JP4068227B2 - 低電圧cmos演算増幅器回路及びそれを具備したサンプルアンドホールド回路 - Google Patents

低電圧cmos演算増幅器回路及びそれを具備したサンプルアンドホールド回路 Download PDF

Info

Publication number
JP4068227B2
JP4068227B2 JP21157298A JP21157298A JP4068227B2 JP 4068227 B2 JP4068227 B2 JP 4068227B2 JP 21157298 A JP21157298 A JP 21157298A JP 21157298 A JP21157298 A JP 21157298A JP 4068227 B2 JP4068227 B2 JP 4068227B2
Authority
JP
Japan
Prior art keywords
operational amplifier
differential input
differential
output
amplifier circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP21157298A
Other languages
English (en)
Other versions
JPH11150430A (ja
Inventor
棟映 張
裕美 李
承勲 李
根淳 姜
煕哲 崔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung Electronics Co Ltd
Original Assignee
Samsung Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung Electronics Co Ltd filed Critical Samsung Electronics Co Ltd
Publication of JPH11150430A publication Critical patent/JPH11150430A/ja
Application granted granted Critical
Publication of JP4068227B2 publication Critical patent/JP4068227B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C7/00Arrangements for writing information into, or reading information out from, a digital store
    • G11C7/06Sense amplifiers; Associated circuits, e.g. timing or triggering circuits
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/45Differential amplifiers
    • H03F3/45071Differential amplifiers with semiconductor devices only
    • H03F3/45076Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier
    • H03F3/45179Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier using MOSFET transistors as the active amplifying circuit
    • H03F3/4521Complementary long tailed pairs having parallel inputs and being supplied in parallel
    • H03F3/45219Folded cascode stages
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/45Differential amplifiers
    • H03F3/45071Differential amplifiers with semiconductor devices only
    • H03F3/45479Differential amplifiers with semiconductor devices only characterised by the way of common mode signal rejection
    • H03F3/45632Differential amplifiers with semiconductor devices only characterised by the way of common mode signal rejection in differential amplifiers with FET transistors as the active amplifying circuit
    • H03F3/45636Differential amplifiers with semiconductor devices only characterised by the way of common mode signal rejection in differential amplifiers with FET transistors as the active amplifying circuit by using feedback means
    • H03F3/45641Measuring at the loading circuit of the differential amplifier
    • H03F3/45654Controlling the active amplifying circuit of the differential amplifier
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/45Indexing scheme relating to differential amplifiers
    • H03F2203/45398Indexing scheme relating to differential amplifiers the AAC comprising a voltage generating circuit as bias circuit for the AAC

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Amplifiers (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Description

【0001】
【発明の属する技術分野】
本発明はアナログ集積回路(analog intergrated circuits)に関するものであり、より詳しくは演算増幅器(operational amplifier)に関するものである。
【0002】
【従来の技術】
一般的に、"op-amp"として知られた演算増幅器回路はアナログ集積回路ICsで重要な構成要素である。理想的な演算増幅器は無限利得(infinite gain)、無限入力インピーダンス(infinite input impedance)及びゼロ出力インピーダンス(zero output impedance)を持つ差動入力の単一あるいは作動出力増幅器(single-ended or differential-ended output amplifier)である。それで、演算増幅器は集積回路では多様な応用に適合である。
【0003】
しかし、実質的な演算増幅器は理想的な動作とは別に動作される。このような他の動作中、主になる影響は(1)正確に増幅される信号の周波数範囲を制限し、(2)検出された信号の大きさをより低く制限し、(3)増幅器を具備したフィドバックシステムに使用される手動素子の入力インピーダンス大きさをより高くすることである。従って、演算増幅器(op-amp)の利得及び速度は演算増幅器の理想的でない動作により劣化される。速度及び利得は集積回路に具現された全判的なアナログ回路の達成可能な正確性及び速度を最終的に決定するので、多くのアナログ集積回路において、演算増幅器の利得及び速度は一番重要なスペックである。
【0004】
半導体技術が発展されることにより、最近携帯用機器に対した消費者の欲求が増加して個人携帯通信機器及びノートブックコンピュータのように小容量のバッテリにより動作する電子機器が早く発展している。そして、低い供給電源で長い時間の間、動作の間に動作する低電圧低電力回路の具現はシステム設計において、非常に重要な要素中、一つとして作用している。これと関連して現在いろいろな低電力回路設計のための方法がディジタル及びアナログ領域で研究開発されている。ディジタル領域でシステム電力消耗を減少させるための一番効果的な方法中の一つは供給電源を使用することであり、このような場合、ディジタルゲートの遅延時間を減少させ、高速システムへの応用が可能なようにするため、低いスレショルド電圧の特性を持つ素子が使用されている。
【0005】
しかし、漏洩電流の増加による静的(static)電力消費の増加及び低いスレショルド電圧(threshold voltage)が可能な工程を必要とする短所がある。断熱(adiabatic)システムの場合、伝達されたエナージを再び還元させることにより、電力消費を大きく減少されることができる。しかし、高密度を要求しながら、高速で動作するシステムの応用には限界がある。それ以外に、パストランジスタ(pass transistor)を使用するシステムの場合、既存のCMOSパストランジスタの速度を向上させながら、低電圧でも動作ができるようにさせる多様な形態のディジタル論理回路が開発されているが、スレショルド電圧による性能低下が補償されなければならない。
【0006】
アナログ集積回路でアナログ回路及びディジタル回路が共存する大規模混成モード(mixed-mode)集積回路システムで電力を一番多く消費するブロック中、一つは演算増幅器回路であり、低電力システムの具現のために低電圧で動作するCMOS演算増幅器回路の設計が必修的である。既存の低電圧CMOS演算増幅器回路設計する時、出力端に要求される大きな出力信号幅及び高い電圧利得を得るために増幅器を多段構造で使用し、一つの演算増幅器だけを使用する増幅器構造より大きな面積と大きな消費電力を必要とする短所がある。このような問題を全体システム側面で解決するための実例で、多段として構成されたパイプラインA/D変換器システムに適用された演算増幅器を上げることができる。
【0007】
図1は従来技術による演算増幅器回路を示す回路図である。そして、図2は図1の演算増幅器回路内のMOSFETが適切に動作されるようにバイアス電圧BIAS1〜BIAS5を供給するためのバイアス回路を示す回路図である。図1を参照すると、従来演算増幅器回路はPチャンネル及びNチャンネル入力部(P channel and N channel input section)110及び120を持つ差動入力部(differential input section)100,キャスコード電流ミラー(cascode current mirror)140及びキャスコード電流源(cascode current source)150を含む折り返したキャスコード利得段(folded cascode gain stage)130,そして、共通モード帰還(feedback)回路(CMFB)は差動出力電圧の共通モードを形成するために出力端にスイッチ、キャパシタ及びクロック等を使用して動作し、その結果演算増幅器回路の低電圧及び低電力動作を容易にすることができる。
【0008】
図1に図示された演算増幅器は出力端で一番目ポール(dominant pole:ωp1)を持ち、少信号の同時移動経路、すなわち、ノードであるT1,T2,T3及びT4で同じような大きさの二番目のポール(second pole:ωp2)を持つ。この分野の通常的な知識を習得した者によく知られているように、PMOSトランジスタのホール移動度(mobility)はNMOSトランジスタの電子移動度より小さいので、PMOSトランジスタはNMOSトランジスタより通常的に二倍以上大きく設計される。これにより、ノードT3及びT4からの寄生キャパシタンスより大きなノードT1及びT2でポールは演算増幅器回路の動作に大きな影響を及ばすようになる。従って、ノードT1及びT2からのポールを主に考えると、単位利得周波数で位相余裕(phase margin:φPM)は次のように表現される。
【0009】
【数1】
Figure 0004068227
【0010】
ここで、入力トランスコンダクタンス(transconductor:gm,n)はPチャンネル入力部110のトランスコンダクタンスとNチャンネル入力部120のトランスコンダクタンスを合わせたもので構成され、gm,p7はPMOSトランジスタM10のトランスコンダクタンスであり、CLは出力端の付加キャパシタであり、CpはノードT2の寄生キャパシタンスである。
【0011】
図1の演算増幅器回路は図2に図示された独立的に設計されたバイアス回路からバイアス電圧BIAS1〜BIAS5を供給してもらう。図2で、スイッチSW1はクロック信号により動作される。演算増幅器回路はクロック信号の半周期の間、スイッチーオフされる時、PMOSトランジスタM21及びM22のW/Lにより電流供給が一部又は完全に遮断される電力下降モードで動作され、クロック信号の余りの半周期の間、スイッチSW1がオンされる時、対応されるバイアス電圧(あるいは電流)が供給されることにより、正常動作モードに動作される。ここで、バイアス電圧BIAS5は増幅器回路の共通モード帰還回路CMFBをバイアスするための電圧であり、共通モード帰還回路CMFBはクロック信号により動作される。回路CMFBのバイアス電圧BIAS5は正常動作モードする時、クロック信号の雑音がひどいので、増幅器回路のバイアス電圧BIAS1〜BIAS4と分離設計される。
【0012】
しかし、電力下降モードで正常動作モードに転換される時、バイアス回路のPMOSトランジスタM23を通じてバイアス電圧BIAS4が発生されることにより、演算増幅器回路のNチャンネル入力部120は一番最初にバイアスされる。その次に、PMOSトランジスタM18及びM20を通じてバイアス電圧BIAS1及びBIAS2が発生され、その結果、バイアス電圧BIAS4によるNチャンネル入力部120のトランジスタM4,M5及びM6を通じて流れる電流がキャスコード電流ミラーのPMOSトランジスタM9及びM10を通じて流れる電流より先に立つ。
【0013】
従って、電力下降モードで正常動作モードに転換される時、瞬間的にトランスコンダクタンスgm,nがトランスコンダクタンスgm,p7より大きくなる。これを数学式に適用するようになると、演算増幅器回路の出力端の位相余裕φPMが悪くなり、その結果、出力を得る時までかかる整定時間(settling time)が長くなる。このような現象は電力下降モードする時、増幅器回路に供給される電流を完全に差段するためにバイアス回路のPMOSトランジスタM21を除去する場合、よりひどく現れる。
【0014】
【発明が解決しようとする課題】
従って、本発明の目的は動作モード転換する時、向上された位相余裕を持つ演算増幅器回路及びそれのバイアス回路を提供することである。
【0015】
本発明の他の目的は動作モード転換動作が早い整定時間を持つ演算増幅器回路及びそれのバイアス回路を具備したサンプルアンドホールド回路を提供することである。
【0016】
本発明の他の目的は安定された出力を得られる演算増幅器回路及びそれのバイアス回路を提供することである。
【0017】
本発明の他の目的は低電力演算増幅器回路及びそれのバイアス回路を提供することである。
【0018】
【課題を解決するための手段】
上述したような目的を達成するための本発明の一つの特徴によると、クロック信号を利用してオフループ形態で動作可能な低電圧演算増幅器回路において、差動入力信号を入力してもらうための第1差動入力対と第1及び第2差動出力を含む第1差動出力対を持つ第1差動入力部と、前記第1差動入力部の前記第1差動出力対に連結された第2差動入力対、前記演算増幅器回路の第1出力に連結された第1キャスコード電流源及び前記演算増幅器回路の第2出力に連結された第2キャスコード電流源を持つキャスコード電流源部と、前記演算増幅器回路の第1出力に連結された第1ミラー電流源と、前記演算増幅器回路の第2出力に連結された第2ミラー電流源を持ち、第3及び第4差動出力を含む第2差動出力対を持つキャスコード電流ミラー部と、前記差動入力信号を入力してもらうための第3差動入力対と前記キャスコード電流ミラー部の前記第2差動出力対に連結された第4差動入力対を持つ第2差動入力部及び、前記クロック信号に応答して前記各部を要求される動作状態にバイアスするための手段を含み、前記演算増幅器回路がクロック信号の半周期の間、非活性化される電力下降モードで余りの半周期の間、活性化される正常動作モードに転換される時、前記バイアス手段はキャスコード電流ミラー部をバイアスするための第1バイアス電圧と、その次、前記第1差動入力部をバイアスするための第2バイアス電圧と、そして、第2差動入力部をバイアスするための第3バイアス電圧を対応される前記各部に順次的に供給することを特徴とする。
【0019】
本発明の他の特徴によると、クロック信号を利用して差動入力信号をサンプリングし、ホールドするための回路において、前記ホールドされた差動入力信号を増幅するための演算増幅器及び、前記演算増幅器は、差動入力信号を入力してもらうための第1差動入力対と第1及び第2差動出力を含む第1差動出力対を持つ第1差動入力部と、前記第1差動入力部の前記第1差動出力対に連結された第2差動入力対、前記演算増幅器回路の第1出力に連結された第1キャスコード電流源及び演算増幅器回路の第2出力に連結された第2キャスコード電流源を持つキャスコード電流源部と、前記演算増幅器回路の前記第1出力に連結された第1ミラー電流源と、前記演算増幅器回路の第2出力に連結された第2ミラー電流源を持ち、第3及び第4差動出力を含む第2差動出力対を持つキャスコード電流ミラー部及び、前記差動入力信号を入力してもらうための第3差動入力対と前記キャスコード電流ミラー部の前記第2差動出力対に連結された第4差動入力対を持つ第2差動入力部を具備し、前記クロック信号に応答して前記演算増幅器の前記各部を要求される動作状態にバイアスするための手段を含み、前記演算増幅器回路が前記クロック信号の半周期の間、非活性化される電力下降モードで余りの半周期の間、活性化される正常動作モードに転換される時、前記バイアス手段は前記キャスコード電流ミラー部をバイアスするための第1バイアス電圧と、その次、第1差動入力部をバイアスするための第2バイアス電圧と、そして、第2差動入力部をバイアスするための第3バイアス電圧を対応される各部に順次的に供給することを特徴とする。
【0020】
このような回路により、動作モード転換する時、バイアス回路を通じて演算増幅器回路のトランジスタを要求される動作順番により順次的にバイアスすることができる。
【0021】
【発明の実施の形態】
以下、本発明の実施形態による参照図面を図3ないし図11に依拠して説明する。
【0022】
図3を参照すると、本発明の新規な演算増幅器回路はNチャンネル入力部120及びPチャンネル入力部110を含む差動入力部100,キャスコード電流ミラー140及びキャスコード電流源150を含む折り返したキャスコード利得段130,そして、回路100及び130を要求される動作状態にバイアスするためのバイアス電圧BIAS1〜BIAS6を発生するバイアス回路170を提供する。バイアス電圧回路170は一番最初にキャスコードミラー140をバイアスするための第1及び第2バイアス電圧BIAS1及びBIAS2を発生し、その次はNチャンネル入力部120及びPチャンネル入力部110をバイアスするための第4及び第3バイアス電圧BIAS4及びBIAS3を順次的に所定間隔をおいて発生する。
【0023】
このように、演算増幅器回路を前記した順序によりバイアスすることにより、まず、トランスコンダクタンスgm、p1が形成された後、正常動作モードのトランスコンダクタンスgm,nが形成される。そして、バイアス電圧BIAS4をバイアス電圧BIAS3より遅く供給されるようにしてから、正常動作モードのトランスコンダクタンスgm,nに到達する時間を遅延させることができる。従って、このようなバイアス電圧の供給により位相ωunityが位相ωp2から押される効果(pole splitting effect)を得られる。結局、動作モード転換する時、正常動作モードに至る時間、すなわち、早い整定時間を得られるだけでなく、安定された電圧を出力することができる。その上、オープンループ形態に動作する演算増幅器回路及びそれを具備したシステムで消費される電力を減少させることができ
る。
【0024】
再び、図3を参照すると、差動入力VIN及び差動出力VOUTを持つCMOS演算増幅器回路及びそれのバイアス回路の構成を示すブロック図が図示されている。差動入力は正の入力端子10と負の入力端子12を含む差動入力対で構成される。入力電圧信号VINは入力端子10及び12両端に印加される。入力電圧信号VINは入力端子10及び12に各々印加された二つの単一入力電圧(signle-ended input voltages)INN及びINPで構成される。図3の増幅器は差動入力部100及び折り返したキャスコード利得段(folded cascode gain stage)130を含む。
【0025】
差動入力部100はPチャンネル入力部110及びNチャンネル入力部120を含む。Pチャンネル入力部110は差動入力端子10及び12に接続されたトランジスタの差動入力対を持つ。Pチャンネル入力部110はキャスコード電流源150に信号電流I3及びI4を供給するためのトランジスタの差動出力対を含む。Nチャンネル入力部120は差動入力端子10及び12に連結された差動入力対を持つ。Nチャンネル入力部120はキャスコード電流ミラー140から信号電流I1及びI2を流して上げるための差動出力対を含む。
【0026】
折り返したキャスコード利得段130はキャスコード電流ミラー140とキャスコード電流源150を含む。キャスコード電流ミラー140は電流I5を供給するためのキャスコード電流源150の対応される入力に連結された第1出力OUTNを持つ。キャスコード電流ミラー140は電流I6を供給するためのキャスコード電流源150の対応される入力に連結された第2出力OUTPを含む。
【0027】
演算増幅器回路はキャスコード電流ミラー出力OUTN及びOUTPに各々連結された出力端子26及び28を含む。出力端子26及び28は作動出力VOUTを形成する。差動出力電圧VOUTは出力端子26及び28両端から発生される。差動出力電圧VOUTはキャスコード電流ミラー出力OUTNから生成された出力信号OUTNとキャスコード電流ミラー出力OUTPから生成された出力信号OUTPを含む。
【0028】
バイアス回路170は所定周期を持つクロック信号CLKに応答して演算増幅器回路のトランジスタを要求される動作状態にバイアスするためのバイアス電圧BIAS1〜BIAS6を発生する。クロック信号CLKを利用した演算増幅器回路が、この分野の通常的な知識を持つ人々によく知られているように、オープンループ形態で動作する場合、演算増幅器回路はクロック信号CLKの半周期の間、正常動作モードで動作し、余りの半周期の間は電力下降モードに動作するようになる。この時、バイアス回路170は演算増幅器回路が電力下降モードで正常動作モードに転換される時、バイアス電圧BIAS1〜BIAS6を所定期間間隔をおいて、順次的に供給するようになる。
【0029】
すなわち、クロック信号CLKが電力下降モードで正常動作モードに印加されると、回路170はバイアス電圧BIAS1及びBIAS2を一番最初にキャスコード電流ミラー140に供給し、その次はバイアス電圧BIAS3をPチャンネル入力部110に供給し、そして、バイアス電圧BIAS4をNチャンネル入力部120に供給するようになる。
【0030】
これで、演算増幅器の回路を前記した順番にバイアスすることにより、最初にトランスコンダクタンスgm,p1が形成され、所定時間が経過された後、正常動作モードのトランスコンダクタンスgm,nが形成される。そして、バイアス電圧BIAS4をバイアス電圧BIAS3より遅く供給させることにより、正常動作モードのトランスコンダクタンスgm,nに到達する時間を遅延させることができる。結局、動作モード転換する時、正常動作モードに至る時間、すなわち、早い整定時間を得られることだけでなく、安定された電圧を出力することができる。
【0031】
図4は図3の入力部100及びキャスコード利得段130の詳細回路を示す回路図である。
【0032】
図4を参照すると、Pチャンネル入力部110は差動増幅器(differential amplifier)を形成する三つのP−チャンネルMOS電界効果トランジスタ(field-effect-transistor)(以下、MOSトランジスタと称する)M100、M101及びM102を含み、PーチャンネルMOSトランジスタ(又は、PMOSトランジスタ)M100は入力MOSトランジスタM101及びM102のためのバイアス電流源(bias current source)を形成する。
【0033】
正の差動入力端子10は入力電圧INNを入力してもらうためのPMOSトランジスタM101のゲートに連結される。負の差動入力端子12は入力電圧INPを入力してもらうためのPMOSトランジスタM102のゲートに連結される。トランジスタM101及びM102のソースは電流源に接続された共通ソースノード1を形成するための共通に連結される。バイアス電流源を形成しているPMOSトランジスタM100のソースは電源電圧VDDを入力してもらう電源端子2に接続される。トランジスタM100のゲートはバイアス電圧BIAS4を入力してもらうための端子20に連結される。トランジスタM100のドレーンはトランジスタM101及びM102にバイアス電流を提供するためのそれの共通ソースノード1に連結される。
【0034】
Nチャンネル入力部120は差動増幅器(differential amplifier)を形成する三つのNMOSトランジスタM103、M104及びM105を含み、NMOSトランジスタM105は入力MOSトランジスタM103及びM104のためのバイアス電流源(bias current source)を形成する。正の差動入力端子10は入力電圧INNを入力してもらうためのNMOSトランジスタM103のゲートに連結される。負の差動入力端子12は入力電圧INPを入力してもらうためのNMOSトランジスタM104のゲートに連結される。トランジスタM101及びM102のソースは電流源を形成するためのトランジスタM105のドレーンに共通に連結される。NMOSトランジスタM105のソースは接地電圧VSSを入力してもらうための接地端子3に接続される。トランジスタM105のゲートはバイアス電圧BIAS3を入力してもらうための端子18に連結される。トランジスタM105のドレーンはトランジスタM101及びM102のソースに共通に接続される。
【0035】
図4に図示されたように、折り返したキャスコード利得段130は四つのPMOSトランジスタM106〜M109を含むキャスコード電流ミラー140と四つのNMOSトランジスタM110〜M113を含むキャスコード電流源150で構成される。キャスコード電流ミラー140は二つの電流源を含む。電流源中、第1ミラー電流源は出力端子26に接続されたPMOSトランジスタM106及びM108で構成され、第2ミラー電流源は出力端子28に接続されたPMOSトランジスタM107及びM109で構成される。
【0036】
第1及び第2ミラー電流源はNチャンネル入力部120をバイアスするための電流源のミラーとして構成される。第1ミラー電流源のトランジスタM106及びM108のチャンネルは電源端子2とキャスコード電流ミラー140の第1出力OUTC、すなわち、増幅器の出力端子OUTN26の間に直列に形成される。そして、トランジスタM106及びM108のゲートはバイアス電圧BIAS1及びBIAS2が各々印加される端子14及び16に接続される。第2ミラー電流源のトランジスタM107及びM109のチャンネルは電源端子2とキャスコード電流ミラー140の第2出力OUTP、すなわち、増幅器の出力端子OUTP28の間に直列に形成される。トランジスタM107及びM109のゲートはバイアス電圧BIAS1及びBIAS2が印加される端子14及び16に各々接続される。
【0037】
キャスコード電流源150は二つの電流源を含み、電流源はNMOSトランジスタM110及びM112からなる第1キャスコード電流源とNMOSトランジスタM111及びM113からなる第2キャスコード電流源で構成される。第1キャスコード電流源のトランジスタM110及びM112のチャンネルは出力端子OUTN26と接地電圧VSSが印加される接地端子3の間に直列に形成される。そして、トランジスタM110のゲートはバイアス電圧BIAS5の供給のための端子22に接続され、トランジスタM112のゲートは共通モード帰還回路160に接続される。第2キャスコード電流源のトランジスタM111及びM113のチャンネルは出力端子OUTP28と接地端子3の間に直列に形成される。トランジスタM111のゲートはバイアス電圧BIAS5の供給のための端子22に接続され、トランジスタM113のゲートは共通モード帰還回路160に接続される。
【0038】
図5を参照すると、差動入力部100及び折り返したキャスコード利得段130のトランジスタM114〜M128を要求される動作状態にバイアスするためのバイアス回路が図示されている。バイアス回路170は九つのPMOSトランジスタM114,M116,M120,M124A、M124B、M126及びM128、七つのNMOSトランジスタM115、M117、M121,M123,M125及びM127、一つのスイッチSW1そして、電流源IBIASで構成される。
【0039】
トランジスタM114及びM115のチャンネルは電源端子2と接地端子の間に直列に形成され、トランジスタM115のドレーン及びゲートがバイアス電圧BIAS6が出力される端子24に共通に接続される。トランジスタM116及びM117のチャンネルは電源端子2と接地端子3の間に直列に形成され、トランジスタM116のゲートとドレーンは相互接続され、バイアス電圧BIAS4が出力される端子20に連結される。トランジスタM118及びM119のチャンネルは電源端子2と接地端子3の間に直列に形成され、トランジスタM115のドレーン及びゲートは相互接続され、トランジスタM117のゲートに連結される。
【0040】
トランジスタM120及びM121は電源端子2と接地端子3の間に直列に形成されたチャンネルを持ち、トランジスタM120のゲートとドレーンは相互接続され、トランジスタM118のゲートに連結される。その上、トランジスタM120のドレーンはバイアス電圧BIAS1が出力される端子14に接続される。
【0041】
トランジスタM122及びM123は電源端子2と接地端子3の間に直列に形成されたチャンネルを持ち、トランジスタM122のゲートとドレーンは相互接続され、バイアス電圧BIAS3が出力される端子16に接続されている。そして、トランジスタM125のチャンネルはスイッチSW1の一つの端子4と接地端子3の間に形成され、それのゲート及びドレーンが相互接続される。その上、トランジスタM121、M123及びM125のゲートと共に連結される。トランジスタM124Aは電源端子2とトランジスタM123を通じて接地端子3の間に形成されたチャンネルを持つ。
【0042】
トランジスタM124Bのチャンネルは電源端子2とスイッチSW1の他の端子5の間に形成される。トランジスタM126及びM127のチャンネルは電源端子2と接地端子3の間に直列に形成され、トランジスタM127のゲートとドレーンは共に連結され、バイアス電圧BIAS5の出力のための端子22に接続される。トランジスタM128のソースは電源端子2に接続され、それのドレーンは電流源IBIASを通じて接地端子3に連結される。共に、トランジスタM114,M124A、M124B及びM126のゲートはトランジスタM128のゲートと共に連結される。
【0043】
演算増幅器回路の出力端の位相余裕φPMをよく維持して安定された信号処理結果を得るための先決課題は動作モード転換する時、トランスコンダクタンスgm、nがトランスコンダクタンスgm,p7よりいつも小さくなるようにすることである。これを達成するためにキャスコード電流ミラー140のトランジスタM108及びM109にバイアス回路170で発生されたバイアス電圧BIAS1及びBIAS2を供給してトランスコンダクタンスgm,p7を大きくした後、トランスコンダクタンスgm,nを大きくしてから数1から知られるように動作モード転換する時、正常動作モードからの位相余裕φPMより向上された位相余裕φPMを持つ。従って、図1のトランジスタM1、M7、そして、M8に供給されたバイアス電圧BIAS1を分離し、図4に図示されたように、キャスコード電流ミラー140のトランジスタM106及びM107のゲートはバイアス電圧BIAS1により制御され、所定時間が経過した後、Pチャンネル入力部110のトランジスタM100のゲートをバイアス電圧BIAS4により制御させた。
【0044】
言い換えれば、スイッチSW1がオンされると、バイアス回路170のトランジスタM121及びM123を通じてバイアス電圧BIAS1及びBIAS2が一番最初にキャスコード電流ミラー140に供給された後、その次にトランジスタM119を通じてバイアス電圧BIAS3がNチャンネル入力部120に供給され、トランスコンダクタンスgm,n1が形成される。続けて、トランジスタM117を通じてバイアス電圧BIAS4がPチャンネル入力部110に供給され、トランスコンダクタンスgm,p1を形成することにより、正常動作モードのトランスコンダクタンスgm,nに到達される。そして、バイアス電圧BIAS4をバイアス電圧BIAS3より遅く供給されるようにしてから、正常動作モードのトランスコンダクタンスgm,nに到達する時間が遅延される。このような、順次的なバイアス電圧の供給を通じて、ωunityが相対的にωp2から押される効果(pole splitting effect)を得られるし、動作モード転換瞬間から正常動作モードに至るまで、安定された電圧を出力することができる。
【0045】
特に、映像信号処理のための高速システムの場合、十分な入力トランスコンダクタンスを得るために増幅器回路に使用される素子の大きさが大きくなる。この時、電力下降モードで増幅器回路に電流供給を完全に遮断する場合、正常動作モードへの転換する時、早い動作速度を得られにくい。従って、バイアス回路170のトランジスタM124A及びM124Bを別々に分離して動作モードに関係なく、所定電流をトランジスタM124Aを通じて演算増幅器回路にいつも供給して上げることにより、動作モード転換する時、早い速度で動作可能である。ここで、バイアス電圧BIAS5及びBIAS6は出力の共通モード電圧を維持するための回路のバイアス電圧として動作モードに関係なく、いつも供給され、このようなバイアス電圧BIAS5及びBIAS6は全体的な電力消費に大きな影響を与えない。
【0046】
図6を参照すると、本発明の演算増幅器回路を具備したサンプルアンドホールド回路を示す回路図が図示されている。図6に図示されたCMOSサンプルアンドホールド回路は本発明による演算増幅器回路及びそれのバイアス回路170を具備している。サンプルアンドホールド回路は差動入力対SINN及びSINPの正しいサンプリング及びホールディング動作のための二つの相互重畳されないクロック位相(nonoverlapping clock phases)Q1及びQ2により動作される。クロック信号Q2により差動入力対SINN及びSINPがキャパシタC1及びC2にサンプリングされ、キャパシタC1及びC2の一つの端子6及び7の間に連結され、クロック位相Q1により制御されるスイッチトランジスタM133及びM134はクロック位相Q2により制御されるスイッチングトランジスタQ130〜Q132より前で、ターンオフされるので、端子6及び7は高いインピーダンスノードになり、差動入力対に依存するフィードスルー誤差(feedthrough error)を最小化する。
【0047】
サンプルアンドホールド回路はクロック位相Q1の制御により帰還キャパシタCF1及びCF2により入力された信号をそのまま維持するホールディングモードに動作され、ホールディングモード動作する時、二つの入力サンプリングキャパシタC1及びC2を互いに連結させることにより、単一入力の場合、生じることができる入力端の共通モード電圧の変化による影響を最小化する。このように、サンプルアンドホールド回路がサンプリングモードに動作する時、入力電圧のサンプリングがオープンループの形態からなるので、演算増幅器回路は使用されない。このような場合、演算増幅器回路は電力下降モードに動作される。
【0048】
電力下降モードする時、増幅器の出力ノードが一定なバイアス電圧に連結されていないと、任意の方向に動かれるし、これはホールディングモードからの整定時間に悪い影響を与えるようになる。これを防止するために電力下降モードで演算増幅器回路の差動出力対SOUTN及びSOUTPはトランジスタM139により共通モード水準の電圧で固定される。出力端のキャパシタCL1及びCL2は負荷キャパシタとして実際システムに応用された時、サンプルアンドホールド回路が駆動する回路ブロックの入力キャパシタ及びサンプルアンドホールドの出力端の寄生キャパシタンスをモデリングしたことである。
【0049】
図7は電力下降モードする時、増幅器に電流供給を完全に差段する場合、従来技術による電力消費及び本発明による電力消費を比較するためのサンプルアンドホールド回路の出力信号波形を比較した図面である。従来技術による出力信号波形は動作モード転換する時、演算増幅器回路の出力端に悪い位相余裕によるオーバーシュート(overshoot)が示し、安定された出力電圧を得られるまでの時間が長くかかることが知られる。バイアス回路170のトランジスタM124B及びM124Aの比率を120:0(電力下降モードする時、供給電流を完全に遮断する場合)、100:20、80:40及び0:120に変化させる場合、各比率による出力信号波形は図8に図示されたようである。
【0050】
図8で、時間100nS〜150nSの間の区間をより拡大した波形が図9に図示されている。図9で知られるように、全体電力消費を減少させるために供給電流差段比率を大きくしなくても、出力電圧の変化率(slew rate)だけが落ちるだけでなく、位相余裕が悪くないので、電力最小化方法を使用しない場合に比べて整定時間には大きな影響を及ばさない。しかし、高速影響信号処理システムのように高い出力電圧の変化率を必要とするシステムに応答される場合、それの動作速度によりトランジスタM124BとM124Aの大きさ比率を最適化する必要はある。
【0051】
供給電流遮断比率によるサンプルアンドホールド回路の全体電力消費は図10に図示されたことと同じである。この時、10mW程度の一番大きな電力が消費される正常動作モードに動作する場合を基準である1に正規化して図示した。10ビットの正確図に整定する時間の変化は図11に図示されたようである。整定時間は供給電流遮断比率が大きければ大きいほど、長くなる反面、全体的なサンプルアンドホールド回路の電力消費は最大42%まで節減されることが知られる。
【0052】
【発明の効果】
前述したように、オフループ形態で動作するCMOS演算増幅器回路のトランジスタをバイアスするためのバイアス回路を通じて増幅器が電力下降モードで正常動作モードに転換する時、要求される順序によりトランジスタを順序的にバイアスさせた。その結果、動作モード転換する時、遅延される整定時間を早くすることができるようになるだけでなく、向上された位相余裕を持つことにより、安定された出力が得られ、消費される電力を減少させることができる。
【図面の簡単な説明】
【図1】 従来技術による演算増幅器回路を示す回路図である。
【図2】 図1の演算増幅器回路のトランジスタをバイアスするためのバイアス回路を示す回路図である。
【図3】 本発明による演算増幅器回路及びそれのバイアス回路の構成を示すブロック図である。
【図4】 図3の演算増幅器回路を示す回路図である。
【図5】 図3のバイアス電圧発生回路を示す回路図である。
【図6】 本発明の好ましい実施形態によるサンプルアンドホールド回路を示す回路図である。
【図7】 本発明及び従来技術による図6のサンプルアンドホールド回路の出力信号波形を示す図面である。
【図8】 バイアス電流差段比率によるサンプルアンドホールド回路を出力信号波形を示す図面である。
【図9】 図8の一部分を拡大した図面である。
【図10】 供給電流差段比率によるサンプルアンドホールド回路の正規化された電力消費を示す図面である。
【図11】 供給電流差段比率による出力信号波形の整定時間を示す図面である。
【符号の説明】
110 Pチャンネル入力部
120 Nチャンネル入力部
130 キャスコード利得段
140 キャスコード電流ミラー
150 キャスコード電流源
160 共通モード帰還回路
170 バイアス回路
整理番号 F05433A1

Claims (2)

  1. クロック信号を利用してオフループ形態で動作可能な低電圧演算増幅器回路において、
    差動入力信号を入力してもらうための第1差動入力対と第1及び第2差動出力を含む第1差動出力対を持つ第1差動入力部と、
    前記第1差動入力部の前記第1差動出力対に連結された第2差動入力対、前記演算増幅器回路の第1出力に連結された第1キャスコード電流源及び前記演算増幅器回路の第2出力に連結された第2キャスコード電流源を持つキャスコード電流源部と、
    前記演算増幅器回路の第1出力に連結された第1ミラー電流源と、前記演算増幅器回路の第2出力に連結された第2ミラー電流源を持ち、第3及び第4差動出力を含む第2差動出力対を持つキャスコード電流ミラー部と、
    前記差動入力信号を入力してもらうための第3差動入力対と前記キャスコード電流ミラー部の前記第2差動出力対に連結された第4差動入力対を持つ第2差動入力部及び、
    前記クロック信号に応答して前記各部を要求される動作状態にバイアスするための手段を含み、
    前記演算増幅器回路がクロック信号の半周期の間、非活性化される電力下降モードで余りの半周期の間、活性化される正常動作モードに転換される時、前記バイアス手段はキャスコード電流ミラー部をバイアスするための第1バイアス電圧と、その次、前記第1差動入力部をバイアスするための第2バイアス電圧と、そして、第2差動入力部をバイアスするための第3バイアス電圧を対応される前記各部に順次的に供給することを特徴とする演算増幅器回路。
  2. クロック信号を利用して差動入力信号をサンプリングし、ホールドするための回路において、
    前記ホールドされた差動入力信号を増幅するための演算増幅器及び、
    前記演算増幅器は、
    差動入力信号を入力してもらうための第1差動入力対と第1及び第2差動出力を含む第1差動出力対を持つ第1差動入力部と、
    前記第1差動入力部の前記第1差動出力対に連結された第2差動入力対、前記演算増幅器回路の第1出力に連結された第1キャスコード電流源及び演算増幅器回路の第2出力に連結された第2キャスコード電流源を持つキャスコード電流源部と、
    前記演算増幅器回路の前記第1出力に連結された第1ミラー電流源と、前記演算増幅器回路の第2出力に連結された第2ミラー電流源を持ち、第3及び第4差動出力を含む第2差動出力対を持つキャスコード電流ミラー部及び、
    前記差動入力信号を入力してもらうための第3差動入力対と前記キャスコード電流ミラー部の前記第2差動出力対に連結された第4差動入力対を持つ第2差動入力部を具備し、
    前記クロック信号に応答して前記演算増幅器の前記各部を要求される動作状態にバイアスするための手段を含み、
    前記演算増幅器回路が前記クロック信号の半周期の間、非活性化される電力下降モードで余りの半周期の間、活性化される正常動作モードに転換される時、前記バイアス手段は前記キャスコード電流ミラー部をバイアスするための第1バイアス電圧と、その次、第1差動入力部をバイアスするための第2バイアス電圧と、そして、第2差動入力部をバイアスするための第3バイアス電圧を対応される各部に順次的に供給することを特徴とするサンプルアンドホールド回路。
JP21157298A 1997-07-29 1998-07-27 低電圧cmos演算増幅器回路及びそれを具備したサンプルアンドホールド回路 Expired - Fee Related JP4068227B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1019970035816A KR100284024B1 (ko) 1997-07-29 1997-07-29 저전압 씨모오스 연산 증폭기 회로 및 그것을 구비한 샘플 앤드 홀드 회로
KR199735816 1997-07-29

Publications (2)

Publication Number Publication Date
JPH11150430A JPH11150430A (ja) 1999-06-02
JP4068227B2 true JP4068227B2 (ja) 2008-03-26

Family

ID=19516096

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21157298A Expired - Fee Related JP4068227B2 (ja) 1997-07-29 1998-07-27 低電圧cmos演算増幅器回路及びそれを具備したサンプルアンドホールド回路

Country Status (3)

Country Link
US (1) US6052025A (ja)
JP (1) JP4068227B2 (ja)
KR (1) KR100284024B1 (ja)

Families Citing this family (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6614285B2 (en) 1998-04-03 2003-09-02 Cirrus Logic, Inc. Switched capacitor integrator having very low power and low distortion and noise
US6369745B1 (en) * 1998-04-03 2002-04-09 Cirrus Logic, Inc. Analog to digital switched capacitor converter using a delta sigma modulator having very low power, distortion and noise
US6107883A (en) * 1998-09-10 2000-08-22 Seiko Epson Corporation High gain, high speed rail-to-rail amplifier
US6150883A (en) * 1999-07-22 2000-11-21 Burr-Brown Corporation Rail-to-rail input/output operational amplifier and method
US6529070B1 (en) * 1999-10-25 2003-03-04 Texas Instruments Incorporated Low-voltage, broadband operational amplifier
US6265941B1 (en) * 1999-11-12 2001-07-24 Agere Systems Guardian Corp. Balanced differential amplifier having common mode feedback with kick-start
US6278323B1 (en) * 2000-04-12 2001-08-21 Intel Corporation High gain, very wide common mode range, self-biased operational amplifier
US6388522B1 (en) * 2000-08-23 2002-05-14 Texas Instruments Incorporated Common mode feedback bias for low voltage opamps
US6750715B2 (en) * 2001-04-16 2004-06-15 Zeevo, Inc. Logarithmic IF amplifier with dynamic large signal bias circuit
US6525613B2 (en) 2001-05-25 2003-02-25 Infineon Technologies Ag Efficient current feedback buffer
JP3791354B2 (ja) 2001-06-04 2006-06-28 セイコーエプソン株式会社 演算増幅回路、駆動回路、及び駆動方法
JP3820918B2 (ja) 2001-06-04 2006-09-13 セイコーエプソン株式会社 演算増幅回路、駆動回路、及び駆動方法
JP3497495B2 (ja) * 2001-11-21 2004-02-16 株式会社半導体理工学研究センター サンプルホールド回路
KR100413182B1 (ko) * 2001-11-30 2003-12-31 한국전자통신연구원 차동 선형 증폭기
US6583669B1 (en) 2002-04-08 2003-06-24 National Semiconductor Corporation Apparatus and method for a compact class AB turn-around stage with low noise, low offset, and low power consumption
US6870424B2 (en) * 2002-10-29 2005-03-22 Fairchild Semiconductor Corporation Low voltage differential in differential out receiver
US6781460B2 (en) * 2002-10-29 2004-08-24 Fairchild Semiconductor Corp. Low power low voltage differential signal receiver with improved skew and jitter performance
US6970043B2 (en) * 2002-10-29 2005-11-29 Fairchild Semiconductor Corporation Low voltage, low power differential receiver
US6747514B1 (en) * 2003-02-25 2004-06-08 National Semiconductor Corporation MOSFET amplifier with dynamically biased cascode output
JP3920236B2 (ja) * 2003-03-27 2007-05-30 Necエレクトロニクス株式会社 差動増幅器
JP2004328487A (ja) * 2003-04-25 2004-11-18 Renesas Technology Corp 演算増幅器
US6943619B1 (en) * 2003-05-21 2005-09-13 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Practical active capacitor filter
US6822513B1 (en) * 2003-05-28 2004-11-23 Ami Semiconductor, Inc. Symmetric and complementary differential amplifier
KR100574968B1 (ko) * 2004-02-10 2006-04-28 삼성전자주식회사 옵셋 보상회로를 갖는 연산증폭기
FR2868626B1 (fr) * 2004-03-31 2006-06-23 St Microelectronics Sa Amplificateur differentiel a deux sorties et a entree unique a linearite amelioree
JP4826073B2 (ja) * 2004-08-05 2011-11-30 日本電気株式会社 差動増幅器、及びそれを用いた表示装置のデータドライバ
KR100638487B1 (ko) * 2004-11-11 2006-10-26 삼성전자주식회사 공통모드 피드백 회로를 구비한 상보형 트랜스컨덕턴스증폭기 및 트랜스컨덕턴스 증폭방법
KR20060099322A (ko) * 2005-03-11 2006-09-19 엘지전자 주식회사 저전압 차동신호 수신장치
US7521993B1 (en) * 2005-05-13 2009-04-21 Sun Microsystems, Inc. Substrate stress signal amplifier
US7764092B2 (en) * 2006-01-10 2010-07-27 Samsung Electronics Co., Ltd. Phase locked loop and phase locking method
US20070159264A1 (en) * 2006-01-10 2007-07-12 Samsung Electronics Co., Ltd. Phase-locked loop with adaptive bandwidth
JP2008048039A (ja) * 2006-08-11 2008-02-28 Sharp Corp 演算増幅回路およびそれを用いた半導体装置
US7532072B1 (en) * 2007-03-02 2009-05-12 Linear Technology Corporation Method to control the output common mode in a differential OPAMP with rail-to-rail input stage
CN101295983B (zh) * 2007-04-25 2010-06-09 中国科学院微电子研究所 一种双采样全差分采样保持电路
US7541871B2 (en) 2007-05-02 2009-06-02 Micron Technology, Inc. Operational transconductance amplifier (OTA)
US7564308B1 (en) * 2007-06-13 2009-07-21 National Semiconductor Corporation Self-biased operational amplifier
JP5045294B2 (ja) * 2007-07-30 2012-10-10 富士通セミコンダクター株式会社 カスコードカレントミラー回路を有する内部電源回路
US7646244B1 (en) 2008-07-24 2010-01-12 National Semiconductor Corporation Apparatus and method for unity gain buffer with high switching speed and low quiescent current
US7821339B1 (en) * 2009-04-27 2010-10-26 Broadcom Corporation Composite differential RF power amplifier layout
TWI479800B (zh) * 2010-09-27 2015-04-01 Novatek Microelectronics Corp 差動放大器電路
CN102447443A (zh) * 2010-09-30 2012-05-09 联咏科技股份有限公司 差动放大器电路
CN102594308B (zh) * 2010-11-22 2015-03-25 快捷半导体(苏州)有限公司 具有低温度相关性的迟滞比较器
US9634655B2 (en) * 2015-02-24 2017-04-25 Panasonic Corporation Drive device having first and second switching devices with different gate widths
US9998120B1 (en) * 2017-03-02 2018-06-12 Xilinx, Inc. Circuit for and method of shifting a high range input common mode voltage
CN109905105B (zh) * 2019-02-18 2023-06-20 长沙理工大学 低延迟低电压电流比较器及电路模块
CN110289818A (zh) * 2019-06-21 2019-09-27 清能华波(北京)科技有限公司 基于常数过驱动偏置的高温度鲁棒性的运算放大器电路

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4533876A (en) * 1983-10-18 1985-08-06 American Microsystems, Inc. Differential operational amplifier with common mode feedback
IT1200788B (it) * 1985-10-14 1989-01-27 Sgs Microelettronica Spa Amplificatore operazionale tutto differenziale interno per circuiti integrati di tipo cmos
ATE108961T1 (de) * 1986-09-26 1994-08-15 Siemens Ag Operationsverstärker.
US5166635A (en) * 1991-03-27 1992-11-24 Level One Communications, Inc. Digital data line driver
US5117199A (en) * 1991-03-27 1992-05-26 International Business Machines Corporation Fully differential follower using operational amplifier
US5442318A (en) * 1993-10-15 1995-08-15 Hewlett Packard Corporation Gain enhancement technique for operational amplifiers
JP2892287B2 (ja) * 1994-02-04 1999-05-17 松下電器産業株式会社 演算増幅器

Also Published As

Publication number Publication date
JPH11150430A (ja) 1999-06-02
KR100284024B1 (ko) 2001-03-02
US6052025A (en) 2000-04-18
KR19990012425A (ko) 1999-02-25

Similar Documents

Publication Publication Date Title
JP4068227B2 (ja) 低電圧cmos演算増幅器回路及びそれを具備したサンプルアンドホールド回路
US8063702B2 (en) High frequency receiver preamplifier with CMOS rail-to-rail capability
EP2251977B1 (en) Low-noise, low-power, low drift offset correction in operational and instrumentation amplifiers
CN102291103B (zh) 动态体偏置型c类反相器及其应用
KR960011407B1 (ko) 저전압 고속동작의 씨모스 (cmos) 연산증폭기
US7474154B1 (en) Bias device clamping circuit for fast over-range recovery
EP1980017B1 (en) Amplifier circuit
US6566951B1 (en) Low voltage variable gain amplifier having constant common mode DC output
CN113612449A (zh) 一种运算放大器电路
JPH10303664A (ja) 可変利得増幅器
US7071778B2 (en) High-speed low-power dynamic current biased operational amplifier
Yan et al. Constant-g/sub m/techniques for rail-to-rail CMOS amplifier input stages: a comparative study
US7078971B2 (en) Class AB CMOS amplifiers
JP2005303664A (ja) 差動増幅回路
US9231540B2 (en) High performance class AB operational amplifier
CN216490413U (zh) 轨到轨放大器共模感知控制常数跨导输入级的电路
Song et al. A constant-$ g_ {m} $ constant-slew-rate rail-to-rail input stage with static feedback and dynamic current steering for VLSI cell libraries
KR100668455B1 (ko) 가변 이득 증폭기
CN215420202U (zh) 一种运算放大器电路
JP2005328464A (ja) 増幅器及びこれを用いた液晶ディスプレイ装置
JP2004180268A (ja) 増幅回路及びこれを用いた液晶ディスプレイ装置
TWI790909B (zh) 高速緩衝放大器
US6559716B2 (en) Switchable operational amplifier for switched op-amp applications
EP1901425B1 (en) Amplifier with increased bandwidth and method thereof
JP3077664B2 (ja) 入力回路

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050224

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070817

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070821

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080110

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110118

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120118

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees