JP4029537B2 - 内燃機関の燃料噴射制御装置 - Google Patents
内燃機関の燃料噴射制御装置 Download PDFInfo
- Publication number
- JP4029537B2 JP4029537B2 JP2000046418A JP2000046418A JP4029537B2 JP 4029537 B2 JP4029537 B2 JP 4029537B2 JP 2000046418 A JP2000046418 A JP 2000046418A JP 2000046418 A JP2000046418 A JP 2000046418A JP 4029537 B2 JP4029537 B2 JP 4029537B2
- Authority
- JP
- Japan
- Prior art keywords
- injection
- time
- fuel injection
- event
- timer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
Description
【発明の属する技術分野】
本発明は、内燃機関の燃料噴射制御装置に関するものである。
【0002】
【従来の技術】
例えばディーゼルエンジンの燃料噴射を制御する装置では、マイクロコンピュータによりその時々のエンジン運転状態に応じて最適なる燃料噴射時期や燃料噴射量が算出される。そして、これら各算出値に応じて生成される噴射信号により、電磁式インジェクタに接続された駆動用のスイッチング素子がON/OFFされ、インジェクタから各気筒への燃料噴射が行われる。つまり、噴射信号の立ち上がりで燃料噴射開始のタイミングが規定され、同噴射信号の立ち下がりで燃料噴射終了のタイミングが規定される。
【0003】
より詳細には、所定の基準位置にて上記燃料噴射時期及び燃料噴射量が算出されると、噴射信号を論理ハイレベル(Hレベル)又はローレベル(Lレベル)に操作する時期が角度演算される。また、この角度演算された結果から、等クランク角毎(例えば10°CA毎)に発生する回転パルス信号を基準に噴射信号のセットタイミングが決定されると共に、噴射開始時刻(ON時刻)と噴射終了時刻(OFF時刻)とが算出され、その噴射開始及び噴射終了の時刻が噴射用タイマにセットされる。なお、こうしたタイマセットの処理は、通常、回転パルス信号に同期した割り込みイベントにて実施される。そして、該セットした時刻に達すると、噴射信号がH又はLに操作されてインジェクタによる燃料噴射が行われる。
【0004】
また近年では、排気エミッションの向上や内燃機関の静粛性を目的として、1気筒分の燃料噴射を多段に分割して実施する技術が具体化されており、例えば、メイン噴射とそれに先立つパイロット噴射等を含む多段噴射が実施される。
【0005】
図14は、4気筒内燃機関の燃料噴射制御装置の要部を示す概略構成図であり、同図ではパイロット噴射とメイン噴射とを噴射要件としている。同装置では、マイコン(マイクロコンピュータ)200にパイロット噴射用タイマ201とメイン噴射用タイマ202とが設けられ、そのタイマ201,202から出力される信号S1,S2が出力回路210内のOR回路211に入力される。OR回路211の出力信号S3は、気筒分配用のスイッチ回路212を経て気筒毎(#1〜#4)に分配され出力される。
【0006】
また、マイコン200には、気筒分配用ポート出力部203,204が設けられ、同出力部203,204の出力信号S4,S5が分配回路213に入力される。そして、この分配回路213により前記スイッチ回路212が切り替えられる。
【0007】
上記制御装置の動作を図15を用いて説明する。S1,S2信号は各々パイロット噴射用の噴射信号、メイン噴射用の噴射信号であり、それらが合成されてS3信号となる。このとき、S1,S2の各噴射信号は近接していて、同一或いは別の割り込みイベントで各噴射信号が生成される。また、S4,S5信号は気筒数分(4通り)の組み合わせの信号を出力する。それにより、#1〜#4の如く気筒毎の噴射信号が生成され、各気筒のインジェクタが駆動される。
【0008】
要するに、上記パイロット噴射とメイン噴射のように噴射要件が近接する時、同一の割り込みイベントで各々の噴射要件の時刻設定が必要となる場合がある。そのため、上記制御装置では、噴射信号のセットタイミングが重複する場合を考慮して、噴射要件毎にタイマが設けられていた。
【0009】
【発明が解決しようとする課題】
しかしながら、上記従来技術は、噴射要件毎にタイマを必要とするため、多段噴射の要件が増えると、それに追従してタイマを増設しなくてはならない。例えば、図16のように、各気筒の燃料噴射をプレ噴射、パイロット噴射、メイン噴射、アフター噴射に分割して実施する場合、タイマ数の増設は必須となる。また、2つの気筒の燃料噴射が重複し各気筒のインジェクタが同時に駆動される、いわゆる多重噴射(ポスト噴射)を実施する場合には、気筒分配のための回路構成も複数個必要となる。
【0010】
図17は、4段の多段噴射(プレ、パイロット、メイン、アフターの各噴射)と、ポスト噴射とを実施する場合の燃料噴射制御装置の回路構成を示す。この場合、マイコン300では、各噴射のためのタイマ301,302,303,304,305と、気筒分配用ポート出力部306,307,308,309とが必須となる。また、出力回路310では、OR回路311,316,317,318,319と、2つのスイッチ回路312,314と、2つの分配回路313,315とが必須となる。
【0011】
以上のように、既存の構成では、マイコンとその周辺の回路構成が複雑になるという問題があり、結果として電子制御ユニットとして実現する上でコストの高騰を招く。
【0012】
また、上述した装置は4気筒内燃機関を例にしたため、気筒分配用ポート出力部はスイッチ回路1個につき2個で済むが、5気筒以上の構成であれば、これも増設しなくてはならず、それに伴い気筒分配のための回路構成が更に複雑になってしまう。
【0013】
本発明は、上記問題に着目してなされたものであって、その目的とするところは、回路構成の簡素化を図ることができる内燃機関の燃料噴射制御装置を提供することである。
【0014】
【課題を解決するための手段】
本発明における内燃機関の燃料噴射制御装置は、内燃機関の回転に伴う所定のクランク角毎にイベントを実施し、そのイベントにて燃料噴射の開始時刻及び終了時刻をタイマにセットすることを前提とする。
【0015】
そして、請求項1に記載の発明ではその特徴として、第1の時刻設定手段は、前記クランク角毎のイベントに際し、イベントの開始後最初の燃料噴射について前記タイマに時刻設定を行う。また、第2の時刻設定手段は、前記第1の時刻設定手段によるタイマの時刻設定の後、その時刻が経過した時のイベントにて起動し、後続の燃料噴射について同一のタイマに時刻設定を行う。
【0016】
より具体的には、請求項2に記載したように、メイン噴射とその前後の噴射とからなる多段噴射とを実施する燃料噴射制御装置において、多段噴射を連続して実施する際、前記第1及び第2の時刻設定手段により各々の噴射時刻を設定する。例えば、メイン噴射とそれに先立つパイロット噴射とを同一クランク角のイベントで時刻設定する場合、第1の時刻設定手段によりパイロット噴射の時刻設定が行われ、第2の時刻設定手段によりメイン噴射の時刻設定が行われることとなる。
【0017】
上記構成によれば、多段に実施される燃料噴射において、燃料噴射の時刻設定は角度同期のイベント(割り込み)と、その後、タイマ設定時刻に達した時のイベント(割り込み)とに分けて行われる。それ故、同一のタイマを使って複数の噴射要件の時刻設定を行うことができる。多段の噴射要件毎にタイマを設け、個々のタイマに時刻設定する従来装置とは異なり、噴射要件に拘わらずタイマの必要個数が不変となる。また、前記図14や図17に示す気筒分配のための回路構成が不要となる。その結果、回路構成の簡素化を図ることができる。
【0018】
内燃機関の低回転域では、同一クランク角のイベント(割り込み)で3段以上の燃料噴射について時刻設定が行われることも考えられる。この場合、請求項3に記載したように、前段のタイマの設定時刻が経過した時にイベントを発生させ、後続の燃料噴射について同一のタイマに時刻設定を行うと良い。
【0019】
また、請求項4に記載の発明では、多気筒内燃機関に適用される燃料噴射制御装置であって、前記タイマを気筒毎に設けたので、異なる気筒同士で燃料噴射が重複する、いわゆる多重噴射が行われる場合にも、個々の燃料噴射が好適に実施される。このとき、多重噴射用に別途タイマを設けていた従来技術とは異なり、専用のタイマを増設する必要はない。
【0020】
請求項5に記載の発明では、同じクランク角のイベントにて複数の燃料噴射を時刻設定するかどうかを判別し、複数噴射の時刻設定を行う場合には、前記第1及び第2の時刻設定手段により各々の噴射時刻を設定し、単一噴射の時刻設定を行う場合には、前記第1の時刻設定手段のみにより噴射時刻を設定する。本構成によれば、単一噴射の時刻設定を行う場合には、前記第1の時刻設定手段のみにより噴射時刻を設定し、前記第2の時刻設定手段による時刻設定を禁止するので、実質不要なイベント(割り込み)が起動されることはない。従って、無駄なイベント(割り込み)の発生に起因する処理遅れが未然に防止できる。
【0021】
第1及び第2の時刻設定手段による時刻設定パターンは、以下のように特定できる。すなわち、
(1)請求項6では、前記第1の時刻設定手段は、最初の燃料噴射について開始時刻及び終了時刻を設定し、前記第2の時刻設定手段は、前記最初の燃料噴射の開始時刻で発生するイベントにて次の燃料噴射の開始時刻を設定すると共に、同じく最初の燃料噴射の終了時刻で発生するイベントにて次の燃料噴射の終了時刻を設定する。
【0022】
(2)請求項7では、前記第1の時刻設定手段は、最初の燃料噴射について開始時刻及び終了時刻を設定し、前記第2の時刻設定手段は、前記最初の燃料噴射の終了時刻で発生するイベントにて次の燃料噴射の開始時刻及び終了時刻を設定する。
【0023】
(3)請求項8では、前記第1の時刻設定手段は、最初の燃料噴射について開始時刻を設定すると共に、該開始時刻で発生するイベントにて当該最初の燃料噴射の終了時刻を設定し、前記第2の時刻設定手段は、前記最初の燃料噴射の終了時刻で発生するイベントにて次の燃料噴射の開始時刻を設定すると共に、該開始時刻で発生するイベントにて当該次の燃料噴射の終了時刻を設定する。
【0024】
以上請求項6〜8によれば、何れも最初の燃料噴射とそれに続く燃料噴射とについて、開始時刻と終了時刻とが各々適正に設定できる。従って、各燃料噴射が好適に実施できる。
【0025】
請求項9に記載の発明では、第2の時刻設定手段による全ての時刻設定が完了すると、燃料噴射の開始時刻又は終了時刻でのイベントを禁止する。それ故、後続の燃料噴射までにイベントの発生が禁止され、後続の燃料噴射が単一又は複数の何れであってもそれに影響が及ぶことはない。
【0026】
【発明の実施の形態】
(第1の実施の形態)
以下、この発明を具体化した実施の形態を図面に従って説明する。本実施の形態は、車載用4気筒ディーゼルエンジンのコモンレール式燃料噴射システムとして具体化する。コモンレールには高圧燃料が所定の燃料圧力にて蓄えられ、この高圧燃料が電磁駆動式のインジェクタより気筒毎に噴射供給されるようになっている。
【0027】
また本実施の形態では、多段噴射と多重噴射を選択的に実施することを要件としており、多段噴射としては、メイン噴射に先立つプレ噴射とパイロット噴射、並びにメイン噴射後のアフター噴射が実施される。ここで、プレ噴射は主に筒内活性化のために実施され、パイロット噴射は主にNOxや燃焼音の低減のために実施される。アフター噴射は主に煤の再燃焼のために実施される。また、多重噴射を実現するためのポスト噴射は、主に触媒活性化のために実施される。つまり、これら各噴射は、排気エミッションの向上を目的として、エンジン運転状態等に応じて適宜実施される。
【0028】
図1は、燃料噴射制御系の構成を示す概略ブロック図である。図1において、ECU(Electric Control Unit )150は、CPUや各種メモリ等からなる周知のマイコン(マイクロコンピュータ)151を備える。マイコン151は、等クランク角毎(例えば10°CA毎)に発生する回転パルス信号(以下、NEパルス信号という)を図示しないクランク角センサより取り込むと共に、図示しないアクセル開度センサにて検出されたアクセル開度ACCを取り込む。そして、同マイコン151は、これら取り込んだエンジン運転情報(NE、ACC等)に基づいて、その時々の噴射要件を決定すると共に、最適な燃料噴射量や燃料噴射時期を算出する。
【0029】
また、マイコン151は、第1気筒(#1)〜第4気筒(#4)の各々について噴射用タイマ161,162,163,164を備えており、その時々の燃料噴射の開始時刻と終了時刻とが噴射用タイマ161〜164にセットされる。そして、各気筒の噴射用タイマ161〜164にセットした時刻に達すると、パルス状の噴射信号が生成され、この噴射信号が各気筒毎の出力回路171,172,173,174を介して駆動回路(EDU:Electric Driver Unit)100に出力される。
【0030】
駆動回路100には、ハイサイドの端子COM1,COM2とローサイドの端子INJ1,INJ2,INJ3,INJ4とが設けられ、この端子に各気筒のインジェクタ101,102,103,104が接続されている。駆動回路100は、ECU150からの噴射信号を受けて気筒毎にインジェクタ101〜104のソレノイドを通電し、インジェクタ101〜104を駆動する。この駆動回路100によれば、燃料噴射に際し、インジェクタ101〜104が噴射開始当初に大電流で駆動され、その後、定電流駆動されるようになっている。
【0031】
次に、駆動回路100の構成について図2の電気回路図を用いて説明すると共に、図3のタイムチャートを用いて駆動回路100の基本動作を説明する。
図2の駆動回路100は、多重噴射を実施することを前提に構成しており、全4気筒のインジェクタ101〜104を2気筒ずつに分けて駆動する。この場合、インジェクタ101と103を同じ噴射グループとして駆動回路100の共通端子COM1に接続し、インジェクタ102と104を同じ噴射グループとして駆動回路100の共通端子COM2に接続している。なお、各々の噴射グループは、同時に駆動されることがないインジェクタで構成されればよく、そのグループ分けはどの気筒間で多重噴射を実施させるか等のエンジンの設計仕様によって決定される。また、4気筒以外の、例えば6気筒エンジンの場合には、各気筒のインジェクタを3気筒ずつの噴射グループに分ければよい。
【0032】
バッテリ電源ライン(+B)とGNDとの間には、インダクタL11、トランジスタT13及び電流検出抵抗R00からなる直列回路が設けられている。トランジスタT13のゲート端子には自励式の発振回路110が接続され、トランジスタT13は発振回路110により駆動が制御される。インダクタL11とトランジスタT13との間には、逆流防止用のダイオードD13を介してコンデンサC10の一端が接続されると共に、逆流防止用のダイオードD23を介してコンデンサC20の一端が接続されている。これらコンデンサC10,C20の他端はトランジスタT13と電流検出抵抗R00との接続点に接続されている。これらインダクタL11、トランジスタT13、電流検出抵抗R00、発振回路110、ダイオードD13,D23及びコンデンサC10,C20によりDC−DCコンバータ回路が構成されている。
【0033】
なお、コンデンサC10は、COM1側の噴射グループであるインジェクタ101,103専用のエネルギー蓄積コンデンサであり、コンデンサC20は、COM2側の噴射グループであるインジェクタ102,104専用のエネルギー蓄積コンデンサである。
【0034】
トランジスタT13がオン/オフされると、ダイオードD13,D23を通じてコンデンサC10,C20が充電される。これにより、各コンデンサC10,C20がバッテリ電圧+Bよりも高い電圧に充電される。かかる場合、電流検出抵抗R00により充電電流がモニタされつつ、発振回路110によりトランジスタT13がオン/オフされることで、コンデンサC10,C20が効率の良い周期で充電される。
【0035】
駆動用IC120には、#1〜#4の入力端子が接続され、駆動用IC120はこの各端子を通じてECU150から第1気筒(#1)〜第4気筒(#4)の各噴射信号を取り込む。
【0036】
トランジスタT12,T22は、#1〜#4の噴射信号がLレベルからHレベルに反転するタイミングで一時的にオンとなり、コンデンサC10,C20の蓄積エネルギーをインジェクタ101〜104に供給するためのトランジスタである。より詳しくは、トランジスタT12はコンデンサC10と共通端子COM1との間に設けられ、駆動用IC120によりトランジスタT12がオンされると、コンデンサC10の蓄積エネルギーがCOM1側のインジェクタ101,103に供給される。また、トランジスタT22はコンデンサC20と共通端子COM2との間に設けられ、駆動用IC120によりトランジスタT22がオンされると、コンデンサC20の蓄積エネルギーがCOM2側のインジェクタ102,104に供給される。こうしたコンデンサC10,C20のエネルギー供給により、インジェクタの駆動電流として大電流が流れ、それに伴いインジェクタの開弁応答性が向上する。
【0037】
各インジェクタ101〜104のローサイドには、駆動回路100の端子INJ1〜INJ4を介してトランジスタT10,T20,T30,T40が接続されており、駆動用IC120から#1〜#4の噴射信号が各々供給されると、そのHレベルの噴射信号により当該トランジスタT10〜T40がオンとなる。トランジスタT10,T30とトランジスタT20,T40とは、各々同一の噴射グループを構成するものであり、それら各トランジスタはグループ毎に電流検出抵抗R10,R20を介して接地されている。電流検出抵抗R10,R20によりインジェクタ101〜104(ソレノイド101a〜104a)に流れる駆動電流が検出され、その検出結果が駆動用IC120に取り込まれる。
【0038】
COM1,COM2端子はそれぞれ、ダイオードD11,D21とトランジスタT11,T21とを介してバッテリ電源ライン(+B)に接続されている。かかる場合、駆動用IC120は、インジェクタ101〜104に流れる駆動電流に応じてトランジスタT11,T21をオン/オフ制御する。これにより、+Bからインジェクタ101〜104に定電流が供給される。ダイオードD12,D22は定電流制御のための帰還ダイオードであり、トランジスタT11,T21のオフ時にインジェクタ101〜104に流れる電流はダイオードD12,D22を介して還流される。
【0039】
また、各インジェクタ101〜104のうち、一方の噴射グループを構成するインジェクタ101,103は、ダイオードD10,D30を介してコンデンサC10に接続されており、通電遮断に伴い当該インジェクタ101,103に発生する逆起電力エネルギーはダイオードD10,D30を介してコンデンサC10に回収される。また、他方の噴射グループを構成するインジェクタ102,104は、ダイオードD20,D40を介してコンデンサC20に接続されており、通電遮断に伴い当該インジェクタ102,104に発生する逆起電力エネルギーはダイオードD20,D40を介してコンデンサC20に回収される。
【0040】
次に、図3のタイムチャートを用い、上記図2の駆動回路100の基本動作を説明する。図3では多段噴射と多重噴射との動作例を示している。図3中、「#1」は第1気筒の噴射信号を、「#2」は第2気筒の噴射信号を示し、第1気筒(#1)の多段噴射について、期間t1ではプレ噴射が、期間t2ではパイロット噴射が、期間t3ではメイン噴射が、期間t4ではアフター噴射が、それぞれ実施される。また、期間t5では、第1気筒のメイン噴射に重複して第2気筒(#2)に対しポスト噴射が実施される。4気筒エンジンの場合、例えば#1の噴射信号として、180°CA内にプレ、パイロット、メイン及びアフターの各噴射(多段噴射)の信号が出力され、その噴射信号に重複して#2の噴射信号として、ポスト噴射(多重噴射)の信号が出力される。
【0041】
さて、図3のプレ噴射前において、コンデンサC10,C20は満充電の状態にあり、期間t1で#1の噴射信号がオンに立ち上げられると、トランジスタT10がオンすると共に、それと同時にトランジスタT12がオンし、インジェクタ101によるプレ噴射が開始される。トランジスタT12は、プレ噴射の開始当初の一定時間だけオンし、コンデンサC10の蓄積エネルギーがソレノイド101aに供給される。これにより、ソレノイド101aに大電流が流れ、インジェクタ101の開弁応答が早まる。
【0042】
コンデンサC10のエネルギー供給後は、それに引き続いてトランジスタT11がオン/オフ制御され、ダイオードD11を介してソレノイド101aに定電流が供給される。すなわち、電流検出抵抗R10により検出した駆動電流(INJ1電流)に応じて駆動用IC120がトランジスタT11をオン/オフし、その駆動電流を所定値に保持する。これにより、インジェクタ101は開弁状態で保持される。
【0043】
その後、#1の噴射信号がオフされると、トランジスタT10がオフし、ソレノイド101aの通電遮断時に発生する逆起電力エネルギーがダイオードD10を通じてコンデンサC10に回収される。このとき、噴射開始時にエネルギー供給を行ったのと同じコンデンサC10でエネルギーが回収される。通電遮断後、インジェクタの駆動電流(INJ1電流)がリターンスプリングの付勢力に打ち負ける所定レベルまで減衰すると、インジェクタ101が閉弁し、同インジェクタ101によるプレ噴射が終了される。そして、プレ噴射終了時の逆起電力エネルギーの回収が完了すると、トランジスタT13がオン/オフしてコンデンサC10が充電される。
【0044】
それ以降、期間t2のパイロット噴射、期間t3のメイン噴射、期間t4のアフター噴射においても同様の動作が行われる。すなわち、#1の噴射信号がオンとなる各噴射の開始当初においてコンデンサC10の蓄積エネルギーがソレノイド101aに供給され、それに引き続いて、ソレノイド101aが定電流駆動される。その後、#1の噴射信号がオフされてINJ1電流が減衰すると、インジェクタ101による各噴射が終了される。コンデンサC10では、ソレノイド101aへのエネルギー供給後、通電遮断時に発生する逆起電力エネルギーが回収され、更にその後、DC−DCコンバータ回路により充電される。
【0045】
次に、多重噴射について説明する。図3では、#1の噴射信号(t3のメイン噴射)に#2の噴射信号(t5のポスト噴射)が重複しており、インジェクタ101,102が同時に駆動される。このとき、インジェクタ101,102は別々の噴射グループに属するため、それらは互いに無関係で制御され、仮に噴射時期が重複しても互いの影響を受けることなく燃料噴射が実施される。
【0046】
詳しくは、期間t5で#2の噴射信号がオンに立ち上げられると、トランジスタT20がオンすると共に、それと同時にトランジスタT22が一定時間だけオンし、コンデンサC20の蓄積エネルギーがソレノイド102aに供給される。これにより、ポスト噴射の開始当初において、ソレノイド102aに大電流が流れ、インジェクタ102の開弁応答が早まる。コンデンサC20によるエネルギー供給後は、それに引き続き、電流検出抵抗R20により検出した駆動電流(INJ2電流)に応じてトランジスタT21がオン/オフ制御され、ダイオードD21を介してソレノイド102aに定電流が供給される。これにより、インジェクタ102は開弁状態で保持される。
【0047】
その後、#2の噴射信号がオフされると、トランジスタT20がオフし、ソレノイド102aの通電遮断時に発生する逆起電力エネルギーがダイオードD20を通じてコンデンサC20に回収される。このとき、噴射開始時にエネルギー供給を行ったのと同じコンデンサC20でエネルギーが回収される。通電遮断後、インジェクタの駆動電流(INJ2電流)が減衰すると、インジェクタ102が閉弁し、同インジェクタ102によるポスト噴射が終了される。そして、逆起電力エネルギーの回収が完了すると、トランジスタT13がオン/オフしてコンデンサC20が充電される。
【0048】
次に、ECU150において第n番気筒の噴射用タイマ(図1の符号161〜164の何れか)で噴射信号が生成される過程を、図4のタイムチャートを用いて説明する。図4において、NEパルス信号は、10°CAを1周期として立ち上がりと立ち下がりとを繰り返す。
【0049】
図4の時刻t11,t12は、噴射信号をセットするためのセットタイミングに相当し、このうち、時刻t11で発生するNE割り込みイベントでは、単一の噴射要件について気筒毎に開始時刻と終了時刻とがセットされる。これに対し、時刻t12で発生するNE割り込みイベントでは、パイロット噴射とメイン噴射等、近接する2つの噴射要件について気筒毎に開始時刻と終了時刻とがセットされる必要があり、実際にはこのうち、前段の噴射要件について開始時刻と終了時刻とがセットされる。
【0050】
詳細には、時刻t11のNE割り込みイベントでは、第n番気筒の噴射用タイマに単一の燃料噴射の開始時刻と終了時刻とがセットされる。このとき、例えば気筒毎の噴射用タイマとしてON時刻タイマとOFF時刻タイマとを持つ構成では、角度演算されて、その後時間換算された噴射開始時刻がON時刻タイマにセットされると共に、噴射開始時刻から燃料噴射量Q相当の時間が経過する時点の噴射終了時刻がOFF用タイマにセットされる。そして、これら各タイマのセット時刻に達する時に、図示の通りパルス状の噴射信号が生成される。
【0051】
また、時刻t12のNE割り込みイベントでは、時刻t11と同様に、第n番気筒の噴射用タイマ(ON時刻タイマ、OFF時刻タイマ)に燃料噴射の開始時刻と終了時刻とがセットされる。
【0052】
この場合、時刻t12直後(1段目)の燃料噴射では、その噴射開始時刻にて割り込みイベントが起動し、その割り込みイベントにて、同一のON時刻タイマを用いて2段目の燃料噴射の開始時刻がセットされる。また、時刻t12直後(1段目)の燃料噴射の終了時刻にも割り込みイベントが起動し、その割り込みイベントにて、同一のOFF時刻タイマを用いて2段目の燃料噴射の終了時刻がセットされる。そして、これら各タイマのセット時刻に達する時に、図示の通りパルス状の噴射信号が生成される。
【0053】
ところで、噴射開始時及び噴射終了時には、上記の通り割り込みイベントを起動するが、その割り込みは処理遅れの原因となる。そこで、割り込み発生を必要最小限とすべく、複数の噴射要件の時刻設定が同一のNE割り込みで必要となる場合にのみ割り込みを許可し、それ以外では割り込みを禁止する。これにより、無駄なイベントが発生せず、それに起因する処理遅れが未然に防止される。
【0054】
但し、上記図4では、時刻t11,t12のNE割り込みからその後最初の燃料噴射までに時間的な余裕がある事例を示しており、それ故、燃料噴射直前のNEパルス信号を基準に燃料噴射の開始及び終了時刻が設定されるが、NE割り込みからその後最初の燃料噴射までの時間間隔が極めて短い場合には、図4の事例よりも一つ前のNEパルス信号を基準に燃料噴射の開始及び終了時刻が設定されることとなる。
【0055】
以下、上記図4の如く噴射信号を生成するための処理手順を図5〜図7のフローチャートを用いて説明する。先ず始めに、図5を用い、燃料噴射量及び噴射時期の算出手順を説明する。この図5の処理は、例えば各気筒の噴射毎(180°CA毎)にマイコン151により実施される。
【0056】
図5において、先ずステップ101では、その時々のエンジン運転状態として、エンジン回転数NEとアクセル開度ACCを読み込み、続くステップ102では、図示しない検索マップを用い、前記読み込んだNE及びACCに応じて燃料噴射量Qを算出する。
【0057】
その後、ステップ103では、エンジン運転状態に基づいて噴射要件を決定する。すなわち、メイン噴射に加え、プレ噴射、パイロット噴射、アフター噴射等の多段噴射を実施するかどうか、或いはポスト噴射のような多重噴射を実施するかどうかを判断する。
【0058】
更に、ステップ104では、前記決定した噴射要件毎に、噴射信号のセットタイミングを決定する。すなわち、多数のNEパルス信号のうち、どの信号のNE割り込みで噴射信号の設定を行うかを決定する。このとき、同一のNE割り込みにて複数の噴射要件について噴射信号を設定するのであれば、その旨を記憶しておく。
【0059】
また、ステップ105では、前記決定した噴射要件毎に、噴射開始時刻及び噴射終了時刻を決定し、その後本処理を一旦終了する。このとき、噴射信号のセットタイミングを基準に、噴射開始時刻を決定すると共に、この噴射開始時刻を基準に、燃料噴射量Qに応じて噴射終了時刻を決定する。
【0060】
次に、NEパルスの立ち上がりエッジでマイコン151により起動されるNE割り込みイベント処理について、図6のフローチャートを参照しながら説明する。
【0061】
ステップ201では、今回の割り込みが噴射信号のセットタイミングであるか否かを判別し、YESであることを条件にステップ202に進む。ステップ202では、今回セットする噴射要件が複数か否かを判別する。
【0062】
例えば前記図4の時刻t11のように、単一の噴射信号をセットするのであれば、ステップ203で噴射開始時及び噴射終了時の割り込みを禁止した後、ステップ205に進む。また、例えば前記図4の時刻t12のように、同じNE割り込みにて噴射要件が重なり、複数の噴射信号をセットするのであれば、ステップ204で噴射開始時及び噴射終了時の割り込みを許可した後、ステップ205に進む。
【0063】
ステップ205では、今回の噴射気筒に該当する噴射用タイマ(ON時刻タイマ)に噴射開始時刻をセットし、続くステップ206では、同じく今回の噴射気筒に該当する噴射用タイマ(OFF時刻タイマ)に噴射開始時刻をセットする。その後、本処理を一旦終了する。
【0064】
上記図6の処理において、噴射開始時及び噴射終了時の割り込みが許可された場合、図7(a),(b)の割り込みイベント処理が起動される。なお、図7(a)は、噴射開始時の割り込みイベントを示し、図7(b)は、噴射終了時の割り込みイベントを示す。
【0065】
さて、図7(a)の噴射開始イベントにおいて、ステップ211では、今回の時刻設定で、噴射開始時に必要となる噴射信号の設定が全て完了するかどうかを判別し、YESであればステップ212に進み、以降の噴射開始割り込みを禁止する。その後、ステップ213では、今回の噴射気筒に該当する噴射用タイマ(ON時刻タイマ)に噴射開始時刻をセットする。
【0066】
一方、図7(b)の噴射終了イベントにおいて、ステップ221では、今回の時刻設定で、噴射終了時に必要となる噴射信号の設定が全て完了するかどうかを判別し、YESであればステップ222に進み、以降の噴射終了割り込みを禁止する。その後、ステップ223では、今回の噴射気筒に該当する噴射用タイマ(OFF時刻タイマ)に噴射終了時刻をセットする。
【0067】
因みに、エンジンの低回転状態にある場合等において、同一のNE割り込みで3段以上の噴射要件を設定する必要があれば、噴射割り込みイベントによる噴射2段目の時刻設定時に上記ステップ211,221がNOとなり、割り込み許可の状態が継続される。そして、噴射2段目のタイマの設定時刻が経過した時に再び割り込みが起動し、この割り込みイベントによる噴射3段目の時刻設定時にステップ211,221がYESとなり、以降の割り込みが禁止される。
【0068】
なお本実施の形態では、前記図6のステップ205,206の処理が本発明の「第1の時刻設定手段」に相当し、前記図7(a),(b)の処理が「第2の時刻設定手段」に相当する。
【0069】
以上詳述した本実施の形態によれば、以下に示す効果が得られる。
(イ)NE割り込み(図6の処理)に際し、割り込み後最初の燃料噴射について噴射用タイマ161〜164に開始時刻及び終了時刻を各々設定すると共に、該NE割り込みによる噴射用タイマ161〜164の時刻設定の後、その時刻が経過した時に割り込みイベント(図7(a),(b))を起動させ、後続の燃料噴射について同一の噴射用タイマ161〜164に開始時刻及び終了時刻を各々設定することとした。
【0070】
従って、多段噴射において燃料噴射の時刻設定は角度同期の割り込みと、その後、タイマ設定時刻に達した時の割り込みとに分けて行われる。それ故、同一のNE割込みタイミングで複数の噴射要件の時刻設定が必要な場合に、同一の噴射用タイマ161〜164を使って複数の噴射要件の時刻設定を行うことができ、各燃料噴射が好適に実施できる。多段の噴射要件毎にタイマを設け、個々のタイマに時刻設定する従来装置とは異なり、噴射要件に拘わらずタイマの必要個数が不変となる。また、前記図14や図17に示す気筒分配のための回路構成が不要となる。その結果、回路構成の簡素化を図ることができ、ひいては低コスト化が実現できる。
【0071】
(ロ)噴射用タイマ161〜164を気筒毎に設けたので、多重噴射が行われる場合にも、個々の燃料噴射が好適に実施される。このとき、多重噴射用に別途タイマを設けていた従来技術とは異なり、タイマを増設する必要はない。すなわち、多重噴射を行うことにより噴射要件が増えた場合にも、マイコン151やその周辺の回路構成の変更が不要となる。
【0072】
(ハ)同じNE割り込みにて複数の噴射要件の時刻設定を行うかどうかを判別し、複数噴射の時刻設定を行う場合には、噴射開始時及び噴射終了時の割り込みを許可し、単一噴射の時刻設定を行う場合には、噴射開始時及び噴射終了時の割り込みを禁止するので、実質不要な割り込みが起動されることはない。従って、無駄な割り込みの発生に起因する処理遅れが未然に防止できる。
【0073】
(ニ)噴射開始時及び噴射終了時の割り込みによる全ての時刻設定が完了すると、以降の割り込みを禁止するので、これら割り込みが後続の燃料噴射までに禁止される。従って、後続のNE割り込み時における噴射要件が単一又は複数の何れであってもそれに影響が及ぶことはない。
【0074】
噴射信号を設定するための実施の形態は上記構成に限定されず、以下の第2の実施の形態や第3の実施の形態のように構成しても良い。
(第2の実施の形態)
本実施の形態は請求項7の発明を具体化するものであり、以下、ECU150により第n番気筒の噴射信号が生成される過程を、図8のタイムチャートを用いて説明する。
【0075】
時刻t21のNE割り込みイベントでは、前記図4の時刻t11と同様に、第n番気筒の噴射用タイマ(ON時刻タイマ、OFF時刻タイマ)に単一の燃料噴射の開始時刻と終了時刻とがセットされる。そして、これら各タイマのセット時刻に達する時に、図示の通りパルス状の噴射信号が生成される。
【0076】
一方、時刻t22のNE割り込みイベントでは、時刻t21と同様に、第n番気筒の噴射用タイマ(ON時刻タイマ、OFF時刻タイマ)に燃料噴射の開始時刻と終了時刻とがセットされる。また、時刻t22直後(1段目)の燃料噴射では、その噴射終了時刻にて割り込みイベントが起動し、その割り込みイベントにて、同一のON時刻タイマを用いて2段目の燃料噴射の開始時刻がセットされると共に、同一のOFF時刻タイマを用いて2段目の燃料噴射の終了時刻がセットされる。そして、これら各タイマのセット時刻に達する時に、図示の通りパルス状の噴射信号が生成される。
【0077】
この図8では、時刻t22以後、最初の燃料噴射が終了するまでの期間で、噴射終了時の割り込みが許可される。また、前記図4と異なり、噴射開始時の割り込みが許可されることはない。
【0078】
次に、NE割り込みイベント処理と噴射終了イベント処理とを図9及び図10のフローチャートを参照しながら説明する。なお、図9の処理は、前記図6の処理に代えてマイコン151により実行され、図10の処理は、前記図7(a),(b)の処理に代えてマイコン151により実行される。以下には、前記第1の実施の形態との相違点を中心に説明する。
【0079】
図9では、前記図6と同様、噴射セットタイミングか否かを判別すると共に、今回セットされる噴射要件が複数か否かを判別する(ステップ301,302)。そして、例えば前記図8の時刻t21のように、単一の噴射信号をセットするのであれば、ステップ303で噴射終了時の割り込みを禁止した後、ステップ305に進む。また、例えば前記図8の時刻t22のように、同じNE割り込みにて噴射要件が重なり、複数の噴射信号をセットするのであれば、ステップ304で噴射終了時の割り込みを許可した後、ステップ305に進む。
【0080】
その後、前記図6と同様、今回の噴射気筒に該当する噴射用タイマ(ON時刻タイマ)に噴射開始時刻をセットすると共に、同じく今回の噴射気筒に該当する噴射用タイマ(OFF時刻タイマ)に噴射開始時刻をセットする(ステップ305,306)。
【0081】
上記図9の処理において、噴射終了割り込みが許可された場合、図10のイベント処理が起動される。
図10において、ステップ311では、今回の時刻設定で、噴射終了時に必要となる噴射信号の設定が全て完了するかどうかを判別し、YESであればステップ312に進み、以降の噴射終了割り込みを禁止する。その後、ステップ313では、今回の噴射気筒に該当する噴射用タイマ(ON時刻タイマ)に噴射開始時刻をセットすると共に、噴射用タイマ(OFF時刻タイマ)に噴射終了時刻をセットする。
【0082】
因みに、エンジンの低回転状態にある場合等において、同一のNE割り込みで3段以上の噴射要件を設定する必要があれば、噴射割り込みイベントによる噴射2段目の時刻設定時に上記ステップ311がNOとなり、割り込み許可の状態が継続される。そして、噴射2段目のタイマの設定時刻が経過した時に再び割り込みが起動し、この割り込みイベントによる噴射3段目の時刻設定時にステップ311がYESとなり、以降の割り込みが禁止される。
【0083】
なお本実施の形態では、前記図9のステップ305,306の処理が本発明の「第1の時刻設定手段」に相当し、前記図10の処理が「第2の時刻設定手段」に相当する。
【0084】
以上第2の実施の形態によれば、上記第1の実施の形態と同様に、各燃料噴射が好適に実施できると共に、回路構成の簡素化を図ることができ、低コスト化が実現できる。
【0085】
(第3の実施の形態)
本実施の形態は請求項8の発明を具体化するものであり、以下、ECU150により第n番気筒の噴射信号が生成される過程を、図11のタイムチャートを用いて説明する。
【0086】
時刻t31のNE割り込みイベントでは、第n番気筒の噴射用タイマに燃料噴射の開始時刻がセットされる。また、そのセット時刻が経過するタイミングで割り込みが発生し、同一の噴射用タイマに燃料噴射の終了時刻がセットされる。これにより、図示の通りパルス状の噴射信号が生成される。
【0087】
一方、時刻t32のNE割り込みイベントでは、時刻t31と同様に、第n番気筒の噴射用タイマに燃料噴射の開始時刻がセットされる。また、そのセット時刻が経過するタイミングで割り込みが発生し、同一の噴射用タイマに燃料噴射の終了時刻がセットされる。更にその後、セット時刻が経過するタイミングで割り込みが繰り返し発生し、同一の噴射用タイマに燃料噴射の開始時刻と終了時刻とが順次セットされる。
【0088】
図11では、時刻t31,32以後、その時必要となる噴射要件のうち、最後の噴射要件の燃料噴射が開始されるまでの期間で、噴射開始時及び噴射終了時の割り込みが許可される。
【0089】
次に、NE割り込みイベント処理と噴射終了イベント処理とを図12及び図13(a),(b)のフローチャートを参照しながら説明する。なお、図12の処理は、前記図6の処理に代えてマイコン151により実行され、図13(a),(b)の処理は、前記図7(a),(b)の処理に代えてマイコン151により実行される。以下には、前記第1の実施の形態との相違点を中心に説明する。
【0090】
図12において、今現在、噴射セットタイミングであることを条件に(ステップ401がYES)、ステップ402に進み、噴射開始時及び噴射終了時の割り込みを許可する。続くステップ403では、今回の噴射気筒に該当する噴射用タイマに噴射開始時刻をセットし、本処理を一旦終了する。
【0091】
一方、図13(a)において、ステップ411では、今回の時刻設定で、噴射信号の時刻設定が全て完了するかどうかを判別し、NOであればそのままステップ413に進み、YESであればステップ412を経由してステップ413に進む。ステップ412では、以降の噴射開始時及び噴射終了時の割り込みを禁止する。また、ステップ413では、今回の噴射気筒に該当する噴射用タイマに噴射終了時刻をセットする。
【0092】
また、図13(b)では、ステップ421で、今回の噴射気筒に該当する噴射用タイマに噴射開始時刻をセットし、その後本処理を終了する。
なお本実施の形態では、前記図12のステップ403及び図13(a)のステップ413の処理が本発明の「第1の時刻設定手段」に相当し、前記図13(a),(b)の処理が「第2の時刻設定手段」に相当する。
【0093】
以上第3の実施の形態によれば、上記各実施の形態と同様に、各燃料噴射が好適に実施できると共に、回路構成の簡素化を図ることができ、低コスト化が実現できる。また本構成では、噴射用タイマ161〜164としてON時刻タイマとOFF時刻タイマとの2つのタイマを必要とすることがなく、各気筒1つのタイマで実現できるので、回路構成がより一層簡素化できる。
【0094】
以上の通り上記第1〜第3の実施の形態では何れも本発明の目的を満足するが、敢えて各実施の形態を比較すると、第1の実施の形態では、前後する2つの燃料噴射の時間間隔が極々短くても噴射用タイマの時刻設定が確実に実施できるという利点がある。すなわち、第1の実施の形態では図4に示す通り、前段の燃料噴射の開始割り込みで後段の燃料噴射の開始時刻を設定すると共に、前段の燃料噴射の終了割り込みで後段の燃料噴射の終了時刻を設定する。それ故、前後する燃料噴射の時間間隔に関係なく、時間的な余裕を持って噴射用タイマに時刻が設定できる。
【0095】
なお本発明は、上記以外に次の形態にて具体化できる。
上記第1〜第3の実施の形態の他に、次の構成であっても良い。同一のNE割り込みで複数の噴射要件が重複する場合において、NE割り込み後最初の燃料噴射の開始割り込みイベントで、2段目の燃料噴射の終了時刻をセットすると共に、NE割り込み後最初の燃料噴射の終了割り込みイベントで、2段目の燃料噴射の開始時刻をセットする。この構成でもやはり、既述の通り優れた効果が得られる。
【0096】
駆動回路100の構成は前記図2に限定されない。例えば、図2の構成において、ソレノイド101a〜104aの通電遮断時に発生する逆起電力エネルギーをダイオードD10〜D40にて回収しコンデンサC10,C20に蓄積するといった構成を省略してもよい。また、コンデンサC10,C20からのエネルギー供給後、トランジスタT11,T21をオン/オフ制御してソレノイド101a〜104aを定電流駆動するといった構成を変更し、+Bによりソレノイド101a〜104aを直接駆動するようにしてもよい。
【0097】
上記実施の形態では、各気筒共通の駆動回路(EDU)100を設けたが、気筒毎に駆動回路を設ける構成でも良い。また、ECU内に駆動回路を設ける構成としても良い。
【図面の簡単な説明】
【図1】発明の実施の形態における燃料噴射制御装置の概略構成を示すブロック図。
【図2】駆動回路の構成を示す電気回路図。
【図3】燃料噴射制御装置の基本動作を説明するためのタイムチャート。
【図4】噴射信号の生成過程を示すタイムチャート。
【図5】燃料噴射量及び噴射時期の算出手順を示すフローチャート。
【図6】NE割り込みイベント処理を示すフローチャート。
【図7】噴射開始及び噴射終了のイベント処理を示すフローチャート。
【図8】第2の実施の形態において噴射信号の生成過程を示すタイムチャート。
【図9】第2の実施の形態においてNE割り込みイベント処理を示すフローチャート。
【図10】第2の実施の形態において噴射終了イベント処理を示すフローチャート。
【図11】第3の実施の形態において噴射信号の生成過程を示すタイムチャート。
【図12】第3の実施の形態においてNE割り込みイベント処理を示すフローチャート図。
【図13】第3の実施の形態において噴射開始及び噴射終了のイベント処理を示すフローチャート。
【図14】従来技術において燃料噴射制御装置の要部構成を示す概略図。
【図15】噴射信号の生成過程を示すタイムチャート。
【図16】多段及び多重の噴射要件を示すタイムチャート。
【図17】従来技術において燃料噴射制御装置の要部構成を示す概略図。
【符号の説明】
100…駆動回路、101〜104…インジェクタ、150…ECU、151…第1の時刻設定手段,第2の時刻設定手段を実現するマイコン、161〜164…噴射用タイマ。
Claims (9)
- 内燃機関の回転に伴う所定のクランク角毎にイベントを実施し、そのイベントにて燃料噴射の開始時刻及び終了時刻をタイマにセットする燃料噴射制御装置において、
前記クランク角毎のイベントに際し、イベントの開始後最初の燃料噴射について前記タイマに時刻設定を行う第1の時刻設定手段と、
前記第1の時刻設定手段によるタイマの時刻設定の後、その時刻が経過した時のイベントにて起動し、後続の燃料噴射について同一のタイマに時刻設定を行う第2の時刻設定手段と、
を設けたことを特徴とする内燃機関の燃料噴射制御装置。 - メイン噴射とその前後の噴射とからなる多段噴射を実施する燃料噴射制御装置において、
前記多段噴射を連続して実施する際、前記第1及び第2の時刻設定手段により各々の噴射時刻を設定する請求項1に記載の内燃機関の燃料噴射制御装置。 - 同じクランク角のイベントで3段以上の燃料噴射を行う場合、前記第2の時刻設定手段は、前段のタイマの設定時刻が経過した時にイベントを発生させ、後続の燃料噴射について同一のタイマに時刻設定を行う請求項1又は2に記載の内燃機関の燃料噴射制御装置。
- 多気筒内燃機関に適用される燃料噴射制御装置であって、
前記タイマを気筒毎に設けた請求項1〜3の何れかに記載の内燃機関の燃料噴射制御装置。 - 同じクランク角のイベントにて複数の燃料噴射を時刻設定するかどうかを判別し、複数噴射の時刻設定を行う場合には、前記第1及び第2の時刻設定手段により各々の噴射時刻を設定し、単一噴射の時刻設定を行う場合には、前記第1の時刻設定手段により噴射時刻を設定すると共に、前記第2の時刻設定手段による時刻設定を禁止する請求項1〜4の何れかに記載の内燃機関の燃料噴射制御装置。
- 前記第1の時刻設定手段は、最初の燃料噴射について開始時刻及び終了時刻を設定し、
前記第2の時刻設定手段は、前記最初の燃料噴射の開始時刻で発生するイベントにて次の燃料噴射の開始時刻を設定すると共に、同じく最初の燃料噴射の終了時刻で発生するイベントにて次の燃料噴射の終了時刻を設定する請求項1〜5の何れかに記載の内燃機関の燃料噴射制御装置。 - 前記第1の時刻設定手段は、最初の燃料噴射について開始時刻及び終了時刻を設定し、
前記第2の時刻設定手段は、前記最初の燃料噴射の終了時刻で発生するイベントにて次の燃料噴射の開始時刻及び終了時刻を設定する請求項1〜5の何れかに記載の内燃機関の燃料噴射制御装置。 - 前記第1の時刻設定手段は、最初の燃料噴射について開始時刻を設定すると共に、該開始時刻で発生するイベントにて当該最初の燃料噴射の終了時刻を設定し、
前記第2の時刻設定手段は、前記最初の燃料噴射の終了時刻で発生するイベントにて次の燃料噴射の開始時刻を設定すると共に、該開始時刻で発生するイベントにて当該次の燃料噴射の終了時刻を設定する請求項1〜5の何れかに記載の内燃機関の燃料噴射制御装置。 - 第2の時刻設定手段による全ての時刻設定が完了すると、燃料噴射の開始時刻又は終了時刻でのイベントを禁止する請求項1〜8の何れかに記載の内燃機関の燃料噴射制御装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000046418A JP4029537B2 (ja) | 2000-02-23 | 2000-02-23 | 内燃機関の燃料噴射制御装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000046418A JP4029537B2 (ja) | 2000-02-23 | 2000-02-23 | 内燃機関の燃料噴射制御装置 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2001234777A JP2001234777A (ja) | 2001-08-31 |
JP4029537B2 true JP4029537B2 (ja) | 2008-01-09 |
Family
ID=18568828
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000046418A Expired - Fee Related JP4029537B2 (ja) | 2000-02-23 | 2000-02-23 | 内燃機関の燃料噴射制御装置 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4029537B2 (ja) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4120246B2 (ja) * | 2002-03-26 | 2008-07-16 | トヨタ自動車株式会社 | 過給機付き内燃機関及びその排気構造 |
EP2693030A4 (en) | 2011-03-28 | 2016-06-15 | Toyota Jidoshokki Kk | CONTROL DEVICE FOR FUEL INJECTION |
JP5587860B2 (ja) | 2011-12-28 | 2014-09-10 | 株式会社豊田自動織機 | 燃料噴射制御装置 |
JP7243560B2 (ja) * | 2019-10-07 | 2023-03-22 | 株式会社デンソー | 燃料噴射制御装置 |
-
2000
- 2000-02-23 JP JP2000046418A patent/JP4029537B2/ja not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2001234777A (ja) | 2001-08-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1288974B1 (en) | Electromagnetic load control apparatus having variable drive-starting energy supply | |
US8081498B2 (en) | Internal combustion engine controller | |
KR100441814B1 (ko) | 내연기관의제어방법및장치 | |
US8649151B2 (en) | Injector drive circuit | |
JP2000303892A (ja) | コモンレール式燃料噴射装置による複数回の燃料噴射をおこなう直噴ディーゼルエンジンの燃焼状態制御方法 | |
JP2007247610A (ja) | 燃料噴射制御装置 | |
JP2935499B2 (ja) | ディーゼル機関用ピエゾ式噴射弁の駆動装置 | |
JP2006336568A (ja) | インジェクタ駆動装置 | |
JP4539573B2 (ja) | 燃料噴射制御装置 | |
JP3633378B2 (ja) | 電磁弁の制御装置 | |
JP4029537B2 (ja) | 内燃機関の燃料噴射制御装置 | |
JP3573001B2 (ja) | 電磁負荷の制御装置 | |
JP4129140B2 (ja) | 燃料噴射の制御方法及び制御装置 | |
JP4304407B2 (ja) | 電磁負荷の駆動装置 | |
JP4103254B2 (ja) | 電磁負荷の駆動装置 | |
KR100367036B1 (ko) | 내연기관의 연료분사 제어장치 | |
JP4081927B2 (ja) | 内燃機関の燃料噴射装置 | |
JP4062822B2 (ja) | 電磁負荷の駆動装置 | |
JP2023046809A (ja) | 燃料噴射制御装置 | |
JP3836565B2 (ja) | 筒内噴射式インジェクタの制御装置 | |
JP4100066B2 (ja) | 燃料噴射制御装置 | |
JP4089092B2 (ja) | インジェクタ制御装置 | |
EP2770188A1 (en) | Method and system to control fuel injection | |
JP2000097089A (ja) | 燃料噴射制御のための方法および装置 | |
JP2018053786A (ja) | 燃料噴射制御装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060519 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20070612 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20070925 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20071008 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 4029537 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101026 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101026 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111026 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121026 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121026 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131026 Year of fee payment: 6 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |