JP4065727B2 - 多重pwmサイクロコンバータ - Google Patents

多重pwmサイクロコンバータ Download PDF

Info

Publication number
JP4065727B2
JP4065727B2 JP2002177866A JP2002177866A JP4065727B2 JP 4065727 B2 JP4065727 B2 JP 4065727B2 JP 2002177866 A JP2002177866 A JP 2002177866A JP 2002177866 A JP2002177866 A JP 2002177866A JP 4065727 B2 JP4065727 B2 JP 4065727B2
Authority
JP
Japan
Prior art keywords
current
converter
phase
axis
voltage command
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002177866A
Other languages
English (en)
Other versions
JP2003259647A (ja
Inventor
泰彦 味口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Otis Elevator Co
Original Assignee
Otis Elevator Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Otis Elevator Co filed Critical Otis Elevator Co
Priority to JP2002177866A priority Critical patent/JP4065727B2/ja
Publication of JP2003259647A publication Critical patent/JP2003259647A/ja
Application granted granted Critical
Publication of JP4065727B2 publication Critical patent/JP4065727B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Ac-Ac Conversion (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は自己消弧素子を用いたPWM(Pulse Width Modulation;パルス幅変調)サイクロコンバータ(ここでは変換器ともいう。)を並列結合した多重変換器と、その電流バランス制御に関する。
【0002】
【従来の技術】
PWM サイクロコンバータは交流入力を直接可変電圧可変周波数の交流出力に変換する装置である。図6に従来から知られているPWMサイクロコンバータの回路図の一例を示す。図6において、1は三相交流電源,2はLCフィルタ,3は双方向スイッチ9個を組み合わせて構成されるPWMサイクロコンバータ、4は負荷である。PWMサイクロコンバータ3を構成する双方向スイッチは、例えば図7のように構成される。図7において、5は単方向IGBT(絶縁ゲートバイポーラトランジスタ),6はダイオードである。双方向スイッチはゲート信号によりどちらの方向の電流もON/OFFできる。
【0003】
モータドライブ用途などに、図8に示すような交流入力を整流器にて一度直流に変換し,その後インバータを用いて可変電圧可変周波数の交流に変換する装置が広く使われているが、直流部には大容量の電解コンデンサが使われることが多く、体積,コスト,寿命の問題があった。
【0004】
また、整流器としてコンデンサインプット形整流器が広く使われているが、この方式は交流入力側高調波が大きく、力率も悪い。また、クレーン,エレベータなどのように回生運転のモードがある装置では直流部に戻されたエネルギをダイナミックブレーキで消費するしかなかった。
【0005】
PWMサイクロコンバータは交流を直接交流に変換するので直流リンク部のコンデンサが不要で、寿命の問題がなく、装置を小型にできる。また、PWM(パルス幅変調)手法を工夫することにより、交流入力側の高調波を極めて小さくでき、入力側力率もほぼ1にすることができる。さらに、回生エネルギを電源側に返すことができ、省エネにもなる。
【0006】
【発明が解決しようとする課題】
PWMサイクロコンバータは前記の種々の特長を持つが、PWMサイクロコンバータにおいては出力端子の開放、入力側の短絡を避ける必要があり、スナバも含めて大電流のスタックを構成するのが原理的に難しく、その結果、大容量の変換器を製作するのが難しいという問題があった。
本発明は上記問題点を解決するべくPWMサイクロコンバータの並列多重化を提案することと並列多重化した場合の電流バランス制御方法を提案することを目的とする。
【0010】
【課題を解決するための手段】
本願発明では、複数のPWMサイクロコンバータの出力をリアクトルを介して並列結合した三相出力多重変換器において、各単位変換器の出力電流に対して零相分電流を検出し、単位変換器間の零相分電流偏差に応じて,もしくは各単位変換器の零相分電流値に応じて各単位変換器への電圧指令を補正することを特徴とする多重PWMサイクロコンバータを提案する。
【0011】
また、請求項2に記載の発明では、複数のPWMサイクロコンバータの出力をリアクトルを介して並列結合した三相出力多重変換器において、各単位変換器の出力電流に対して三相/二相変換及び回転座標変換を行い、単位変換器間のd軸電流偏差及びq軸電流偏差に応じて各単位変換器に対するd軸電圧指令、q軸電圧指令を補正することを特徴とする多重PWMサイクロコンバータを提案する。
【0012】
また、請求項3に記載の発明では、複数のPWMサイクロコンバータの出力をリアクトルを介して並列結合した三相出力多重変換器において、各単位変換器の出力電流に対して三相/二相変換及び回転座標変換を行い、各単位変換器のd軸電流と変換器全体のd軸平均電流との差、及び各単位変換器のq軸電流と変換器全体のq軸平均電流との差に応じて各単位変換器に対するd軸電圧指令,q軸電圧指令を補正することを特徴とする多重PWMサイクロコンバータを提案する。
【0013】
また、請求項4に記載の発明では、請求項2または請求項3に記載の多重PWMサイクロコンバータにおいて、さらに各単位変換器の出力電流の零相分を検出し、零相分の3分の1を各相出力電流から減じて補正した出力電流に対して三相/二相変換及び回転座標変換を行うことを特徴とする多重PWMサイクロコンバータを提案する。
これらの発明では、電流のアンバランスなく変換器を動かすことができるので、大容量の変換器を安定して動かすことができる。
【0014】
【発明の実施の形態】
以下、図1から図5を用いて本発明の実施の形態を詳細に説明する。
図1に本発明の第1の実施の形態を示す。図1において図6と同じ符号を付したものは同じものを示すので説明は省略する。図1において3A,3BはPWMサイクロコンバータ(単位マトリックスコンバータ(単位変換器))で、それぞれ双方向スイッチ9個で構成された3入力3出力である。7A,7Bは前記単位変換器3A,3Bのそれぞれa相,b相,c相を並列に接続するリアクトルである。二つの単位変換器3A,3Bの出力電流はこれらのリアクトルで合成され、負荷4に供給される。このように並列接続することにより全体として単位変換器の場合の約2倍の電流を供給でき、大容量の負荷も駆動できるようになる。
【0015】
図2に本発明の第2の実施の形態を示す。図2において3A,3Bはそれぞれ6個の双方向スイッチで構成される3入力2出力PWMサイクロコンバータ(マトリックスコンバータ)である。7A,7Bは前記単位変換器3A,3Bの出力を並列に接続するためのリアクトルである。4は単相交流負荷または直流負荷である。本実施形態においても,並列接続によってより大きい電流を供給できるのは同様である。
【0016】
図3は本発明の第3の実施の形態で、本発明の請求項2に記載の発明の具体的構成である。
図3において7は単位変換器3A,3Bの各相の出力を並列接続するリアクトルであり、それぞれ一つの鉄心に各変換器出力の巻線を巻いた構成である。リアクトル7の一例を図4に示す。図4のリアクトルにおいては単位変換器3Aの負荷電流ia1による磁束φ1と単位変換器3Bの負荷電流ia2による磁束φ2がほぼ打ち消し合うので、変換器間の横流ia1−ia2の最大値を考慮して鉄心を設計することができ、図1の実施例のリアクトル7A,7Bに比べて小型かつ経済的なリアクトルとすることができる。
【0017】
図5に本発明の第4の実施の形態を示す。
各単位変換器の双方向スイッチに一つの制御装置から全く同じゲート信号を与えたとしても、各スイッチ素子の順方向電圧ドロップのばらつき,各スイッチ素子のターンオンタイム,ターンオフタイムのばらつきなどのため、単位変換器の出力電流分担にアンバランスが生じる可能性がある。本実施形態は電流バランス制御の一例である。ここでは2個の3入力2出力PWMサイクロコンバータが直流を出力している場合の電流バランス制御を扱う。
【0018】
図5において8A, 8Bは第1の単位変換器3Aの出力電流iP1,iN1を検出する電流センサ,8C,8Dは第2の単位変換器3Bの出力電流iP2,iN2を検出する電流センサである。9Aは加算器であり、iP1,iP2を加算することで多重PWMサイクロコンバータ全体の出力電流idcを算出する。10Aは減算器で、電流指令idc *と出力電流idcの差を演算する。減算器10Aの出力は電流制御増幅器11に入力され、変換器全体に対する電圧指令v*が出力される。10Bは第1の変換器のP側出力電流iP1と第2の変換器のP側出力電流iP2の差ΔiPを算出する減算器,10Cは第1の変換器のN側出力電流iN1と第2の変換器のN側出力電流iN2の差ΔiNを算出する減算器である。
【0019】
12A,12Bはスイッチ選択ロジック13により制御されるスイッチで、コンプリメンタリに動作する。スイッチ12A=ON,スイッチ12B=OFFの場合は
Δi=ΔiP
となり、スイッチ12A=OFF,スイッチ12B=ONの場合は
Δi=ΔiN
となる。14は電流偏差増幅器であり、電流偏差Δiを入力とし、電圧補正指令Δv*を出力する。10D,9Bはそれぞれ減算器,加算器であり、電圧指令v*が式
v1 *=v*−Δv*
v2 *=v*+Δv*
により補正され、第1の変換器に対する電圧指令v1 *,第2の変換器に対する電圧指令v2 *が得られる。電圧指令v1 *,v2 *はそれぞれPWMロジック15A,15Bに入力され、変換器3A,3Bの双方向スイッチに対するゲート信号がPWMロジック15A,15Bから供給される。
【0020】
ここでスイッチ選択ロジック13の動作の詳細を解説しておく。3入力2出力のPWMサイクロコンバータ3A,3Bは出力電圧指令と入力電流指令に応じて下記の6種のどれかでパルス幅変調される。
(1)A1 +=ON,B1 +=C1 +=OFF,A1 -,B1 -,C1 -に時間を配分しPWM
(各時刻で一つがON,残り二つがOFF)
A2 +=ON,B2 +=C2 +=OFF,A2 -,B2 -,C2 -に時間を配分しPWM
(2)C1 -=ON,A1 -=B1 -=OFF,A1 +,B1 +,C1 +に時間を配分しPWM
C2 -=ON,A2 -=B2 -=OFF,A2 +,B2 +,C2 +に時間を配分しPWM
(3)B1 +=ON,A1 +=C1 +=OFF,A1 -,B1 -,C1 -に時間を配分しPWM
B2 +=ON,A2 +=C2 +=OFF,A2 -,B2 -,C2 -に時間を配分しPWM
(4)A1 -=ON,B1 -=C1 -=OFF,A1 +,B1 +,C1 +に時間を配分しPWM
A2 -=ON,B2 -=C2 -=OFF,A2 +,B2 +,C2 +に時間を配分しPWM
(5)C1 +=ON,A1 +=B1 +=OFF,A1 -,B1 -,C1 -に時間を配分しPWM
C2 +=ON,A2 +=B2 +=OFF,A2 -,B2 -,C2 -に時間を配分しPWM
(6)B1 -=ON,A1 -=C1 -=OFF,A1 +,B1 +,C1 +に時間を配分しPWM
B2 -=ON,A2 -=C2 -=OFF,A2 +,B2 +,C2 +に時間を配分しPWM
【0021】
(1),(3),(5)の場合、P側のリアクトル7A,7Cは交流入力の同じ相に接続されるので、これらのPWMが行われている期間は電流値iP1,iP2は増減しない。N側のリアクトル7B,7Dに印加される平均電圧はそれぞれA1 -,B1 -,C1 -に配分する時間、A2 -,B2 -,C2 -に配分する時間により調節可能であり、ΔiN=iN1−iN2を小さくする方向に制御できる。この期間ではスイッチ選択ロジック13はスイッチ12Bを選択し、Δi=ΔiNとする。
【0022】
一方,(2),(4),(6)の場合,N側リアクトル7B,7Dは交流入力の同じ相に接続されるので、これらのPWMが行われている期間は電流値iN1,iN2は増減しない。P側のリアクトル7A,7Cに印加される平均電圧はそれぞれA1 +,B1 +,C1 +に配分する時間、A2 +,B2 +,C2 +に配分する時間により調節可能であり、ΔiP=iP1−iP2を小さくする方向に制御できる。この期間ではスイッチ選択ロジック13はスイッチ12Aを選択し、Δi=ΔiPとする。
【0023】
このように本実施例ではPWMスイッチングに応じ、N側リアクトル電流が増減しない期間ではP側電流偏差ΔiPを電流偏差増幅器14に接続し、P側リアクトル電流が増減しない期間ではN側電流偏差ΔiNを電流偏差増幅器14に接続して電流バランス制御を行なうので、全体としてP側,N側とも電流がバランスするように制御が行われる。
【0024】
ここでは2多重PWMサイクロコンバータの電流バランス制御の例を述べたが、例えば3多重の場合には変換器(1)と変換器(2)の電流偏差を用いて変換器(1),変換器(2)の電圧指令を補正し、変換器(2)と変換器(3)の電流偏差を用いて変換器(2),変換器(3)の電圧指令を補正することができる。さらに、変換器(3)と変換器(1)の電流偏差を用いて変換器(3),変換器(1)の電圧指令の補正を付加する実施例も可能である。
多重数が3を越えるときも、変換器(k)と変換器(k+1)の電流偏差を用いて変換器(k),変換器(k+1)の電圧指令を補正すれば良いのは言うまでもない。
【0025】
また、三相出力の場合の多重PWMサイクロコンバータの制御方法について、図9から図15を用いて本発明の実施の形態を詳細に説明する。
図9に本発明の第5の実施の形態を示す。図9において3A,3Bは三相出力PWMサイクロコンバータ,4は負荷,7A,7Bは並列結合のためのリアクトル,8A,8Bは各変換器の出力電流を検出する電流センサ,16Aは変換器3Aの零相電流
iz1=ia1+ib1+ic1
を算出する零相電流検出器,16Bは変換器3Bの零相電流
iz2=ia2+ib2+ic2
を算出する零相電流検出器,10Aは単位変換器間の零相電流偏差
δiz=iz1−iz2
を検出する減算器,17は零相電流偏差を減少する方向に制御するための零相電流補正コントローラであり、例えばゲイン要素が用いられる。18は多重PWMサイクロコンバータ全体に対する電圧指令va *,vb *,vc *を発生する電圧指令信号発生器である。
【0026】
10B,10C,10Dは零相電流偏差コントローラ17の出力を用いて変換器全体に対する電圧指令を補正して変換器3Aに対する電圧指令va1 *,vb1 *,vc1 *を発生する減算器,9A,9B,9Cは零相電流偏差コントローラ17の出力を用いて変換器全体に対する電圧指令を補正して変換器3Bに対する電圧指令va2 *,vb2 *,vc2 *を発生する加算器,19Aは電圧指令va1 *,vb1 *,vc1 *に基づいて変換器3Aの半導体スイッチへのON/OFF指令を発生するパルス幅変調器,19Bは電圧指令va2 *,vb2 *,vc2 *に基づいて変換器3Bの半導体スイッチへのON/OFF指令を発生するパルス幅変調器である。
【0027】
本実施形態では、各単位変換器の零相電流を検出し、変換器間の零相電流偏差に応じて各単位変換器への電圧指令一式を増減させるので、零相電流が累積することなく、安定した運転が可能となる。
【0028】
次に,第6の実施の形態を説明する前に,関連するPWMの一手法を説明しておく。(本手法は文献
[1]小山,夏,樋口,黒木,山田,古賀,「PWMサイクロコンバータのVVVFオンライン制御」,電気学会論文誌D,Vol.116-D,No.6, pp.644-651, 1996[2]S.Ishii, E. Yamamoto, H.Hara, E.Watanabe, A.M.Hava, and X.Xia, ” A Vector Controlled High Performance Matrix Converter Induction Motor Drive”, Conference record of IPEC-Tokyo, pp. 235-240, April, 2000に基づいている)
【0029】
図6に示した単機PWMサイクロコンバータにおいて、ある時刻の交流入力電圧ER,ES,ETを値の大きい順に並べてEmax,Emid,Eminとする。また、出力すべき電圧Va,Vb,Vcについても大きい順に並べてVmax,Vmid,Vminとする。
9つの双方向スイッチの各スイッチは入力側のどれかの相と接続されており、同時に出力側のどれかの相と接続されている。例えば、入力側はEmaxの相,出力側はVmaxの相に接続されているスイッチをS1,入力側はEmid,出力側はVmaxのスイッチをS2,...のように仮称すると、図6は図16のように描き替えることができる。
【0030】
一方、交流入力1サイクルを図17のように12個の区間に分割し、表1のようにベース電圧Ebaseを決めておく。
【表1】
Figure 0004065727
キャリア周期1区間におけるスイッチングパターンを下記のように決める。
(1)Ebase=Eminの場合
キャリア周期TcにわたってスイッチS7とS8はOFF,S9はONである。スイッチS1〜S6は図18のようにスイッチングされる。
(2)Ebase=Emaxの場合
キャリア周期TcにわたってスイッチS1はON,S2とS3はOFFである。スイッチS4〜S9は図19のようにスイッチングされる。
【0031】
各パルスへの時間配分は下記の式で計算される。
【数1】
Figure 0004065727
【数2】
Figure 0004065727
【数3】
Figure 0004065727
【数4】
Figure 0004065727
【数5】
Figure 0004065727
【数6】
Figure 0004065727
【数7】
Figure 0004065727
【数8】
Figure 0004065727
【数9】
Figure 0004065727
【数10】
Figure 0004065727
【数11】
Figure 0004065727
【0032】
本PWM手法は電圧形インバータで広く知られている2アーム変調と同様、一定期間一つの相のスイッチング状態を固定しておき、残りの二相でスイッチングすることで出力線間電圧を制御する点に特徴がある。
【0033】
さて、本発明の第6の実施の形態では、多重並列PWMサイクロコンバータの各変換器にこのPWM手法を適用する場合に対応した零相電流バランス手法を提案する。図10を用いて説明する。図10において、20は電圧指令発生器18が発する電圧指令va *,vb *,vc *を値の大きい順に並べ替えてVmax,Vmid,Vminを出力するソータ,21は式(6),(7)によってΔVmax,ΔVmidを算出する線間電圧指令演算器,10A,10Bは零相電流コントローラ17の出力を用いて線間電圧指令を補正し、第1の単位変換器への電圧指令を出力する減算器,9A,9Bは零相電流コントローラ17の出力を用いて第2の単位変換器への電圧指令を補正する加算器である。
【0034】
19A,19Bはそれぞれ第1,第2の単位変換器の出力パルスを決定し、単位変換器3A及び3Bへのスイッチング信号を発生するパルス幅変調器である。19Aでは
【数12】
Figure 0004065727
【数13】
Figure 0004065727
【数14】
Figure 0004065727
などの計算を行い、19Bでは
【数15】
Figure 0004065727
【数16】
Figure 0004065727
【数17】
Figure 0004065727
などの計算を行ってパルス幅変調を実行する。
本実施形態においても、単位変換器間の零相電流偏差に応じて各変換器への電圧指令を補正するのは第5の実施形態と同様であり、電流アンバランスを少なくし、安定した運転が可能になる。
【0035】
次に、本発明の第7の実施の形態を図11を用いて説明する。
図11において、9は変換器3Aの出力電流と変換器3Bの出力電流を相毎に加算し、多重変換器全体の出力電流を算出する加算器,22Aは式
【数18】
Figure 0004065727
を用いて三相電流ia,ib,ic を直交静止座標系の二相電流ix,iyに変換する三相/二相変換器,23Aは式
【数19】
Figure 0004065727
を用いて二相電流ix,iyをd軸q軸電流id,iqに変換する回転座標変換器,22Bは変換器3Aの出力電流ia1,ib1,ic1 を二相電流ix1,iy1に変換する三相/二相変換器,22Cは変換器3Bの出力電流ia2,ib2,ic2を二相電流ix2,iy2に変換する三相/二相変換器,23Bは二相電流ix1,iy1をdq軸電流id1,iq1に変換する回転座標変換器,23Cは二相電流ix2,iy2をdq軸電流id2,iq2に変換する回転座標変換器である。10A,10Bはそれぞれ単位変換器間のd軸及びq軸電流の差を算出する減算器,25A,25Bはそれぞれd軸及びq軸電流偏差補正コントローラである。
【0036】
10Cはd軸電流制御増幅器11Aの出力するd軸電圧指令vd *をd軸電流偏差補正コントローラ25Aの出力を用いて補正し,第1の変換器へのd軸電圧指令vd1 *を出力する減算器,9Aは同様に第2の変換器へのd軸電圧指令vd2 *を出力する加算器,10Eはq軸電流制御増幅器11Bの出力するq軸電圧指令vq *をq軸電流偏差補正コントローラ25Bの出力を用いて補正し、第1の変換器へのq軸電圧指令vq1 *を発生する減算器,9Bは同様に第2の変換器へのq軸電圧指令vq2 *を発生する加算器、10Fはd軸電流指令id*とd軸idからd軸電流偏差を演算する減算器、10Gはq軸電流指令iq*とq軸電流iqからq軸電流偏差を演算する減算器である。
【0037】
24Aは式
【数20】
Figure 0004065727
を用いてdq軸電圧指令vd1 *,vq1 *を直交静止座標系上の電圧指令vx1 *,vy1 *に変換する逆回転座標変換器,24Bは同様にdq軸電圧指令vd2 *,vq2 *を直交静止座標系上の電圧指令vx2 *,vy2 *に変換する逆回転座標変換器,22Dは式
【数21】
Figure 0004065727
を用いて直交静止座標系電圧指令vx1 *,vy1 *を三相電圧指令va1 *,vb1 *,vc1 *に変換する二相/三相変換器,22Eは同様にvx2 *,vy2 *をva2 *,vb2 *,vc2 *に変換する二相/三相変換器である。
【0038】
本実施形態では、各単位変換器のd軸電流,q軸電流を検出し、その偏差に応じて各変換器のd軸電圧指令,q軸電圧指令を補正するので、特定の変換器に偏って負荷がかかることなく、多重PWMサイクロコンバータを安定して動かすことができる。
【0039】
第8の実施の形態を説明する前に、零相電流と三相/二相変換の関係について述べる。
もともと、式(21)を用いて三相/二相変換を行う場合には三相電流の和,すなわち零相電流は0の前提があるのが普通である。信号に直流分が混じっている場合、その信号を三相/二相変換及びθ=ωtを用いた回転座標変換を行っても、角周波数ωの成分を正しく検出できていない可能性がある。一方、
iz1=ia1+ib1+ic1
に対し、各相電流を補正した
【数22】
Figure 0004065727
【数23】
Figure 0004065727
【数24】
Figure 0004065727
を考えると、
ia1'+ib1'+ic1'=0
である。直流分を除去した三相信号に対して三相/二相変換及び回転座標変換を行うのが望ましい。第8の実施の形態は以上の議論に基づくものである。
【0040】
以下,図12を用いて第8の実施の形態を説明する。図12において26Aは加算器16Aが算出した変換器3Aの零相電流iz1を1/3倍するゲインである。同様に、26Bは加算器16Bが算出した変換器3Bの零相電流iz2を1/3倍するゲインである。10H,10I,10Jはゲイン26Aの出力を用いて変換器3Aの出力電流信号を補正する減算器,10K,10L,10Mはゲイン26Bの出力を用いて変換器3Bの出力電流信号を補正する減算器である。22F,22Gはそれぞれ
【数25】
Figure 0004065727
【数26】
Figure 0004065727
によって変換を行う三相/二相変換器である。
本実施形態においても、以後各変換器の電流の回転座標変換を行い、d軸q軸それぞれの電流偏差に応じてd軸q軸電圧指令を補正するのは第7の実施形態と同様である。
【0041】
以上、第5,第6の実施の形態では零相電流の偏差を補正する例を述べ、第7,第8の実施の形態ではd軸電流,q軸電流の偏差を補正する例を述べたが、両者を組み合わせることができるのは言うまでもない。
【0042】
以下,図13,図14を用いて第9の実施の形態を説明する。
図13において19は減算器10が出力する零相電流偏差δi,及び三相/二相変換器22D,22Eが出力する電圧指令va1 *,vb1 *,vc1 *,va2 *,vb2 *,vc2 *を入力とし、変換器3A,3Bのスイッチング指令を出力するパルス幅変調器であり、その詳細を図14に示す。図14において20Aは電圧指令va1 *,vb1 *,vc1 *を値の大きい順に並べ替え、Vmax1,Vmid1,Vmin1を出力するソータ,20Bは電圧指令va2 *,vb2 *,vc2 *を並べ替え、Vmax2,Vmid2,Vmin2を出力するソータである。
【0043】
Figure 0004065727
【0044】
本実施形態においては零相電流,d軸電流,q軸電流のすべてについて単位変換器間の電流アンバランスを少なくするように制御されるので、特定の単位変換器に電流が偏ることなく安定した運転が可能である。
【0045】
また、以上説明した実施の形態では単位変換器2個による多重PWMサイクロコンバータの例を述べてきたが、単位変換器3個以上の例においても、k番目の変換器の電流とk+1番目の変換器の電流の偏差に応じてk番目の変換器の電圧指令とk+1番目の変換器の電圧指令を補正すれば良いのは言うまでもない。
【0046】
次に図15を用いて本発明の第10の実施の形態を説明する。本実施形態は3多重PWMサイクロコンバータにおいて、各変換器電流と平均電流との差を用いて電圧指令を補正する例である。
また、図15は2本または3本のケーブルあるいは信号を1本の線で表した、いわゆる単線結線図である。 図15において3Cは第3の単位変換器,7A,7B,7Cは単位変換器3A,3B,3Cの出力を並列結合するための三相リアクトル,8A,8B,8Cは各単位変換器のa,b,c相出力電流を検出する電流センサ,9は相毎に変換器出力電流の和
ia=ia1+ia2+ia3
ib=ib1+ib2+ib3
ic=ic1+ic2+ic3
を求める加算器,22Gは単位変換器3Cの三相出力電流信号ia3,ib3,ic3から直交静止座標系での電流信号ix3,iy3を算出する三相/二相変換器,23Dはix3,iy3からid3,iq3を算出する回転座標変換器である。
【0047】
10は電流制御偏差
id_err= id *−id
iq_err= iq *−iq
を求める減算器,27は電流制御偏差を入力とし、変換器全体の電圧指令vd *,vq *を出力する電流制御コントローラ,26はd軸q軸電流の平均値
【数27】
Figure 0004065727
【数28】
Figure 0004065727
を求めるためのゲイン,10A,10B,10Cはそれぞれ単位変換器の電流と平均電流の差電流を求める減算器,28A,28B,28Cはそれぞれ差電流を増幅する電流バランスコントローラ,10D,10E,10Fは各変換器の電流バランスコントローラ28A,28B,28Cの出力を用いて変換器全体の電圧指令vd *,vq *を補正し、各変換器への電圧指令vd1 *,vq1 *,vd2 *,vq2 *,vd3 *,vq3 *を出力する減算器,24Cは変換器3Cへの電圧指令vd3 *,vq3 *を直交静止座標系上の電圧指令vx3 *,vy3 *に変換する逆回転座標変換器,22Hはvx3 *,vy3 *を三相電圧指令va3 *,vb3 *,vc3 *に変換する二相/三相変換器,19Cは変換器3Cのスイッチング信号を発生するパルス幅変調器である。
本実施形態においては各単位変換器の出力電流が平均電流からずれないように電圧指令を補正するので、やはり電流バランスが保たれ、安定した運転が可能となる。
【0048】
ここではd軸q軸電流について各変換器電流と平均電流の差を用いる例を述べたが、零相電流についても各変換器零相電流と、全体の零相電流平均値との差を用いる例があり得ることは言うまでもない。また、零相,d軸,q軸の全てについて同様にしてバランス制御を行う例があり得ることも言うまでもない。
【0049】
【発明の効果】
以上説明したように、本発明によれば、複数のPWMサイクロコンバータをリアクトルで並列することにより大容量の変換器を構成できるので、直流リンクが不要,電源側力率1,回生可能などの種々の特長を持つ大容量PWMサイクロコンバータを構成できる。
【0050】
また、単位変換器間の電流偏差もしくは変換器全体の平均電流からの各単位変換器の電流偏差に応じて各変換器への電圧指令を補正するので、特定の変換器に負荷が偏ることなく、大容量のPWMサイクロコンバータを安定して運転することができる。容量範囲の拡大により、コンパクト,回生可能,省エネ,高入力力率,低高調波などの特長を持つPWMサイクロコンバータの適用範囲を広げることができる。
【図面の簡単な説明】
【図1】本発明の第1の実施の形態を示す図。
【図2】本発明の第2の実施の形態を示す図。
【図3】本発明の第3の実施の形態を示す図。
【図4】本発明の第3の実施の形態に用いる鉄心共有リアクトルの構成を示す図。
【図5】本発明の第4の実施の形態を示す図。
【図6】単一のPWMサイクロコンバータを示す図。
【図7】図6のPWMサイクロコンバータに用いられる双方向スイッチの構成の一例を示す図。
【図8】PWMコンバータ/PWMインバータを示す図。
【図9】本発明の第5の実施の形態を示す図。
【図10】本発明の第6の実施の形態を示す図。
【図11】本発明の第7の実施の形態を示す図。
【図12】本発明の第8の実施の形態を示す図。
【図13】本発明の第9の実施の形態を示す図。
【図14】本発明の第9の実施の形態を示す図。
【図15】本発明の第10の実施の形態を示す図。
【図16】PWMサイクロコンバータのPWM手法の一例を示す図。
【図17】PWMサイクロコンバータのPWM手法の一例を示す図。
【図18】PWMサイクロコンバータのPWM手法の一例を示す図。
【図19】PWMサイクロコンバータのPWM手法の一例を示す図。
【符号の説明】
1 三相交流電源
2 フィルタ
3,3A,3B,3C PWMサイクロコンバータ(変換器)
4,4A 負荷
5 IGBT
6 ダイオード
7,7A,7B,7C,7D リアクトル
8A,8B,8C,8D 電流センサ
9,9A,9B,9C 加算器
10,10A,10B,10C,10D,10E,10F,10G,10H,10I,10J,10K,10L,10M 減算器
11,11A,11B 電流制御増幅器
12A,12B スイッチ
13 スイッチ選択ロジック
14 電流偏差増幅器
15A,15B PWMロジック
16A,16B 加算器
17 零相電流補正コントローラ
18 電圧指令信号発生器
19,19A,19B,19C,19D パルス幅変調器
20,20A,20B ソータ
21,21A,21B 線間電圧指令演算器
22A,22B,22C,22F,22G 三相/二相変換器
22D,22E,22H 二相/三相変換器
23A,23B,23C 回転座標変換器
24A,24B,24C 逆回転座標変換器
25A,25B 電流偏差補正コントローラ
26,26A,26B ゲイン
27 電流制御コントローラ
28A,28B,28C 電流バランスコントローラ

Claims (4)

  1. 複数のPWMサイクロコンバータの出力をリアクトルを介して並列結合した三相出力多重変換器において、各単位変換器の出力電流に対して零相分電流を検出し、単位変換器間の零相分電流偏差に応じて,もしくは各単位変換器の零相分電流値に応じて各単位変換器への電圧指令を補正することを特徴とする多重PWMサイクロコンバータ。
  2. 複数のPWMサイクロコンバータの出力をリアクトルを介して並列結合した三相出力多重変換器において、各単位変換器の出力電流に対して三相/二相変換及び回転座標変換を行い、単位変換器間のd軸電流偏差及びq軸電流偏差に応じて各単位変換器に対するd軸電圧指令,q軸電圧指令を補正することを特徴とする多重PWMサイクロコンバータ。
  3. 複数のPWMサイクロコンバータの出力をリアクトルを介して並列結合した三相出力多重変換器において、各単位変換器の出力電流に対して三相/二相変換及び回転座標変換を行い、各単位変換器のd軸電流と変換器全体のd軸平均電流との差、及び各単位変換器のq軸電流と変換器全体のq軸平均電流との差に応じて各単位変換器に対するd軸電圧指令,q軸電圧指令を補正することを特徴とする多重PWMサイクロコンバータ。
  4. 請求項2または請求項3に記載の多重PWMサイクロコンバータにおいて、さらに各単位変換器の出力電流の零相分を検出し、零相分の3分の1を各相出力電流から減じて補正した出力電流に対して三相/二相変換及び回転座標変換を行うことを特徴とする多重PWMサイクロコンバータ。
JP2002177866A 2001-12-27 2002-06-19 多重pwmサイクロコンバータ Expired - Fee Related JP4065727B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002177866A JP4065727B2 (ja) 2001-12-27 2002-06-19 多重pwmサイクロコンバータ

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001403131 2001-12-27
JP2001-403131 2001-12-27
JP2002177866A JP4065727B2 (ja) 2001-12-27 2002-06-19 多重pwmサイクロコンバータ

Publications (2)

Publication Number Publication Date
JP2003259647A JP2003259647A (ja) 2003-09-12
JP4065727B2 true JP4065727B2 (ja) 2008-03-26

Family

ID=28677516

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002177866A Expired - Fee Related JP4065727B2 (ja) 2001-12-27 2002-06-19 多重pwmサイクロコンバータ

Country Status (1)

Country Link
JP (1) JP4065727B2 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1756707A (zh) * 2004-03-02 2006-04-05 三菱电机株式会社 电梯控制装置
JP4274023B2 (ja) * 2004-03-31 2009-06-03 株式会社安川電機 Pwmサイクロコンバータの制御方法および制御装置
CN100490292C (zh) 2004-09-29 2009-05-20 株式会社安川电机 并联多路矩阵转换器装置
WO2006118026A1 (ja) * 2005-04-27 2006-11-09 Kabushiki Kaisha Yaskawa Denki 電力変換装置と電力変換方法
GB2458726B (en) * 2005-04-27 2010-06-23 Yaskawa Denki Seisakusho Kk Power transforming apparatus and power transforming method
CN101675580B (zh) * 2007-05-16 2013-03-27 奥蒂斯电梯公司 矩阵变换器的脉宽调制控制
JP5013283B2 (ja) * 2010-02-17 2012-08-29 株式会社安川電機 マトリクスコンバータの制御装置
JP7140660B2 (ja) * 2018-12-04 2022-09-21 川崎重工業株式会社 電力変換装置

Also Published As

Publication number Publication date
JP2003259647A (ja) 2003-09-12

Similar Documents

Publication Publication Date Title
EP0571755B1 (en) Power converter for converting DC voltage into AC phase voltage having three levels of positive, zero and negative voltage
US9444360B2 (en) State quantity detection method in power converting apparatus and power converting apparatus
JP5658224B2 (ja) 回生型高圧インバータの制御装置
US20110025246A1 (en) Power converting apparatus
WO2018061546A1 (ja) 電力変換器の制御装置
JP4065727B2 (ja) 多重pwmサイクロコンバータ
Song et al. One-Cycle Control of induction machine traction drive for high speed railway part I: Multi-pulse width modulation region
JP6937962B1 (ja) 電力変換装置
JP4479292B2 (ja) 交流交流電力変換器の制御装置
Ghoreishy et al. A fast-processing modulation strategy for three-phase four-leg neutral-point-clamped inverter based on the circuit-level decoupling concept
JP5787053B2 (ja) 3相v結線コンバータの制御装置
JP3426939B2 (ja) 自励式電流形電力変換装置の制御装置
JP3389072B2 (ja) 電力変換装置
KR20170095557A (ko) 순환 전류를 방지하는 전력 변환 장치 및 이의 구동 방법
JPH10191677A (ja) 交流電動機速度制御装置
JP4086056B2 (ja) 直接周波数変換回路の制御方法
JP3598308B2 (ja) 自励式電力変換装置用pwm制御装置
JP2010226806A (ja) 電力変換装置
JP2000308368A (ja) 電力変換回路
JP3923756B2 (ja) 多重接続した自励式変換器の制御装置
JP4378952B2 (ja) 3相pam負荷駆動システム
JP4389415B2 (ja) 直接周波数変換回路の制御方法
JP7328352B2 (ja) Pwmインバータ制御装置および制御方法
JP2000125570A (ja) 電力変換装置の制御装置
JPS5961475A (ja) 電力変換装置

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050615

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050615

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050615

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070814

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080107

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110111

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110111

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120111

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130111

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130111

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees