JP4074054B2 - 不揮発性半導体記憶装置の製造方法 - Google Patents

不揮発性半導体記憶装置の製造方法 Download PDF

Info

Publication number
JP4074054B2
JP4074054B2 JP2000297450A JP2000297450A JP4074054B2 JP 4074054 B2 JP4074054 B2 JP 4074054B2 JP 2000297450 A JP2000297450 A JP 2000297450A JP 2000297450 A JP2000297450 A JP 2000297450A JP 4074054 B2 JP4074054 B2 JP 4074054B2
Authority
JP
Japan
Prior art keywords
film
insulating film
line
forming
contact hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000297450A
Other languages
English (en)
Other versions
JP2002110822A (ja
Inventor
弘昭 角田
原  徹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2000297450A priority Critical patent/JP4074054B2/ja
Publication of JP2002110822A publication Critical patent/JP2002110822A/ja
Application granted granted Critical
Publication of JP4074054B2 publication Critical patent/JP4074054B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Semiconductor Memories (AREA)
  • Non-Volatile Memory (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、不揮発性半導体記憶装置の製造方法に関するもので、特に積層ゲート構造のMOSトランジスタをメモリセルトランジスタとして用いるものに係る。
【0002】
【従来の技術】
近年の半導体装置の製造技術の向上に従って、半導体記憶装置の微細化が進んでいるが、半導体記憶装置の超高密度化と共に、その信頼性を維持する技術も重要となっている。
【0003】
従来の不揮発性半導体記憶装置及びその製造方法について、NAND型フラッシュEEPROM(Electrically Erasable and Programmable Read Only Memory)を例に挙げて説明する。
【0004】
図36は、NAND型フラッシュEEPROMの平面図、図37(a)乃至(e)はNAND型フラッシュEEPROMの断面図であり、(a)図は図36におけるA−A’線に沿った断面図、(b)図はB−B’線に沿った断面図、(c)図は図36には示していないが、例えばカラムセレクタ等の周辺トランジスタのB−B’線方向に沿った断面図、(d)図はC−C’線に沿った断面図、(e)図は図36には示していないが、メモリセルアレイ領域端部において制御ゲート線CG1〜8がロウデコーダに接続される領域のB−B’線方向に沿った断面図である。
【0005】
図示するように、シリコン基板100には、帯状に複数の素子分離領域STI(Shallow Trench Isolation)が形成されている。この素子分離領域STIは、シリコン酸化膜110、120によって埋め込まれたトレンチにより構成されている。そして、隣接する上記素子分離領域STI間は半導体素子を形成する活性領域AA(Active Area)となっている。この活性領域AA上には、ゲート絶縁膜130を介して、多結晶シリコン膜140、150が設けられている。この多結晶シリコン膜140、150は、メモリセルトランジスタの浮遊ゲートFG及び選択トランジスタのセレクトゲートSGD0、SGD1、SGS1、SGS2となる。更に、素子領域AA及び素子分離領域STI上には、素子分離領域STIに交差する方向に沿って、多結晶シリコン膜170とタングステンシリサイド膜180が、浮遊ゲート・制御ゲート間絶縁膜160を介して、多結晶シリコン膜140、150を覆うように延設されている。この多結晶シリコン膜170及びタングステンシリサイド膜180は、メモリセルトランジスタの制御ゲートCG1〜8となる。そして、上記構成のゲート電極間の半導体基板100中に不純物拡散層190が選択的に形成されることで、メモリセルアレイ領域の選択トランジスタ、メモリセルトランジスタ、及び周辺領域のトランジスタが形成されている。
【0006】
更に、タングステンシリサイド膜160上にはシリコン酸化膜200、210が設けられ、上記浮遊ゲートFG、セレクトゲートSGD0、SGD1、SGS1、SGS2、制御ゲートCG1〜8、及びシリコン酸化膜200、210を被覆するように、シリコン窒化膜220が全面に形成されている。また、隣接するゲート電極間を埋め込むようにして、層間絶縁膜230が形成され、この層間絶縁膜230及びシリコン窒化膜220上には、シリコン酸化膜240が形成されている。上記シリコン酸化膜240内には、ビット線BL、セレクトゲートシャント配線M0−1、制御ゲートシャント配線M0−2、及び周辺トランジスタと接続する金属配線M0−3が、チタン膜250及びタングステン膜260から形成されている。
【0007】
ビット線BLは、隣接するセレクトゲートSGD0、SGD1間の不純物拡散層190に到達するコンタクトホール270内に埋め込み形成された多結晶シリコン膜によるコンタクトプラグ280によって不純物拡散層190に接続されている(図37(b)参照)。このビット線BLによって、隣接するセレクトゲートSGD0、SGD1間の不純物拡散層190は図示せぬカラムセレクタに接続されている。
【0008】
また、選択トランジスタのセレクトゲートSGD0、SGD1、及びSGS1、SGS2には、それぞれ浮遊ゲート・制御ゲート間絶縁膜160、多結晶シリコン膜170、タングステンシリサイド膜180、及びシリコン酸化膜200、210が除去された領域が存在する(図37(d)参照)。この領域がセレクトゲートシャント部となり、複数個の選択トランジスタおきに規則的に設けられている。そして、このセレクトゲートシャント部に設けられたコンタクトホール290を介して、セレクトゲートSGD0、SGD1はセレクトゲートシャント配線M0−1に接続され、このセレクトゲートシャント配線M0−1によって、ドレイン側のセレクトゲートSGD0、SGD1はロウデコーダに接続される。一方、ソース側のセレクトゲートSGS1、SGS2も、図示せぬシャント配線によってロウデコーダに接続されている。
【0009】
一方、メモリセルトランジスタの制御ゲートCG1〜8には、メモリセルアレイ領域の端部において、制御ゲートの一部を構成する多結晶シリコン膜170に接続するコンタクトホール310が各制御ゲートCG1〜8毎に設けられており、この領域が制御ゲートシャント部となる(図37(e)参照)。そして、この制御ゲートシャント部において制御ゲートCG1〜8のそれぞれは各々の制御ゲートシャント配線M0−2に接続され、この制御ゲートシャント配線M0−2によってロウデコーダに接続されている。
【0010】
また、周辺トランジスタの金属配線層M0−3も、周辺トランジスタの不純物拡散層190に、コンタクトホール320を介して接続されている(図37(c)参照)。
【0011】
上記構成のNAND型フラッシュEEPROMの製造方法について、図38乃至図50を用いて説明する。図38乃至図50はNAND型フラッシュEEPROMの製造工程の断面図を順次示している。なお、図38(a)乃至図50(a)はそれぞれ図37(a)に対応し、図38(b)乃至図50(b)はそれぞれ図37(b)に対応し、図38(c)乃至図50(c)はそれぞれ図37(c)に対応し、図44(d)及び図46(d)乃至図50(d)はそれぞれ図37(d)に対応し、図49(e)、図50(e)はそれぞれ図37(e)に対応する図である。
【0012】
まず図38(a)乃至(c)に示すように、シリコン基板100上に、ゲート絶縁膜130となるシリコン酸化膜を熱酸化法等により形成し、このゲート絶縁膜130上に多結晶シリコン膜140を減圧CVD(Chemical Vapor Deposition)法等によりに形成する。引き続き、多結晶シリコン膜140上にシリコン窒化膜330及びシリコン酸化膜340を形成し、温度850℃で水素燃焼酸化処理を30分間行う。
【0013】
次に、光蝕刻技術とRIE(Reactive Ion Etching)法等の異方性エッチングにより、シリコン酸化膜340、シリコン窒化膜330、多結晶シリコン膜140、シリコン酸化膜130及びシリコン基板100を順次エッチングして、図39(a)乃至(c)に示すように、素子分離領域STIを形成するためのトレンチ360を形成する。次に、温度1000℃の酸化性雰囲気中で熱処理を行うことで、トレンチ360の表面に露出しているシリコン基板100の表面にシリコン酸化膜110を形成する。
【0014】
そして、図40(a)乃至(c)に示すように、全面にシリコン酸化膜120をHDP(High Density Plasma)法等によりに形成することで、トレンチ360を埋め込む。
【0015】
次にシリコン窒化膜330をストッパーに用いたCMP(Chemical Mechanical Polishing)法により、上記シリコン酸化膜120、340を研磨して平坦化し、素子分離領域STIを完成する。そして、HF溶液によりシリコン酸化膜120の表面をエッチングし、次に温度150℃のリン酸処理を40分間行うことで、図41(a)乃至(c)のように、シリコン窒化膜330を選択的に除去する。
【0016】
その後、図42(a)乃至(c)のように、減圧CVD法により多結晶シリコン膜150を形成し、この多結晶シリコン膜150が素子分離領域STI上で各々分離、且つビット線BL方向に延設されるようにパターニングする。
【0017】
次に、図43(a)乃至(c)に示すように、減圧CVD法により全面に浮遊ゲート・制御ゲート間絶縁膜160を形成する。引き続き、浮遊ゲート・制御ゲート間絶縁膜160上に多結晶シリコン膜170、タングステンシリサイド膜180を、それぞれ減圧CVD法、PVD(Physical Vapor Deposition)法により形成する。更に、タングステンシリサイド膜180上にシリコン酸化膜200を減圧CVD法によりに形成する。
【0018】
次に、図44(a)乃至(d)に示すように、光蝕刻技術とRIE法により、シリコン酸化膜200、タングステンシリサイド膜180、多結晶シリコン膜170、及び浮遊ゲート・制御ゲート間絶縁膜160、多結晶シリコン膜150、140を素子分離領域STIに対して直交する方向に沿ってパターニングする。なお、セレクトゲートシャント部では、シリコン酸化膜200、タングステンシリサイド膜180、多結晶シリコン膜170及び浮遊ゲート・制御ゲート間絶縁膜160のエッチングも行うことで多結晶シリコン膜150を露出させる。
【0019】
次に、温度800℃の窒素雰囲気中で120秒間の加熱を行い、更に温度1000℃の酸化性雰囲気中で加熱処理を行うことで、セレクトゲートシャント部以外のシリコン酸化膜200上にシリコン酸化膜210を形成する。その後、イオン注入法によりソース、ドレインとなる領域に不純物を導入することで、不純物拡散層190を選択的に形成し、導入した不純物の活性化のために、温度1050℃の熱処理を30秒間行う。引き続き、全面にシリコン窒化膜220を減圧CVD法により形成する。
【0020】
上記工程により、多結晶シリコン膜140、150からなる浮遊ゲートFGと、多結晶シリコン膜170、タングステンシリサイド180からなる制御ゲートCG1〜8との2層ゲート構造を有するメモリセルトランジスタと、同じく2層構造を有し、セレクトゲートシャント部において多結晶シリコン膜150が露出された選択トランジスタ、及び周辺トランジスタが完成する。
【0021】
次に、図45(a)乃至(c)に示すように、層間絶縁膜として、段差被覆性の高いBPSG膜230を、常圧CVD法により全面に形成した後、BPSG膜230のリフローを行い平坦化する。
【0022】
次に、再度BPSG膜390を積み増し、リフローさせる。そして、図46(a)乃至(d)に示すように、メモリセルトランジスタのゲート電極上のシリコン窒化膜220をストッパーに用いたCMP法によりBPSG膜230、390の研磨を行う。
【0023】
次に、図47(a)乃至(d)に示すように、プラズマCVD法により、全面にシリコン酸化膜240を形成する。
【0024】
そして、光蝕刻技術とRIE法にて、隣接する選択トランジスタのセレクトゲートSGD0、SGD1間の不純物拡散層190に到達するコンタクトホール270を形成する。
【0025】
次に、図48(a)乃至(e)のように、減圧CVD法により全面に多結晶シリコン膜280を形成することによりコンタクトホール270を埋め込む。そして、CDE(Chemical Dry Etching)法により多結晶シリコン膜280をエッチングして、この多結晶シリコン膜280のコンタクトホール270内における高さ調整を行い、コンタクトプラグを形成する。
【0026】
次に、図49(a)乃至(e)に示すように、光蝕刻技術とRIE法にて、周辺回路のトランジスタの不純物拡散層190、セレクトゲートシャント部の多結晶シリコン膜150、及び制御ゲートシャント部の多結晶シリコン膜170に達するコンタクトホール320、290、310をそれぞれ形成する(それぞれ図49(c)、(d)、(e)参照)。
【0027】
その後、図50(a)乃至(c)に示すように、光蝕刻技術とRIE法により、シリコン酸化膜240内に、隣接する選択トランジスタのセレクトゲートSGD0、SGD1間の不純物拡散層190と接続するビット線BL、セレクトゲートのシャント配線M0−1、制御ゲートのシャント配線M0−2、及び周辺回路のトランジスタの不純物拡散層190と接続する配線M0−3のパターンを形成する。そして、コンタクトホール320の底部の半導体基板100中に、イオン注入法により不純物を導入し、RTA(Rapid Thermal Annealing)法により温度950℃の窒素雰囲気中で加熱することにより、導入した不純物を活性化する。その後、PVD法により全面にチタン膜250及びタングステン膜260を順次形成し、コンタクトホール290、320、310を埋め込む。
【0028】
その後は、チタン膜250及びタングステン膜360を、配線を形成しない領域のシリコン酸化膜240が露出するまでCMP法により研磨、平坦化して図37(a)乃至(e)の構造を完成する。
【0029】
上記従来の不揮発性半導体記憶装置の構成及び製造方法により発生する問題点について図51を用いて説明する。図51は、NAND型フラッシュEEPROMのメモリセルアレイ領域におけるセレクトゲートシャント部のビット線BL方向に沿った断面図である。
【0030】
前述したように、ビット線BLや各シャント配線との間のコンタクトの形成方法は、まず、隣接する選択トランジスタのセレクトゲートSGD0、SGD1間の不純物拡散層190とビット線BLとの間を接続するためのコンタクトホール270を形成し、このコンタクトホール270内を多結晶シリコンによるコンタクトプラグ280により埋め込む。その後、セレクトゲートシャント部のコンタクトホール290、制御ゲートシャント部のコンタクトホール310、及び周辺トランジスタの不純物拡散層190に接続するコンタクトホール320を形成する。そして、周辺トランジスタの不純物拡散層190にコンタクトするコンタクトホール320の底部に不純物をイオン注入して熱処理を施し、その後で、上記各コンタクトホール290、310、320を、チタン膜250とタングステン膜260により埋め込む順序となっている。
【0031】
上記のような製造工程であると、各コンタクトホール290、310、320をチタン膜250とタングステン膜260で埋め込む前に、コンタクトホール320の底部にイオン注入した不純物の熱処理工程が存在する。そのため、この熱処理によりシリコン酸化膜240が収縮を起こし、それにつられてBPSG膜230がリフローし、それによりコンタクトホール290、310、320の形状に異常が発生する場合がある(図51参照)。
【0032】
このように、コンタクトホール形状に異常が発生すると、コンタクトホール内をチタン膜250及びタングステン膜260により十分に埋め込むことが困難となったり、コンタクトホール内を埋め込むことが出来ても、その形状異常により非常に高抵抗な領域になる、といったコンタクト不良の問題が発生する。
【0033】
そして、この問題は特にセレクトゲートシャント部等の、ゲート絶縁膜130上の多結晶シリコン膜140、150にコンタクトするコンタクトホールで顕著に現れている。
【0034】
【発明が解決しようとする課題】
上記従来の不揮発性半導体記憶装置及びその製造方法によれば、コンタクトホールの形成後に熱処理を行った際に起きるBPSG膜上のシリコン酸化膜の収縮によりBPSG膜がリフローし、コンタクトホールの形状が変形する場合がある。そのため、このコンタクト部において断線など、コンタクトの導通不良が発生するという問題があった。
【0035】
この発明は、コンタクトホールの形状変化の防止することにより、コンタクト不良を抑制し、高信頼性の不揮発性半導体記憶装置の製造方法を提供する。
【0036】
【課題を解決するための手段】
この発明の一態様に係る不揮発性半導体記憶装置の製造方法は、半導体基板上に第1絶縁膜を形成する工程と、前記第1絶縁膜上に第1導電膜を形成する工程と、前記第1導電膜上に第2絶縁膜を形成する工程と、前記第2絶縁膜上に第2導電膜を形成する工程と、前記第1、第2導電膜及び前記第2絶縁膜をパターニングして、前記第1絶縁膜、前記第1導電膜、前記第2絶縁膜、及び前記第2導電膜を有し、前記第1、第2導電膜がそれぞれ浮遊ゲート及び制御ゲートとして機能するメモリセルトランジスタの積層構造と、前記第1絶縁膜、前記第1導電膜、前記第2絶縁膜、及び前記第2導電膜を有し、前記第1導電膜がゲート電極として機能する第1周辺トランジスタの積層構造と、第2周辺トランジスタのゲート電極を形成し、且つ前記第1周辺トランジスタの積層構造の前記第2絶縁膜及び前記第2導電膜の一部を除去して前記第1導電膜の一部を露出させる工程と、前記メモリセルトランジスタ及び前記第1周辺トランジスタの前記積層構造の上面及び側壁と、前記第2周辺トランジスタのゲート電極の上面及び側壁とを覆い、前記半導体基板上に第3絶縁膜を形成する工程と、前記半導体基板上に、前記メモリセルトランジスタ及び前記第1周辺トランジスタの前記積層構造、並びに前記第2周辺トランジスタのゲート電極を埋め込むように第4絶縁膜を形成する工程と、前記第4絶縁膜をリフローして平坦化する工程と、前記第4絶縁膜上に第5絶縁膜を形成する工程と、前記第1周辺トランジスタの前記第1導電膜の前記一部に達し、前記第4絶縁膜を貫通する開口を含む第1コンタクトホールを形成する工程と、前記第1コンタクトホール内を、導電性を有し且つ前記第4絶縁膜より溶融温度が高い補強部材により埋め込み、第1コンタクトプラグを形成する工程と、前記第1コンタクトプラグを形成した後、前記第2周辺トランジスタの不純物拡散層に達し、前記第4絶縁膜を貫通する開口を含む第2コンタクトホールを形成する工程と、前記第2コンタクトホールの底部の前記半導体基板中に不純物を注入する工程と、RTA法による熱処理を行って、注入した前記不純物を活性化する工程と具備している。
【0042】
【発明の実施の形態】
以下、この発明の実施形態を図面を参照して説明する。この説明に際し、全図にわたり、共通する部分には共通する参照符号を付す。
【0043】
この発明の一実施形態に係る不揮発性半導体記憶装置及びその製造方法について、NAND型フラッシュEEPROMを例に挙げて説明する。
【0044】
図1は本実施形態が適用されるNAND型フラッシュEEPROMのメモリセルアレイとその周辺回路の一部を示す回路構成図である。図示するように、NAND型フラッシュEEPROMのメモリセルアレイ1は、2つの選択トランジスタ2−1、2−2の間に直列に接続された例えば8個のメモリセルトランジスタ3−1〜3−8で構成されたNANDセル4を複数備えている。各NANDセル4内のメモリセルトランジスタ3−1〜3−8の制御ゲートは、行毎に制御ゲート線CG1〜CG8に接続され、メモリセルトランジスタ3−1〜3−8のドレイン側及びソース側に設けられた選択トランジスタ2−1、2−2のセレクトゲートは行毎に、それぞれセレクトゲート線SGD1、SGS1に接続されており、このセレクトゲート線SGD1、SGS1、制御ゲート線CG1〜CG8はロウデコーダ5に接続されている。ロウデコーダ5は制御ゲート線CG1〜CG8のいずれか1つ、そしてセレクトゲート線SGD1、SGS1を選択的に駆動する。また、一方の選択トランジスタ2−1のドレインにはビット線BLi(i=1、2、…)が接続されており、これらのビット線BLiはカラムセレクタ6に接続されている。カラムセレクタ6は、電流通路の一端がビット線BL1、BL2、…にそれぞれ接続されている複数のトランジスタ7−1、7−2、…を有する。これらのトランジスタのゲートはそれぞれ、異なるカラム選択線CSL1〜CSL4に接続され、このカラム選択線CSL1〜CSL4はカラムデコーダ8に接続されている。このカラムデコーダ8はカラム選択線CSL1〜CSL4を選択的に駆動する。このカラム選択線CSL1〜CSL4に接続されたトランジスタ7−1〜7−4が選択的に駆動されることにより、ビット線BL1〜BL4のいずれか1つが読み出し/書き込みノード9に接続される。この読み出し/書き込みノード9は、図示しない読み出し回路、及び書き込み回路へそれぞれ接続されている。
【0045】
また、NANDセル4内の他方の選択トランジスタ2−2のソースは共通のローカルソース線SLに接続されており、図示しないグローバルソース線を介してソースデコーダへ接続されている。
【0046】
図2は、NAND型フラッシュEEPROMの平面図、図3(a)乃至(e)はNAND型フラッシュEEPROMの断面図であり、(a)図は図2におけるD−D’線に沿った断面図、(b)図はE−E’線に沿った断面図、(c)図は図2には示していないが、例えばカラムセレクタ等の周辺トランジスタのE−E’線方向に沿った断面図、(d)図はF−F’線に沿った断面図、(e)図は図2には示していないが、メモリセルアレイ領域端部において制御ゲート線CG1〜8がロウデコーダ5に接続される領域のE−E’線方向に沿った断面図である。
【0047】
図示するように、シリコン基板10には、帯状に複数の素子分離領域STIが形成されている。この素子分離領域STIは、シリコン酸化膜11、12によって埋め込まれたトレンチにより構成されている。そして、隣接する上記素子分離領域STI間は半導体素子を形成する活性領域AAとなっている。この活性領域AA上には、ゲート絶縁膜13(第1絶縁膜)を介して、多結晶シリコン膜14、15(第1導電膜)が設けられている。この多結晶シリコン膜14、15は、メモリセルトランジスタの浮遊ゲートFG及び選択トランジスタのセレクトゲートSGD0、SGD1、SGS1、SGS2となる。また、ゲート絶縁膜13は、例えばシリコン酸化膜やオキシナイトライド膜等である。更に、素子領域AA及び素子分離領域STI上には、素子分離領域STIに交差する方向に沿って、多結晶シリコン膜17とタングステンシリサイド膜18(第2導電膜)が、浮遊ゲート・制御ゲート間絶縁膜16(第2絶縁膜)を介して、多結晶シリコン膜14、15を覆うように延設されている。この多結晶シリコン膜17及びタングステンシリサイド膜18は、メモリセルトランジスタの制御ゲートCG1〜8となる。また、浮遊ゲート・制御ゲート間絶縁膜16は、例えばシリコン酸化膜、シリコン窒化膜、及びシリコン酸化膜の3層構造のONO膜や、シリコン酸化膜の単層膜、シリコン酸化膜とシリコン窒化膜との2層構造のON膜、NO膜であっても良い。そして上記構成のゲート電極間の半導体基板10中に、不純物拡散層19が選択的に形成されることで、メモリセルアレイ領域の選択トランジスタ、メモリセルトランジスタ、及び周辺領域のトランジスタが形成されている。
【0048】
更に、タングステンシリサイド膜16上にはシリコン酸化膜20、21が設けられ、上記浮遊ゲートFG、セレクトゲートSGD0、SGD1、SGS1、SGS2、制御ゲートCG1〜8、及びシリコン酸化膜20、21を被覆するように、シリコン窒化膜22(第3絶縁膜)が全面に形成されている。また、隣接するゲート電極間を埋め込むようにして、層間絶縁膜23(第4絶縁膜)が形成され、この層間絶縁膜23及びシリコン窒化膜22上には、シリコン酸化膜24(第5絶縁膜)が形成されている。上記シリコン酸化膜24内には、ビット線BL、セレクトゲートシャント配線M0−1、制御ゲートシャント配線M0−2、及び周辺トランジスタと接続する金属配線M0−3が、それぞれチタン膜25及びタングステン膜26により形成されている。
【0049】
ビット線BLは、隣接するセレクトゲートSGD0、SGD1間の不純物拡散層19に到達するコンタクトホール27(第2コンタクトホール)内に埋め込み形成された多結晶シリコン膜によるコンタクトプラグ28(第2コンタクトプラグ)によって接続されている(図3(b)参照)。このビット線BLによって、隣接するセレクトゲート間の不純物拡散層19はカラムセレクタ6に接続されている。
【0050】
また、選択トランジスタのドレイン側のセレクトゲートSGD0、SGD1、には、それぞれの多結晶シリコン膜14、15が共通に接続され、且つ浮遊ゲート・制御ゲート間絶縁膜16、多結晶シリコン膜17、タングステンシリサイド膜18、及びシリコン酸化膜20、21が除去された領域が存在する(図3(d)参照)。この領域がドレイン側のセレクトゲートシャント部となり、複数個の選択トランジスタおきに規則的に設けられている。そして、このセレクトゲートシャント部に設けられたコンタクトホール29(第1コンタクトホール)内に埋め込み形成された多結晶シリコン膜によるコンタクトプラグ28(第1コンタクトプラグ)によって、セレクトゲートSGD0、SGD1はセレクトゲートシャント配線M0−1に接続され、このセレクトゲートシャント配線M0−1によって、ドレイン側のセレクトゲートSGD0、SGD1はロウデコーダ5に接続される。
【0051】
一方、ソース側のセレクトゲートSGS1、SGS2も、浮遊ゲート・制御ゲート間絶縁膜16、多結晶シリコン膜17、タングステンシリサイド膜18、及びシリコン酸化膜20、21が除去されたセレクトゲートシャント部を有している。しかし、ソース側では、隣接するセレクトゲートSGS1、SGS2を構成する多結晶シリコン膜14、15は共通接続されておらず、それぞれの多結晶シリコン膜15は独立したセレクトゲートシャント配線(図示せず)によって接続され、ロウデコーダ5に接続される。なお、上記セレクトゲートシャント部の形成されるNANDセル4はダミーのメモリセルとなり、実際のデータの記憶用には使われない。
【0052】
一方、メモリセルトランジスタの制御ゲートCG1〜8には、メモリセルアレイ領域の端部において、制御ゲートCG1〜8の一部を構成する多結晶シリコン膜17に接続するコンタクトホール31が、各制御ゲートCG1〜8毎に設けられており、この領域が制御ゲートシャント部となる(図3(e)参照)。そして、このシャント部において制御ゲートCG1〜8のそれぞれは各々の制御ゲートシャント配線M0−2に接続され、この制御ゲートシャント配線M0−2によってロウデコーダ5に接続されている。
【0053】
また、周辺トランジスタの金属配線層M0−3も、周辺トランジスタの不純物拡散層19に、コンタクトホール32を介して接続されている(図3(c)参照)。
【0054】
上記構成のNAND型フラッシュEEPROMの製造方法について、図4乃至図34を用いて説明する。図4乃至図34はNAND型フラッシュEEPROMの製造工程の断面図を順次示している。なお、図4(a)乃至図34(a)はそれぞれ図3(a)に対応し、図4(b)乃至図34(b)はそれぞれ図3(b)に対応し、図4(c)乃至図34(c)はそれぞれ図3(c)に対応し、図22(d)、図23(d)及び図28(d)乃至図34(d)はそれぞれ図3(d)に対応し、図32(e)乃至図34(e)はそれぞれ図3(e)に対応する図である。
【0055】
まず図4(a)乃至(c)に示すように、シリコン基板10上に、ゲート絶縁膜13となるシリコン酸化膜を熱酸化法等により8nmの膜厚に形成し、このゲート絶縁膜13上に多結晶シリコン膜14を減圧CVD法等により60nmの膜厚に形成する。なお、このゲート絶縁膜13はシリコン酸化膜のままでもよいが、NHガス等による窒化と酸化を行うことでオキシナイトライド膜としても良い。
【0056】
引き続き図5(a)乃至(c)に示すように、多結晶シリコン膜14上にシリコン窒化膜33及びシリコン酸化膜34を、減圧CVD法等によりそれぞれ70nm、230nmの膜厚に形成する。そして、温度850℃で水素燃焼酸化処理を30分間行う。
【0057】
次に、全面にフォトレジスト35−1を塗布し、光蝕刻技術により図6(a)乃至(c)のようにパターニングする。
【0058】
次に、上記フォトレジスト35−1をマスクに用いてRIE法等の異方性エッチングを行い、シリコン酸化膜34及びシリコン窒化膜33を加工する。そして、O−プラズマと、硫酸、過酸化水素水の混合液にて処理を行い、フォトレジスト35−1を剥離する。引き続き、上記シリコン酸化膜34及びシリコン窒化膜33をマスクに用いたRIE法等により、多結晶シリコン膜14、シリコン酸化膜13及びシリコン基板10を順次エッチングして、図7(a)乃至(c)に示すように、素子分離領域STIを形成するためのトレンチ36を形成する。次に、温度1000℃の酸化性雰囲気中で熱処理を行うことで、トレンチ36の表面に露出しているシリコン基板10の表面に、膜厚6nmのシリコン酸化膜11を形成する。このシリコン酸化膜11は、トレンチ36の角部の形状を緩やかにすることで、この角部へのストレス等の集中を防止するためのものである。
【0059】
そして、図8(a)乃至(c)に示すように、全面にシリコン酸化膜12をHDP法等により430nmの膜厚に形成することで、トレンチ36を埋め込む。
【0060】
次に図9(a)乃至(c)のように、シリコン窒化膜33をストッパーに用いたCMP法により、上記シリコン酸化膜12、34を研磨して平坦化し、素子分離領域STIを完成する。
【0061】
そして、HF溶液により、図10(a)乃至(c)に示すようにシリコン酸化膜12を表面から20nm程度エッチングし、次に、図11(a)乃至(c)のように、温度150℃のリン酸処理を40分間行うことで、シリコン窒化膜33を選択的に除去する。
【0062】
その後、図12(a)乃至(c)のように、減圧CVD法により多結晶シリコン膜15及びシリコン酸化膜37をそれぞれ100nm、230nmの膜厚に順次形成する。
【0063】
次に図13(a)乃至(c)に示すように、全面にフォトレジスト35−2を塗布し、光蝕刻技術にて図示するようにパターニングする。そして、このフォトレジスト35−2をマスクに用いたRIE法等によりシリコン酸化膜37を加工する。
【0064】
その後、O−プラズマと、硫酸、過酸化水素水の混合液にて処理を行い、レジスト35−2を剥離した後、図14(a)乃至(c)に示すように、全面に減圧CVD法等によりシリコン酸化膜38を70nmの膜厚に形成する。
【0065】
そして、全面エッチバック法により、図15(a)乃至(c)に示すようにシリコン酸化膜38がシリコン酸化膜37の側壁にのみ残存するようにエッチングする。
【0066】
そして、上記シリコン酸化膜37、38をマスクに用いたRIE法により、まず多結晶シリコン膜15のエッチングを行い、シリコン酸化膜12の一部を露出させる。次に、この多結晶シリコン膜15との選択比の高い条件にて再度RIEによるエッチングを行い、露出しているシリコン酸化膜12の一部を除去して図16(a)乃至(c)に示す構造を得る。
【0067】
その後、図17(a)乃至(c)のように、シリコン酸化膜37、38のマスク材を、O−プラズマと、硫酸、過酸化水素水の混合液にて除去する。
【0068】
次に、図18(a)乃至(c)に示すように、減圧CVD法により全面に浮遊ゲート・制御ゲート間絶縁膜16を17nmの膜厚に形成する。この浮遊ゲート・制御ゲート間絶縁膜16は、例えばシリコン酸化膜(SiO:5nm)、シリコン窒化膜(SiN:7nm)、及びシリコン酸化膜(SiO:5nm)の3層構造のONO膜である。なお、この浮遊ゲート・制御ゲート間絶縁膜16は、単にシリコン酸化膜を用いても良いし、シリコン酸化膜とシリコン窒化膜との2層構造のON膜、NO膜であっても良い。
【0069】
なお、周辺領域のトランジスタの形成予定領域の図示せぬ一部領域においては、浮遊ゲート・制御ゲート間絶縁膜16を除去してもかまわない。
【0070】
引き続き、図19(a)乃至(c)に示すように、浮遊ゲート・制御ゲート間絶縁膜16上に多結晶シリコン膜17、タングステンシリサイド膜18を、それぞれ減圧CVD法、PVD法により80nm、50nmの膜厚に形成する。
【0071】
更に図20(a)乃至(c)に示すように、タングステンシリサイド膜18上にシリコン酸化膜20を減圧CVD法により230nmの膜厚に形成する。
【0072】
次に、図21(a)乃至(c)に示すように、全面にフォトレジスト35−3を塗布し、光蝕刻技術にてメモリセルトランジスタ、選択トランジスタ、及び周辺トランジスタのゲート電極のパターンにパターニングする。そして、パターニングされたフォトレジスト35−3をマスクに用いたRIE法により、シリコン酸化膜20をパターニングする。
【0073】
そして、フォトレジスト35−3をO−プラズマと、硫酸、過酸化水素水の混合液にて除去した後、上記シリコン酸化膜20をマスクに用いて、タングステンシリサイド膜18、多結晶シリコン膜17、及び浮遊ゲート・制御ゲート間絶縁膜16をRIE法により、素子分離領域STIに対して直交する方向に沿ってエッチングする。なお、セレクトゲートのシャント部でも、タングステンシリサイド膜18、多結晶シリコン膜17、及び浮遊ゲート・制御ゲート間絶縁膜16を除去しておくことで多結晶シリコン膜15を露出させる。
【0074】
次に、セレクトゲートのシャント部をフォトレジストで被覆した後、再度上記シリコン酸化膜20をマスクに用いたRIE法により、多結晶シリコン膜15、16のエッチングを行い、図22(a)乃至(d)のような構造を完成する。すなわち、多結晶シリコン膜14、15からなる浮遊ゲートFGと、多結晶シリコン膜17、タングステンシリサイド18からなる制御ゲートCG1〜8との2層構造によるメモリセルトランジスタのゲート電極と、同じく2層構造を有し、SGシャント部において多結晶シリコン膜15が露出された選択トランジスタの電極、及び周辺トランジスタのゲート電極が構成される。
【0075】
次に、温度800℃の窒素雰囲気中で120秒間の加熱を行い、更に温度1000℃の酸化性雰囲気中で加熱処理を行うことで、セレクトゲートシャント部以外のシリコン酸化膜20上にシリコン酸化膜21を10nmの膜厚に形成する。その後、イオン注入法によりソース、ドレインとなる領域に不純物を導入することで、不純物拡散層19を選択的に形成し、導入した不純物の活性化のために、温度1050℃の熱処理を30秒間行う。引き続き、全面にシリコン窒化膜22を減圧CVD法により40nmの膜厚に形成することで、図23(a)乃至(d)に示す構造を形成する。なお、シリコン酸化膜20、21に代えて、この材料にはシリコン窒化膜を用いてもかまわない。
【0076】
上記工程によりNAND型フラッシュEEPROMのメモリセルアレイ領域及び周辺領域のMOSトランジスタが完成する。
【0077】
次に、図24(a)乃至(c)に示すように、全面に層間絶縁膜として、段差被覆性の高いBPSG膜23を、常圧CVD法により300nmの膜厚に形成する。その後、温度800℃、30分間の窒素雰囲気中での加熱処理を行うことで、BPSG膜23をリフローさせて、図25(a)乃至(c)のように平坦化する。しかし、BPSG膜を堆積させる下地に段差が存在し、この段差が大きい場合、段差被覆性の高いBPSG膜をもってしても、十分にこの段差を埋め込むことが出来ない場合がある。
【0078】
そこで、図26(a)乃至(c)に示すように、再度BPSG膜39を300nmの膜厚に積み増し、図27(a)乃至(c)のように、BPSG膜39をリフローさせて、BPSG膜23の段差を埋め込む。
【0079】
次に、図28(a)乃至(d)に示すように、メモリセルトランジスタのゲート電極上のシリコン窒化膜22をストッパーに用いたCMP法によりBPSG膜23、39の研磨を行う。そして、温度800℃、15分の窒素雰囲気中での加熱処理を行うことで、BPSG膜23、39の表面を平坦化し、引き続き、温度950℃、10秒の窒素雰囲気中での加熱処理により、BPSG膜23、39を高密度化させる。
【0080】
次に、図29(a)乃至(c)に示すように、プラズマCVD法により、全面にシリコン酸化膜24を350nmの膜厚に形成する。このシリコン酸化膜24は、例えばTEOS(tetraethylorthosilicate ; Si(OC2H5)4)を用いて形成したシリコン酸化膜である。BPSG膜23上にシリコン酸化膜24を設けているのは、BPSG膜23上に直接金属配線層を形成しようとした場合、コンタクトホール形成時にBPSG膜23上にレジストを塗布しなければならず、この際にBPSG膜23とレジストとが反応して反応層が形成されるためである。また、BPSG膜は軟質のため、CMPによる平坦化を行うと表面に凹凸が生じ、金属配線層を形成するための下地の膜として適していないためである。
【0081】
そして、上記シリコン酸化膜24上にフォトレジストを塗布し、光蝕刻技術にて、隣接する選択トランジスタのセレクトゲートSGD0、SGD1との間の不純物拡散層19及び、セレクトゲートシャント部における多結晶シリコン膜15(セレクトゲートSGD0、SGD1)とコンタクトを取るコンタクトホールの形成パターンにパターニングする。このパターニングされたフォトレジストをマスクに用いたRIE法により、まず、シリコン酸化膜24、BPSG膜23、39のエッチングを行い、シリコン窒化膜22に達するコンタクトホールを形成する。そして、フォトレジストをO−プラズマと、硫酸、過酸化水素水の混合液にて剥離した後、シリコン酸化膜24をマスクに用いたRIE法によりシリコン窒化膜22及びゲート絶縁膜13のエッチングを行い、図29(a)乃至(d)に示すような、シリコン基板10に達するコンタクトホール27、及び多結晶シリコン膜15に達するコンタクトホール29を形成する(図29(b)、(d)参照)。そして、RIEを行った際にコンタクトホール27、29の側壁に堆積した反応生成物を、O−プラズマと、硫酸、過酸化水素水の混合液により除去する。なお、ここではコンタクトホール27、29を同時に形成する例について説明したが、勿論別個の工程により各々のコンタクトホールを形成してもかまわない。
【0082】
次に、図30(a)乃至(d)のように、減圧CVD法により全面に多結晶シリコン膜28を300nmの膜厚に形成し、コンタクトホール27、29を埋め込む。
【0083】
その後、図31(a)乃至(d)に示すように、CDE法により多結晶シリコン膜28をエッチングして、この多結晶シリコン膜28のコンタクトホール27内における高さ調整を行い、コンタクトプラグを形成する。
【0084】
次に、シリコン酸化膜24上にフォトレジストを塗布し、光蝕刻技術にて、周辺回路のトランジスタの不純物拡散層19とコンタクトを取るコンタクトホールの形成パターン、及びメモリセルアレイ領域の制御ゲートシャント部において、制御ゲートCG1〜8とコンタクトを取るコンタクトホールの形成パターンにパターニングする。このパターニングされたフォトレジストをマスクに用いたRIE法により、シリコン酸化膜24、BPSG膜23、シリコン窒化膜22及びゲート絶縁膜13のエッチングを行い、周辺トランジスタの不純物拡散層19に到達するコンタクトホール32を形成する。更に、制御ゲートシャント部において、シリコン酸化膜24、シリコン窒化膜22、シリコン酸化膜20、21、及びタングステンシリサイド膜18をエッチングして、多結晶シリコン膜17に到達するコンタクトホール31を形成する(図32(c)、(e)参照)。その後、O−プラズマと、硫酸、過酸化水素水の混合液によりレジストを除去して、図32(a)乃至(e)の構造を得る。
【0085】
その後、シリコン酸化膜24上にフォトレジストを塗布し、光蝕刻技術とRIE法により、シリコン酸化膜24内に、隣接する選択トランジスタのセレクトゲート間の不純物拡散層19と接続するビット線BL、セレクトゲートのシャント配線M0−1、制御ゲートのシャント配線M0−2、及び周辺回路のトランジスタの不純物拡散層と接続する配線M0−3のパターンを形成する。そしてフォトレジストを剥離し、エッチングにより堆積した反応生成物を除去することにより図33(a)乃至(e)の構造を得る。
【0086】
更に、コンタクトホール32の底部の半導体基板10中に、イオン注入法により不純物を導入し、RTA法により温度950℃の窒素雰囲気中で加熱することにより、導入した不純物を活性化する。
【0087】
そして、図34(a)乃至(e)に示すように、PVD法により全面にチタン膜25及びタングステン膜26を、それぞれ300nm、400nmの膜厚に順次形成する。
【0088】
その後は、チタン膜25及びタングステン膜36を、配線を形成しない領域のシリコン酸化膜24が露出するまでCMP法により研磨、平坦化する。そして、温度400℃の、水素を含む窒素雰囲気中で30分間の熱処理を行い、図3(a)乃至(e)の構造を完成する。
【0089】
上記のような構成及び製造方法によれば、セレクトゲートシャント部において、多結晶シリコン膜15に達するコンタクトホール29内に、多結晶シリコン膜28による埋め込みプラグを形成している。そして、この埋め込みプラグの形成後に、周辺トランジスタの不純物拡散層19にコンタクトするコンタクトホール32を形成している。
【0090】
このコンタクトホール32の底部には、接触抵抗の低減を図るために不純物を導入する工程が必要であり、更にその不純物を活性化させるために高温の熱処理工程が必要となる。この高温の熱処理によりシリコン酸化膜24は収縮を起こし、それにつられてBPSG膜23はリフローを起こす。
【0091】
しかし、本実施形態では、上記不純物の活性化のために行う熱処理工程の前に、セレクトゲートシャント部におけるコンタクトホール29内を多結晶シリコン膜28により埋め込んでいる。そのため、上記熱処理工程でBPSG膜23のリフローは、コンタクトホール29の形状に対して殆ど影響を与えない。すなわち、コンタクトホール29の形状に異常が発生することを抑制することで、コンタクト不良を防止でき、ひいては不揮発性半導体記憶装置の信頼性を向上できる。
【0092】
また、本実施形態では、シリコン基板10上に設けた各トランジスタを被覆するように、層間絶縁膜としてのBPSG膜23、39を形成した後、このBPSG膜23、39を制御ゲートCG1〜8上のシリコン窒化膜22が露出するまで研磨、除去している。このように、各トランジスタのゲート電極上からBPSG膜を除去して、BPSG膜の体積を可能な限り小さくすることによって、上記熱処理によるBPSG膜のリフローを生じにくくすることが出来る。
【0093】
更に、上記のようにBPSG膜を各トランジスタのゲート電極上から除去することは、すなわち層間絶縁膜の膜厚を小さくすることになる。その結果、各コンタクトホール27、29、31、32のアスペクト比が小さくなり、それぞれのコンタクトホール内の埋め込み性を向上でき、不揮発性半導体記憶装置としての信頼性の向上に寄与する。
【0094】
また、BPSG膜23、39を研磨する工程は、制御ゲートCG1〜8上のシリコン窒化膜22が露出した時点で終了させずに、シリコン窒化膜22の一部若しくは全てを除去してもかまわない。
【0095】
なお、上記実施形態では、ビット線BLとセレクトゲートシャント配線M0−1の2つの金属配線層を、同じ層間絶縁膜(シリコン酸化膜24)内に形成する例を挙げて説明したが、勿論、それぞれの金属配線層が同じ層間絶縁膜内に設けられる必要は無い。図35(a)、(b)は、本実施形態の変形例について示しおり、(a)図は図3(b)に対応し、(b)図は図3(d)に対応するNAND型フラッシュEEPROMの断面図である。
【0096】
図示するように、上記実施形態と同様に、シリコン酸化膜24内に設けられたビット線BL上に、更にBPSG膜、シリコン酸化膜による層間絶縁膜40、41を形成する。そして、層間絶縁膜41内に、チタン膜42、タングステン膜43によるセレクトゲートシャント配線M0−1を形成し、このセレクトゲートシャント配線M0−1とセレクトゲートの多結晶シリコン膜15とを多結晶シリコン膜28により接続している。
【0097】
このように、金属配線層のレベルが高くなることでコンタクトホールのアスペクト比が大きくなるような場合において、本発明の効果は特に顕著に現れると言うことが出来る。
【0098】
更に、上記実施形態では多結晶シリコン膜15に接続するコンタクトホールとしてドレイン側のセレクトゲートシャント部を例に挙げて説明したが、勿論、この領域におけるコンタクトホールに限られるものではない。例えば、ソース側のセレクトゲートシャント部に適用できるのは当然であり、必要であれば周辺トランジスタにも適用できる。すなわち、本発明は多結晶シリコン膜15のレベルに達するコンタクトホールの全てに適用できる。
【0099】
また、上記実施形態では、ビット線BL及びセレクトゲートシャント配線M0−1に接続するコンタクトホール内のみ多結晶シリコン膜28によって埋め込んでいる。これは、メモリセルアレイ領域内であれば同一導電型の不純物を導入した多結晶シリコン膜を用いることが可能だからである。具体的には、メモリセルアレイ領域内の各不純物拡散層19はn型の導電型を有し、セレクトゲートを構成する多結晶シリコン膜14、15もn型の不純物が導入されている。そのため、ビット線BL及びセレクトゲートシャント配線M0−1に接続するコンタクトホールを埋め込む材料には、P(Phosphorus)やAs(Arsenic)等のn型不純物を導入された多結晶シリコン膜を共通に用いることが出来る。しかし、周辺トランジスタはn型、p型が混在しており、その導電性に対応してコンタクトプラグの材料を変える必要がある。これはプロセス上の制約にはなる。そのため、本実施形態ではビット線BL及びセレクトゲートシャント配線M0−1に接続するコンタクトホールについてのみ説明している。しかし、BPSG膜23のリフローは、程度の差はあってもBPSG膜23内に設けられる全てのコンタクトホールの形状に影響を与えるものであるから、全てのコンタクトホールを多結晶シリコン膜等によるコンタクトプラグで埋め込むことが望ましい。勿論、コンタクトホール内を埋め込む材料は多結晶シリコン膜に限らず、低抵抗が実現でき、BPSG膜のリフローに対するコンタクトホール内の強度を十分に得られるものであれば限定されるものではない。
【0100】
更に、上記実施形態ではNAND型フラッシュEEPROMを例に挙げて説明したが、勿論NAND型に限らずNOR型フラッシュEEPROMにも適用できるのは言うまでもなく、フラッシュEEPROMに限らず2層ゲート構造を有するEPROMなどの半導体記憶装置に広汎に応用できる。
【0101】
なお、本願発明は上記実施形態に限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で種々に変形することが可能である。更に、上記実施形態には種々の段階の発明が含まれており、開示される複数の構成要件における適宜な組み合わせにより種々の発明が抽出されうる。例えば、実施形態に示される全構成要件からいくつかの構成要件が削除されても、発明が解決しようとする課題の欄で述べた課題が解決でき、発明の効果の欄で述べられている効果が得られる場合には、この構成要件が削除された構成が発明として抽出されうる。
【0102】
【発明の効果】
以上説明したように、この発明によれば、コンタクトホールの形状変化を防止することにより、コンタクト不良を抑制し、高信頼性の不揮発性半導体記憶装置の製造方法を提供できる。
【図面の簡単な説明】
【図1】この発明の一実施形態に係るNAND型フラッシュEEPROMの回路図。
【図2】この発明の一実施形態に係るNAND型フラッシュEEPROMの平面図。
【図3】図2の一部断面図であり、(a)図はD−D’線、(b)図はE−E’線、(c)図は周辺領域のE−E’線方向、(d)図はF−F’線、(e)図はメモリセルアレイ領域端部のE−E’線方向に沿った断面図。
【図4】この発明の一実施形態に係るNAND型フラッシュEEPROMの第1の製造工程の断面図を示しており、図2において、(a)図はD−D’線、(b)図はE−E’線、(c)図は周辺領域のE−E’線方向に沿った断面図。
【図5】この発明の一実施形態に係るNAND型フラッシュEEPROMの第2の製造工程の断面図を示しており、図2において、(a)図はD−D’線、(b)図はE−E’線、(c)図は周辺領域のE−E’線方向に沿った断面図。
【図6】この発明の一実施形態に係るNAND型フラッシュEEPROMの第3の製造工程の断面図を示しており、図2において、(a)図はD−D’線、(b)図はE−E’線、(c)図は周辺領域のE−E’線方向に沿った断面図。
【図7】この発明の一実施形態に係るNAND型フラッシュEEPROMの第4の製造工程の断面図を示しており、図2において、(a)図はD−D’線、(b)図はE−E’線、(c)図は周辺領域のE−E’線方向に沿った断面図。
【図8】この発明の一実施形態に係るNAND型フラッシュEEPROMの第5の製造工程の断面図を示しており、図2において、(a)図はD−D’線、(b)図はE−E’線、(c)図は周辺領域のE−E’線方向に沿った断面図。
【図9】この発明の一実施形態に係るNAND型フラッシュEEPROMの第6の製造工程の断面図を示しており、図2において、(a)図はD−D’線、(b)図はE−E’線、(c)図は周辺領域のE−E’線方向に沿った断面図。
【図10】この発明の一実施形態に係るNAND型フラッシュEEPROMの第7の製造工程の断面図を示しており、図2において、(a)図はD−D’線、(b)図はE−E’線、(c)図は周辺領域のE−E’線方向に沿った断面図。
【図11】この発明の一実施形態に係るNAND型フラッシュEEPROMの第8の製造工程の断面図を示しており、図2において、(a)図はD−D’線、(b)図はE−E’線、(c)図は周辺領域のE−E’線方向に沿った断面図。
【図12】この発明の一実施形態に係るNAND型フラッシュEEPROMの第9の製造工程の断面図を示しており、図2において、(a)図はD−D’線、(b)図はE−E’線、(c)図は周辺領域のE−E’線方向に沿った断面図。
【図13】この発明の一実施形態に係るNAND型フラッシュEEPROMの第10の製造工程の断面図を示しており、図2において、(a)図はD−D’線、(b)図はE−E’線、(c)図は周辺領域のE−E’線方向に沿った断面図。
【図14】この発明の一実施形態に係るNAND型フラッシュEEPROMの第11の製造工程の断面図を示しており、図2において、(a)図はD−D’線、(b)図はE−E’線、(c)図は周辺領域のE−E’線方向に沿った断面図。
【図15】この発明の一実施形態に係るNAND型フラッシュEEPROMの第12の製造工程の断面図を示しており、図2において、(a)図はD−D’線、(b)図はE−E’線、(c)図は周辺領域のE−E’線方向に沿った断面図。
【図16】この発明の一実施形態に係るNAND型フラッシュEEPROMの第13の製造工程の断面図を示しており、図2において、(a)図はD−D’線、(b)図はE−E’線、(c)図は周辺領域のE−E’線方向に沿った断面図。
【図17】この発明の一実施形態に係るNAND型フラッシュEEPROMの第14の製造工程の断面図を示しており、図2において、(a)図はD−D’線、(b)図はE−E’線、(c)図は周辺領域のE−E’線方向に沿った断面図。
【図18】この発明の一実施形態に係るNAND型フラッシュEEPROMの第15の製造工程の断面図を示しており、図2において、(a)図はD−D’線、(b)図はE−E’線、(c)図は周辺領域のE−E’線方向に沿った断面図。
【図19】この発明の一実施形態に係るNAND型フラッシュEEPROMの第16の製造工程の断面図を示しており、図2において、(a)図はD−D’線、(b)図はE−E’線、(c)図は周辺領域のE−E’線方向に沿った断面図。
【図20】この発明の一実施形態に係るNAND型フラッシュEEPROMの第17の製造工程の断面図を示しており、図2において、(a)図はD−D’線、(b)図はE−E’線、(c)図は周辺領域のE−E’線方向に沿った断面図。
【図21】この発明の一実施形態に係るNAND型フラッシュEEPROMの第18の製造工程の断面図を示しており、図2において、(a)図はD−D’線、(b)図はE−E’線、(c)図は周辺領域のE−E’線方向に沿った断面図。
【図22】この発明の一実施形態に係るNAND型フラッシュEEPROMの第19の製造工程の断面図を示しており、図2において、(a)図はD−D’線、(b)図はE−E’線、(c)図は周辺領域のE−E’線方向、(d)図はF−F’線に沿った断面図。
【図23】この発明の一実施形態に係るNAND型フラッシュEEPROMの第20の製造工程の断面図を示しており、図2において、(a)図はD−D’線、(b)図はE−E’線、(c)図は周辺領域のE−E’線方向、(d)図はF−F’線に沿った断面図。
【図24】この発明の一実施形態に係るNAND型フラッシュEEPROMの第21の製造工程の断面図を示しており、図2において、(a)図はD−D’線、(b)図はE−E’線、(c)図は周辺領域のE−E’線方向に沿った断面図。
【図25】この発明の一実施形態に係るNAND型フラッシュEEPROMの第22の製造工程の断面図を示しており、図2において、(a)図はD−D’線、(b)図はE−E’線、(c)図は周辺領域のE−E’線方向に沿った断面図。
【図26】この発明の一実施形態に係るNAND型フラッシュEEPROMの第23の製造工程の断面図を示しており、図2において、(a)図はD−D’線、(b)図はE−E’線、(c)図は周辺領域のE−E’線方向に沿った断面図。
【図27】この発明の一実施形態に係るNAND型フラッシュEEPROMの第24の製造工程の断面図を示しており、図2において、(a)図はD−D’線、(b)図はE−E’線、(c)図は周辺領域のE−E’線方向に沿った断面図。
【図28】この発明の一実施形態に係るNAND型フラッシュEEPROMの第25の製造工程の断面図を示しており、図2において、(a)図はD−D’線、(b)図はE−E’線、(c)図は周辺領域のE−E’線方向に沿った断面図。
【図29】この発明の一実施形態に係るNAND型フラッシュEEPROMの第26の製造工程の断面図を示しており、図2において、(a)図はD−D’線、(b)図はE−E’線、(c)図は周辺領域のE−E’線方向、(d)図はF−F’線に沿った断面図。
【図30】この発明の一実施形態に係るNAND型フラッシュEEPROMの第27の製造工程の断面図を示しており、図2において、(a)図はD−D’線、(b)図はE−E’線、(c)図は周辺領域のE−E’線方向、(d)図はF−F’線に沿った断面図。
【図31】この発明の一実施形態に係るNAND型フラッシュEEPROMの第28の製造工程の断面図を示しており、図2において、(a)図はD−D’線、(b)図はE−E’線、(c)図は周辺領域のE−E’線方向、(d)図はF−F’線に沿った断面図。
【図32】この発明の一実施形態に係るNAND型フラッシュEEPROMの第29の製造工程の断面図を示しており、図2において、(a)図はD−D’線、(b)図はE−E’線、(c)図は周辺領域のE−E’線方向、(d)図はF−F’線、(e)図はメモリセルアレイ領域端部におけるE−E’線方向に沿った断面図。
【図33】この発明の一実施形態に係るNAND型フラッシュEEPROMの第30の製造工程の断面図を示しており、図2において、(a)図はD−D’線、(b)図はE−E’線、(c)図は周辺領域のE−E’線方向、(d)図はF−F’線、(e)図はメモリセルアレイ領域端部におけるE−E’線方向に沿った断面図。
【図34】この発明の一実施形態に係るNAND型フラッシュEEPROMの第31の製造工程の断面図を示しており、図2において、(a)図はD−D’線、(b)図はE−E’線、(c)図は周辺領域のE−E’線方向、(d)図はF−F’線、(e)図はメモリセルアレイ領域端部におけるE−E’線方向に沿った断面図。
【図35】この発明の一実施形態の変形例に係るNAND型フラッシュEEPROMの断面図を示しており、図2において、(a)図はD−D’線、(b)図はF−F’線に沿った断面図。
【図36】従来のNAND型フラッシュEEPROMの平面図。
【図37】図36の一部断面図であり、(a)図はA−A’線、(b)図はB−B’線、(c)図は周辺領域のB−B’線方向、(d)図はC−C’線、(e)図はメモリセルアレイ領域端部のB−B’線方向に沿った断面図。
【図38】従来のNAND型フラッシュEEPROMの第1の製造工程の断面図を示しており、図36において、(a)図はA−A’線、(b)図はB−B’線、(c)図は周辺領域のB−B’線方向に沿った断面図。
【図39】従来のNAND型フラッシュEEPROMの第2の製造工程の断面図を示しており、図36において、(a)図はA−A’線、(b)図はB−B’線、(c)図は周辺領域のB−B’線方向に沿った断面図。
【図40】従来のNAND型フラッシュEEPROMの第3の製造工程の断面図を示しており、図36において、(a)図はA−A’線、(b)図はB−B’線、(c)図は周辺領域のB−B’線方向に沿った断面図。
【図41】従来のNAND型フラッシュEEPROMの第4の製造工程の断面図を示しており、図36において、(a)図はA−A’線、(b)図はB−B’線、(c)図は周辺領域のB−B’線方向に沿った断面図。
【図42】従来のNAND型フラッシュEEPROMの第5の製造工程の断面図を示しており、図36において、(a)図はA−A’線、(b)図はB−B’線、(c)図は周辺領域のB−B’線方向に沿った断面図。
【図43】従来のNAND型フラッシュEEPROMの第6の製造工程の断面図を示しており、図36において、(a)図はA−A’線、(b)図はB−B’線、(c)図は周辺領域のB−B’線方向に沿った断面図。
【図44】従来のNAND型フラッシュEEPROMの第7の製造工程の断面図を示しており、図36において、(a)図はA−A’線、(b)図はB−B’線、(c)図は周辺領域のB−B’線方向、(d)図はC−C’線に沿った断面図。
【図45】従来のNAND型フラッシュEEPROMの第8の製造工程の断面図を示しており、図36において、(a)図はA−A’線、(b)図はB−B’線、(c)図は周辺領域のB−B’線方向に沿った断面図。
【図46】従来のNAND型フラッシュEEPROMの第9の製造工程の断面図を示しており、図36において、(a)図はA−A’線、(b)図はB−B’線、(c)図は周辺領域のB−B’線方向、(d)図はC−C’線に沿った断面図。
【図47】従来のNAND型フラッシュEEPROMの第10の製造工程の断面図を示しており、図36において、(a)図はA−A’線、(b)図はB−B’線、(c)図は周辺領域のB−B’線方向、(d)図はC−C’線に沿った断面図。
【図48】従来のNAND型フラッシュEEPROMの第11の製造工程の断面図を示しており、図36において、(a)図はA−A’線、(b)図はB−B’線、(c)図は周辺領域のB−B’線方向、(d)図はC−C’線に沿った断面図。
【図49】従来のNAND型フラッシュEEPROMの第12の製造工程の断面図を示しており、図36において、(a)図はA−A’線、(b)図はB−B’線、(c)図は周辺領域のB−B’線方向、(d)図はC−C’線、(e)図はメモリセルアレイ領域端部におけるB−B’線方向に沿った断面図。
【図50】従来のNAND型フラッシュEEPROMの第13の製造工程の断面図を示しており、図36において、(a)図はA−A’線、(b)図はB−B’線、(c)図は周辺領域のB−B’線方向、(d)図はC−C’線、(e)図はメモリセルアレイ領域端部におけるB−B’線方向に沿った断面図。
【図51】従来の問題点を説明するためのもので、NAND型フラッシュEEPROMの断面図を示しており、図36においてF−F’線に沿った断面図。
【符号の説明】
1…メモリセルアレイ
2、2−1、2−2…選択トランジスタ
3、3−1〜3−8…メモリセルトランジスタ
4…NANDセル
5…ロウデコーダ
6…カラムセレクタ
7…トランジスタ
8…カラムデコーダ
9…読み出し/書き込みノード
10、100…シリコン基板
11、12、20、21、24、34、37、38、110、120、200、210、240、340…シリコン酸化膜
13、130…ゲート絶縁膜
14、15、17、28、140、150、170、280…多結晶シリコン膜
16、160…浮遊ゲート・制御ゲート間絶縁膜
18、180…タングステンシリサイド膜
19、190…不純物拡散層
22、33、220、330…シリコン窒化膜
23、39、230、390…BPSG膜
25、250…チタン膜
26、260…タングステン膜
27、29、31、32、270、290、310、320…コンタクトホール
35−1〜3…フォトレジスト
36、360…トレンチ

Claims (6)

  1. 半導体基板上に第1絶縁膜を形成する工程と、
    前記第1絶縁膜上に第1導電膜を形成する工程と、
    前記第1導電膜上に第2絶縁膜を形成する工程と、
    前記第2絶縁膜上に第2導電膜を形成する工程と、
    前記第1、第2導電膜及び前記第2絶縁膜をパターニングして、前記第1絶縁膜、前記第1導電膜、前記第2絶縁膜、及び前記第2導電膜を有し、前記第1、第2導電膜がそれぞれ浮遊ゲート及び制御ゲートとして機能するメモリセルトランジスタの積層構造と、前記第1絶縁膜、前記第1導電膜、前記第2絶縁膜、及び前記第2導電膜を有し、前記第1導電膜がゲート電極として機能する第1周辺トランジスタの積層構造と、第2周辺トランジスタのゲート電極を形成し、且つ前記第1周辺トランジスタの積層構造の前記第2絶縁膜及び前記第2導電膜の一部を除去して前記第1導電膜の一部を露出させる工程と、
    前記メモリセルトランジスタ及び前記第1周辺トランジスタの前記積層構造の上面及び側壁と、前記第2周辺トランジスタのゲート電極の上面及び側壁とを覆い、前記半導体基板上に第3絶縁膜を形成する工程と、
    前記半導体基板上に、前記メモリセルトランジスタ及び前記第1周辺トランジスタの前記積層構造、並びに前記第2周辺トランジスタのゲート電極を埋め込むように第4絶縁膜を形成する工程と、
    前記第4絶縁膜をリフローして平坦化する工程と、
    前記第4絶縁膜上に第5絶縁膜を形成する工程と、
    前記第1周辺トランジスタの前記第1導電膜の前記一部に達し、前記第4絶縁膜を貫通する開口を含む第1コンタクトホールを形成する工程と、
    前記第1コンタクトホール内を、導電性を有し且つ前記第4絶縁膜より溶融温度が高い補強部材により埋め込み、第1コンタクトプラグを形成する工程と、
    前記第1コンタクトプラグを形成した後、前記第2周辺トランジスタの不純物拡散層に達し、前記第4絶縁膜を貫通する開口を含む第2コンタクトホールを形成する工程と、
    前記第2コンタクトホールの底部の前記半導体基板中に不純物を注入する工程と、
    RTA法による熱処理を行って、注入した前記不純物を活性化する工程と
    を具備することを特徴とする不揮発性半導体記憶装置の製造方法。
  2. 前記第1コンタクトプラグを形成する工程の後、前記第5絶縁膜内に、前記第1コンタクトプラグと接続する第1金属配線層を形成する工程を更に備える
    ことを特徴とする請求項1記載の不揮発性半導体記憶装置の製造方法。
  3. 前記第1コンタクトホールを形成する工程は、同時に前記第1周辺トランジスタの不純物拡散層に達し、前記第4絶縁膜を貫通する開口を含む第3コンタクトホールを形成する工程を含み、
    前記第1コンタクトプラグを形成する工程は、前記第1、第3コンタクトホール内を前記補強部材により埋め込むことにより、前記第1コンタクトプラグと同時に前記第3コンタクトホールを埋め込む第2コンタクトプラグを形成する工程を含み、
    前記第1金属配線層を形成する工程は、前記第5絶縁膜内に、前記第2コンタクトプラグと接続する第2金属配線層を同時に形成する工程を含む
    ことを特徴とする請求項2記載の不揮発性半導体記憶装置の製造方法。
  4. 前記第4絶縁膜を平坦化する工程の後、該第4絶縁膜を、前記積層構造の上面の前記第3絶縁膜に達するまで除去する工程を更に備え、
    前記第5絶縁膜は、前記第3絶縁膜及び前記第4絶縁膜上に形成される
    ことを特徴とする請求項1乃至3いずれか1項記載の不揮発性半導体記憶装置の製造方法。
  5. 前記第4絶縁膜は、ボロン及びリンの添加された第1シリコン酸化膜であり、
    前記第5絶縁膜は第2シリコン酸化膜である
    ことを特徴とする請求項1乃至4いずれか1項記載の半導体記憶装置の製造方法。
  6. 前記補強部材は、不純物を添加された多結晶シリコンである
    ことを特徴とする請求項1乃至5いずれか1項記載の不揮発性半導体記憶装置の製造方法。
JP2000297450A 2000-09-28 2000-09-28 不揮発性半導体記憶装置の製造方法 Expired - Fee Related JP4074054B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000297450A JP4074054B2 (ja) 2000-09-28 2000-09-28 不揮発性半導体記憶装置の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000297450A JP4074054B2 (ja) 2000-09-28 2000-09-28 不揮発性半導体記憶装置の製造方法

Publications (2)

Publication Number Publication Date
JP2002110822A JP2002110822A (ja) 2002-04-12
JP4074054B2 true JP4074054B2 (ja) 2008-04-09

Family

ID=18779567

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000297450A Expired - Fee Related JP4074054B2 (ja) 2000-09-28 2000-09-28 不揮発性半導体記憶装置の製造方法

Country Status (1)

Country Link
JP (1) JP4074054B2 (ja)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6770932B2 (en) 2002-07-10 2004-08-03 Kabushiki Kaisha Toshiba Semiconductor memory device having a memory region and a peripheral region, and a manufacturing method thereof
JP2005038884A (ja) 2003-07-15 2005-02-10 Toshiba Corp 不揮発性半導体記憶装置及びその製造方法
JP2006032761A (ja) * 2004-07-20 2006-02-02 Renesas Technology Corp 不揮発性半導体記憶装置及び不揮発性半導体記憶装置の製造方法
KR100546936B1 (ko) * 2004-10-21 2006-01-26 주식회사 하이닉스반도체 반도체 메모리 소자의 금속배선 형성방법
JP4594796B2 (ja) 2005-05-24 2010-12-08 株式会社東芝 半導体装置およびその製造方法
JP2006332424A (ja) * 2005-05-27 2006-12-07 Toshiba Corp 半導体記憶装置
JP4810392B2 (ja) 2005-11-15 2011-11-09 株式会社東芝 不揮発性半導体記憶装置およびその製造方法
JP4664813B2 (ja) * 2005-12-21 2011-04-06 株式会社東芝 半導体記憶装置
JP2008098503A (ja) 2006-10-13 2008-04-24 Toshiba Corp 半導体装置およびその製造方法
KR101093967B1 (ko) * 2010-10-06 2011-12-15 주식회사 하이닉스반도체 낸드 플래시 메모리 소자 및 그 제조방법
JP2014053478A (ja) 2012-09-07 2014-03-20 Toshiba Corp 半導体記憶装置およびその製造方法
CN109192734B (zh) * 2018-09-28 2020-10-16 长江存储科技有限责任公司 3d存储器件

Also Published As

Publication number Publication date
JP2002110822A (ja) 2002-04-12

Similar Documents

Publication Publication Date Title
US7151295B2 (en) Non-volatile semiconductor memory device and process of manufacturing the same
US6271087B1 (en) Method for forming self-aligned contacts and local interconnects using self-aligned local interconnects
US20060186485A1 (en) NAND-type flash memory devices and fabrication methods thereof
JP2006286720A (ja) 半導体装置およびその製造方法
US20060284229A1 (en) Semiconductor device with a bit line contact plug and method of fabricating the same
JP4074054B2 (ja) 不揮発性半導体記憶装置の製造方法
JP2001274365A (ja) 不揮発性半導体記憶装置及びその製造方法
JP2004311947A (ja) Nandフラッシュメモリ素子の製造方法
JP2003100916A (ja) 半導体装置およびその製造方法
JP2006324503A (ja) 半導体装置の製造方法
CN101026129A (zh) 非易失性存储器件及其制造方法
US6849553B2 (en) Method of manufacturing semiconductor device
US6482699B1 (en) Method for forming self-aligned contacts and local interconnects using decoupled local interconnect process
JP5621381B2 (ja) 半導体装置及びその製造方法
KR100823395B1 (ko) 반도체 장치 및 그 제조 방법
JP4822792B2 (ja) 半導体装置およびその製造方法
JP2008205379A (ja) 不揮発性半導体メモリ及びその製造方法
KR101353346B1 (ko) 주변 회로 영역의 불순물 영역들에 대한 열적 부담을완화시키는 반도체 소자의 제조 방법
US7015087B2 (en) Gate-contact structure and method for forming the same
JPH08172174A (ja) 不揮発性半導体記憶装置とその製造方法
JP3963629B2 (ja) 半導体装置及びその製造方法
JP2007134470A (ja) 半導体装置及びその製造方法
JP2007266499A (ja) 不揮発性半導体メモリ及びその製造方法
KR19990088349A (ko) 비휘발성반도체메모리및그제조방법
JP2009059927A (ja) 不揮発性半導体記憶装置の製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040624

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050815

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070724

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071023

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080124

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110201

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120201

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120201

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130201

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees