JP4025945B2 - メタン含有排ガスの浄化用触媒およびメタン含有排ガスの浄化方法 - Google Patents

メタン含有排ガスの浄化用触媒およびメタン含有排ガスの浄化方法 Download PDF

Info

Publication number
JP4025945B2
JP4025945B2 JP05984199A JP5984199A JP4025945B2 JP 4025945 B2 JP4025945 B2 JP 4025945B2 JP 05984199 A JP05984199 A JP 05984199A JP 5984199 A JP5984199 A JP 5984199A JP 4025945 B2 JP4025945 B2 JP 4025945B2
Authority
JP
Japan
Prior art keywords
catalyst
methane
exhaust gas
palladium
hours
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP05984199A
Other languages
English (en)
Other versions
JPH11319559A (ja
Inventor
浩文 大塚
貴年 中平
正孝 増田
健 田畑
竹徳 平野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP05984199A priority Critical patent/JP4025945B2/ja
Publication of JPH11319559A publication Critical patent/JPH11319559A/ja
Application granted granted Critical
Publication of JP4025945B2 publication Critical patent/JP4025945B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、メタンを含有しかつ還元性物質の完全酸化に必要な量以上の酸素(以下においては、「過剰量の酸素」あるいは「酸素過剰」と表現することがある)を含む排ガス中の炭化水素の浄化用触媒および該排ガスの浄化方法に関する。
【0002】
【従来の技術】
従来から、排ガス中のメタン以外の炭化水素の酸化除去に際して、白金、パラジウムなどの白金族金属を担持した触媒が高い性能を示すことが、知られている。例えば、特開昭51-106691号公報は、アルミナ担体に白金とパラジウムとを担持した排ガス浄化用触媒を開示している。しかしながら、天然ガスの燃焼排ガスの様に、炭化水素の主成分がメタンである場合には、この様な触媒を用いても、メタンの化学的安定性が高いために、十分な浄化効果が達成されないという問題がある。
【0003】
さらに、燃焼排ガス中には通常硫黄酸化物などの阻害物質が共存しているので、触媒活性が、経時的に著しく劣化することは避けられない。灯油、軽油などの石油系燃料が、含硫黄化合物を含むことはむしろ当然といえる。しかしながら、本来硫黄化合物をほとんど含まない天然ガス由来の燃料、例えばわが国で供給されている都市ガスには、付臭剤として硫黄を含む化合物が添加されているので、燃焼排ガス中には、燃焼によって生成した硫黄酸化物が必然的に含まれる。
【0004】
ランパート(Lampert)らは、アプライドキャタリシスB:エンバイロンメンタル(Applied Catalysis B:Environmental)14巻211-223頁(1997年)において、パラジウム触媒を用いたメタン酸化の結果を報告している。この報告は、ガス中に僅か0.1ppmの二酸化硫黄が存在するだけで、数時間のうちにその触媒活性がほとんど失われることを示しており、硫黄酸化物の存在が触媒活性に極めて大きな影響を与えることを明らかにしている。
【0005】
また、山本らは、平成8年度触媒研究発表会講演予稿集(平成8年9月13日発行)において、アルミナに白金およびパラジウムを担持した触媒を用いて、都市ガスの燃焼排ガス中の炭化水素を酸化除去した結果を報告しており、100時間程度の短時間内に顕著な触媒活性の低下が見られることを明らかにしている。
【0006】
特開平8-332392号公報は、酸素過剰な排ガス中の低濃度炭化水素用酸化触媒として、ハニカム基材にアルミナ担体を介してパラジウムを7g/l以上且つ白金を3〜20g/l担持した触媒を開示している。しかしながら、この触媒も、長期の耐久性が十分ではなく、触媒活性の経時的な劣化は避けられない。
【0007】
このように従来技術による触媒では、メタン除去率が低い、さらに硫黄酸化物が共存するような条件下では、短時間内に触媒活性の大きな低下が生じるという問題点が存在する。
【0008】
また、メタン含有排ガスの他の例として、廃棄物の発酵などにより発生する生物起源のメタン含有ガスがある。この様な生物起源のメタン排ガスにも、通常イオン含有タンパク質などに由来する含硫黄有機化合物が共存しているので、触媒によるメタン酸化分解処理により、これらの含硫黄有機化合物が酸化されて硫黄酸化物が生成し、上記と同様の触媒活性の低下が起こることは、避けられない。
【0009】
【発明が解決しようとする課題】
本発明は、全炭化水素中のメタンの含有割合が高い排ガスに対しても高い浄化率を発揮し、かつ硫黄酸化物の共存下でも長期にわたって安定した触媒活性を発揮し得る、メタンを含有し酸素を還元性物質の完全酸化に必要な量よりも過剰に含む排ガス中の炭化水素の浄化用触媒およびそのような排ガスの浄化方法を提供することを主な目的とする。
【0010】
【課題を解決するための手段】
発明者は、従来技術の問題点に鑑みて研究を重ねた結果、酸化ジルコニウム担体にパラジウムを担持させた触媒が、硫黄酸化物による触媒活性の阻害に対して高い抵抗性を示すので、燃焼排ガスの処理条件下においても、長期にわたり安定して高いメタン酸化能を維持することを見出した。また、酸化ジルコニウム担体にパラジウムとともに白金を担持する場合には、より低い排ガス処理温度においても、高いメタン酸化能が得られることを見出した。
【0011】
本発明は、この様な新知見に基づき完成されたものであり、下記のメタン含有排ガスの浄化用触媒、およびそれを用いるメタン含有排ガス浄化方法を提供する。
1.メタンを含有しかつ還元性物質の完全酸化に必要な量以上の酸素を含む排ガス中の炭化水素の浄化用触媒であって、酸化ジルコニウムにパラジウムを担持してなる触媒。
2.パラジウムの担持量が、酸化ジルコニウムに対する重量比で、2〜20%である上記項1に記載の触媒。
3.メタンを含有しかつ還元性物質の完全酸化に必要な量以上の酸素を含む排ガス中の炭化水素の浄化用触媒であって、酸化ジルコニウムにパラジウムおよび白金を担持してなる触媒。
4.パラジウムの担持量が、酸化ジルコニウムに対する重量比で、2〜20%である上記項3に記載の触媒。
5.白金の担持量が、パラジウムに対する重量比で、10〜50%である上記項3または4に記載の触媒。
6.上記項1〜5のいずれかに記載の触媒を用いることを特徴とする、メタンを含有しかつ還元性物質の完全酸化に必要な量以上の酸素を含む排ガス中の炭化水素の浄化方法。
7.触媒層前と後での排ガスの温度差が、150℃以下の条件で行う上記項6に記載の排ガス中の炭化水素の浄化方法。
8.ガスの時間当たり空間速度を300000h-1以下とした条件下で行う上記項6または7に記載の排ガス中の炭化水素の浄化方法。
【0012】
【発明の実施の形態】
本発明の触媒は、酸化ジルコニウム担体にパラジウムイオンあるいはパラジウムイオンと白金イオンとを含む溶液を含浸させ、乾燥させ、次いで焼成することにより得られる。
【0013】
酸化ジルコニウム担体の表面積は、パラジウムあるいはパラジウムと白金とを高分散に保つために重要な要素であり、5m2/g以上であることが好ましく、10〜50m2/g程度であることがより好ましい。この様な酸化ジルコニウム担体としては、市販品を使用することができる。
【0014】
酸化ジルコニウム担体に対するパラジウムの担持量は、好ましくは酸化ジルコニウムの重量を基準として、1〜25%程度、より好ましくは2〜20%程度である。パラジウムの担持量が少な過ぎる場合には、触媒活性が低くなるのに対し、多過ぎる場合には、パラジウムの粒径が大きくなってパラジウムが有効に使われなくなる。
【0015】
また、パラジウムと白金とを併用する場合には、パラジウムの担持量は、上記と同様であり、白金の担持量は、好ましくはパラジウムの量を基準として、5〜50%程度、より好ましくは10〜50%程度である。白金の担持量が少な過ぎる場合には、併用による効果の改善が十分でなくなるのに対し、多過ぎる場合には、パラジウムの機能を阻害するおそれがある。
【0016】
本発明による触媒製造に際し、含浸過程で使用するパラジウムイオン含有溶液あるいパラジウムイオンと白金イオン含有溶液としては、これら金属の硝酸塩、アンミン錯体などの溶液を用いればよい。溶液形態としては、水溶液が好ましいが、アセトン、エタノールなどの水溶性の有機溶媒を加えた混合溶媒溶液であってもよい。
【0017】
次いで、触媒活性成分を含浸させた酸化ジルコニウム担体を乾燥した後、空気中で焼成することにより、所望の触媒が得られる。焼成は、長期にわたる安定した高い触媒活性を得るために、好ましくは450℃〜700℃程度の範囲内で、より好ましくは500〜650℃程度の範囲内で行う。焼成温度が高過ぎる場合には、担持金属の粒成長の進行に伴い比表面積が減少して、触媒活性が低下することがあるのに対し、低過ぎる場合には、触媒の使用中にパラジウムあるいはパラジウムと白金の粒成長が進むので、やはり触媒特性が低下して、安定性が損なわれる。
【0018】
本発明による触媒は、任意の形態で使用することができる。例えば、常法に従って、耐火性ハニカム上にウオッシュコートした状態、ペレット状に打錠成型した形態などの任意の形態で使用することができる。本発明触媒は、耐火性ハニカム上にウオッシュコートして用いることがより好ましい。耐火性ハニカム上にウオッシュコートする場合には、上記の方法で調製した触媒をスラリー状にしてウオッシュコートしてもよく、あるいは担体となるべき酸化ジルコニウムを耐火性ハニカム上に予めウオッシュコートした後、上記と同様の方法により、担体にパラジウムまたはパラジウムと白金とを担持させてもよい。
【0019】
本発明によるメタン含有排ガス中の炭化水素浄化方法では、上記で得られた触媒を使用する。炭化水素の浄化に際して、触媒量が少な過ぎる場合には、所定の浄化率が得られないので、ガス時間当たり空間速度(GHSV)で500000h-1以下で使用することが好ましく、300000h-1以下で使用することがより好ましい。ガス時間当たり空間速度(GHSV)を低くするほど触媒量が多くなるので、浄化率は向上するが、例えば1000h-1以下で使用する場合には、経済的に不利となるとともに、触媒層での圧力損失が大きくなる。
【0020】
本発明方法で使用するメタン含有排ガスの浄化用触媒は、高い活性を有しているが、浄化処理温度が低過ぎる場合には、活性が十分に発揮されないため、所望の炭化水素転化率が得られ難い。これに対し、浄化処理温度が高過ぎる場合には、触媒の耐久性が悪化する恐れがある。また、排ガス中の炭化水素濃度が著しく高い場合には、触媒層で急激な反応が起こって、触媒の耐久性に影響を及ぼす危険性がある。これらの点を考慮して、触媒層温度が350〜600℃の範囲に維持され、かつ触媒層中での温度上昇(触媒層出口温度と入口温度との差)が150℃以下となる様に反応条件を調整しつつ、排ガスの浄化処理を行うことが好ましい。
【0021】
また、排ガス中には、触媒活性を著しく低下させる硫黄酸化物が通常含まれているが、本発明の触媒は、硫黄成分による活性低下に対して高い抵抗性を示すので、炭化水素の高い浄化率が長期にわたって維持される。
【0022】
さらに、燃焼排ガスは、通常5〜15%程度の水蒸気を含んでいるが、本発明方法によれば、このように水蒸気を含む排ガスも、何らの支障なく、浄化することができる。
【0023】
【発明の効果】
本発明によれば、以下の様な顕著な効果が達成される。
(1)本発明による排ガス浄化用触媒は、燃焼排ガスの様に水蒸気を大量に含む排ガスに対して、メタンなどの炭化水素酸化活性を長期にわたり安定して示す。
(2)本発明による触媒は、硫黄酸化物に対する抵抗性にも優れている。
(3)したがって、本発明によれば、従来の触媒では特に処理困難であったメタンを大量に含有する排ガスを長期間安定して浄化処理することが可能となった。
【0024】
【実施例】
以下、実施例に基づき、本発明をより詳細に説明するが、本発明はこれらの実施例に限定されるものではない。
実施例1
2 Pd/ ジルコニア触媒の調製
ジルコニア((株)東ソー製、“TZ-O”、比表面積14m2/g)5gをパラジウムとして0.10gを含有する硝酸パラジウム水溶液20mlに0℃で15時間含浸した後、乾燥し、次いで550℃で2時間空気中で焼成して、ジルコニア担体にPdを2重量%担持する触媒を得た。
実施例2
5 Pd/ ジルコニア触媒の調製
実施例1と同じジルコニア5gをパラジウムとして0.25gを含有する硝酸パラジウム水溶液20mlに0℃で15時間含浸した後、乾燥し、次いで550℃で2時間空気中で焼成して、ジルコニア担体にPdを5重量%担持する触媒を得た。
実施例3
10 Pd/ ジルコニア触媒の調製
実施例1と同じジルコニア5gをパラジウムとして0.50gを含有する硝酸パラジウム水溶液20mlに0℃で15時間含浸した後、乾燥し、次いで550℃で2時間空気中で焼成して、ジルコニア担体にPdを10重量%担持する触媒を得た。
実施例4
20 Pd/ ジルコニア触媒の調製
実施例1と同じジルコニア5gをパラジウムとして1.0gを含有する硝酸パラジウム水溶液20mlに0℃で15時間含浸した後、乾燥し、次いで550℃で2時間空気中で焼成して、ジルコニア担体にPdを20重量%担持する触媒を得た。
実施例5
5 Pd-1 Pt/ ジルコニア触媒の調製
パラジウムとして0.25gを含有する硝酸パラジウム水溶液とジニトロジアンミン白金0.083gを69%硝酸1mlに加熱溶解した液とを混合し、さらに純水を加えて20mlとした混合溶液に、実施例1と同じジルコニア5gを0℃で15時間含浸した後、乾燥し、次いで550℃で2時間空気中で焼成して、ジルコニア担体にPd5%とPt1%とを担持する触媒を得た。
実施例6
5 Pd-0.5 Pt/ ジルコニア触媒の調製
パラジウムとして0.25gを含有する硝酸パラジウム水溶液とジニトロジアンミン白金0.042gを69%硝酸1mlに加熱溶解した液とを混合し、さらに純水を加えて20mlとした混合溶液に、実施例1と同じジルコニア5gを0℃で15時間含浸した後、乾燥し、次いで550℃で2時間空気中で焼成して、ジルコニア担体にPd5%とPt0.5%とを担持する触媒を得た。
実施例7
2 Pd-0.25 Pt/ ジルコニア触媒の調製
パラジウムとして0.10gを含有する硝酸パラジウム水溶液とジニトロジアンミン白金0.021gを69%硝酸1mlに加熱溶解した液とを混合し、さらに純水を加えて20mlとした混合溶液に、実施例1と同じジルコニア5gを0℃で15時間含浸した後、乾燥し、次いで550℃で2時間空気中で焼成して、ジルコニア担体にPd2%とPt0.25%とを担持する触媒を得た。
実施例8
2 Pd-0.5 Pt/ ジルコニア触媒の調製
パラジウムとして0.10gを含有する硝酸パラジウム水溶液とジニトロジアンミン白金0.042gを69%硝酸1mlに加熱溶解した液とを混合し、さらに純水を加えて20mlとした混合溶液に、実施例1と同じジルコニア5gを0℃で15時間含浸した後、乾燥し、次いで550℃で2時間空気中で焼成して、ジルコニア担体にPd2%とPt0.5%とを担持する触媒を得た。
実施例9
2 Pd-1 Pt/ ジルコニア触媒の調製
パラジウムとして0.10gを含有する硝酸パラジウム水溶液とジニトロジアンミン白金0.083gを69%硝酸1mlに加熱溶解した液とを混合し、さらに純水を加えて20mlとした混合溶液に、実施例1と同じジルコニア5gを0℃で15時間含浸した後、乾燥し、次いで550℃で2時間空気中で焼成して、ジルコニア担体にPd2%とPt1%とを担持する触媒を得た。
比較例1
5 Pd/ アルミナ触媒 (1) の調製
アルミナ(住友化学工業(株)製、“NK-124”)を空気中800℃で2時間焼成した。次いで、その5gをパラジウムとして0.25gを含有する硝酸パラジウム水溶液20mlに0℃で15時間含浸し、乾燥し、さらに550℃で2時間空気中で焼成して、5%Pd/アルミナ触媒(1)を得た。
比較例2
5 Pd/ アルミナ触媒 (2) の調製
アルミナ(住友化学工業(株)製、“NK-124”)5gをパラジウムとして0.25gを含有する硝酸パラジウム水溶液20mlに0℃で15時間含浸し、乾燥し、さらに550℃で2時間空気中で焼成して、5%Pd/アルミナ触媒(2)を得た。
比較例3
5 Pd-1 Pt/ アルミナ触媒の調製
アルミナ(住友化学工業(株)製、“NK-124”)を空気中800℃で2時間焼成した。一方、パラジウムとして0.25gを含有する硝酸パラジウム水溶液とジニトロジアミン白金0.085gを硝酸2mlに溶解させた溶液とを混合し、さらに純水を加えて、混合溶液20mlを得た。次いで、上記で得た焼成アルミナ5gをこの混合溶液に0℃で15時間含浸し、乾燥し、さらに550℃で2時間空気中で焼成して、アルミナ担体に5%Pdと1%Ptとを担持する触媒を得た。
比較例4
5 Pd/ シリカ触媒の調製
シリカ(富士シリシア化学(株)製、“G-6”)を空気中800℃で2時間焼成した。次いで、その5gをパラジウムとして0.25gを含有する硝酸パラジウム水溶液20mlに0℃で15時間含浸し、乾燥し、さらに550℃で2時間空気中で焼成して、5%Pd/シリカ触媒を得た。
比較例5
5 Pd/ チタニア触媒の調製
チタニア(石原産業(株)製、“ST-21”)を空気中800℃で2時間焼成した。次いで、その5gをパラジウムとして0.25gを含有する硝酸パラジウム水溶液20mlに0℃で15時間含浸し、乾燥し、さらに550℃で2時間空気中で焼成して、5%Pd/チタニア触媒を得た。
実施例10
耐久性評価試験1
実施例1〜9と比較例1〜5で得られた触媒をそれぞれ打錠成型し、粒径1〜2mmに整粒した。次いで、各成型体1mlを触媒層として、メタン1000ppm、酸素10%、二酸化炭素6%、水蒸気10%、二酸化硫黄8ppmおよび残部ヘリウムからなる組成のガスをGHSV(ガス時間当たり空間速度)40000h-1の条件にて流通させ、触媒層温度を約500℃に保ってメタン転化率の経時変化(触媒としての耐久性)を測定した。反応層前後のガス組成は水素炎イオン化検知器を有するガスクロマトグラフにより測定した。なお、反応ガス中に二酸化硫黄8ppmを加える前のメタン転化率についても予め測定しておいた。
【0025】
ここで、メタン転化率とは、以下の式によって求められる値である。
【0026】
メタン転化率(%)=[1-(触媒層出口CH4濃度)/(触媒層入口CH4濃度)]×100
二酸化硫黄含有ガスの流通開始から3、10、18、19および22時間後のメタン転化率(%)を表1に示す。
【0027】
【表1】
Figure 0004025945
【0028】
表1に示す結果から明らかな様に、本発明実施例で得られた触媒は、触媒活性を著しく阻害する二酸化硫黄の共存下においても、安定した触媒活性(メタン転化率)を発揮する。
実施例11
耐久性評価試験2
実施例2、6および9と比較例1および4で得られた触媒をそれぞれ打錠成型し、粒径1〜2mmに整粒した。次いで、各成型体0.75mlを触媒層として、メタン1000ppm、酸素10%、二酸化炭素6%、水蒸気10%、二酸化硫黄8ppmおよび残部ヘリウムからなる組成のガスをGHSV(ガス時間当たり空間速度)40000h-1の条件にて2時間、次いで80000h-1の条件にて流通させ、触媒層温度を約450℃に保ってメタン転化率の経時変化(触媒としての耐久性)を測定した。反応層前後のガス組成は、水素炎イオン化検知器を有するガスクロマトグラフにより測定した。
【0029】
二酸化硫黄含有ガスの流通開始から所定時間経過後のメタン転化率(%)を表2に示す。
【0030】
【表2】
Figure 0004025945
【0031】
表2に示す結果からも、本発明実施例による触媒は、触媒活性を著しく阻害する二酸化硫黄の共存下においいても、安定した触媒活性(メタン転化率)を発揮することが明らかである。
実施例12
耐久性評価試験3
実施例2および比較例1で得られた触媒をそれぞれ打錠成型し、粒径1〜2mmに整粒した。次いで、それぞれの1.5mlを触媒層として、メタン2000ppm、一酸化炭素1000ppm、酸素10%、二酸化炭素6%、水蒸気10%、二酸化硫黄0.3ppm、残部窒素からなる組成のガスをGHSV(ガス時間当たり空間速度)80000h-1の条件にて流通させ、触媒層温度を約450℃に保って、触媒の耐久性評価試験を行った。反応層前後のガス組成は、水素炎イオン化検知器を有するガスクロマトグラフにより測定した。メタン転化率(%)の経時変化を図1に示す。
【0032】
図1から明らかなように、比較例1の触媒は、試験開始直後には、実施例2の触媒と同等かそれ以上のメタン転化活性を示すものの、二酸化硫黄の存在により、急速に劣化して短時間内に実質的に活性を失ってしまう。これに対し、実施例2の触媒は、二酸化硫黄の共存下において長期にわたり安定したメタン転化活性を保持し続ける。
実施例13
耐久性評価試験4
実施例5の触媒を打錠成型し、粒径1〜2mmに整粒し、その0.75mlを触媒層として、メタン1000ppm、酸素10%、二酸化炭素6%、水蒸気10%、二酸化硫黄2.7ppmと残部ヘリウムからなる組成のガスをGHSV(ガス時間当たり空間速度)40000h-1にて2時間、それ以降を80000h-1の条件にて流通させ、触媒層温度を約450℃に保って、触媒の耐久性評価試験を行った。反応層前後のガス組成は、水素炎イオン化検知器を有するガスクロマトグラフにより測定した。メタン転化率(%)の経時変化を表3に示す。
【0033】
【表3】
Figure 0004025945
【0034】
表3に示す結果から、本発明による実施例5の触媒は、触媒活性を著しく低下させる二酸化硫黄の共存下においても、安定した触媒活性を維持し続けることが分かる。
実施例14
耐久性評価試験5
実施例5の触媒を打錠成型し、触媒層温度を約400℃とする以外は、実施例13と同様にしてメタン含有ガスを処理し、触媒の耐久性試験を行った。メタン転化率(%)の経時変化を表4に示す。
【0035】
【表4】
Figure 0004025945
【0036】
表4に示す結果から、本発明による実施例5の触媒は、約400℃という比較的低い反応温度においても、高いメタン転化率を安定して達成しうることが明らかである。
【図面の簡単な説明】
【図1】メタン含有排ガスの浄化を行った実施例12において、実施例2と比較例1で得られた触媒のメタン転化率の経時変化を示すグラフである。

Claims (7)

  1. 酸化ジルコニウムにパラジウムを担持してなる触媒を用いることを特徴とする、メタンおよび硫黄酸化物を含有しかつ還元性物質の完全酸化に必要な量以上の酸素を含む排ガス中のメタンの浄化方法
  2. パラジウムの担持量が、酸化ジルコニウムに対する重量比で、2〜20%である請求項1に記載の排ガス中のメタンの浄化方法
  3. 酸化ジルコニウムにパラジウムおよび白金を担持してなる触媒を用いることを特徴とする、メタンおよび硫黄酸化物を含有しかつ還元性物質の完全酸化に必要な量以上の酸素を含む排ガス中のメタンの浄化方法
  4. パラジウムの担持量が、酸化ジルコニウムに対する重量比で、2〜20%である請求項3に記載の排ガス中のメタンの浄化方法
  5. 白金の担持量が、パラジウムに対する重量比で、10〜50%である請求項3または4に記載の排ガス中のメタンの浄化方法
  6. 触媒層前と後での排ガスの温度差が、150℃以下の条件で行う請求項1〜5のいずれかに記載の排ガス中のメタンの浄化方法。
  7. ガスの時間当たり空間速度を300000h-1以下とした条件下で行う請求項1〜6のいずれかに記載の排ガス中のメタンの浄化方法。
JP05984199A 1998-03-09 1999-03-08 メタン含有排ガスの浄化用触媒およびメタン含有排ガスの浄化方法 Expired - Fee Related JP4025945B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05984199A JP4025945B2 (ja) 1998-03-09 1999-03-08 メタン含有排ガスの浄化用触媒およびメタン含有排ガスの浄化方法

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP10-56867 1998-03-09
JP5686798 1998-03-09
JP05984199A JP4025945B2 (ja) 1998-03-09 1999-03-08 メタン含有排ガスの浄化用触媒およびメタン含有排ガスの浄化方法

Publications (2)

Publication Number Publication Date
JPH11319559A JPH11319559A (ja) 1999-11-24
JP4025945B2 true JP4025945B2 (ja) 2007-12-26

Family

ID=26397857

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05984199A Expired - Fee Related JP4025945B2 (ja) 1998-03-09 1999-03-08 メタン含有排ガスの浄化用触媒およびメタン含有排ガスの浄化方法

Country Status (1)

Country Link
JP (1) JP4025945B2 (ja)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3985118B2 (ja) * 1998-06-08 2007-10-03 大阪瓦斯株式会社 排ガス浄化用触媒および排ガス浄化方法
JP3985119B2 (ja) * 1999-06-02 2007-10-03 大阪瓦斯株式会社 排ガス浄化用触媒および排ガス浄化方法
JP4096176B2 (ja) 2000-11-17 2008-06-04 大阪瓦斯株式会社 メタン含有排ガスの浄化用触媒およびメタン含有排ガスの浄化方法
JP4436001B2 (ja) * 2001-03-13 2010-03-24 大阪瓦斯株式会社 ガスエンジン排ガスの浄化方法およびガスエンジン排ガスの浄化装置
JP4494068B2 (ja) * 2004-03-31 2010-06-30 東京瓦斯株式会社 排ガス中のメタンの酸化除去用触媒及び排ガス浄化方法
JP4247204B2 (ja) * 2005-05-09 2009-04-02 株式会社ルネッサンス・エナジー・インベストメント 低濃度メタンの分解方法
JP4711731B2 (ja) * 2005-05-10 2011-06-29 日揮ユニバーサル株式会社 排ガス浄化用触媒組成物
JP4901366B2 (ja) * 2005-09-02 2012-03-21 大阪瓦斯株式会社 排ガス中のメタンの酸化除去用触媒および排ガス中のメタンの酸化除去方法
JP2007075707A (ja) * 2005-09-13 2007-03-29 Hino Motors Ltd 排気浄化装置
BR112017019050B1 (pt) * 2015-03-05 2022-12-13 Shell Internationale Research Maatschappij B.V. Catalisador de oxidação de metano, processo para preparar o mesmo e método oxidar metano
ES2898788T3 (es) 2016-08-31 2022-03-08 Shell Int Research Proceso para preparar un catalizador de oxidación de metano
CN109689208B (zh) 2016-08-31 2022-02-18 国际壳牌研究有限公司 甲烷氧化催化剂、其制备工艺及其使用方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5926140A (ja) * 1982-08-03 1984-02-10 Ngk Insulators Ltd 酸化用触媒体
JPS6051543A (ja) * 1983-08-31 1985-03-23 Mitsubishi Heavy Ind Ltd 酸化触媒
JPS61235609A (ja) * 1985-04-11 1986-10-20 Nippon Shokubai Kagaku Kogyo Co Ltd 触媒システムによるメタン系燃料の燃焼方法
JPS61252408A (ja) * 1985-05-02 1986-11-10 Kikai Syst Shinko Kyokai メタン系燃料の燃焼方法
JPS6297646A (ja) * 1985-10-25 1987-05-07 Matsushita Electric Ind Co Ltd 排ガス浄化用触媒およびその製造方法
JPH08243391A (ja) * 1995-03-08 1996-09-24 Sekiyu Sangyo Kasseika Center 高温用燃焼触媒及びその製造方法
JP3795561B2 (ja) * 1995-10-30 2006-07-12 松下電器産業株式会社 触媒部材
JPH11169728A (ja) * 1997-12-15 1999-06-29 Toho Gas Co Ltd メタン酸化触媒

Also Published As

Publication number Publication date
JPH11319559A (ja) 1999-11-24

Similar Documents

Publication Publication Date Title
EP1063010B1 (en) Method for removing methane from exhaust gas
EP1356863B1 (en) Method of purifying methane-containing waste gas
JP4025945B2 (ja) メタン含有排ガスの浄化用触媒およびメタン含有排ガスの浄化方法
JP4171849B2 (ja) 炭化水素含有排ガスの浄化用触媒および炭化水素含有排ガスの浄化方法
JP3985119B2 (ja) 排ガス浄化用触媒および排ガス浄化方法
JP2002253969A (ja) 排ガス浄化用触媒および排ガス浄化方法
JP4568640B2 (ja) メタン含有排ガスの浄化方法、メタン含有排ガス浄化用三元触媒の前処理方法及びこれを用いた三元触媒
JP4304385B2 (ja) 排ガス中のメタンの酸化除去用触媒および排ガス中のメタンの酸化除去方法
JP4052866B2 (ja) 排ガス中の炭化水素の酸化用触媒および排ガス中の炭化水素の酸化除去方法
JP4143352B2 (ja) 排ガス中のメタンの酸化用触媒および排ガス中のメタンの酸化除去方法
JP4014266B2 (ja) メタン含有排ガスの浄化触媒および該触媒を使用する排ガス中のメタンの浄化方法
JP3779793B2 (ja) メタンを含有する燃焼排ガスの浄化用触媒および浄化方法
JP4171852B2 (ja) 排ガス中の炭化水素の浄化用触媒および排ガス中の炭化水素の浄化方法
JP3985118B2 (ja) 排ガス浄化用触媒および排ガス浄化方法
JP2013215718A (ja) メタンの酸化除去用触媒及びメタンの酸化除去方法
JP4025942B2 (ja) 排ガス浄化用触媒および排ガス浄化方法
JP4025946B2 (ja) メタン含有排ガス中の炭化水素除去用触媒の製造法
JP5610805B2 (ja) 排ガス浄化用触媒および排ガス浄化方法
JP5825947B2 (ja) メタンの酸化除去用触媒およびメタンの酸化除去方法
JP2001129404A (ja) 排ガス浄化用触媒および排ガス浄化方法
JP2018015697A (ja) メタン酸化除去用触媒の製造方法およびメタン酸化除去方法
JP2001140632A (ja) 排ガス浄化方法および排ガス浄化装置
JP2000157875A (ja) 排ガス浄化用触媒

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040511

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061019

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061101

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070905

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070925

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101019

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131019

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees