JP4080119B2 - 膜欠陥検査方法 - Google Patents
膜欠陥検査方法 Download PDFInfo
- Publication number
- JP4080119B2 JP4080119B2 JP32019599A JP32019599A JP4080119B2 JP 4080119 B2 JP4080119 B2 JP 4080119B2 JP 32019599 A JP32019599 A JP 32019599A JP 32019599 A JP32019599 A JP 32019599A JP 4080119 B2 JP4080119 B2 JP 4080119B2
- Authority
- JP
- Japan
- Prior art keywords
- substrate
- film
- light
- surface roughness
- defect inspection
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B11/00—Measuring arrangements characterised by the use of optical techniques
- G01B11/02—Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
- G01B11/06—Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material
- G01B11/0616—Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material of coating
- G01B11/0675—Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material of coating using interferometry
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/84—Systems specially adapted for particular applications
- G01N21/8422—Investigating thin films, e.g. matrix isolation method
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Mathematical Physics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Photoreceptors In Electrophotography (AREA)
- Length Measuring Devices By Optical Means (AREA)
- Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
Description
【発明の属する技術分野】
本発明は、基体上に形成された膜、たとえばデジタルの複写機やプリンタに搭載される電子写真感光体を構成する表面が比較的粗面の導電性基体上に形成された電荷発生層、電荷輸送層または下引き層などの膜欠陥検査方法に関する。
【0002】
【従来の技術】
特開平4−336540号公報および特開平6−130683号公報には、電子写真感光体(以下、単に「感光体」ともいう)の導電性基体(以下、単に「基体」ともいう)上に形成された下引き層または電荷輸送層の膜厚を管理し、塗液の塗布量を調整して膜厚や電気特性の均一な感光体を製造する方法が開示されている。
【0003】
基体上には、様々な手法のうち、生産性が特に優れた浸漬塗布法によって電荷発生層、電荷輸送層および下引き層用塗液が塗布される。浸漬塗布法では、塗液を満たした槽内に基体を浸漬した後、一定速度で基体を引き上げて塗液が塗布されるが、塗液中の有機溶剤は蒸発しやすく、塗液粘度の変動によって塗膜厚がばらつきやすい。
【0004】
感光体の各機能膜の膜厚は感度を決定する重要なファクターであり、厳しく管理される。膜厚測定方法としては、接触式、非接触式および写真式の膜厚測定法などがあるが、塗膜自身を傷つけない非接触式が好ましく、特に電荷輸送層や下引き層などのように顔料を含有しない層の膜厚も測定でき、測定の精度や分解能に優れ、特別な施設がいらない光干渉法が好ましい。前記特開平4−336540号公報および特開平6−130683号公報では、光干渉法によって逐次膜厚を測定し、測定結果をフィードバックして塗布速度を適性な速度に自動的に制御している。
【0005】
また、感光体の各機能膜の膜厚むらは表面電位のばらつきの原因となる。表面電位がばらつくと、均一なハーフトーン画像が得られない。さらに、異物混入は画像上で黒点や白点となって現れる。したがって、膜厚むらや異物の混入の欠陥は厳しく検査される。
【0006】
膜厚むらや異物混入の欠陥検査も光干渉法によって行われる。具体的には、基体上の膜に光を照射して膜表面に現れる干渉縞の目視評価によってなされ、干渉縞が乱れていたり不連続な部分が生じていると、膜厚むらや異物混入の欠陥が生じていると判定される。
【0007】
このような光干渉法による膜厚測定および欠陥検査は、透明膜を有する積層型感光体では照射光が干渉するので可能であるが、膜中に顔料などの電荷発生物質を分散した単一層型の感光体では照射光が電荷発生物質によって吸収または散乱されて干渉しないので不可能である。
【0008】
【発明が解決しようとする課題】
前記光干渉法は、光干渉を抑制するために表面を比較的粗面とした基体上に形成された膜に対してはそのまま適用することができない。近年、アナログ式電子写真感光体に代わって、デジタルカラー複写機やプリンタなどに搭載されるデジタル式電子写真感光体が主流となってきている。該感光体では、基体表面からの反射光と膜表面からの反射光とによる干渉縞を防止するために、導電性基体表面に粗面化処理が施されている。このように表面が比較的粗面の基体では、基体表面と膜表面とでの光の干渉が起こりにくく、光が散乱し、光干渉法による膜厚測定および欠陥検査は困難である。
【0009】
また、干渉縞が明瞭であるほど欠陥検査の精度は向上する。しかし、デジタル式電子写真感光体では上述した粗面化処理によって光の干渉が起こりにくく、干渉縞が不明瞭となり、検査精度が低下する。これによって、検査者に対する負担が大きくなって検査時間が長くなり、生産性が低下する。
【0010】
本発明の目的は、表面が比較的粗面の基体上に形成された膜の膜厚むらや異物混入の欠陥を光干渉法によって検査する膜欠陥検査方法を提供することである。
【0011】
【課題を解決すための手段】
本発明は、表面に表面形状が比較的規則正しい山谷形状の繰り返しとなる切削加工が施された基体上に形成される膜の欠陥を光干渉法によって得られる干渉縞により検査する膜欠陥検査方法において、
基体の表面粗さRmaxが0.5μm以上のとき、基体の表面粗さRmaxよりも長波長の単色光を基体に向けて照射し、上記山谷形状の凹凸により現われる均一な干渉縞が膜欠陥により乱れることを検出することを特徴とする膜欠陥検査方法である。
【0012】
本発明に従えば、膜が形成された基体に向けて基体の表面粗さRmaxが0.5μm以上のとき、基体の表面粗さRmaxよりも長波長の光が照射される。このように照射光の波長を最適化することによって、干渉縞を得ることができ、膜欠陥を検査することができる。
これによって干渉縞が確実に得られ、膜欠陥の検査が可能となる。切削加工によって表面が比較的粗面の基体上に膜が形成されている。このような基体に向けて上述したような最適化された光が照射される。この場合も干渉縞が得られ、膜欠陥の検査が可能となる。単色光を照射することによって、より明確な干渉縞が得られる。したがって、高精度な膜欠陥検査が可能となる。
【0013】
また本発明は、前記基体の表面粗さRmaxが0.5μm以上のとき、500nm以上の波長光が基体に向けて照射されることを特徴とする。
【0014】
本発明に従えば、特に、基体の表面粗さRmaxが0.5μm以上のとき、500nm以上の波長光を基体に向けて照射することが好ましい。これによって干渉縞が確実に得られ、膜欠陥の検査が可能となる。
【0017】
また本発明は、表面に表面形状が比較的規則正しい山谷形状の繰り返しとなる切削加工が施された基体上に形成される膜の欠陥を光干渉法によって得られる干渉縞により検査する膜欠陥検査方法において、
前記基体の表面粗さRzが0.5μm以上のとき、基体の表面粗さRzよりも長波長の単色光を基体に向けて照射し、上記山谷形状の凹凸により現われる均一な干渉縞が膜欠陥により乱れることを検出することを特徴とする膜欠陥検査方法である。
【0018】
本発明に従えば、膜が形成された基体に向けて基体の表面粗さRzが0.5μm以上のとき、基体の表面粗さRzよりも長波長の光が照射される。このように照射光の波長を最適化することによって、干渉縞を得ることができ、膜欠陥を検査することができる。
これによって干渉縞が確実に得られ、膜欠陥の検査が可能となる。切削加工によって表面が比較的粗面の基体上に膜が形成されている。このような基体に向けて上述したような最適化された光が照射される。この場合も干渉縞が得られ、膜欠陥の検査が可能となる。単色光を照射することによって、より明確な干渉縞が得られる。したがって、高精度な膜欠陥検査が可能となる。
【0019】
また本発明は、前記基体の表面粗さRzが0.5μm以上のとき、500nm以上の波長光が基体に向けて照射されることを特徴とする。
【0020】
本発明に従えば、特に、基体の表面粗さRzが0.5μm以上のとき、500nm以上の波長光を基体に向けて照射することが好ましい。これによって干渉縞が確実に得られ、膜欠陥の検査が可能となる。
【0025】
また本発明は、前記基体は導電性を有し、該基体上には電子写真感光体を構成する電荷発生層、電荷輸送層または下引き層が形成されていることを特徴とする。
【0026】
本発明に従えば、具体的に電子写真感光体の電荷発生層、電荷輸送層または下引き層の欠陥を検査することができる。
【0027】
また本発明は、前記電子写真感光体はデジタルの複写機またはプリンタ用の電子写真感光体であることを特徴とする。
【0028】
本発明に従えば、表面が比較的粗面の基体上に上述したような層を設けた電子写真感光体、すなわちデジタル複写機やプリンタに搭載される電子写真感光体の上記層の欠陥を検査することができる。
【0031】
また本発明は、前記膜欠陥の検査とは膜厚むらの検査または膜中の異物の検査であることを特徴とする。
【0032】
本発明に従えば、干渉縞によって膜厚むらや異物混入の膜欠陥を検査することができる。
【0033】
ここで、光干渉法による膜欠陥検査方法の原理を説明する。光干渉法による膜欠陥検査方法の原理は、膜厚測定方法の原理と同じである。図1は、該原理を説明するための図である。膜厚d、屈折率N1の透明な膜1に光3が入射した場合、図1(A)に示されるように膜1の内部で光が多重反射する。反射光4は膜1の内部を複数回通過した光を合成したものであり、該反射光4は光の干渉によって隣合う位相差が2πの正数倍であれば互いに強め合い、πの奇数倍であれば互いに打ち消し合う。
【0034】
図1(B)に示されるように基体2の上に形成された膜1に光が入射した場合の反射率Rは、式(1)で示される。
ここで、
R1 =(1−N1)/(1+N1)
R2 =(N1−N2)/(N1+N2)
X = 4πN1d/λ
N2 > N1
であり、λ:波長、d:膜1の厚さ、R1:膜1の表面での反射率、R2:基体2の表面での反射率、N1:膜1の屈折率、N2:基体2の屈折率である。
【0035】
光の干渉によって、反射率は強め合う波長で極大値となり、打ち消し合う波長で極小値となる。反射率Rを波長λで微分して、(d/dλ)R(λ)=0となるピーク波長λnを求めると、式(2)となる。
(1/λn)−(1/λn+1)= 1/2N1d …(2)
ここで、λn:n番目の極大値または極小値をもつ波長である。
【0036】
式(2)によって、強め合うまたは打ち消し合うピーク波長λnおよび膜1の屈折率N1がわかれば、膜1の厚さdが求められる。強め合うまたは打ち消し合うピーク波長λn、および膜1の屈折率N1は分光光度計で測定可能であり、したがって膜1の厚さdが求まる。なお、膜1の屈折率N1が未知の場合、膜厚が既知の基準サンプルを用いて光干渉法で式(2)から求めることができる。
【0037】
ここで、光の干渉によるピーク波長λnは、式(3)で示される。式(3)から、ピーク波長λnの間隔は波長が短くなるに従って狭くなることが判る。
λn = 4dN1/(2n−1) …(3)
【0038】
図2は、鏡面加工されたアルミニウム製の基体2の上に形成された屈折率N1=2.0の膜1のピーク波長λnを示すグラフである。干渉によって生じるピーク波長λnは、455,488,525,568,620,683および762nmであり、これらのピーク波長λnを式(2)に代入すると膜1の膜厚dが各ピーク波長毎に求まる。表1には、求めた膜厚dを示す。
【0039】
【表1】
【0040】
膜厚dは短波長側のピーク波長λnから順番に、1.620,1.731,1.734,1.693,1.680および1.647μmとなるが、膜厚dは本来同一のものであり、これらの値に対して算術平均処理を行って、膜厚d=1.684μmが得られる。
【0041】
なお、信頼性の高い膜厚dを得るためには、算術平均処理を行うデータ数は多い方が好ましく、データ数を多くするために、一定波長範囲内に光の干渉によって生じるピーク波長λnが多い短波長の光を用いることが好ましい。
【0042】
図3(A)は、表面が比較的平滑な基体2aの上に形成した膜1に入射した光の反射光路長a1a〜a3aを示す図であり、図3(B)は、表面が比較的粗面な基体2bの上に形成した膜1に入射した光の反射光路長a1b〜a3bを示す図である。図4(A)〜図4(C)は、基体2bの場合の反射光h1b〜h3bによる各干渉スペクトルを示すグラフであり、図4(D)は、反射光h1b〜h3bによる干渉スペクトルの合成スペクトルを示すグラフである。
【0043】
アナログ用の電子写真感光体では、表面が平滑な基体2aの上に膜1が形成される。該感光体では、基体2aの表面から膜1の表面までの距離L1a,L2aが図3(A)に示されるようにいずれの位置においてもほぼ等しく、反射光路長a1a〜a3aは同一となる。したがって、反射光h1a〜h3aによる干渉スペクトルはいずれも同じとなり、式(2)から膜厚が容易に求まる。
【0044】
一方、デジタル用の電子写真感光体では、表面が粗面な基体2bの上に膜1が形成される。基体表面がアナログ用に比べて粗いのは、レーザ光や発光ダイオードからの光の基体2bの表面での反射光と膜1の表面での反射光との光の干渉による画像への干渉縞を防止するためである。該感光体では、基体2bの表面から膜1の表面までの距離L1b,L2bは図3(B)に示されるように互いに異なり、反射光路長a1b〜a3bも異なる。したがって、反射光h1b〜h3bによる干渉スペクトルは図4(A)〜図4(C)に示されるように互いに異なり、膜厚は式(2)から求まる値の平均値となる。
【0045】
図4(A)〜図4(C)に示される前記基体2bを用いた場合の反射光h1b〜h3bによる干渉スペクトルにおいて、各スペクトルのピーク波長は反射光路長a1b〜a3bに対応して異なる。実際に、光干渉法では一定面積の膜領域に光を照射するので、得られる干渉スペクトルは図4(A)〜図4(C)のスペクトルを合成した図4(D)のようになる。図4(D)の合成スペクトルでは、ピーク波長の間隔が狭い短波長側では波の合成によって互いのピークを打ち消し合ってピークが消失している。なお、長波長側ではピーク間隔が広いので、波の合成によるピークの消失はほとんどない。このようにピークの消失は短波長側、特にピーク間隔の狭い500nm以下の波長において起こりやすい。
【0046】
また、表面が比較的粗面の基体2bでは、基体2bの表面粗さRmaxまたはRzよりも短波長側の光は基体2bの表面の凹凸によって散乱されやすいが、基体2bの表面粗さRamxまたはRzよりも長波長側の光は基体2bの表面の凹凸の影響を受けにくく、散乱光が少なくなる。したがって、基体2bの表面粗さRmaxまたはRzよりも長波長側の光を用いると、干渉スペクトルが顕著に現れ、このような光で膜欠陥を検査することが好ましい。
【0047】
本発明では、表面が比較的粗面のデジタル用感光体において、わずかに生じている干渉スペクトルを検出することで膜欠陥の検査が可能となり、膜厚および感光特性の安定した感光体を作製することができる。このような非常に弱い干渉スペクトルを検出するためには、干渉スペクトルのS/N比が充分に得られるまで測定時間を長くしたり、測定時の照射光量を多くすることが、特に好ましい。
【0048】
なお、基体からの反射光を無くすために、基体表面に光吸収物質を塗布したり、基体そのものに光吸収機能を持たせたりして、基体で照射光を完全に吸収するようにした感光体に対しては、干渉スペクトルが得られないので、本発明の膜欠陥検査方法を適用することはできない。
【0049】
図5は、切削加工によって表面に粗面化処理を施した基体2を示す図である。デジタル用感光体に用いられる基体2の表面は様々な手法で粗面化処理することができるが、たとえば切削加工によって粗面化処理した場合、表面形状は比較的規則正しい山谷形状の繰り返しとなる。このような基体2の表面に光を照射すると、基体2からの反射光によって図6に示されるような規則的な波形状の干渉スペクトルが得られる。
【0050】
図7は、感光体8の膜表面に現れた干渉縞5,6を示す図である。本発明によれば、膜厚均一性が高い場合には、最適化された光の照射によって、図7(A)に示されるような均一な干渉縞5が膜表面に現れる。一方、膜厚均一性が低い場合、たとえば異物の混入によってピンホール7が発生している場合には、図7(B)に示されるような不均一な干渉縞6が現れる。このような干渉縞5,6を目視で評価し、干渉縞の乱れの程度によって、形成された膜は良品と不良品とに分別することができる。
【0051】
図8は、表面粗さRmax,Rzを説明するための図である。表面粗さは、通常、凹凸の最大の山と谷の差によって求められるRmaxで表現される。この表面粗さRmaxはJIS規格 B 0601ではRyと表され、この規格によれば図8(A)に示されるように、粗さ曲線からその平均線の方向に基準長さLだけ抜き取り、この抜き取り部分の山頂線Rpと、谷底線Rvとの間隔を粗さ曲線の方向に測定した値がRmaxである。しかし、Rmaxで表現した場合、測定範囲内に部分的な傷、凸部または凹所があると、本来の値からかけ離れた値となる。特に、基体の表面粗さは、通常、1μm程度と小さく、この程度の表面粗さの場合の前記基準長さLは、当該規格によって比較的短い0.8mmと決められており、前記部分的な傷、凸部または凹所によって本来の値からかけ離れてしまう。
【0052】
一方、表面粗さRzは、上述したような影響を受けずに表面粗さを評価するパラメータであり、表面粗さの十点平均値である。表面粗さRzを採用した場合、より実際の凹凸の状態を表現することができる。表面粗さRzは、図8(B)に示されるように、粗さ曲線からその平均線の方向に基準長さLだけ抜き取り、この抜き取り部分の平均線の縦倍率の方向に測定した最も高い山頂から5番目までの山頂の標高Yp1〜Yp5の絶対値の平均値と、最も低い谷底から5番目までの谷底の標高Yv1〜Yv5の絶対値の平均値との和を求めた値である。基体の表面粗さをRzで表現した場合には、Rmaxで表現した場合の測定長内の傷、凸部または凹所の影響を排除することができる。
【0053】
【発明の実施の形態】
本発明の欠陥検査方法によって、電子写真感光体を構成する導電性基体上に形成された膜の欠陥を検査する例について説明する。まず、導電性基体上に膜を形成する手法について説明する。
【0054】
図9は、浸漬塗布装置を示す図である。導電性基体2は支持部材16に固定される。支持部材16はねじを切った軸17に連結されており、昇降モータ18を駆動して軸17を回転駆動することによって支持部材16が昇降移動する。支持部材16の下方には塗液20を入れた塗液槽19が配置されている。支持部材16を下降させて基体2を塗液20に浸漬した後、支持部材16を上昇させて基体2を引き上げることによって、基体2の表面に塗液20が塗布される。感光体をこのような浸漬塗布装置を用いて作製するに当たって、下引き層、電荷発生層および電荷輸送層用の塗液20が用いられる。
【0055】
電子写真感光体は、導電性基体2の上に感光層を形成して構成される。感光層は、電荷発生層と電荷輸送層との積層構造を有する。たとえば、基体2の上に電荷発生層が形成され、該電荷発生層の上に電荷輸送層が形成される。また、他の電子写真感光体は、導電性基体の上に下引き層を形成し、下引き層の上に電荷発生層と電荷輸送層との積層構造を有する感光層を形成して構成される。たとえば、下引き層の上に電荷発生層が形成され、該電荷発生層の上に電荷輸送層が形成される。下引き層、電荷発生層および電荷輸送層が、上記浸漬塗布装置を用いて形成される。なお、電荷発生層と電荷輸送層とは、逆に積層しても構わない。
【0056】
電子写真感光体の導電性基体2としては、アルミニウム、銅、ステンレス鋼および真鍮などの金属製の円筒状基体や薄膜シートで実現することができる。また、アルミニウム、錫、金および酸化インジウムなどをポリエステルフィルム、紙および金属フィルムから成る円筒状基体に蒸着したもので実現することができる。
【0057】
デジタル用感光体では基体2の表面が粗面化処理される。粗面化処理の方法としては、たとえば切削法、ホーニング法、エッチング法、剛体球落下/衝突法、凹凸形状円筒体圧接法、研削法、レーザ照射法および高圧水噴射法などの機械的な粗面化処理方法、および陽極酸化法、ベーマイト処理法および加熱酸化処理法などの化学的な粗面化処理方法が挙げられる。
【0058】
基体2の上には、感光層の接着性や塗布性の改良、また基体2の上の欠陥の被覆および基体2から電荷発生層への電荷注入性の改良のために、下引き層が設けられる。下引き層の材料としては、ポリアミド、共重合ナイロン、カゼイン、ポリビニルアルコール、セルロースおよびゼラチンなどの樹脂を用いることができる。これらの樹脂を有機溶剤に溶解して塗液を調整し、膜厚が0.1μm〜5μm程度となるように、上記浸漬塗布装置を用いて基体2の上に塗布される。なお、下引き層中には、たとえば低温低湿環境における電子写真特性を改良するためおよび下引き層の抵抗率を調整するために、必要に応じて、アルミナ、酸化錫および酸化チタンなどの無機顔料を分散させても構わない。
【0059】
電荷発生層は、光照射によって電荷を発生する電荷発生材料を主成分とし、必要に応じて、既知の結着剤、可塑剤および増感剤などを含有しても構わない。電荷発生材料としては、たとえばペリレン系顔料、多環キノン系顔料、無金属フタロシアニン顔料、金属フタロシアニン系顔料、スクアリリウム色素、アズレウニム色素、チアピリリウム色素、およびカルバゾール骨格、スチリルスチルベン骨格、トリフェニルアミン骨格、ジベンゾチオフェン骨格、オキサジアゾール骨格、フルオレノン骨格、ビススチルベン骨格、ジスチリルオキサジアゾール骨格およびジスチリルカルバゾール骨格を有するアゾ顔料が挙げられる。デジタル用感光体としては特に、無金属フタロシアニン顔料、金属フタロシアニン顔料およびアゾ顔料が好ましい。
【0060】
電荷輸送層は、電荷発生材料が発生した電荷を受け入れて輸送する電荷輸送材料、結着樹脂を必須成分とし、必要に応じて、既知の可塑剤、増感剤およびシリコーン系レベリング剤を含有しても構わない。電荷輸送材料としては、たとえばポリ−N−ビニルカルバゾールおよびその誘導体、ポリ−γ−カルバゾリルエチルグルタメ−トおよびその誘導体、ピレン−ホルムアルデヒド縮合物およびその誘導体、ポリビニルピレン、ポリビニルフェナントレン、オキサゾール誘導体、オキソジアゾール誘導体、イミダゾール誘導体、9−(p−ジエチルアミノスチリル)アントラセン、1,1−ビス(4−ジベンジルアミノフェニル)プロパン、スチリルアントラセン、スチリルピラゾリン、フェニルヒドラゾン類、およびヒドラゾン誘導体などの電子供与性物質が挙げられる。また、フルオレノン誘導体、ジベンゾチオフェン誘導体、インデノチオフェン誘導体、フェナンスレンキノン誘導体、インデノピリジン誘導体、チオキサントン誘導体、ベンゾ[c]シンノリン誘導体、フェナジンオキサイド誘導体、テトラシアノエチレン、テトラシアノキノジメタン、ブロマニル、クロラニル、およびベンゾイノンなどの電子受容性物質などが挙げられる。
【0061】
電荷輸送層の結着剤としては、電荷輸送材料と相溶性を有するものが選ばれ、たとえばポリカーボネート、ポリビニルブチラール、ポリアミド、ポリエステル、ポリケトン、エポキシ樹脂、ポリウレタン、ポリビニルケトン、ポリスチレン、ポリアクリルアミド、フェノール樹脂およびフェノキシ樹脂が挙げられる。
【0062】
続いて、電子写真感光体の製造方法の一例を説明する。酸化チタンと共重合ナイロン樹脂を、たとえばエタノール、メタノールおよびメタノールとジクロロエタンの混合溶剤などの適当な溶剤に分散した下引き層用塗布液を調整し、前記浸漬塗布装置を用いて、該塗布液に導電性基体2を浸漬し、引き上げて乾燥して、基体2の上に下引き層を形成する。
【0063】
アゾ顔料などの電荷発生材料を、必要に応じて、結着剤、可塑剤および増感剤とともに、たとえばシクロヘキサノン、ベンゼン、クロロホルム、ジクロロエタン、エチルエーテル、アセトン、エタノール、クロロベンゼンおよびメチルエチルケトンなどの適当な溶剤に分散した電荷発生層用塗布液を調整し、前記浸漬塗布装置を用いて、該塗布液に導電性基体2または下引き層を形成した導電性基体2を浸漬し、引き上げて乾燥して、基体2または下引き層の上に電荷発生層を形成する。
【0064】
ヒドラゾン系化合物などの電荷輸送材料、シリコーン系レベリング剤および結着剤を、必要に応じて、可塑剤および増感剤とともに、たとえばジクロロエタン、ベンセン、クロロホルム、シクロヘキサノン、エチルエーテル、アセトン、エタノール、クロロベンゼンおよびメチルエチルケトンなどの適当な溶剤に溶解した電荷輸送層用塗布液を調整し、前記浸漬塗布装置を用いて、該塗布液に電荷発生層を形成した導電性基体2を浸漬し、引き上げて乾燥して、電荷発生層の上に電荷輸送層を形成する。
【0065】
(実施例1)
1重量部のフタロシアニン顔料、1重量部のブチラール樹脂(積水化学株式会社製、エスレックBM−2)、120重量部のシクロヘキサノンを混合し、ボールミルで12時間分散して、電荷発生層用塗布液を調整した。一方、アルミニウム製の円筒状基体であり、表面に切削加工が施され、表面粗さRmaxがそれぞれ0.50μm、0.60μmおよび0.65μmで、外径φが65mmで、長さが330mmの導電性基体2を準備し、前記電荷発生層用塗布液を用い、図9に示される浸漬塗布装置を用いて、膜厚が約0.5μmとなるように塗液を塗布して、基体2の上に電荷発生層を形成した。
【0066】
次に、1重量部のヒドラゾン系電荷輸送材料(日本化薬株式会社製、ABPH)、1重量部のポリカーボネート(帝人化成株式会社製、パンライトL−1250)、0.00013重量部のシリコーン系レベリング剤(信越化学工業株式会社製、KF−96)を、8重量部のジクロロエタンに加えて、45℃で加熱し、完全に溶解した後、自然冷却して電荷輸送層用塗布液を調整した。図9に示される浸漬塗布装置を用いて膜厚が約20μmとなるように塗液を塗布して、電荷発生層の上に電荷輸送層を形成した。このようにして感光体を作成した。
【0067】
作成した3種類の感光体に対して、欠陥検査のために照射する光の波長を、350〜450nm、400nm〜500nm、450nm〜550nm、500nm〜600nm、550nm〜650nm、600nm〜700nmおよび650nm〜750nmに設定し、これらの光を照射して感光体の膜表面に干渉縞が現れるか否かを評価した。その結果を表2に示す。表2中、「○」は干渉縞が現れ、目視による塗布むらの評価が可能であったことを示し、「×」は干渉縞が現れず、目視による塗布むらの評価が不可能であったことを示す。
【0068】
【表2】
【0069】
表2から、基体の表面粗さRmaxよりも大きい波長の光を照射することによって、感光体表面に干渉縞が現れ、基体上の膜の欠陥を検査することが可能であることが判る。また特に、表面粗さRmaxが0.5μm以上の基体を用いた場合、500nm以上の光を照射することによって、感光体表面に干渉縞が現れ、基体上の膜の欠陥を検査することが可能であることが判る。
【0070】
次に、表面粗さRmaxが0.60μmの基体を用いた感光体に対して、波長が650nm〜750nmの光を照射して干渉縞を発現し、長手方向に沿って目視で塗布むらをA,B,Cの3ランクに分けた。さらに、各ランクの10本の感光体をデジタル複写機(シャープ株式会社製、AR−330)に搭載し、−600Vに帯電させたときの長手方向に沿った表面電位を測定し、その最大値、最小値およびばらつき(標準偏差σ)を評価した。この結果を表3に示す。表3中、目視評価ランクAとは目視検査によって塗布むらがないと判定されたものであり、目視評価ランクBとは塗布むらがわずかにあると判定されたものであり、目視評価ランクCとは塗布むらがひどく、不良品であると判定されたものである。
【0071】
【表3】
【0072】
表3から、目視検査の結果と表面電位のばらつきの結果には相関関係があることが認められ、目視検査の結果が高精度であることが判る。なお、他の表面粗さの基体を用いた感光体についても同様の結果が得られた。
【0073】
(実施例2)
アルミニウム製の円筒状基体であり、表面に切削加工が施され、表面粗さRmaxが0.50μmで、外径φが65mmの導電性基体2を準備し、実施例1と同様にして電荷発生層および電荷輸送層を形成し、感光体を作成した。
【0074】
作成した感光体に対して、欠陥検査のために、580nmの単色光と、550〜650nmの光とをそれぞれ照射して、感光体の膜表面に現れる干渉縞を目視評価し、異物数を計測した。また、実施例1と同様の複写機に搭載してハーフトーン画像を形成し、画質の検査を行い、画像上における1mm以上の黒点および白点を欠陥としてその数を計測した。これらの結果を表4に示す。表4中、目視検査結果Aとは580nmの単色光を用いたときの異物数であり、目視検査結果Bとは550〜650nmの光を用いたときの異物数であり、画像チェック結果とは画像上で発見された欠陥(黒点および白点)数である。
【0075】
【表4】
【0076】
図10は、目視検査による異物数と、画像上で発見された欠陥数との関係を示すグラフである。表4から、どちらの光も干渉縞は発現し、欠陥の検査が可能であることが判る。しかし図10のグラフから、580nmの単色光での目視検査結果は、550〜650nmの光での目視検査結果よりも、欠陥の発見率が高いことが判る。したがって、単色光を用いることによって高精度な欠陥検査が可能であることが判る。
【0077】
(実施例3)
実施例2で作成した感光体に対して、間接光を照射して膜欠陥を検査した。図11は、間接光24の照射方法を示す図である。また図12は、このとき得られた干渉縞27を示す図である。間接光24は、光源21からの光を、反射板22および拡散板23を介することによって得られる。電子写真感光体25は支持台26上に載置され、この感光体25に対して前記間接光24が照射される。
【0078】
(比較例1)
実施例2で作成した感光体に対して、直接光28を照射して膜欠陥を検査した。図13は、直接光28の照射方法を示す図である。また図14は、このとき得られた干渉縞29を示す図である。直接光28は、光源21からのそのままの光である。
【0079】
実施例3では、比較例1に比べて広い範囲に干渉縞27が得られることが判る。実施例3では、1本の感光体当たりの欠陥の検査時間は約30秒であった。これに対して比較例1では、狭い範囲でしか干渉縞29が得られず、1本の感光体当たりの膜欠陥の検査時間は約2分30秒であった。
【0080】
(実施例4)
1重量部のフタロシアニン顔料、1重量部のブチラール樹脂(積水化学株式会社製、エスレックBM−2)、120重量部のシクロヘキサノンを混合し、ボールミルで12時間分散して、電荷発生層用塗布液を調整した。一方、アルミニウム製の円筒状基体であり、表面に切削加工が施され、表面粗さRzがそれぞれ0.50μm、0.60μmおよび0.65μmで、外径φが65mmで、長さが330mmの導電性基体2を準備し、前記電荷発生層用塗布液を用い、図9に示される浸漬塗布装置を用いて、膜厚が約0.5μmとなるように塗液を塗布して、基体2の上に電荷発生層を形成した。
【0081】
次に、1重量部のヒドラゾン系電荷輸送材料(日本化薬株式会社製、ABPH)、1重量部のポリカーボネート(帝人化成株式会社製、パンライトL−1250)、0.00013重量部のシリコーン系レベリング剤(信越化学工業株式会社製、KF−96)を、8重量部のジクロロエタンに加えて、45℃で加熱し、完全に溶解した後、自然冷却して電荷輸送層用塗布液を調整した。図9に示される浸漬塗布装置を用いて膜厚が約20μmとなるように塗液を塗布して、電荷発生層の上に電荷輸送層を形成した。このようにして感光体を作成した。
【0082】
作成した3種類の感光体に対して、欠陥検査のために照射する光の波長を、350〜450nm、400nm〜500nm、450nm〜550nm、500nm〜600nm、550nm〜650nm、600nm〜700nmおよび650nm〜750nmに設定し、これらの光を照射して感光体の膜表面に干渉縞が現れるか否かを評価した。その結果を表5に示す。表5中、「○」は干渉縞が現れ、目視による塗布むらの評価が可能であったことを示し、「×」は干渉縞が現れず、目視による塗布むらの評価が不可能であったことを示す。
【0083】
【表5】
【0084】
表5から、基体2の表面粗さRzよりも大きい波長の光を照射することによって、感光体表面に干渉縞が現れ、基体上の膜の欠陥を検査することが可能であることが判る。また特に、表面粗さRzが0.5μm以上の基体2を用いた場合、500nm以上の光を照射することによって、感光体表面に干渉縞が現れ、基体上の膜の欠陥を検査することが可能であることが判る。
【0085】
次に、表面粗さRzが0.60μmの基体2を用いた感光体に対して、波長が650nm〜750nmの光を照射して干渉縞を発現し、長手方向に沿って目視で塗布むらをA,B,Cの3ランクに分けた。さらに、各ランクの10本の感光体をデジタル複写機(シャープ株式会社製、AR−330)に搭載し、−600Vに帯電させたときの長手方向に沿った表面電位を測定し、その最大値、最小値およびばらつき(標準偏差σ)を評価した。この結果を表6に示す。表6中、目視評価ランクAとは目視検査によって塗布むらがないと判定されたものであり、目視評価ランクBとは塗布むらがわずかにあると判定されたものであり、目視評価ランクCとは塗布むらがひどく、不良品であると判定されたものである。
【0086】
【表6】
【0087】
表6から、目視検査の結果と表面電位のばらつきの結果には相関関係があることが認められ、目視検査の結果が高精度であることが判る。なお、他の表面粗さの基体を用いた感光体についても同様の結果が得られた。
【0088】
(実施例5)
アルミニウム製の円筒状基体であり、表面に切削加工が施され、表面粗さRzが0.60μmで、外径φが65mmの導電性基体2を準備し、実施例4と同様にして電荷発生層および電荷輸送層を形成し、感光体を作成した。
【0089】
作成した感光体に対して、欠陥検査のために、620nmの単色光と、600〜700nmの光とをそれぞれ照射して、感光体の膜表面に現れる干渉縞を目視評価し、異物数を計測した。また、実施例4と同様の複写機に搭載してハーフトーン画像を形成し、画質の検査を行い、画像上における1mm以上の黒点および白点を欠陥としてその数を計測した。これらの結果を表7に示す。表7中、目視検査結果Aとは620nmの単色光を用いたときの異物数であり、目視検査結果Bとは600〜700nmの光を用いたときの異物数であり、画像チェック結果とは画像上で発見された欠陥(黒点および白点)数である。
【0090】
【表7】
【0091】
図15は、目視検査による異物数と、画像上で発見された欠陥数との関係を示すグラフである。表7から、どちらの光も干渉縞は発現し、欠陥の検査が可能であることが判る。しかし図15のグラフから、620nmの単色光での目視検査結果は、600〜700nmの光での目視検査結果よりも、欠陥の発見率が高いことが判る。したがって、単色光を用いることによって高精度な欠陥検査が可能であることが判る。
【0092】
(実施例6)
実施例5で作成した感光体に対して、間接光を照射して膜欠陥を検査した。図11に示されるように、間接光24は、光源21からの光を、反射板22および拡散板23を介することによって得られる。電子写真感光体25は支持台26上に載置され、この感光体25に対して前記間接光24が照射される。このとき、図12に示されるような干渉縞27が得られた。
【0093】
(比較例2)
実施例5で作成した感光体に対して、直接光28を照射して膜欠陥を検査した。図13に示されるように、直接光28は、光源21からのそのままの光である。このとき、図14に示されるような干渉縞29が得られた。
【0094】
実施例6では、比較例2に比べて広い範囲に干渉縞27が得られることが判る。実施例6では、1本の感光体当たりの欠陥の検査時間は約30秒であった。これに対して比較例2では、狭い範囲でしか干渉縞29が得られず、1本の感光体当たりの膜欠陥の検査時間は約2分30秒であった。
【0095】
【発明の効果】
以上のように本発明によれば、光干渉法による膜欠陥検査方法において、膜が形成された基体に向けて基体の表面粗さRmaxが0.5μm以上のとき、基体の表面粗さRmaxよりも長波長の光を照射することによって、干渉縞を得ることができ、膜欠陥を検査することができる。また、切削加工よって表面が比較的粗面の基体上に形成された膜でも、上述したような光の照射によって干渉縞が得られ、膜欠陥の検査が可能となる。切削加工によって表面が比較的粗面の基体上に膜が形成されている。また単色光を照射して、より明確な干渉縞を得て、高精度な膜欠陥検査が可能となる。
【0096】
また本発明によれば、特に、基体の表面粗さRmaxが0.5μm以上のとき、500nm以上の波長光を照射することが好ましい。
【0098】
また本発明によれば、光干渉法による膜欠陥検査方法において、膜が形成された基体に向けて基体の表面粗さRzが0.5μm以上のとき、基体の表面粗さRzよりも長波長の光を照射することによって、干渉縞を得ることができ、膜欠陥を検査することができる。
また切削加工よって表面が比較的粗面の基体上に形成された膜でも、上述したような光の照射によって干渉縞が得られ、膜欠陥の検査が可能となる。切削加工によって表面が比較的粗面の基体上に膜が形成されている。また単色光を照射して、より明確な干渉縞を得て、高精度な膜欠陥検査が可能となる。
【0099】
また本発明によれば、特に、基体の表面粗さRzが0.5μm以上のとき、500nm以上の波長光を照射することが好ましい。
【0102】
また本発明によれば、具体的に電子写真感光体の電荷発生層、電荷輸送層または下引き層の欠陥を検査することができる。
【0103】
また本発明によれば、表面が比較的粗面の基体上に上述したような層を設けた電子写真感光体、すなわちデジタル複写機やプリンタに搭載される感光体の上記層の欠陥を検査することができる。
【0105】
また本発明によれば、干渉縞によって膜厚むらや異物混入の膜欠陥を検査することができる。
【図面の簡単な説明】
【図1】本発明の光干渉法による膜欠陥検査方法の原理を説明するための図である。
【図2】鏡面加工された基体2の上に形成された膜1のピーク波長λnを示すグラフである。
【図3】図3(A)は、表面が比較的平滑な基体2aの上に形成した膜1に入射した光の反射光路長a1a〜a3aを示す図であり、図3(B)は、表面が比較的粗面な基体2bの上に形成した膜1に入射した光の反射光路長a1b〜a3bを示す図である。
【図4】図4(A)〜図4(C)は、反射光h1b〜h3bによる各干渉スペクトルを示すグラフであり、図4(D)は、反射光h1b〜h3bによる干渉スペクトルの合成スペクトルを示すグラフである。
【図5】表面に切削加工を施した基体2を示す図である。
【図6】基体2からの反射光の干渉スペクトルを示すグラフである。
【図7】図7(A)は膜厚均一性が高い場合の干渉縞5を示す図であり、図7(B)は膜厚均一性が低い場合の干渉縞6を示す図である。
【図8】表面粗さRmax,Rzを説明するための図である。
【図9】浸漬塗布装置を示す図である。
【図10】目視検査による異物数と画像上で発見された欠陥数との関係を示すグラフである。
【図11】間接光24の照射方法を示す図である。
【図12】間接光24を照射して膜欠陥を検査したときに得られた干渉縞27を示す図である。
【図13】直接光28の照射方法を示す図である。
【図14】直接光28を照射して膜欠陥を検査したときに得られた干渉縞29を示す図である。
【図15】目視検査による異物数と、画像上で発見された欠陥数との関係を示すグラフである。
【符号の説明】
1 膜
2 基体
3 入射光
4 反射光
Claims (7)
- 表面に表面形状が比較的規則正しい山谷形状の繰り返しとなる切削加工が施された基体上に形成される膜の欠陥を光干渉法によって得られる干渉縞により検査する膜欠陥検査方法において、
基体の表面粗さRmaxが0.5μm以上のとき、基体の表面粗さRmaxよりも長波長の単色光を基体に向けて照射し、上記山谷形状の凹凸により現われる均一な干渉縞が膜欠陥により乱れることを検出することを特徴とする膜欠陥検査方法。 - 前記基体の表面粗さRmaxが0.5μm以上のとき、500nm以上の波長光が基体に向けて照射されることを特徴とする請求項1記載の膜欠陥検査方法。
- 表面に表面形状が比較的規則正しい山谷形状の繰り返しとなる切削加工が施された基体上に形成される膜の欠陥を光干渉法によって得られる干渉縞により検査する膜欠陥検査方法において、
前記基体の表面粗さRzが0.5μm以上のとき、基体の表面粗さRzよりも長波長の単色光を基体に向けて照射し、上記山谷形状の凹凸により現われる均一な干渉縞が膜欠陥により乱れることを検出することを特徴とする膜欠陥検査方法。 - 前記基体の表面粗さRzが0.5μm以上のとき、500nm以上の波長光が基体に向けて照射されることを特徴とする請求項3記載の膜欠陥検査方法。
- 前記基体は導電性を有し、該基体上には電子写真感光体を構成する電荷発生層、電荷輸送層または下引き層が形成されていることを特徴とする請求項1または3記載の膜欠陥検査方法。
- 前記電子写真感光体はデジタルの複写機またはプリンタ用の電子写真感光体であることを特徴とする請求項5記載の膜欠陥検査方法。
- 前記膜欠陥の検査とは膜厚むらの検査または膜中の異物の検査であることを特徴とする請求項1〜4のうちのいずれかに記載の膜欠陥検査方法。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP32019599A JP4080119B2 (ja) | 1999-04-09 | 1999-11-10 | 膜欠陥検査方法 |
EP00302972A EP1043563B1 (en) | 1999-04-09 | 2000-04-07 | Film defect inspection method |
DE60033333T DE60033333T2 (de) | 1999-04-09 | 2000-04-07 | Verfahren zur Erkennung von Filmdefekten |
US10/244,679 US6717677B2 (en) | 1999-04-09 | 2002-09-17 | Film defect inspection method for a film formed on a substrate |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11-102915 | 1999-04-09 | ||
JP10291599 | 1999-04-09 | ||
JP32019599A JP4080119B2 (ja) | 1999-04-09 | 1999-11-10 | 膜欠陥検査方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2000352504A JP2000352504A (ja) | 2000-12-19 |
JP4080119B2 true JP4080119B2 (ja) | 2008-04-23 |
Family
ID=26443601
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP32019599A Expired - Fee Related JP4080119B2 (ja) | 1999-04-09 | 1999-11-10 | 膜欠陥検査方法 |
Country Status (4)
Country | Link |
---|---|
US (1) | US6717677B2 (ja) |
EP (1) | EP1043563B1 (ja) |
JP (1) | JP4080119B2 (ja) |
DE (1) | DE60033333T2 (ja) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006113022A (ja) * | 2004-10-18 | 2006-04-27 | Toppan Printing Co Ltd | 反射防止フィルムの欠陥検出装置および方法 |
JP5438445B2 (ja) * | 2009-09-17 | 2014-03-12 | キヤノン株式会社 | 電子写真感光体の製造方法 |
CN108352442B (zh) * | 2015-09-15 | 2021-07-20 | 日本碍子株式会社 | 复合基板及压电基板的厚度趋势推定方法 |
KR102112916B1 (ko) * | 2018-05-15 | 2020-05-19 | 서울대학교산학협력단 | 막 결함 분석 방법 |
CN114770988B (zh) * | 2022-04-26 | 2023-01-31 | 广东欧迪明光电科技股份有限公司 | 一种多次实现led波长可转化的扩散板及生产方法 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4548506A (en) * | 1979-12-26 | 1985-10-22 | The United States Of America As Represented By The Secretary Of The Navy | Nondestructive analysis of multilayer roughness correlation |
JPS62163058A (ja) * | 1986-01-13 | 1987-07-18 | Canon Inc | 電子写真感光体 |
JPH0252205A (ja) * | 1988-08-17 | 1990-02-21 | Dainippon Screen Mfg Co Ltd | 膜厚測定方法 |
JPH04336540A (ja) | 1991-05-14 | 1992-11-24 | Sharp Corp | 電子写真感光体の製造方法 |
JPH06130683A (ja) * | 1992-10-20 | 1994-05-13 | Sharp Corp | 有機電子写真感光体の製造方法 |
-
1999
- 1999-11-10 JP JP32019599A patent/JP4080119B2/ja not_active Expired - Fee Related
-
2000
- 2000-04-07 EP EP00302972A patent/EP1043563B1/en not_active Expired - Lifetime
- 2000-04-07 DE DE60033333T patent/DE60033333T2/de not_active Expired - Lifetime
-
2002
- 2002-09-17 US US10/244,679 patent/US6717677B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
EP1043563A1 (en) | 2000-10-11 |
DE60033333D1 (de) | 2007-03-29 |
DE60033333T2 (de) | 2007-10-31 |
JP2000352504A (ja) | 2000-12-19 |
US6717677B2 (en) | 2004-04-06 |
US20030035110A1 (en) | 2003-02-20 |
EP1043563B1 (en) | 2007-02-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5521607B2 (ja) | 膜厚測定方法、膜厚測定装置および該膜厚測定装置を有する画像形成装置、並びに光導電性感光体の製造方法および光導電性感光体 | |
JP4099768B2 (ja) | 電子写真感光体および該電子写真感光体に起因する干渉縞有無の判定方法 | |
JP3960542B2 (ja) | 電子写真感光体およびその製造方法 | |
JP4080119B2 (ja) | 膜欠陥検査方法 | |
JP3958140B2 (ja) | 膜厚測定方法および膜厚測定装置および膜厚測定装置を有する画像形成装置、光導電性感光体および光導電性感光体の製造方法 | |
JP4481850B2 (ja) | 表面状態測定方法及び表面状態測定装置 | |
JP2007248444A (ja) | 湿潤膜の膜厚測定方法と膜厚測定装置、該方法と装置を用いた光導電性感光体の製造方法及び光導電性感光体 | |
JP3534632B2 (ja) | 膜厚測定方法 | |
JP2005250510A (ja) | 電子写真感光体の製造方法およびその装置 | |
JP4198437B2 (ja) | 電子写真画像形成装置用部品評価方法 | |
JP2009139360A (ja) | 膜厚測定方法および膜厚測定装置および膜厚測定装置を有する画像形成装置、感光体および感光体の製造方法 | |
JP4906415B2 (ja) | 電子写真感光体の検査方法及び検査装置 | |
JP2000356859A (ja) | 電子写真感光体の膜厚測定方法 | |
JP4136567B2 (ja) | 電子写真感光体の製造方法および感光層隣接下層面の表面粗さ評価方法 | |
JP2000347433A (ja) | 電子写真感光体及びそれを用いた電子写真装置 | |
JP2006162513A (ja) | 膜厚測定方法及び膜厚測定装置 | |
JP6454988B2 (ja) | 感光体、画像形成装置、及びカートリッジ | |
JPH04336540A (ja) | 電子写真感光体の製造方法 | |
JP7409608B2 (ja) | 電子写真感光体の製造方法 | |
JP2000105480A (ja) | 電子写真感光体及びそれを用いた電子写真装置 | |
US7335452B2 (en) | Substrate with plywood suppression | |
JP2008122999A (ja) | 電子写真感光体および該電子写真感光体に起因する干渉縞有無の判定方法 | |
JP2003329605A (ja) | 検査対象物表面検査方法及び検査装置 | |
JP3982789B2 (ja) | 電子写真感光体及びそれを用いた画像形成装置、プロセスカートリッジ | |
JP2003302778A (ja) | 光導電性感光体および画像形成装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20040210 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040407 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20050111 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050309 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20051202 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20071009 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080115 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20080206 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110215 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120215 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120215 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130215 Year of fee payment: 5 |
|
LAPS | Cancellation because of no payment of annual fees |