JP4049397B2 - 炭化水素転換触媒の前硫化工程 - Google Patents

炭化水素転換触媒の前硫化工程 Download PDF

Info

Publication number
JP4049397B2
JP4049397B2 JP50225898A JP50225898A JP4049397B2 JP 4049397 B2 JP4049397 B2 JP 4049397B2 JP 50225898 A JP50225898 A JP 50225898A JP 50225898 A JP50225898 A JP 50225898A JP 4049397 B2 JP4049397 B2 JP 4049397B2
Authority
JP
Japan
Prior art keywords
catalyst
sulfur
solution
catalysts
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP50225898A
Other languages
English (en)
Other versions
JP2000512209A5 (ja
JP2000512209A (ja
Inventor
ロツクメイヤー,ジヨン・ロバート
Original Assignee
シエル・インターナシヨナル・リサーチ・マートスハツペイ・ベー・ヴエー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シエル・インターナシヨナル・リサーチ・マートスハツペイ・ベー・ヴエー filed Critical シエル・インターナシヨナル・リサーチ・マートスハツペイ・ベー・ヴエー
Publication of JP2000512209A publication Critical patent/JP2000512209A/ja
Publication of JP2000512209A5 publication Critical patent/JP2000512209A5/ja
Application granted granted Critical
Publication of JP4049397B2 publication Critical patent/JP4049397B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/20Sulfiding

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Catalysts (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Description

本発明は、炭化水素転換触媒を前硫化(presulphurizing又はpresulphiding)するための工程、前硫化触媒及び炭化水素転換工程におけるそれらの使用に関する。
炭化水素を精製及び/又は水素転換するための特定の触媒の組成物の一部を形成する金属の「前硫化」のステップを、最初にそれらを使用する前、すなわち新鮮触媒の段階で、あるいは再生後それらを再使用する前に使用することがしばしば望ましいことはよく知られている。水素化処理触媒、水素化分解触媒およびテールガス処理触媒のような炭化水素転換触媒が典型的にそのような「前硫化ステップ」を受ける。
水素化処理触媒は、炭化水素供給材料の水素化を触媒するため、中でも特に硫黄、窒素および金属を含有する有機化合物や不飽和化合物のような供給材料の特定成分を水素化するために使用しうる触媒組成物と定義できる。水素化分解触媒は、大きくて複雑な石油由来分子を分解してより小さな分子にし、同時にその分子に水素化するために用いられる触媒組成物と定義される。テールガス触媒は、危険な流出ガス流をより有害性の低い産物に転換するのを触媒するために用いられる、特に硫黄の酸化物を、回収して容易に元素硫黄に転換することができる硫化水素に転換するのに用いられる触媒組成物と定義される。還元触媒は、たとえばオレフィンの水素化触媒のような還元された状態の金属を含む触媒組成物と定義される。そのような金属は、典型的には、たとえば水素あるいはギ酸のような還元剤で還元される。これらの還元触媒上の金属は、完全にあるいは部分的に還元されていてもよい。
水素化触媒のための触媒組成物は周知であり、いくつかは市販されている。典型的には、触媒の活性相は元素周期表のVIII族、VIB族、IVB族、IIB族あるいはIB族の少なくともひとつの金属に基づく。一般に、水素化触媒は、通常アルミナ、シリカ、シリカ−アルミナおよびカーボンのような担体上に担体された、Pt、Pd、Ru、Ir、Rh、Os、Fe、Co、Ni、Cu、Mo、W、Ti、Hg、AgあるいはAuから選択される少なくともひとつの元素を含む。
水素化処理及び/又は水素化分解あるいはテールガス処理のための触媒組成物は周知であり、いくつかは市販されている。この定義に含まれる金属酸化物触媒は、通常アルミナ、シリカ、およびゼオライトを含むシリカ−アルミナ担体上に支持された、コバルト−モリブデン、ニッケル−タングステン、およびニッケル−モリブデンを含む。また、他の遷移金属元素触媒もこれらの目的に用いられる。一般に、V、Cr、Mn、Re、Co、Ni、Cu、Zn、Mo、W、Rh、Ru、Os、Ir、Pd、Pt、Ag、Au、Cd、Sn、Sb、BiおよびTeから選択される少なくともひとつの元素を含む触媒が、これらの目的に適当であるものとして開示されている。
最大の効率を達成するためには、これらの金属酸化物触媒を少なくとも部分的に金属硫化物に転換する。金属酸化物触媒をリアクターにおいて高温で硫化水素あるいは硫黄含有油あるいは供給材料と接触させることによって(「in situ])硫化することができる。
しかし、硫黄が元素としてあるいは有機硫黄化合物の形でその中に組み込まれている金属酸化物触媒が供給されることがユーザーにとっては好都合である。これらの前硫化触媒をリアクターに入れ、水素の存在下で硫黄あるいは硫黄化合物を水素および金属酸化物と反応させ、それによって追加処理ステップを必要とせずにそれらを硫化物に転換する反応条件に供する。これらの前硫化された触媒は、プラントオペレーターに経済的な恩恵をもたらし、触媒を硫化するために硫化水素、液体硫化物、有機多硫化物及び/又はメルカプタンを使用する場合にプラントオペレーターが遭遇する引火性や有毒性のような危険の多くを回避する。
金属酸化物触媒に前硫化するいくつかの方法が知られている。水素化処理触媒は、炭化水素供給材料を水素化処理する前に、硫黄化合物を多孔質触媒に組み込むことによって前硫化されてきた。たとえば、米国特許第4,530,917号は、水素化処理触媒を有機多硫化物で前硫化する方法を開示している。米国特許第4,177,136号は、触媒を元素硫黄で処理することによって触媒に前硫化する方法を開示している。その後、水素が元素硫黄をin situで硫化水素に転換するための還元剤として用いられている。米国特許第4,089,930号は、水素存在下での元素硫黄による触媒の前処理を開示している。米国特許第4,943,547号は、元素硫黄を触媒の細孔の中に昇華し、その後硫黄−触媒混合物を水素存在下で硫黄の融点以上の温度に加熱することによって、水素化処理触媒に前硫化する方法を開示している。触媒は水素で活性化される。公開PCT出願第WO93/02793号は、元素硫黄を多孔質触媒に取り込み、同時にあるいはその後に液体オレフィン炭化水素で触媒を処理するという触媒の前硫化の方法を開示している。
しかし、これらのex−situで前硫化された触媒は、炭化水素処理リアクターにおいて炭化水素給液と接触させる前に、別の活性化ステップを受けなければならない
それ故、リアクター中での炭化水素給液との接触の前に別の活性化処理を必要とせず、空気中で安定な、活性化され、前硫化あるいは前硫化された新鮮あるいは再生触媒を調製することが本発明の目的である。
それ故、本発明に従って、次の事柄を含む、少なくともひとつの金属あるいは金属酸化物を含有する硫化可能触媒の多孔質粒子を前硫化するための工程が提供される:
(a)無機多硫化物溶液および少なくともひとつの水溶性酸化(酸素含有)炭化水素を触媒に含浸させ、硫化物又は硫黄の少なくとも一部が触媒の細孔に取り込まれた硫黄混合触媒を得る;そして
(b)非酸化性雰囲気の存在下で硫黄混合触媒を加熱する。
本発明はさらに、本発明に従った工程によって得られる前硫化された触媒を提供する。
本明細書中で使用する時、「無機硫化物」という用語は、S(x) 2-の一般式を持つ多硫化物イオンをさす。この式においてxは2より大きい整数、すなわちxは少なくとも3、好ましくは3−9、より好ましくは3−5の数値を持つ整数である。また「無機」という用語は、これに関連して、対イオンではなく多硫化物成分の性質をさし、有機の場合もありうる。本文中で使用する時、「無機多硫化物溶液」という用語は、無機多硫化物を含む溶液をさす。本明細書中で使用する時、「金属」、「金属酸化物」および「金属硫化物」含有触媒という用語は、後程実際の触媒として使用される触媒前駆物質をさす。さらに、「金属」という用語は、部分的に酸化された形態の金属を含む。「金属酸化物」という用語は、部分的に還元された形態の金属酸化物を含む。「金属硫化物」という用語は、部分的に硫化された、ならびに完全に硫化された金属である金属硫化物を含む。上記の用語は、一部には、炭化物、ホウ化物、窒化物、酸ハロゲン化物、アルコキシドおよびアルコラートのような他の成分を含む。
本発明のひとつの局面では、前硫化可能な金属あるいは金属酸化物含有触媒に、少なくともひとつの水溶性含酸素炭化水素を含む無機多硫化物溶液を含浸させ、硫化物あるいは硫黄を触媒の細孔に組み込むのに有効な温度および時間で、前硫化可能な金属あるいは金属酸化物触媒に前硫化する。含浸後、非酸化性条件下で、組み込んだ硫化物あるいは硫黄を触媒に固定するのに十分な時間、触媒を加熱する。水溶性含酸素炭化水素の無機多硫化物溶液への取り込みは、前硫化した触媒の空気中での安定性を助けると考えられる。
本文中で「硫化可能金属酸化物触媒」と称される触媒は、酸化物形態ではなく硫化形態になった時に実際の触媒として使用される触媒前駆物質である場合もある。本発明の調製方法は、完全には酸化物に転換されていない金属硫化物を持つ再生触媒にも適用できるので、「硫化可能金属酸化物触媒」はまた、金属の硫化物状態の部分を持つこれらの触媒も意味する。
好ましい具体例では、水溶性含酸素炭化水素を含む無機多硫化物溶液で含浸する前に、金属あるいは金属酸化物粒子あるいはペレットを空気で平衡状態まで水和して、初期発熱を低減する。
本発明の工程の実施においては、含浸によって硫化物あるいは硫黄化合物の触媒の細孔への取り込みが生じる条件下で、多孔質触媒粒子を無機多硫化物溶液および少なくともひとつの水溶性含酸素炭化水素と接触させ、反応させる。無機多硫化物取り込み触媒あるいは硫黄化合物取り込み触媒は、「硫黄混合触媒」と称される。
無機多硫化物溶液は、典型的には、元素硫黄を水性アンモニウム(あるいはアンモニウム誘導体、すなわち、テトラメチルアンモニウム、テトラエチルアンモニウム等)溶液に溶解することによって調製される。好ましい多硫化物は、たとえばS(3) 2-、S(4) 2-、S(5) 2-、S(6) 2-およびそれらの混合物のような、一般式S(x) 2-の無機多硫化物を含み、式中、xは2より大きい整数、好ましくは3−9、より好ましくは3−5である。
無機多硫化物溶液は赤色の溶液であって、暗色は長鎖多硫化物を表わし、より明るい色はより短鎖の多硫化物を表わす。このようにして調製した無機多硫化物溶液を使用して、細孔容積含浸法を用いて、あるいは触媒の容積を越えずに触媒の細孔を装填する初期湿潤によって、触媒粒子に含浸させる。本工程において使用する硫黄の量は、硫化物に転換するために必要な、触媒中に存在する触媒性金属の量に依存する。たとえば、モリブデンを含有する触媒は、1モルのモリブデンを1モルのモリブデンジ硫化物に転換するために2モルの硫黄あるいは一硫黄化合物を必要とし、他の金属についても同様に測定できる。再生触媒に関しては、既存の硫黄レベルが、必要とされる硫黄の量の計算の係数になりうる。
水溶性含酸素炭化水素は、好ましくは糖類、ポリエチレングリコールおよびそれらの混合物から成る群から選択される。適当なポリエチレングリコールは、一般に200−500の範囲の分子量(Mn)を持つものである。適当な糖類は、単糖類、二糖類およびそれらの混合物を含む。適当な単糖類の非制限的な例は、グルコース、フルクトース、マンノース、キシロース、アラビノース、マンニトールおよびソルビトールを含む。適当な二糖類の非制限的な例は、ラクトース、スクロース、マルトースおよびセロビオースを含む。好ましい具体例では、水溶性含酸素炭化水素は、ソルビトール、スクロース、マンニトール、グルコースおよびそれらの混合物から成る群から選択される。
無機多硫化物溶液中に典型的に存在する硫黄の量は、溶液の総重量に基づいて、5重量%から50重量%の範囲である。出発硫化アンモニウム溶液の濃度を高めることによってより高い硫黄濃度を得ることができる。無機多硫化物溶液は一般に、2:1から5:1の範囲、好ましくは2:1から3:1の範囲の硫黄対硫化物の重量比を持つ。無機多硫化物溶液中の硫黄の量は、一般に、触媒粒子に含浸させる硫黄の量が、典型的には金属成分の酸化物形態から硫化物形態への化学量論的転換を提供するのに十分な量であって、一般には硫黄添加された触媒の総重量に基づいて2重量%から15重量%の範囲、好ましくは4重量%から12重量%の範囲である。
化学量論での必要条件の約50%を下回る量で前硫化のための硫黄を加えると、適切な加水脱窒素活性を持つ触媒を生じる。これは水素化処理および第一段階水素化分解触媒の重要な特性である。従って、触媒への取り込みのために使用する前硫化の硫黄の量は、典型的には化学量論での量の0.2−1.5倍、好ましくは化学量論での量の0.4−1.2倍となる。
VIB族及び/又はVIII族の金属を含む水素化処理/水素化分解触媒およびテールガス処理触媒に関して、用いる前硫化の硫黄の量は、典型的には添加された触媒の1%−15重量%、好ましくは添加された触媒の4%−12重量%である。
硫黄含浸ステップは、典型的には0℃から30℃あるいはそれ以上の60℃までの範囲の温度で実施する。下限温度が含浸の特定条件下での無機多硫化物溶液の凝固点によって決定されるのに対し、上限温度は主として無機多硫化物溶液の揮発性化合物と元素硫黄への分解によって決定される。
触媒粒子に無機多硫化物溶液と少なくともひとつの水溶性含酸素炭化水素を含浸させた後、硫黄混合触媒を、たとえば窒素、二酸化炭素、アルゴン、ヘリウムおよびそれらの混合物のような流動非酸化性ガスの存在下に、残留細孔容積水分の大半を除去して硫黄を触媒に固定するのに十分な温度で加熱処理に供する。硫黄混合触媒の加熱処理は、好ましくは、最初に硫黄混合触媒を50℃から150℃の範囲の温度、好ましくは120℃に加熱して、細孔容積水分の大半を除去する傾斜温度手法を用いて実施する。その後触媒を120℃から400℃、好ましくは230℃から350℃の範囲の最終保持温度に傾斜加熱し、組み込まれた硫黄を触媒に固定する。この加熱処理後、触媒を室温(環境温度)まで冷却する。生じる触媒は空気中での取扱いに対して安定である。
次に、本発明の前硫化あるいは前硫化された触媒を、たとえば水素化処理及び/又は水素化分解リアクターあるいはテールガスリアクターに装填し、リアクターを操作(たとえば水素化処理及び/又は水素化分解あるいはテールガス処理)条件まで加熱して、その後直ちに触媒を炭化水素供給材料と接触させる。触媒と炭化水素供給材料との接触に先立つ、水素による触媒の広汎な活性化は必要としない。特定の理論に拘束されるのは所望するところではないが、一般にex−situで前硫化された触媒に関して必要とされる水素による広汎な活性化の期間は、本発明に従って前硫化した触媒については必要ない。本工程では、硫黄の大部分が既に金属あるいは金属酸化物と反応して金属硫化物を形成しているか、あるいはその代わりに、硫黄が、硫化物に転換される前に触媒の細孔から出てしまうことがない程度に触媒の細孔に固定されているからである。
本発明の工程はさらに、オキシ再生されたスペント触媒の硫黄添加にも適用できる。従来のオキシ再生工程後、オキシ再生した触媒を上述のようにして新鮮触媒と同じように前硫化することができる。
本工程は特に、水素化処理及び/又は水素化分解あるいはテールガス処理触媒への適用に適する。これらの触媒は典型的に、アルミナ、シリカ、シリカ−アルミナおよびゼオライトのような多孔質担体に支持されたVIB族及び/又はVIII族の金属を含む。該材料は当該技術において広く定義されており、米国特許第4,530,911号および米国特許第4,520,128号のような、本文中で述べる方法によって調製することができる。好ましい水素化処理及び/又は水素化分解あるいはテールガス処理触媒は、アルミナ上に支持された、モリブデン、タングステンおよびそれらの混合物から選択されるVIB族の金属と、ニッケル、コバルトおよびそれらの混合物から選択されるVIII族の金属を含む。様々なリアクター条件下で良好な活性を示す多用途の水素化処理及び/又は水素化分解触媒は、アルミナに支持されたニッケル−モリブデンおよびコバルト−モリブデン触媒である。場合によってはリンを助触媒として加える。様々なリアクター条件下で良好な活性を示す多用途のテールガス処理触媒は、アルミナに支持されたコバルト−モリブデン触媒である。
本発明のex−situ前硫化法は、リアクター中で炭化水素供給材料との即時の接触をもたらし、従来のex−situ前硫黄化触媒に必要な水素による広汎な活性化ステップを排除することによって、水素化処理、水素化分解及び/又はテールガス処理リアクターをより速やかに始動させることを可能にする。
従って、本発明はさらに、本発明に従った前硫黄化触媒の存在下に高温で供給材料を水素と接触させることを含む、炭化水素供給材料を転換するための工程(すなわち、炭化水素転換工程)を提供する。
水素化処理の条件は、100℃から425℃の範囲の温度と40気圧(4.05MPa)以上の圧を含む。全体の圧は、典型的には400−2500psig(2.76−17.23MPa)の範囲である。水素分圧は、典型的には200−2200psig(1.38−15.17MPa)の範囲である。水素供給率は、典型的には200−10,000標準立方フィート/バレル(「SCF/BBL」)の範囲である。供給材料の割合は、典型的には0.1−15の範囲の液体毎時空間速度(「LHSV」)を持つ。
水素化分解条件は、200℃から500℃の範囲の温度と40気圧(4.05MPa)以上の圧を含む。全体の圧は、典型的には400−3000psig(2.76−20.68MPa)の範囲である。水素分圧は、典型的には300−2600psig(2.07−17.93MPa)の範囲である。水素供給率は、典型的には1000−10,000標準立方フィート/バレル(「SCF/BBL」)の範囲である。供給材料の割合は、典型的には0.1−15の範囲の液体毎時空間速度(「LHSV」)を持つ。供給材料の多量の水素化処理を実施する第一段階水素化分解装置は、水素化処理装置よりも高い温度で、また第二段階水素化分解装置よりも低い温度で操作することができる。
本工程で水素化処理あるいは水素化分解される炭化水素供給材料は、広い沸点範囲内で変動しうる。それらは、任意にタール砂、シェール(頁岩)油、残留物品質改善処理あるいはバイオマスから生じる、灯油分画のようなより軽い分画、ならびにガス油、コークスガス油、真空ガス油、脱アスファルト油、長および短残基、触媒分解された循環油、熱あるいは触媒分解されたガス油、およびsyncrudesのようなより重い分画を含む。様々な炭化水素油の組合せも使用しうる。
テールガス処理リアクターは、典型的には200℃から400℃の範囲の温度と大気圧(101.3kPa)下で操作する。リアクターに供給されるテールガスの約0.5−5%容量は水素を含む。リアクターを通るテールガスの標準気体毎時空間速度は、500−10,000/時の範囲である。該触媒をテールガス処理リアクターにおいて始動させることができるいくつかの方法がある。クラウス単位のフィードあるいはテールガスが該触媒を始動させるために使用できる。必要に応じて、水素を生成するために化学量論以下の速度でガスバーナーを操作することによって追加の水素を供給することもできる。
例示のために提供する以下の実施例によって本発明を説明する。
無機多硫化物溶液の調製
元素硫黄20.64グラムを激しく撹拌した硫化アンモニウム溶液(100ミリリットル、22重量%)に加えて、以下の実施例で使用するための無機多硫化物溶液を調製した。元素硫黄は直ちに溶解し始め、生じた溶液は赤橙色になった。硫黄がすべて溶解するまで混合物を撹拌した。溶液の実際の硫黄含量は25.7重量%であり、溶液中の硫黄対硫化物の重量比は2.0であった。
実施例1
Zeolyst International Inc.から市販されている、Z−763 Ni−W/UltrastableYゼオライトをベースとする水素化分解触媒を、以下に述べる手順に従って前硫化した。
上記の触媒の50g試料を空気で平衡まで水和した。スクロース7.5gを上記の無機多硫化物溶液に加えた。次に水分細孔容積30mlに希釈した無機多硫化物溶液13.7mlを触媒に含浸させた。シリンジポンプ装置を用いて、この溶液を、窒素パージした(0.5l/分)300mlの3N丸底フラスコに入れた触媒ペレットの撹拌した床に1滴ずつ加えた。丸底フラスコが取り付けられているスタンドを、触媒ペレットの床がかき混ぜられるような振動幅で、FMC振動テーブルを用いて振動した。次に生じた黒いペレットを室温から205℃まで1時間加熱した。その後触媒を260℃の最終保持温度まで傾斜的に温度上昇させ、1時間保持した。最終硫黄レベルは総触媒の5重量%であった。LECO社のSC−432炭素−硫黄分析器を用いて触媒の硫黄含量を分析した。
実施例2
Zeolyst International Inc.から市販されている、Z−763 Ni−W/UltrastableYゼオライトをベースとする水素化分解触媒を、以下に述べる手順に従って前硫化した。
上記の触媒の50g試料を空気で平衡まで水和した。ソルビトール7.5gを上記の無機多硫化物溶液に加えた。次に水分細孔容積30mlに希釈した無機多硫化物溶液13.7mlを触媒に含浸させた。シリンジポンプ装置を用いて、この溶液を、窒素パージした(0.5l/分)300mlの3N丸底フラスコに入れた触媒ペレットの撹拌した床に1滴ずつ加えた。丸底フラスコが取り付けられているスタンドを、触媒ペレットの床がかき混ぜられるような振動幅で、FMC振動テーブルを用いて振動した。次に生じた黒いペレットを室温から205℃まで1時間加熱した。その後触媒を357℃の最終保持温度まで傾斜的に温度上昇させ、1時間保持した。最終硫黄レベルは総触媒の3.91重量%であった。LECO社のSC−432炭素−硫黄分析器を用いて触媒の硫黄含量を分析した。
比較実施例A
上の実施例1に述べられている市販の水素化分解触媒を、無機多硫化物溶液に糖を加えないことを除いて、実質的に上の実施例1で述べたのと同じ前硫化工程に供した。また、空気中で触媒を水化した後、無機多硫化物溶液を含浸させ、空気感受性触媒を、触媒をリアクターに装填するために空気中で安全に取扱うことができるような加熱ステップに従って、水分飽和した窒素流で再水和した。
比較実施例B
上の実施例1に述べられている市販の水素化分解触媒を、以下のin−situ硫化工程に供した。
触媒の試料を、350psig(2.4MPa)の硫化ガス(5%H2S/95%H2)の固定圧および1500のガス毎時空間速度(GHSV)を生じる流量(たとえば触媒40mlについて、流量は60l/時)を有する試験ユニットに装填した。温度を30分間で室温から150℃に傾斜上昇させ、次に6時間にわたって150℃から370℃に傾斜上昇させた。それから2時間、温度を370℃に保持し、その後150℃に低下させた。その後、ユニットを純粋水素流と確立された標的速度および圧に切り替え、炭化水素給液を導入した。最終硫黄レベルは総触媒の5.45重量%であった。LECO社のSC−432炭素−硫黄分析器を用いて触媒の硫黄含量を分析した。
触媒試験
上記の実施例1および2ならびに比較実施例AおよびBで硫化した触媒を用いて、細流リアクターにおいて水素化処理触媒で分解した軽ガス油を水素化分解した。触媒の試料を炭化珪素で希釈し、細流リアクターチューブに装填した。リアクターチューブを水素で1500psig(10.34MPa)に加圧した。次にリアクターを150℃に加熱し、水素化処理触媒で分解した軽ガス油フィードを、6.0の液体毎時空間速度(LHSV)で触媒に通した。リアクターチューブにおける水素対フィードの比率は6500標準立方フィート/バレル(SCF/BBL)であった。温度を22℃/日の割合で4日間、6℃/日の割合で5日間、260℃まで傾斜上昇させた。その後、フィードにおいて190+℃の12重量%の標的転換が得られるように温度を調製した。結果を表1に示す。
Figure 0004049397
表1からわかるように、各々スクロースとソルビトールを含む無機多硫化物溶液で前硫化した実施例1および2における触媒は、十分な硫黄保持特性と、水溶性含酸素炭化水素不在下で無機多硫化物溶液によって前硫化した触媒の活性(比較実施例A)よりも改善され、従来のin−situ前硫化法を用いて前硫化した触媒の活性(比較実施例B)と等しい水素化分解活性を有している。

Claims (11)

  1. 少なくともひとつの金属あるいは金属酸化物を含有する硫化可能触媒の多孔質粒子を前硫化するための方法であって、
    (a)無機多硫化物溶液および少なくともひとつの水溶性酸素含有炭化水素を触媒に含浸させ、少なくとも硫化物あるいは硫黄の一部が触媒の細孔に取り込まれた硫黄混合触媒を得ること;そして
    (b)非酸化性雰囲気の存在下で硫黄混合触媒を加熱すること
    を包含する方法。
  2. 無機多硫化物溶液は、xが少なくとも3の数値を持つ整数である一般式S(x) 2-の多硫化物イオンを含む、請求項1に記載の方法。
  3. 無機多硫化物溶液が、元素硫黄を水性硫化アンモニウムあるいは硫化アンモニウム誘導体溶液に溶解することによって調製される、請求項1または請求項2に記載の方法。
  4. 無機多硫化物溶液が、溶液の総重量に基づいて、5重量%から50重量%の範囲の量の硫黄を含む、請求項1〜3のいずれか一項に記載の方法。
  5. 水溶性酸素含有炭化水素が、糖類、ポリエチレングリコールおよびそれらの混合物から成る群から選択される、請求項1〜4のいずれか一項に記載の方法。
  6. 水溶性酸素含有炭化水素が、単糖類、二糖類およびそれらの混合物から成る群から選択される糖である、請求項5に記載の方法。
  7. 水溶性酸素含有炭化水素が、200から500の範囲の分子量(Mn)を持つポリエチレングリコールである、請求項5に記載の方法。
  8. ステップa)に先立って、少なくともひとつの金属あるいは金属酸化物を含む触媒を空気で平衡まで水和する、請求項1〜7のいずれか一項に記載の方法。
  9. ステップa)の含浸を0℃から60℃の範囲の温度で実施する、請求項1〜8のいずれか一項に記載の方法。
  10. ステップb)の加熱を50℃から400℃の範囲の温度で実施する、請求項1〜9のいずれか一項に記載の方法。
  11. ステップb)の加熱を、窒素、二酸化炭素、アルゴン、ヘリウムおよびそれらの混合物から成る群から選択される非酸化性ガスの存在下で実施する、請求項1〜10のいずれか一項に記載の方法。
JP50225898A 1996-06-17 1997-06-16 炭化水素転換触媒の前硫化工程 Expired - Fee Related JP4049397B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US08/668,014 US5821191A (en) 1996-06-17 1996-06-17 Process for presulfiding hydrocarbon processing catalysts
US08/668,014 1996-06-17
PCT/EP1997/003155 WO1997048489A1 (en) 1996-06-17 1997-06-16 A process for presulphiding hydrocarbon conversion catalysts

Publications (3)

Publication Number Publication Date
JP2000512209A JP2000512209A (ja) 2000-09-19
JP2000512209A5 JP2000512209A5 (ja) 2005-02-10
JP4049397B2 true JP4049397B2 (ja) 2008-02-20

Family

ID=24680630

Family Applications (1)

Application Number Title Priority Date Filing Date
JP50225898A Expired - Fee Related JP4049397B2 (ja) 1996-06-17 1997-06-16 炭化水素転換触媒の前硫化工程

Country Status (19)

Country Link
US (1) US5821191A (ja)
EP (1) EP0906153B1 (ja)
JP (1) JP4049397B2 (ja)
KR (1) KR20000016690A (ja)
AR (1) AR007598A1 (ja)
AT (1) ATE196262T1 (ja)
AU (1) AU712022B2 (ja)
BR (1) BR9709805A (ja)
CZ (1) CZ416598A3 (ja)
DE (1) DE69703110T2 (ja)
DK (1) DK0906153T3 (ja)
HU (1) HU221233B1 (ja)
ID (1) ID17143A (ja)
NO (1) NO985893L (ja)
NZ (1) NZ333761A (ja)
PL (1) PL330527A1 (ja)
RU (1) RU2183506C2 (ja)
TW (1) TW362044B (ja)
WO (1) WO1997048489A1 (ja)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6562752B2 (en) 1998-06-25 2003-05-13 Institut Francais Du Petrole Metallic sulphide catalysts, processes for synthesising said catalysts and use thereof
FR2780313B1 (fr) * 1998-06-25 2000-08-11 Inst Francais Du Petrole Procede de sulfuration de catalyseurs par reduction suivie d'une sulfuration
US6291391B1 (en) * 1998-11-12 2001-09-18 Ifp North America, Inc. Method for presulfiding and preconditioning of residuum hydroconversion catalyst
KR100450747B1 (ko) * 2001-12-15 2004-10-01 한국전자통신연구원 멀티캐스트 전송 서비스품질 관리 방법 및 그 장치
US7041621B2 (en) 2003-01-17 2006-05-09 Conocophillips Company Sulfided catalysts for improved performance in hydrocarbon processing
RU2236288C1 (ru) * 2003-05-05 2004-09-20 Институт катализа им. Г.К. Борескова СО РАН Катализатор, способ его получения (варианты) и способ гидропереработки углеводородного сырья
JP5086344B2 (ja) * 2006-07-21 2012-11-28 中國石油化工股▲フン▼有限公司 水素化触媒組成物ならびにその調製方法およびその使用
US8664458B2 (en) * 2010-07-15 2014-03-04 Greenmantra Recycling Technologies Ltd. Method for producing waxes and grease base stocks through catalytic depolymerisation of waste plastics
CA3129563C (en) 2013-01-17 2024-03-26 Greenmantra Recycling Technologies Ltd. Catalytic depolymerisation of polymeric materials
US20180353943A1 (en) * 2015-03-27 2018-12-13 Porocel International, Llc Presulfurized Catalyst Composition
US10472487B2 (en) 2015-12-30 2019-11-12 Greenmantra Recycling Technologies Ltd. Reactor for continuously treating polymeric material
EP3414302B1 (en) 2016-02-13 2022-06-22 GreenMantra Recycling Technologies Ltd Polymer-modified asphalt with wax additive
AU2017239181B2 (en) 2016-03-24 2020-12-10 Greenmantra Recycling Technologies Ltd. Wax as a melt flow modifier and processing aid for polymers
EP4640721A2 (en) 2016-09-29 2025-10-29 GreenMantra Recycling Technologies Ltd Reactor for treating polystyrene material
US10723858B2 (en) 2018-09-18 2020-07-28 Greenmantra Recycling Technologies Ltd. Method for purification of depolymerized polymers using supercritical fluid extraction

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB646408A (en) * 1947-08-13 1950-11-22 Du Pont Improvements in and relating to selective hydrogenation proceses
US3516947A (en) * 1967-05-04 1970-06-23 Canadian Patents Dev Catalysts having stable free radicals containing sulfur
BE794334A (fr) * 1972-01-20 1973-07-19 Unilever Nv Catalyseur metallique sulfure depose sur un support
US4089930A (en) * 1976-02-12 1978-05-16 New England Power Service Company Process for the catalytic reduction of nitric oxide
US4067958A (en) * 1976-03-10 1978-01-10 Continental Oil Company Production of a hydrogen-rich gas from a co-containing fuel gas
US4177136B1 (en) * 1978-01-03 1994-05-03 Standard Oil Co Ohio Hydrotreating process utilizing elemental sulfur for presulfiding the catalyst
GB2055603B (en) * 1979-08-10 1983-05-05 Coal Industry Patents Ltd Hydrotreating catalysts
US4606812A (en) * 1980-04-15 1986-08-19 Chemroll Enterprises, Inc. Hydrotreating of carbonaceous materials
FR2534826A1 (fr) * 1982-10-26 1984-04-27 Pro Catalyse Nouvelles masses d'absorption pour l'elimination du mercure comportant un support sur lequel est depose du soufre
US4474896A (en) * 1983-03-31 1984-10-02 Union Carbide Corporation Adsorbent compositions
FR2548205B1 (fr) * 1983-06-30 1985-11-29 Eurecat Europ Retrait Catalys Procede de presulfuration de catalyseur de traitement d'hydrocarbures
US5162282A (en) * 1983-08-29 1992-11-10 Chevron Research And Technology Company Heavy oil hydroprocessing with group VI metal slurry catalyst
US4520128A (en) * 1983-12-19 1985-05-28 Intevep, S.A. Catalyst having high metal retention capacity and good stability for use in the demetallization of heavy crudes and method of preparation of same
FR2559402B1 (fr) * 1984-02-13 1986-06-27 Europ Retraitement Catalyse Procede de presulfuration de catalyseur de traitement d'hydrocarbures
US4530911A (en) * 1984-05-18 1985-07-23 Shell Oil Company Hydrodenitrification catalyst
DE3562987D1 (en) * 1984-10-30 1988-07-07 Eurecat Europ Retrait Catalys Method for presulfiding a catalyst for the treatment of hydrocarbons
US4728682A (en) * 1985-09-30 1988-03-01 The United States Of America As Represented By The Secretary Of The Navy Metal ternary sulfides
JPS63196854A (ja) * 1987-02-10 1988-08-15 Toa Medical Electronics Co Ltd リンパ球亜群の測定方法およびその装置
US4985389A (en) * 1987-09-30 1991-01-15 Mobil Oil Corporation Polysulfide treated molecular sieves and use thereof to remove mercury from liquefied hydrocarbons
DE68902095T2 (de) * 1988-05-19 1992-12-10 Inst Francais Du Petrol Katalytische zusammensetzung, die ein metallsulfid in form einer suspension mit einer asphalt enthaltenden fluessigkeit enthaelt und verfahren zur hydroviskoreduktion von kohlenwasserstoffen.
DE68926764T2 (de) * 1988-08-19 1996-10-31 Sumitomo Metal Mining Co Kohlenwasserstoffbehandlungskatalysatoren und Verfahren zu deren Herstellung
US4943547A (en) * 1988-09-13 1990-07-24 Seamans James D Method of presulfiding a hydrotreating catalyst
FR2649907A2 (fr) * 1989-04-19 1991-01-25 Eurecat Europ Retrait Catalys Procede de presulfuration de catalyseur de traitement d'hydrocarbures
FR2647368B1 (fr) * 1989-04-19 1991-08-30 Eurecat Europ Retrait Catalys Procede de presulfuration de catalyseur de traitement d'hydrocarbures
FR2659570B1 (fr) * 1990-03-19 1992-06-05 Eurecat Europ Retrait Catalys Procede de presulfuration de catalyseur de traitement d'hydrocarbures.
FR2661114B1 (fr) * 1990-04-20 1992-06-12 Elf France Catalyseur d'hydroraffinage de charges hydrocarbonnees renfermant du trisulfure: de niobium et procede d'hydroraffinage utilisant ledit catalyseur.
FR2664507B1 (fr) * 1990-07-13 1995-04-14 Eurecat Europ Retrait Catalys Procede de pretraitement d'un catalyseur par un melange d'un agent soufre et d'un agent reducteur organique.
US5215954A (en) * 1991-07-30 1993-06-01 Cri International, Inc. Method of presulfurizing a hydrotreating, hydrocracking or tail gas treating catalyst
FR2689420B1 (fr) * 1992-04-01 1994-06-17 Eurecat Europ Retrait Catalys Procede de presulfuration de catalyseur de traitement d'hydrocarbures.
FR2706326B1 (fr) * 1993-06-14 1995-09-15 Eurecat Europ Retrait Catalys Nouveau mode de présulfuration de catalyseur.

Also Published As

Publication number Publication date
CZ416598A3 (cs) 1999-08-11
RU2183506C2 (ru) 2002-06-20
KR20000016690A (ko) 2000-03-25
NO985893L (no) 1999-02-16
NZ333761A (en) 1999-05-28
HU221233B1 (en) 2002-08-28
TW362044B (en) 1999-06-21
US5821191A (en) 1998-10-13
ATE196262T1 (de) 2000-09-15
HUP9903474A3 (en) 2000-09-28
NO985893D0 (no) 1998-12-16
AU3176797A (en) 1998-01-07
PL330527A1 (en) 1999-05-24
WO1997048489A1 (en) 1997-12-24
ID17143A (id) 1997-12-04
DE69703110D1 (de) 2000-10-19
DE69703110T2 (de) 2001-05-03
EP0906153A1 (en) 1999-04-07
BR9709805A (pt) 1999-08-10
AR007598A1 (es) 1999-11-10
HUP9903474A2 (hu) 2000-02-28
DK0906153T3 (da) 2000-11-20
AU712022B2 (en) 1999-10-28
JP2000512209A (ja) 2000-09-19
EP0906153B1 (en) 2000-09-13

Similar Documents

Publication Publication Date Title
EP0598004B1 (en) A method of presulfurizing a catalyst
JP4049397B2 (ja) 炭化水素転換触媒の前硫化工程
KR100420218B1 (ko) 수소처리촉매의 조성물,제조방법 및 그의 사용방법
RU2372991C2 (ru) Способ восстановления каталитической активности отработанного катализатора водородообработки, отработанный катализатор водородообработки, имеющий восстановленную каталитическую активность, и способ водородообработки
JP4538667B2 (ja) 炭化水素分子の存在下での現場外の予備硫化
EP0696632A1 (en) Hydrodearomatisation of hydrocarbon oils using phosphorus-treated carbon-supported metal sulphide catalysts
EP0731156A2 (en) Process for hydrodearomatization of hydrocarbon oils using carbon supported metal sulfide catalysts promoted by zinc
JP4046357B2 (ja) 炭化水素転換触媒の前硫化工程
US5500401A (en) Method for selective hydrodenitrogenation of raw oils
EP0156424B1 (en) Process for the preparation of improved hydroconversion catalysts and catalysts thus prepared
JP2575168B2 (ja) 炭化水素の水素化処理用触媒及びその製造方法
CA2258001C (en) A process for presulphiding hydrocarbon conversion catalysts
MXPA98010787A (en) A process to presulfate hydrocarbon conversion catalysts
CA2258000C (en) A process for presulphiding hydrocarbon conversion catalysts
MXPA98010769A (en) A process to presulfate hydrocarbon conversion catalysts
JP2531730B2 (ja) 炭化水素の水素化処理用触媒及びその製造方法
JPH10503707A (ja) 触媒、その使用及びその調製方法
JP3200432B2 (ja) 炭化水素油の水素化処理触媒の製造方法
JPH07178B2 (ja) 炭化水素の水素化処理用触媒の製造方法

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040510

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040510

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070313

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20070606

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20070723

A524 Written submission of copy of amendment under article 19 pct

Free format text: JAPANESE INTERMEDIATE CODE: A524

Effective date: 20070912

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071127

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101207

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101207

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111207

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111207

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121207

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121207

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131207

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees