小型自動車、軽自動車)、駆動機関(ガソリン車又は電気自動車)、搭載物(燃料の搭載量など)。
(4)画像の撮影に関する情報:撮像装置200を設置した高さ及び向き、画素数、フレームレート、シャッタースピード、及び、絞りなど。
(5)診断の対象となる部分に関する情報:交通量、車線、直線/カーブ、平坦/坂、道路の構造(トンネル/立体交差)、路面の構造物(マンホール、及び路面標示など)、及び、路面の舗装の種類(アスファルト、又は、コンクリートなど)。
(6)周辺に関する情報:周辺の構造物(例えば、都市部におけるビル街、又は田園地帯における耕作地)、及び、地形(山間部、又は、平野部)。
 撮影情報の提供元は、任意である。
 劣化診断装置100が、取得した画像を用いて、撮影情報を取得してもよい。例えば、劣化診断装置100は、取得した画像に所定の画像認識処理を適用して、車線などを検出してもよい。
 あるいは、劣化診断装置100は、所定の装置から撮影情報を取得してもよい。例えば、撮像装置200がドライブレコーダの場合、劣化診断装置100は、撮像装置200から撮影時間などの撮影情報を取得してもよい。あるいは、劣化診断装置100は、ドライブレコーダを搭載した車両から、速度及び加速度、並びに、車種などの情報を取得してもよい。
 あるいは、劣化診断装置100は、所定の通信路を介して、図示しない外部のシステムから撮影情報(例えば、天候)を取得してもよい。
 そして、信頼度算出部130は、撮影情報に基づいて、信頼度を算出する。
 信頼度の算出のやり方は、任意である。
 例えば、信頼度は、撮影情報に対応した値でもよい。
 例えば、撮影情報として天候を用いる場合、信頼度算出部130は、次のような信頼度を用いてもよい。
晴天の場合の信頼度= 50%、
曇天の場合の信頼度=100%、
雨天の場合の信頼度=  0%。
 信頼度算出部130は、複数の撮影情報を用いて、信頼度を算出してもよい。
 例えば、太陽の南中時の近傍の時間帯は、劣化の診断の用いる画像の撮影には適さない時間帯である。また、日没から日出までは、劣化の診断に用いる画像の撮影に適さない時間帯である。つまり、撮影時間は、算出された劣化度についての信頼度に対する影響が大きい撮影情報の一つである。
 撮像装置200の移動速度が速い場合、画像が不鮮明となりやすい。あるいは、撮像装置200の振動が大きい場合(又は、加速度の変化が大きい場合)も、画像がブレなどのため不鮮明となりやすい。
 そこで、信頼度算出部130は、次のような信頼度を用いてもよい。なお、本実施形態の説明では、信頼度の値を0.0から1.0(0%から100%)としている。そのため、下記の式における各撮影情報に対する信頼度は、0.0から1.0の範囲に正規化された信頼度とする。
信頼度=天気の信頼度×時間帯の信頼度×max(速度の信頼度、加速度の信頼度)
ただし、max()は、カッコ内において値の大きな方を出力する関数である。
 上記の信頼度は、信頼度を算出するための撮影情報として、画像の撮影時の天候と、画像の撮影時間と、画像を撮影した撮像装置の移動速度及び加速度の少なくともどちらか一つとを用いる。
 あるいは、信頼度算出部130は、所定の機械学習又は人工知能を用いて、信頼度を算出してもよい。
 さらに、信頼度算出部130は、所定の機械学習又は人工知能を用いて、劣化ではない路面の構造物の影響を排除してもよい。例えば、信頼度算出部130は、画像を用いて路面の構造物(例えば、マンホール及び/又は路面標示)を検出し、その構造物の影響を補正した信頼度を算出してもよい。
 あるいは、信頼度算出部130は、利用者からの指示に基づいて、少なくとも一部の画像に対して、信頼度の算出に用いる撮影情報を選択してもよい。
 なお、一般的に、道路の修繕は、所定の区間(例えば、交差点から交差点の区間)の道路に対して実施される。これに対し、劣化診断装置100の診断対象の部分は、修繕の区間よりも狭い場合が多い。そこで、信頼度算出部130は、複数の部分に対する信頼度を用いて、所定の区間(例えば、一つの交差点から次の交差点までの区間)に対して信頼度を算出してもよい。例えば、信頼度算出部130は、その区間に含まれる部分の信頼度の平均値を、その区間の信頼度としてもよい。
 同様に、劣化度算出部120は、所定の区間に対する劣化度を算出してもよい。例えば、劣化度算出部120は、その区間に含まれる部分の劣化度の平均値を、その区間の劣化度としてもよい。
 なお、別の構成が、所定の区間における劣化度及び信頼度を算出してもよい。例えば、出力部140が、所定の区間における劣化度及び信頼度を算出してもよい。
 出力部140は、劣化度と信頼度とを関連付けて出力する。例えば、出力部140は、劣化度と信頼度とを表示装置300に出力する。ただし、出力部140は、劣化度と信頼度とを他の装置に出力してもよい。例えば、出力部140は、図示しない記憶装置に、劣化度と信頼度とを関連付けて出力してもよい。
 出力部140が、表示装置300に、劣化度と信頼度とを出力する場合、表示装置300は、劣化診断装置100が出力した劣化度と信頼度とを表示する。
 出力部140は、出力する劣化度及び信頼度に関連付けて、さらに、その部分の位置情報を出力してもよい。この場合、表示装置300は、受信した部分に対応する位置情報を用いて、劣化度と信頼度とを表示してもよい。
 あるいは、表示装置300は、所定の区間に含まれる部分をまとめて、劣化度及び信頼度を表示してもよい。例えば、表示装置300は、所定の区間(例えば、一つの交差点から次の交差点までの区間)に含まれる部分の最大の劣化度と、その最大の劣化度に対応した信頼度とを表示してもよい。
 図2は、劣化度と信頼度との表示の一例を示す図である。図2は、所定の区間に対する信頼度を表示する場合の例である。
 さらに、表示装置300は、利用者などの指示に基づいて、信頼度を表示してもよい。
 図3は、劣化診断装置100が算出した劣化度の表示の一例を示す図である。
 図3において、各矩形(例えば、100mの矩形)が、劣化診断装置100が診断する単位を示す。
 さらに、各矢印が、劣化診断装置100が診断した劣化の状態を示す。各矢印の所に示されている数値が、劣化診断装置100が算出した劣化度である。さらに、各矢印の色が、劣化度に対応している。図3において、劣化度の高いほど、矢印の色が、濃くなっている。
 ただし、図3は、表示装置300における劣化度の表示の一例である。表示装置300の表示は、図3に限定されない。表示装置300は、劣化度の表示として、他の表示を用いてもよい。例えば、表示装置300は、劣化度に対応した記号又は図形を用いてもよい。
 さらに、表示装置300は、利用者の操作に対応して信頼度を表示してもよい。例えば、表示装置300は、利用者のマウス操作に従って移動するマウスポインタと重なった劣化度に対応する信頼度を表示してもよい。
 図3は、一例として、マウスポインタ(白抜きの矢印)が重なった劣化度(50%)に対応する信頼度(85%)を表示している。
 さらに、劣化診断装置100は、複数の劣化に対して信頼度を算出してもよい。例えば、劣化診断装置100は、劣化度に対する信頼度として、IRIと、ひび割れ率と、わだち掘れ量とに対する信頼度を算出してもよい。
 図4は、複数の劣化度と信頼度との一例を示す図である。図4は、劣化として、IRIと、ひび割れ率と、わだち掘れ量とを用いた場合を示す。例えば、表示装置300は、図2に示されている各区間の劣化度及び信頼度として、図4に示されているような複数の劣化に対する劣化度と信頼度とを表示してもよい。
 出力部140は、劣化度及び信頼度に加え、少なくとも一部の撮影情報を出力してもよい。例えば、出力部140は、劣化度及び信頼度に加え、位置情報を出力してもよい。この場合、表示装置300は、位置情報を用いて、例えば、地図上の適切な位置に、劣化度及び/又は信頼度を表示してもよい。
 なお、信頼度算出部130が、路面の構造物(例えば、マンホール)を検出する場合、出力部140は、検出した構造物に関する情報を出力してもよい。この場合、表示装置300は、劣化度及び信頼度に加え、検出された構造物を表示してもよい。利用者は、劣化度及び信頼度に加え、表示された構造物(例えば、マンホール)を参照して、劣化度及び信頼度が構造物に影響されたものであるか否かを判定できる。
 例えば、マンホールは、周辺の路面とは、発生する劣化が異なる。例えば、マンホールは、周辺の路面に対して浮き上がる、又は、沈み込む場合がある。この場合、マンホールの周辺の路面が平坦であっても、マンホールを通過すると、振動が発生する。その結果、信頼度が低く算出される可能性がある。つまり、信頼度が、路面の劣化状態には関連なく、マンホールの近傍で低くなる場合がある。このように、信頼度は、画像の撮影条件以外の要因で変化する場合ある。
 そこで、表示装置300が、劣化度及び信頼度に加え、劣化診断装置100が検出した路面の構造物(例えば、マンホール)の位置及び構造物の種別を表示してもよい。この場合、利用者は、表示された構造物を参照して、信頼度が構造物の影響を受けているか否かを把握できる。
 [動作の説明]
 次に、第1の実施形態にかかる劣化診断装置100の動作について、図面を参照して説明する。
 図5は、劣化診断装置100の動作の一例を示すフロー図である。
 画像取得部110は、診断の対象となる部分を含む画像を取得する(ステップS501)。
 劣化度算出部120は、画像を用いて、診断の対象となる部分の劣化度を算出する(ステップS503)。
 信頼度算出部130は、撮影情報を用いて、劣化度に対する信頼度を算出する(ステップS505)。
 出力部140は、劣化度と信頼度とを関連付けて出力する(ステップS507)。
 上記のような動作を用いて、劣化診断装置100は、劣化度と信頼度とを出力する。
 [効果の説明]
 次に第1の実施形態にかかる劣化診断装置100の効果について説明する。
 第1の実施形態かかる劣化診断装置100は、画像を用いた劣化診断に対する信頼度を提供するとの効果を得ることができる。
 その理由は、次のとおりである。
 劣化診断装置100は、画像取得部110と、劣化度算出部120と、信頼度算出部130と、出力部140とを含む。画像取得部110は、構造物における診断の対象となる部分を含む画像を取得する。劣化度算出部120は、画像を用いて、部分の劣化の程度である劣化度を算出する。信頼度算出部130は、画像の撮影に関連する情報である撮影情報に基づいて劣化度に対する信頼度を算出する。出力部140は、劣化度と、信頼度とを関連付けて出力する。
 劣化度算出部120は、画像取得部110が取得した画像に含まれる診断の対象となる部分の劣化度を算出する。画像の撮影情報は、画像を用いた劣化の診断における信頼度に対する影響が大きい。そこで、信頼度算出部130は、劣化度の算出に用いられた画像の撮影情報を用いて信頼度を算出する。そして、出力部140は、劣化度と信頼度とを関連付けて出力する。
 このように、劣化診断装置100は、画像に基づいて算出した劣化度とその信頼度とを提供することができる。
 さらに、劣化診断システム10は、劣化診断装置100に加え、撮像装置200と、表示装置300とを含む。撮像装置200は、診断の対象となる部分を含む画像を取得して、劣化診断装置100に出力する。表示装置300は、劣化診断装置100が出力した劣化度と信頼度とを関連付けて表示する。そのため、劣化診断システム10の利用者は、診断の対象となる部分の劣化度に加え、その劣化度に対する信頼度を、容易に把握できる。
 [ハードウェア構成]
 次に、劣化診断装置100のハードウェア構成について説明する。
 劣化診断装置100の各構成部は、ハードウェア回路で構成されてもよい。
 あるいは、劣化診断装置100において、各構成部は、ネットワークを介して接続した複数の装置を用いて、構成されてもよい。
 あるいは、劣化診断装置100において、複数の構成部は、1つのハードウェアで構成されてもよい。
 あるいは、劣化診断装置100は、CPU(Central Processing Unit)と、ROM(Read Only Memory)と、RAM(Random Access Memory)とを含むコンピュータ装置として実現されてもよい。劣化診断装置100は、上記構成に加え、さらに、ネットワークインターフェース回路(NIC:Network Interface Circuit)を含むコンピュータ装置として実現されてもよい。さらに、劣化診断装置100は、劣化診断処理を高速化するために、GPU(Graphics Processing Unit)を含むコンピュータ装置として実現されてもよい。
 図6は、劣化診断装置100のハードウェア構成の一例である情報処理装置600の構成を示すブロック図である。
 情報処理装置600は、CPU610と、ROM620と、RAM630と、記憶装置640と、NIC680とを含み、コンピュータ装置を構成している。
 CPU610は、ROM620及び/又は記憶装置640からプログラムを読み込む。そして、CPU610は、読み込んだプログラムに基づいて、RAM630と、記憶装置640と、NIC680とを制御する。そして、CPU610を含むコンピュータは、これらの構成を制御し、図1に示されている、画像取得部110と、劣化度算出部120と、信頼度算出部130と、出力部140としての各機能を実現する。
 CPU610は、各機能を実現する際に、RAM630又は記憶装置640を、プログラムの一時記憶媒体として使用してもよい。
 また、CPU610は、コンピュータで読み取り可能にプログラムを記憶した記憶媒体690が含むプログラムを、図示しない記憶媒体読み取り装置を用いて読み込んでもよい。あるいは、CPU610は、NIC680を介して、図示しない外部の装置からプログラムを受け取り、RAM630又は記憶装置640に保存して、保存したプログラムを基に動作してもよい。
 ROM620は、CPU610が実行するプログラム及び固定的なデータを記憶する。ROM620は、例えば、P-ROM(Programmable-ROM)又はフラッシュROMである。
 RAM630は、CPU610が実行するプログラム及びデータを一時的に記憶する。RAM630は、例えば、D-RAM(Dynamic-RAM)である。
 記憶装置640は、情報処理装置600が長期的に保存するデータ及びプログラムを記憶する。また、記憶装置640は、CPU610の一時記憶装置として動作してもよい。記憶装置640は、例えば、ハードディスク装置、光磁気ディスク装置、SSD(Solid State Drive)又はディスクアレイ装置である。
 ROM620と記憶装置640とは、不揮発性(non-transitory)の記憶媒体である。一方、RAM630は、揮発性(transitory)の記憶媒体である。そして、CPU610は、ROM620、記憶装置640、又は、RAM630に記憶されているプログラムを基に動作可能である。つまり、CPU610は、不揮発性記憶媒体又は揮発性記憶媒体を用いて動作可能である。
 NIC680は、情報処理装置600と撮像装置200との間、及び、情報処理装置600と表示装置300との間におけるデータの送信及び受信を、仲介する。NIC680は、例えば、LAN(Local Area Network)カードである。さらに、NIC680は、有線に限らず、無線を用いてもよい。
 このように構成された情報処理装置600は、劣化診断装置100と同様の効果を得ることができる。
 その理由は、情報処理装置600のCPU610が、プログラムに基づいて劣化診断装置100と同様の機能を実現できるためである。
 <第2の実施形態>
 第2の実施形態として、第1の実施形態にかかる劣化診断装置100の概要を説明する。
 図7は、第1の実施形態の概要である第2の実施形態にかかる劣化診断装置100の構成を示すブロック図である。第2の実施形態にかかる劣化診断装置100は、第1の実施形態の劣化診断装置100と同様の構成を含む。
 劣化診断装置100は、画像取得部110と、劣化度算出部120と、信頼度算出部130と、出力部140とを含む。画像取得部110は、構造物における診断の対象となる部分を含む画像を取得する。劣化度算出部120は、画像を用いて、部分の劣化の程度である劣化度を算出する。信頼度算出部130は、画像の撮影に関連する情報である撮影情報に基づいて劣化度に対する信頼度を算出する。出力部140は、劣化度と、信頼度とを関連付けて出力する。
 劣化度算出部120は、画像取得部110が取得した画像に含まれる診断の対象となる部分の劣化度を算出する。画像の撮影情報は、画像を用いた劣化の診断における信頼度に対する影響が大きい。そこで、信頼度算出部130は、劣化度の算出に用いられた画像の撮影情報を用いて信頼度を算出する。そして、出力部140は、劣化度と信頼度とを関連付けて出力する。
 このように、劣化診断装置100は、画像に基づいて算出した劣化度とその信頼度とを提供することができる。
 図7における劣化診断装置100は、第1の実施形態における最小構成である。
 なお、第2の実施形態にかかる劣化診断装置100は、第1の実施形態と同様に、図6に示されるようなコンピュータ装置を用いて実現されてもよい。
 <第3の実施形態>
 修繕などは、所定の期間にわたって実施される。そのため、劣化診断システム10は、劣化診断装置100の診断結果(劣化度と信頼度)を保存することが望ましい。そこで、第3の実施形態として、診断結果を保存する場合の実施形態を説明する。
 まず、第3の実施形態にかかる劣化診断装置101の構成について、図面を参照して説明する。
 図8は、第3の実施形態にかかる劣化診断装置101を含む劣化診断システム11の構成の一例を示すブロック図である。
 劣化診断システム11は、劣化診断装置101と、撮像装置200と、表示装置300とを含む。
 撮像装置200及び表示装置300は、第1の実施形態の同様のため、詳細な説明を省略する。
 劣化診断装置101は、劣化診断装置100の構成に加え、情報保存部150を含む。以下、説明の便宜のため、第1の実施形態の同様の構成及び動作の説明を適宜省略し、第3の実施形態に特有の構成及び動作を説明する。
 劣化度算出部120は、算出した劣化度を情報保存部150に保存する。
 信頼度算出部130は、算出した信頼度を情報保存部150に保存する。
 情報保存部150は、劣化度と信頼度とを関連付けて保存する。なお、情報保存部150は、劣化度及び信頼度に加え、少なくとも一部の撮影情報を保存してもよい。あるいは、情報保存部150は、少なくとも一部の撮影情報に対応する劣化度及び信頼度を関連付けて保存してもよい。例えば、撮影情報が部分の位置情報及び画像の撮影時間を含む場合、情報保存部150は、撮影時間を用いて、部分それぞれにおける劣化度と信頼度とを履歴として保存してもよい。この場合、図示しない装置が、履歴として保存された劣化度及び信頼度を用いて、所定の処理(例えば、時系列データ処理)を実行してもよい。
 あるいは、劣化度算出部120、又は、信頼度算出部130が、所定の条件に基づいて、情報保存部150に保存されている劣化度及び信頼度を更新してもよい。
 例えば、劣化度算出部120及び信頼度算出部130は、常に、算出した劣化度及び信頼度を情報保存部150に保存してもよい。この場合、情報保存部150は、最新の劣化度及び信頼度を保存する。
 あるいは、劣化度算出部120及び信頼度算出部130は、連係して、劣化度及び信頼度を情報保存部150に保存してもよい。
 図面を参照して、連係動作の例を説明する。
 図9は、連係動作の第1の例を説明するためのシーケンス図である。なお、劣化度算出部120と信頼度算出部130とは、それぞれ、劣化度と信頼度とを算出済みであるとする。
 信頼度算出部130は、信頼度を算出すると、信頼度が改善したか否かを判定する(S701)。具体的には、信頼度算出部130は、保存されている信頼度と算出した信頼度とを比較する。算出した信頼度が保存されている信頼度より高い場合、信頼度算出部130は、信頼度が改善していると判断する。
 改善していない場合(S701でNo)、劣化診断装置101は、処理を終了する。
 改善している場合(S701でYes)、信頼度算出部130は、劣化度算出部120に劣化度の更新を依頼する(S703)。
 そして、信頼度算出部130は、算出した信頼度で、情報保存部150に保存されている信頼度を更新する(S705)。
 なお、情報保存部150が信頼度を履歴として保存する場合、信頼度算出部130は、保存されている信頼度を更新しないで、算出した信頼度を履歴に追加する。
 信頼度算出部130から依頼を受信すると、劣化度算出部120は、算出した劣化度で、情報保存部150に保存されている劣化度を更新する(S707)。
 なお、情報保存部150が劣化度を履歴として保存する場合、劣化度算出部120は、保存されている劣化度を更新しないで、算出した劣化度を履歴に追加する。
 このような動作に基づいて、劣化診断装置101は、信頼度が高い劣化度を保存することができる。
 図10は、連係動作の第2の例を説明するためのシーケンス図である。なお、劣化度算出部120と信頼度算出部130とは、それぞれ、劣化度と信頼度とを算出済みであるとする。
 劣化度算出部120は、劣化度を算出すると、劣化度が悪化したか否かを判定する(S711)。具体的には、劣化度算出部120は、保存されている劣化度と算出した劣化度とを比較する。そして、算出した劣化度が、保存されている劣化度より高い場合、劣化度算出部120は、劣化度が悪化したと判定する。
 悪化していない場合(S711でNo)、劣化診断装置101は、処理を終了する。
 悪化している場合(S711でYes)、劣化度算出部120は、信頼度算出部130に信頼度の確認を依頼する(S713)。
 信頼度算出部130は、依頼に基づいて、信頼度が適切であるか否かを判定する。信頼度算出部130における信頼度が適切であるか否かの判定は、任意である。
 例えば、信頼度算出部130は、算出した信頼度が、所定の閾値より高い場合に適切であると判定してもよい。あるいは、信頼度算出部130は、算出した信頼度が、保存されている信頼度と同じ、又は高い場合に、適切であると判定してもよい。
 そして、信頼度算出部130は、判定結果を劣化度算出部120に送信する(S715)。
 判定結果を受信すると、劣化度算出部120は、信頼度の判定結果が「信頼度が適切」であるか否かを判定する(S717)。
 信頼度が適切ではない場合(S717でNo)、劣化度算出部120は、処理を終了する。
 信頼度が適切な場合(S718でYes)、劣化度算出部120は、算出した劣化度で、情報保存部150に保存されている劣化度を更新する。
 なお、情報保存部150が劣化度を履歴として保存する場合、劣化度算出部120は、保存されている劣化度を更新しないで、算出した劣化度を履歴に追加する。
 そして、劣化度算出部120は、処理を終了する。
 一方、信頼度算出部130は、算出した信頼度が適切であるか否かを判定する(S721)。
 信頼度が適切ではない場合(S721でNo)、信頼度算出部130は、処理を終了する。
 信頼度が適切な場合(S721でYes)、信頼度算出部130は、算出した信頼度で情報保存部150に保存されている信頼度を更新する(S723)。
 なお、情報保存部150が信頼度を履歴として保存する場合、信頼度算出部130は、保存されている信頼度を更新しないで、算出した信頼度を履歴に追加する。
 このような動作に基づいて、劣化診断装置101は、劣化度が悪化し、かつ、信頼度が適切な場合の劣化度を保存することができる。
 なお、劣化診断装置101は、第1の実施形態と同様に、図6に示されるようなコンピュータ装置を用いて実現されてもよい。
 [効果の説明]
 次に第3の実施形態にかかる劣化診断装置101の効果について説明する。
 第3の実施形態にかかる劣化診断装置101は、第1の実施形態の効果に加え、より適切な劣化度及び信頼度を保存するとの効果を得ることができる。
 その理由は、次のとおりである。
 情報保存部150が、劣化度及び信頼度を保存する。そして、劣化度算出部120及び/又は信頼度算出部130が、算出した劣化度及び/又は信頼度と、保存されている劣化度及び/又は信頼度とを比較し、適切な劣化度及び/信頼度を保存するためである。
 以上、実施形態を参照して本願発明を説明したが、本願発明は上記実施形態に限定されるものではない。本願発明の構成及び詳細には、本願発明のスコープ内で当業者が理解し得る様々な変更をすることができる。
 本発明は、高度道路交通システム(ITS:Intelligent Transport System)などの、情報技術(IT:Information Technology)を利用した交通システムに利用可能である。
 この出願は、2020年 3月16日に出願された日本出願特願2020-045357を基礎とする優先権を主張し、その開示の全てをここに取り込む。
 10 劣化診断システム
 11 劣化診断システム
 100 劣化診断装置
 101 劣化診断装置
 110 画像取得部
 120 劣化度算出部
 130 信頼度算出部
 140 出力部
 150 情報保存部
 200 撮像装置
 300 表示装置
 410 情報処理装置
 420 ネットワーク
 430 通信路
 440 車両
 450 設備
 600 情報処理装置
 610 CPU
 620 ROM
 630 RAM
 640 記憶装置
 680 NIC
 690 記憶媒体

Claims (9)

  1.  構造物における診断の対象となる部分を含む画像を取得する画像取得手段と、
     前記画像を用いて、前記部分の劣化の程度である劣化度を算出する劣化度算出手段と、
     前記画像の撮影に関連する情報である撮影情報に基づいて前記劣化度に対する信頼度を算出する信頼度算出手段と、
     前記劣化度と、前記信頼度とを関連付けて出力する出力手段と
     を含む劣化診断装置。
  2.  前記信頼度算出手段が、前記撮影情報として、前記画像の撮影時の天候と、前記画像の撮影時間と、前記画像を撮影した撮像装置の移動速度及び加速度の少なくともどちらか一つとを用いて、前記信頼度を算出する
     請求項1に記載の劣化診断装置。
  3.  前記劣化度及び前記信頼度を保存する情報保存手段をさらに含み、
     算出した前記信頼度が保存されている前記信頼度より高い場合、前記信頼度算出手段が、保存されている前記信頼度を算出した前記信頼度で更新する
     請求項1又は2に記載の劣化診断装置。
  4.  算出した前記信頼度が保存されている前記信頼度より高い場合に、前記信頼度算出手段が、前記劣化度算出手段に、保存されている前記劣化度を算出した前記劣化度で更新するように依頼する
     請求項3に記載の劣化診断装置。
  5.  算出した前記劣化度が保存されている前記劣化度より悪化している場合、前記劣化度算出手段が、前記信頼度算出手段に算出した前記信頼度の確認を依頼し、算出した前記信頼度が適切な場合に、保存されている前記劣化度を算出した前記劣化度で更新する
     請求項3又は4に記載の劣化診断装置。
  6.  請求項1ないし5のいずれか1項に記載の劣化診断装置と、
     前記劣化診断装置に前記画像を送信する撮像装置と、
     前記劣化診断装置が出力する前記劣化度と前記信頼度とを関連付けて表示する表示装置と
     を含む劣化診断システム。
  7.  前記撮像装置が、車両に搭載されたドライブレコーダである
     請求項6に記載の劣化診断システム。
  8.  構造物における診断の対象となる部分を含む画像を取得し、
     前記画像を用いて、前記部分の劣化の程度である劣化度を算出し、
     前記画像の撮影に関連する情報である撮影情報に基づいて前記劣化度に対する信頼度を算出し、
     前記劣化度と、前記信頼度とを関連付けて出力する
     劣化診断方法。
  9.  構造物における診断の対象となる部分を含む画像を取得する処理と、
     前記画像を用いて、前記部分の劣化の程度である劣化度を算出する処理と、
     前記画像の撮影に関連する情報である撮影情報に基づいて前記劣化度に対する信頼度を算出する処理と、
     前記劣化度と、前記信頼度とを関連付けて出力する処理と
     をコンピュータに実行させるプログラムを記録する記録媒体。
PCT/JP2021/005687 2020-03-16 2021-02-16 劣化診断装置、劣化診断システム、劣化診断方法、及び、記録媒体 WO2021186989A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/801,041 US20230081098A1 (en) 2020-03-16 2021-02-16 Deterioration diagnosis device, deterioration diagnosis method, and recording medium
JP2022508146A JP7367849B2 (ja) 2020-03-16 2021-02-16 劣化診断装置、劣化診断システム、劣化診断方法、及び、プログラム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-045357 2020-03-16
JP2020045357 2020-03-16

Publications (1)

Publication Number Publication Date
WO2021186989A1 true WO2021186989A1 (ja) 2021-09-23

Family

ID=77768080

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/005687 WO2021186989A1 (ja) 2020-03-16 2021-02-16 劣化診断装置、劣化診断システム、劣化診断方法、及び、記録媒体

Country Status (3)

Country Link
US (1) US20230081098A1 (ja)
JP (1) JP7367849B2 (ja)
WO (1) WO2021186989A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023228239A1 (ja) * 2022-05-23 2023-11-30 三菱電機株式会社 道路状態検出装置および道路状態検出方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003329594A (ja) * 2002-05-10 2003-11-19 Mitsubishi Chemicals Corp 建造物塗装面の劣化診断方法
JP2008122170A (ja) * 2006-11-10 2008-05-29 Asahi Kasei Homes Kk 外装部材の耐候劣化診断方法
JP2018031664A (ja) * 2016-08-24 2018-03-01 株式会社東芝 情報処理装置、情報処理方法およびプログラム

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003329594A (ja) * 2002-05-10 2003-11-19 Mitsubishi Chemicals Corp 建造物塗装面の劣化診断方法
JP2008122170A (ja) * 2006-11-10 2008-05-29 Asahi Kasei Homes Kk 外装部材の耐候劣化診断方法
JP2018031664A (ja) * 2016-08-24 2018-03-01 株式会社東芝 情報処理装置、情報処理方法およびプログラム

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023228239A1 (ja) * 2022-05-23 2023-11-30 三菱電機株式会社 道路状態検出装置および道路状態検出方法

Also Published As

Publication number Publication date
JP7367849B2 (ja) 2023-10-24
JPWO2021186989A1 (ja) 2021-09-23
US20230081098A1 (en) 2023-03-16

Similar Documents

Publication Publication Date Title
JP5776545B2 (ja) 路面調査プログラム及び路面調査装置
US20200049525A1 (en) Collective Vehicle Traffic Routing
US11481991B2 (en) System and method for detecting and transmitting incidents of interest of a roadway to a remote server
JP2019196680A (ja) 舗装情報収集点検システム、舗装情報収集点検方法、及びプログラム
EP3706072B1 (en) Method, apparatus, and system for detecting degraded ground paint in an image
JP2013140448A (ja) 路面調査プログラム及び路面調査装置
CN105074493A (zh) 驾驶支持技术
US10754062B2 (en) Selecting a weather estimation algorithm and providing a weather estimate
WO2021186989A1 (ja) 劣化診断装置、劣化診断システム、劣化診断方法、及び、記録媒体
JP7444148B2 (ja) 情報処理装置、情報処理方法、プログラム
US20220410881A1 (en) Apparatus and methods for predicting a state of visibility for a road object based on a light source associated with the road object
US20210061064A1 (en) System and method for generating map data associated with road objects
JP2015125060A (ja) 経路探索装置及びその方法、並びに経路を探索するためのコンピュータプログラム及びコンピュータプログラムを記録した記録媒体
KR102227649B1 (ko) 자율주행 기능 검증을 위한 데이터베이스를 이용한 자율주행 검증장치 및 방법
JP7334852B2 (ja) 劣化診断装置、劣化診断システム、劣化診断方法、及び、プログラム
JP2020101924A (ja) 情報処理システム、プログラム、及び情報処理方法
CN113658275A (zh) 能见度值的检测方法、装置、设备及存储介质
WO2021199793A1 (ja) 劣化診断装置、劣化診断システム、及び、記録媒体
JP6997664B2 (ja) 状態判定装置
JP7334851B2 (ja) 劣化診断装置、劣化診断システム、劣化診断方法、及び、プログラム
JP2021070993A (ja) インフラ検査システム、及び、インフラ検査方法
WO2022107330A1 (ja) 状態判定装置、状態判定システム、状態判定方法、及び、記録媒体
WO2023166715A1 (ja) 温室効果ガスの排出量評価装置、排出量評価システム、排出量評価方法及び記録媒体
WO2024089849A1 (ja) 路面診断システム、路面診断方法及びプログラムを非一時的に記録する記録媒体
EP4273500A1 (en) Method, apparatus, and computer program product for probe data-based geometry generation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21772116

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022508146

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21772116

Country of ref document: EP

Kind code of ref document: A1