JP4025167B2 - 抵抗素子を有する半導体装置 - Google Patents

抵抗素子を有する半導体装置 Download PDF

Info

Publication number
JP4025167B2
JP4025167B2 JP2002302759A JP2002302759A JP4025167B2 JP 4025167 B2 JP4025167 B2 JP 4025167B2 JP 2002302759 A JP2002302759 A JP 2002302759A JP 2002302759 A JP2002302759 A JP 2002302759A JP 4025167 B2 JP4025167 B2 JP 4025167B2
Authority
JP
Japan
Prior art keywords
resistance element
resistance
node
potential
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002302759A
Other languages
English (en)
Other versions
JP2004140144A5 (ja
JP2004140144A (ja
Inventor
慎一郎 白武
恒平 及川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2002302759A priority Critical patent/JP4025167B2/ja
Priority to US10/685,490 priority patent/US7053696B2/en
Publication of JP2004140144A publication Critical patent/JP2004140144A/ja
Publication of JP2004140144A5 publication Critical patent/JP2004140144A5/ja
Priority to US11/401,303 priority patent/US20060181339A1/en
Application granted granted Critical
Publication of JP4025167B2 publication Critical patent/JP4025167B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/10Regulating voltage or current
    • G05F1/46Regulating voltage or current wherein the variable actually regulated by the final control device is dc
    • G05F1/56Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices
    • G05F1/565Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices sensing a condition of the system or its load in addition to means responsive to deviations in the output of the system, e.g. current, voltage, power factor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/8605Resistors with PN junctions

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Computer Hardware Design (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Continuous-Control Power Sources That Use Transistors (AREA)
  • Logic Circuits (AREA)
  • Dram (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、寄生容量を持つ抵抗素子を構成要素として構成された半導体装置に関する。
【0002】
【従来の技術】
半導体装置内部で一定の電位を発生する電源回路や信号遅延を発生する遅延回路には、分圧用、またはCR時定数素子の一つとしての抵抗素子が用いられる技術が一般的である。抵抗素子は2つのノードの間に一定以上の抵抗値を持つもので、数10オームから数メガオームの抵抗素子が用いられることが多い。ところが、実際に半導体装置の製造プロセスにおいて理想的な抵抗成分のみの抵抗素子は作ることができず、必ず寄生的な容量が付加してしまう。
【0003】
例えば、P型半導体基板にN型の不純物拡散層領域を生成して抵抗素子として用いる場合、P型の基板とN型の拡散層との間に生じるPN接合のため、抵抗素子を接続するノードに寄生容量が付加してしまう。抵抗素子の製造プロセスに伴うこのような寄生容量は,以下に説明するように不安定な回路動作の原因となることがある。
【0004】
図11(a)は従来の半導体基板上に形成された抵抗素子を用いた半導体装置の回路図、図11(b)はP型半導体基板上に形成されたN型拡散領域(抵抗素子ra1)が、寄生容量Cpを有する様子を模式的に示したものである。この図11(a)に示した半導体装置はアクティブモード、すなわち活性状態と,スタンバイモード、すなわち非活性状態の2つの状態を切り替えて使用する半導体装置である。
【0005】
図11(a)において、アクティブモードではスイッチSW1,SW2が閉じられ、出力電圧VOUTが2個の低い抵抗値を有する抵抗素子ra1,rb1によって抵抗分圧され、参照ノードNREFに参照電位として供給される。この参照電位は比較回路100により固定電位VFIXと比較され、この比較出力が出力調整素子であるPMOSトランジスタ101のゲートに供給され、アクティブモードに対応した出力電圧VOUTが生成される。
【0006】
出力電圧VOUTが負荷の変動などの何らかの原因で変動すると、この変動による影響が参照電位の変化として参照ノードNREFに現れ、比較回路100にフィードバックされる。このようにして出力電圧VOUTを一定に保つ制御を行うものである。
【0007】
このように、半導体装置がアクティブモードの場合は、低抵抗値の抵抗素子ra1およびra2によって出力電圧VOUTの制御が行われる。半導体装置がスタンバイモードの場合は、スイッチSW1,SW2が開放され、高抵抗値の抵抗素子RS1およびRS2を用いて消費電力が少ない状態でスタンバイモードが設定される。しかし、図11(a)に示すようにアクティブモードからスタンバイモードへの移行時には各抵抗素子に付随された寄生容量のため、以下のような問題があった。
【0008】
【発明が解決しようとする課題】
図12は図11(a)に示した回路の低抵抗素子ra1およびra2の抵抗値に大小関係があり、且つ寄生容量にも大小関係がある場合の寄生容量による回路動作への影響を説明するための等価回路図を示す。
【0009】
一方、図13は従来の半導体基板上に形成された寄生容量を持つ抵抗素子を用いた他の半導体装置の回路図を示す。この図13の回路の動作は図14を参照して以下に説明される。
【0010】
図13において入力端子113の電位が“L”から“H”になると、トランジスタ112がオンとなり、ノードXに接続されたキャパシタCの電荷が抵抗素子Rからトランジスタ112を介して放電される。この放電に要する時間tは、概ね抵抗素子Rの抵抗値の大きさRとキャパシタCの容量値Cを乗じた程度の時定数(t〜RC)となる。この時定数を利用して入力端子113から出力端子114に信号が伝達する時間に、意図的に遅延を加えている。
【0011】
ここで、再び入力端子113の電位が“L”になるときは、トランジスタ111がオンし、ノードXの電位は電源電圧Vにより“H”に充電されるが、抵抗素子Rには寄生容量が付加しているために抵抗素子R全体を完全に“H”に充電するには一定の時間がかかる。これに要する時間は抵抗素子Rの寄生容量をCp、抵抗値をRとしたとき概ねRCp程度となる。
【0012】
一方、図12において、半導体装置がアクティブ状態からスタンバイ状態に切り替わると、スイッチSW1とスイッチSW2が開放されて低抵抗の抵抗素子ra1およびra2を介する電流が流れなくなる。ところが、このとき抵抗素子ra1とra2には寄生容量が存在するために、この寄生容量に蓄えられた電荷が抵抗素子RS1などを介して放電される場合がある。
【0013】
例えば、抵抗素子ra1より抵抗素子ra2の抵抗値が大きい場合、通常は拡散面積も大きく、これに伴って抵抗素子ra2の寄生容量の方が大きくなる。従って、抵抗素子ra2の寄生容量から参照ノードNREFに接続されたノードを介して高抵抗RS1に流れ込む電荷量C1の方が、参照ノードNREF側から抵抗素子ra1の寄生容量に向かって流れ出す電荷量C2より大きく、両者が相殺されない。その結果、参照ノードNREFの電位が上昇し、スタンバイモードにおける出力電圧VOUTの制御が不安定になってしまうという問題があった。
【0014】
また、図13の回路において、もし入力端子113への入力が“L”、即ちノードXの電位が“H”となる時間(リセットタイム)が、図14に示したように、時定数RCpよりも極めて短い(リセットタイム<<RCp)と、抵抗素子Rの内部の寄生容量が充分に“H”に充電されないことになる(図14の期間14−1)。この結果、再び入力が“L”となった後にノードXに充電された電荷を放電するまでに要する時間が、抵抗素子R内部を充分充電した場合の時間にくらべて短くなってしまう(図14の期間14−2)。その結果、入力INを“L”とする時間の長さによって、入力と出力の間の遅延時間が変化してしまう。特に、入力INを“L”とする時間が短いと遅延時間が短くなってしまうという問題があった。
【0015】
そこで本発明は、このような抵抗素子に付随する寄生容量が回路動作に与える不安定性を排除し、安定に動作する半導体装置を提供することを目的とする。
【0016】
【課題を解決するための手段】
本発明の一態様によれば、第1乃至第8の抵抗素子を有し、前記第1から第4の抵抗素子のそれぞれ第1端が第1のノードにおいて互いに接続され、前記第5から第8の抵抗素子のそれぞれ第1端が第2のノードにおいて互いに接続され、スタンバイモードおよびアクティブモードを切り替えて動作する半導体装置において、前記第1および第2の抵抗素子のそれぞれの第2端がそれぞれ第3のノードおよび参照ノードに接続され、前記第3および第4の抵抗素子のそれぞれの第2端が第4のノードおよび前記参照ノードにそれぞれ第1および第2のスイッチを介して接続され、前記第5および第6の抵抗素子のそれぞれの第2端がそれぞれ前記参照ノードおよび第5のノードに接続され、前記第7および第8の抵抗素子のそれぞれの第2端が前記参照ノードおよび第6のノードにそれぞれ第3および第4のスイッチを介して接続され、前記スタンバイモードにおいては前記第1乃至第4のスイッチは開放され、前記アクティブモードにおいては前記第1乃至第4のスイッチは短絡され、前記アクティブモードの際に、前記第3,第4のノードの電位が等しくなり、前記第5,第6のノードの電位が等しくなり、前記第1の抵抗素子の抵抗値と前記第2の抵抗素子の抵抗値の比率が、前記第3の抵抗素子の抵抗値と前記第4の抵抗素子の抵抗値の比率と等しく、前記第5の抵抗素子の抵抗値前記第6の抵抗素子の抵抗値の比率が、前記第7の抵抗素子の抵抗値前記第8の抵抗素子の抵抗値の比率と等しく、前記第3,第4,第7,第8の抵抗素子が拡散層により構成され、前記第3の抵抗素子に対応する前記拡散層の拡散面積と前記第4の抵抗素子に対応する前記拡散層の拡散面積とが等しく、前記第7の抵抗素子に対応する前記拡散層の拡散面積と前記第8の抵抗素子に対応する前記拡散層の拡散面積とが等しい抵抗素子を有する半導体装置を提供できる。
【0017】
この構成により、抵抗素子に付随する寄生容量が回路動作に与える不安定性を排除し、安定に動作する半導体装置を提供することが出来る。
【0018】
【発明の実施の形態】
以下、この発明の実施の形態について図面を参照して説明する。
【0019】
(第1の実施形態)
図1(a)に本発明の第1の実施形態に係る、半導体基板上に形成された抵抗素子を有する半導体装置の回路図を示す。なお、本実施形態は図11に示した従来の技術に対応するものである。
【0020】
即ち、この第1の実施形態は、出力設定装置2におけるアクティブモードとスタンバイモードの2つのモードがモードコントローラ5の出力により選択的に設定され、これらの設定されたモードに対応したフィードバック電位が参照ノードNREFから出力調整回路1に供給され、切り替えられたモードに応じた出力を出力端子15に出力する半導体装置である。
【0021】
出力調整回路1は、参照ノードNREFから入力端子11にフィードバックされた参照電位と一定電位(const.V)とを比較する比較回路12と、比較回路12の出力に応じて前記出力端子15へ供給される出力電流を制御する制御素子14から構成される。
【0022】
さらに、制御素子14は、比較回路12の出力がゲートに接続され、電源端子13がソースに接続され、出力端子15及び出力設定装置2に接続するノードN2がドレインに接続された、PMOSトランジスタ14である。
【0023】
出力設定装置2は、参照ノードNREFと基準電位端子N1(ここでは接地電位)との間に接続される第1の出力設定回路4と、出力端子15と参照ノードNREFとの間に接続される第2の出力設定回路3とを具備する。
【0024】
第1の出力設定回路4は、スタンバイモード時に参照ノードNREFと基準電位端子N1との間に第1の分圧ノードNX1を介して直列に接続される第1の抵抗素子R1、第2の抵抗素子R2と、アクティブモード時に参照ノードNREFと基準電位端子N1との間に、第1の分圧ノードNX1に接続された第2の分圧ノードNX2を介して直列に接続される第3の抵抗素子r1、第4の抵抗素子r2とを有する。ここで、前記第1、第2の抵抗素子R1,R2の抵抗値の比が前記第3、第4の抵抗素子r1、r2の抵抗値の比と略等しく設定されている(r1/r2=R1/R2)。
【0025】
第2の出力設定回路3は、スタンバイモード時に出力端子15と参照ノードNREFとの間に第3の分圧ノードNX3を介して直列に接続される第5の抵抗素子R3、第6の抵抗素子R4と、アクティブモード時に出力端子15と参照ノードNREFとの間に、第3の分圧ノードNX3に接続された第4の分圧ノードNX4を介して直列に接続される第7の抵抗素子r3、第8の抵抗素子r4とを有する。ここで、前記第5、第6の抵抗素子R3,R4の抵抗値の比が前記第7、第8の抵抗素子r3、r4の抵抗値の比と略等しく設定されている(r3/r4=R3/R4)。
【0026】
さらに、第3の抵抗素子r1、第4の抵抗素子r2及び第7の抵抗素子r3、第8の抵抗素子r4は、後で述べるように、モードコントローラ5の出力によりアクティブモード時にオンとなりスタンバイモード時にオフとなるスイッチ16、17,18,19を介して出力端子15と基準電位端子N1との間に直列に接続されている。
【0027】
また、第1の抵抗素子R1、第2の抵抗素子R2、第5の抵抗素子R3、第6の抵抗素子R4は夫々第3の抵抗素子r1、第4の抵抗素子r2、第7の抵抗素子r3、第8の抵抗素子r4より抵抗値が大きく設定されている。
【0028】
しかしながら、第1の抵抗素子R1と第2の抵抗素子R2、及び第5の抵抗素子R3と第6の抵抗素子R4の抵抗値は夫々略等しく設定され(R1〜R2、R3〜R4)、第3の抵抗素子r1、第4の抵抗素子r2、及び第7の抵抗素子r3、第8の抵抗素子r4の抵抗値は夫々略等しく設定されていることが望ましい(r1〜r2、r3〜r4)。
【0029】
即ち、図1(a)に示す夫々のスイッチ16−19はモードコントローラ5に接続されている。、モードコントローラ5は、夫々のスイッチ16−19をアクティブモード時にオンとし、スタンバイモード時にはオフとするモード指定信号を出力し、スイッチ16−19を一斉に開閉させる。
【0030】
さらに、図1b)、(c)、(d)はノードN2と抵抗素子r3の一端との間に接続されたスイッチ16の3つの異なる例を夫々スイッチ16A,16B、16Cとして示している。他のスイッチ17−19も同様に構成できる。
【0031】
図1(b)で示すスイッチ16Aは、ゲートにモードコントローラ5の出力が接続され、ソースにノードN2が接続され、ドレインに抵抗素子r3の一端が接続されたPMOSトランジスタである。
【0032】
図1(c)で示すスイッチ16Bは、ゲートにモードコントローラ5の出力が接続され、ソースに抵抗素子r3の一端が接続され、ドレインにノードN2が接続されたNMOSトランジスタである。
【0033】
図1(d)で示すスイッチ16Cは、ゲートにモードコントローラ5の出力が接続され、ソースにノードN2が接続され、ドレインに抵抗素子r3の一端が接続されたPMOSトランジスタ及び、ゲートにモードコントローラ5の出力が接続され、ソースに抵抗素子r3の一端が接続され、ドレインにノードN2が接続されたNMOSトランジスとが、ノードN2と抵抗素子r3の一端との間に並列に接続されたものである。また、PMOSトランジスタのゲートとNMOSトランジスタのゲートとの間にはインバータINVが接続されている。たとえば、モードコントローラ5からLレベルのスイッチ制御信号が供給されると、インバータINVの出力はHとなるから、これらのPMOSトランジスタ,NMOSトランジスタは共にオン(スイッチオン)となり、導通抵抗を図1(b)、(c)の場合より低減できる。
【0034】
また、半導体基板がP型である場合には、第1乃至第8の抵抗素子r1−r4、R1−R4は、夫々P型の半導体基板に拡散されたN型の不純物領域により形成されている抵抗素子である。さらに、半導体基板がN型である場合には、第1乃至第8の抵抗素子r1−r4、R1−R4は、夫々N型の半導体基板に拡散されたP型の不純物領域により形成されている抵抗素子であっても良い。
【0035】
以下、アクティブモードとスタンバイモードに分けて本実施形態の動作を詳説する。
【0036】
(アクティブモード)
例えば、アクティブモードにおいて、出力端子15に接続された負荷が増大し、ノードN2の電位が降下したものとする。この時は、モードコントローラ5の出力により、スイッチ16−19をオンとするモード指定信号に従ってスイッチ16−19は閉じられている。この時、電源端子13から供給される電圧の分割は、抵抗素子R1、R2、R3、R4により行われるとともに、抵抗素子r1、r2、r3、r4によっても行われる。但し、これらの分圧回路の電流は、抵抗素子R1−R4の抵抗値が他方の抵抗素子r1−r4に比べて十分に大きいため、ほとんど抵抗素子r1〜r4を介して流れる。
【0037】
従って、スイッチ16−19が開放されたスタンバイモードよりもアクティブモードの方がノードNREFに現れる負荷の変動による電位の変化が早くなる。即ち、負荷の変動に応じて速やかに電位が低下する。このため、ノードNREFからの参照電位が入力される入力端子11の電位も負荷の変動に従って速やかに低下し、比較回路12から得られる出力電圧値も速やかに低くなる。このことから、PMOSトランジスタ14のゲートに印加される電圧も速やかに低下する。
【0038】
その結果、PMOSトランジスタ14の導通度が大となり、電源端子13からノードN2を介して、出力端子15及び出力設定回路2に流れる電流量が速やかに増加するとともにノードN2の電位も上昇する。このようにして、出力端子15に接続された負荷により降下した電位を上昇させる。また、出力設定回路2に印加される高い電圧によって、参照電位NREFも高くなり、出力調整回路1にフィードバックされる電位が上昇する。
【0039】
即ち、出力端子15にある負荷が接続され、ノードN2にすぐに所望の高い電位が必要な場合には、このようなアクティブモードによって高い電位をすぐに印加することにより、出力端子15の電位を速やかに安定させることが出来る。
【0040】
(スタンバイモード)
出力端子15に負荷が接続されなくなった時は、それがモードコントローラ5に伝達され、スイッチ16−19をオフとするモード指定信号に従ってスイッチ16−19は開放される。このため、電源端子13から供給され、電源端子13と基準電位端子N1間に印加される電圧が抵抗素子R1、R2、R3、R4による分圧回路のみによって分割される。
【0041】
ここで、抵抗素子R1〜R4は抵抗素子r1〜r4に比べて十分に抵抗値が大きいため、アクティブモード時と比較して出力設定装置2に流れ込む電流量は極めて少ない。従って、PMOSトランジスタ14に流れる電流量も非常に少ないため、回路全体としての電力消費量も少ない。
【0042】
即ち、出力端子15に負荷が接続されなくなった時には、参照ノードNREFにおける電位変動の要因も無くなるので、速やかなフィードバック制御動作も必要がなく、出力設定装置2に大きな電流を流す必要がない。 また、出力設定装置2の抵抗素子R1〜R4は抵抗値が高く設定されていることにより、出力設定装置2の全体に流れる電流量、即ち消費電力を低くすることが出来る。即ち、余分な待機電力を削減することが出来る。
【0043】
ここで、図1(a)に示す出力設定装置2の抵抗素子r1−r4、R1−R4は、その抵抗値の比がr1/r2=R1/R2、r3/r4=R3/R4であるように製造されている。そのため、出力設定回路3のノードNX3,NX4の電位が等しく、また出力設定回路4のノードNX1,NX2の電位も等しくなっている。したがって、スタンバイモード移行時の各ノード間における寄生容量からの電荷の移動はなく、アクティブモードからスタンバイモードに切り替わった場合において、夫々の抵抗素子における寄生容量によってノードNREFの電位が不安定になるということはない。
【0044】
その理由について、第1の出力設定回路4で更に詳細に説明する。第1の出力設定回路4の抵抗素子r1、r2、R1,R2の抵抗値の比が、r1/r2=R1/R2の関係にあると、アクティブ、スタンバイのうちのいずれのモードにおいても抵抗素子r1と抵抗素子R1に印加される電圧が等しく、同様にいずれのモードにおいても抵抗素子r2及びR2に印加される電圧は等しい。
【0045】
即ち、アクティブモードからスタンバイモード、スタンバイモードからアクティブモードのいずれのモードに切り替わった場合においても、ノードNX1〜ノードNX2の間には電位差は生じない。そのため、いずれのモードに切り替わったときでも、ノードNX1〜ノードNX2の間に電流が流れることはない。
【0046】
従って、抵抗素子r1及びr2において発生した寄生容量に係わる電荷がノードNX1〜ノードNX2の間を流れることはなく、モード切換えに伴い参照ノードNREFに電位の変動を生じることはない。
【0047】
第2の出力設定回路3においても、r3/r4=R3/R4となるように設定されているので、同様の作用によって、モード切換え時に寄生容量が参照ノードNREFに電位の影響を与えることはない。
【0048】
また、スタンバイモードからアクティブモードに切り替わった場合においても、同様の理由から参照ノードNREFの電位変動が生じることはない。
【0049】
以上により、本実施形態はスタンバイ、アクティブのいずれのモードに切り替わった場合であっても、参照ノードNREFが電位変動を受けることがないため、応答時間が短く、安定した出力電圧制御が可能な半導体装置を提供できるものである。
【0050】
また、図2(a)は、図1(a)に示す第1の出力設定回路4をモデル化した回路図、図2(b)はそのブロック図である。
【0051】
つまり、図2(b)に示すように、抵抗素子R1および抵抗素子R2の両端のうち、ノードNX1と接続されていない一方端を夫々S1およびS2とし、抵抗素子r1および抵抗素子r2の両端のうちノードNX2と接続されていない一方端をそれぞれA1およびA2としたブロック図である。
【0052】
図3は、図2(b)に従い、図1(a)の出力設定装置2をブロック図として示した半導体基板上に形成された抵抗素子を有する半導体装置のブロック回路図である。即ち、図2(b)に従い、第1の出力設定回路4および第2の出力設定回路3もブロック化して示してある。
【0053】
従って、第2の出力設定回路3は、抵抗素子R3および抵抗素子R4の両端のうち、ノードNX3と接続されていない一方端を夫々S3およびS4とし、抵抗素子r3および抵抗素子r4の両端のうち、ノードNX4と接続されていない一方端をそれぞれA3およびA4と表わされたブロック図である。
【0054】
ここで、出力設定装置2の抵抗素子がさらに、R1=R2=R3=R4、r1=r2=r3=r4である関係を満たす場合を想定する。この場合、アクティブモード、スタンバイモードのいずれのモードにおいても、参照ノードNREFに現れる電位値は、ノードN2と基準電位端子N1との間の電位差の値のちょうど半分となる。
【0055】
まず、出力設定装置2においてr1/r2=R1/R2、r3/r4=R3/R4の関係が満たされているため、アクティブモード、スタンバイモードのいずれのモードにおいてもノードNX1〜ノードNX2の間、及びノードNX3〜ノードNX4の間には電位差は生ぜず、電流は流れない。さらに、R1=R2=R3=R4、r1=r2=r3=r4の関係から、いずれのモードにおいてもすべての抵抗素子に印加する電圧は等しい。
【0056】
即ち、ノードN2と基準電位端子N1の間に印加される電圧値を、スタンバイモードにおいては抵抗素子R1〜R4において4等分し、アクティブモードにおいては抵抗素子R1及びr1、R2及びr2、R3及びr3、R4及びr4で4等分する。従って、いずれのモードにおいてもノードN2と基準電位端子N1の間に印加される電圧値は、第1の出力設定回路4と第2の出力設定回路3においてちょうど半分に分割される。
【0057】
つまり、いずれのモードにおいても、参照ノードNREFにおける電圧値は、ノードN2と基準電位端子N1との間に印加する電圧値のちょうど半分となり、モード切換え時の寄生容量の影響が排除できる。
【0058】
(第2の実施形態)
図4は、更にn個の出力設定回路をブロック図で表わした、半導体基板上に形成された抵抗素子を有する半導体装置のブロック回路図である。即ち、出力設定装置2におけるアクティブモードとスタンバイモードの2つのモードに対応してフィードバックされる参照電位を、出力調整回路1が切り替えて出力端子15及び出力設定装置2に出力する半導体装置である。
【0059】
以下、図4の実施形態を、第1の実施形態と重複する部分は同一の符号を付してその説明を省略し、第1の実施形態との相違点のみを詳説する。
【0060】
図4に示すように、出力設定装置2がブロック化されたn個(n:自然数、n≧2)の、第1の出力設定回路40−1から第nの出力設定回路40−nの出力設定回路を有していることが特徴である。
【0061】
即ち、出力設定装置2は、第1から第nのn個の出力設定回路を有し(n:自然数、n≧2)、第nの出力設定回路40−nは、スタンバイモード時に出力端子15と参照ノードNREFとの間に第2n−1の分圧ノードNX2n−1を介して直列に接続される少なくとも第4n−3の抵抗素子R2n−1、第4n−2の抵抗素子R2nと、
アクティブモード時に出力端子15と前記参照ノードNREFとの間に第2n−1の分圧ノードNX2n−1に接続された第2nの分圧ノードNX2nを介して直列に接続される少なくとも第4n−1の抵抗素子r2n−1、第4nの抵抗素子r2nとを有し、第4n−3、第4n−2の抵抗素子の抵抗値の比が第4n−1、第4nの抵抗素子の抵抗値の比と略等しく設定されていること(R2n−1/R2n=r2n−1/r2n)、を特徴とする半導体装置である。
【0062】
また、第1の出力設定回路40−1から第nの出力設定回路40−nは、それぞれ図2(a)(b)で示した方法によってブロック化されている。つまり、第nの出力設定回路40−nは、抵抗素子R2nおよび抵抗素子R2n−1の両端のうち、ノードNX2n−1と接続されていない一方端を夫々S2nおよびS2n−1とし、抵抗素子r2nおよび抵抗素子r2n−1の両端のうち、ノードNX2nと接続されていない一方端をそれぞれA2nおよびA2n−1と表わされたブロック図である。
【0063】
さらに、第1から第nの出力設定回路のうち、参照ノードNREFに最も近く上下に位置する出力設定回路を夫々、第kの出力設定回路40−kおよび第k+1の出力設定回路40−k+1とする(k:自然数、2≦k<n)。
【0064】
本実施形態においても、各出力設定回路が有する一対の抵抗素子の比が等しく設定されている。例えば、第nの設定回路40−nにおいては、第4n−3の抵抗素子R2n−1の抵抗値と第4n−2の抵抗素子R2nの抵抗値の比が、第4n−1の抵抗素子r2n−1の抵抗値と第4nの抵抗素子r2nの抵抗値の比と略等しく設定されている(R2n−1/R2n=r2n−1/r2n)。
【0065】
従って、両モードが変化する時に寄生容量の影響により参照ノードNREFに電位の変動が生じることはない。両モードが変化しても、各出力設定回路内の大きな抵抗値を有する一対の抵抗素子と、小さな抵抗値を有する一対の抵抗素子の間には電位差が生ぜず、電流が流れないからである。例えば、第nの出力設定回路40−nにおいては、いずれのモードに変化した時であってもノードNX2nとノードNX2n−1との間に電位差が生じることはなく、電流は流れない。
【0066】
このように、出力設定装置2をn個の小さい出力設定回路に分割することによって、モード変化時においても小さい出力設定回路ごとで寄生容量が及ぼす電位の影響を除去することが出来る。従って、ノードN1とノードN2の間に印加される電圧をn個に分割し、いずれのモード変化時であっても参照ノードNREFの電位変動が生じないようにすることが出来る。その結果、負荷の変動などにより出力電圧に変化が生じても、速やかに出力端子15に所望の電圧を印加するように迅速、確実に制御することが出来る。
【0067】
さらにこのように小さく分割することによって、いずれのモード変化時であっても参照ノードNREFの電位変動がさらに生じないようにすることが出来る。その結果、より速やかに出力端子15を所望の電圧に印加することが出来る。基準電位端子N1とノードN2の間の出力設定回路の数nを増やすに従って、一つの各出力設定回路内での抵抗値もより小さく分割される。そのため、各抵抗素子に付随する寄生容量の値もより小さく分割されることとなるからである。
【0068】
また、このように各出力設定回路内の高抵抗値を持つ抵抗素子の抵抗値および低抵抗値を持つ抵抗素子の抵抗値が夫々等しい場合は、参照ノードNREFを接続する位置によって、フィードバックする電位値を任意に決定することが出来る。つまり、電源端子13から供給される電圧は各出力設定回路40−1〜40−nによりn個に分割されるが、フィードバックされる電位は、所望の電圧値となるべく位置に参照ノードNREFを接続することのみで決定されるからである。例えば、全体の電圧の半分を参照ノードNREFに印加させたい場合は、n/2のとなる位置に接続すればよい。
【0069】
また、nを大きくすればするほど、ノード2と基準電位端子N1の間に印加される電圧はより細かく分割される。そのため、フィードバックしたい所望の電圧値をより細かく任意に設定することが出来る。
【0070】
以上により、不純物濃度を抵抗素子個々に変えることなく同一の半導体装置において製造出来ることから製造コストを縮小し、同時に任意のフィードバック電位を得る半導体装置を提供することが出来る。
【0071】
(第3の実施形態)
図5に本発明による第3の実施形態に係る半導体基板上に形成された抵抗素子とともに寄生容量を有する半導体装置の等価回路を示し、図6にその動作波形を示す。なお、本実施形態は図13及び図14示す従来技術に対応するものである。
【0072】
図5において、第1の電源端子51と第2の電源端子(接地端子)59の間には、1個の抵抗素子55と、ソースが第1の電源端子51に接続され、ドレインが抵抗素子55の一端に接続されたノード53に接続され、ゲートが入力端子61に接続された、PMOSトランジスタ52とを含む第1の充電回路が接続される。この第1の充電回路には更に、ドレインが抵抗素子55の他端に接続されたノード57に接続され、ソースが第1の電源端子51に接続され、ゲートが入力端子61に接続された、PMOSトランジスタ60を含む第2の充電回路が並列に接続される。
【0073】
更に、一端が抵抗素子55の一端に接続されたノード53に接続され、他端が第2の電源端子59に接続されたキャパシタ54と、ソースが第2の電源端子59に接続され、ドレインが抵抗素子の他端であるノード57に接続され、ゲートが入力端子61に接続された、NMOSトランジスタ58とを含む放電回路が第1の充電回路に対して電源端子51,59間に直列に接続される。
【0074】
ここで、抵抗素子55は例えば図11(b)に示すように拡散により形成されているため、図5に示すように寄生容量56を持つ。この容量値をCpとする。また、ノード53はPMOSトランジスタ63,NMOSトランジスタ64でなる出力バッファ回路を介して出力端子62に接続されている。
【0075】
次に、本等価回路の動作について説明する。
【0076】
まず、入力端子61に論理レベル“L”の電位が印加されると、PMOSトランジスタ60のゲート、PMOSトランジスタ52のゲート、及びNMOSトランジスタ58のゲートの電位が“L”になる。そのため、PMOSトランジスタ60及びPMOSトランジスタ52はオンし、NMOSトランジスタ58はオフする。
【0077】
従って、PMOSトランジスタ60が導通することにより電源端子51に接続された抵抗素子55のノード57側の電位Yが“H”になる。同様に、PMOSトランジスタ52が導通することにより、電源端子51に接続された抵抗素子55のノードX側の電位、及びノード53に接続されたキャパシタ54の電位が“H”になる。
【0078】
更に、ノード53の電位“H”がPMOSトランジスタ63及びNMOSトランジスタ64のゲートに印加される。そのため、PMOSトランジスタ63はオフし、NMOSトランジスタ64はオンする。その結果、出力端子62には“L”の電位が出力される。
【0079】
このように、入力端子61に電位“L”が印加された場合は、図6に示すようにキャパシタ54の電位X、及び抵抗素子55の電位Yは“H”にプリチャージされている(図6における期間6−1)。
【0080】
次に、入力端子61に“H”の電位が印加されると、PMOSトランジスタ60のゲート、PMOSトランジスタ52のゲート、及びNMOSトランジスタ58のゲートに電位“H”が印加される。そのため、PMOSトランジスタ60及びPMOSトランジスタ52はオフし、NMOSトランジスタ58はオンする。
【0081】
ここで、NMOSトランジスタ58が導通することにより、キャパシタ54に蓄えられていた電荷が抵抗素子55を介して、電源端子59へ放電される。この放電に要する時間は抵抗素子55の抵抗値をR、キャパシタ54の容量値をCとすれば、概ねRとCを乗じた程度の時定数(t〜RC)となる。この時定数を利用して、入力端子61から出力端子62に信号が伝達する時間に意図的に遅延を加えている。
【0082】
このように、キャパシタ54及び抵抗素子55に蓄えられていた電荷が、NMOSトランジスタ58が導通することにより電源端子59に向けて完全に放電されると、ノード53の電位Xが“L”になる。従って、ノード53の電位の“L”がPMOSトランジスタ63及びNMOSトランジスタ64のゲートに印加される。そのため、PMOSトランジスタ63はオンし、NMOSトランジスタ64はオフする。その結果、出力端子62には“H”の電位が、所望の遅延時間tを持って出力される(図6の期間6−2)。
【0083】
このように、この実施形態は、入力端子61が“H”となったときから、出力端子62が“H”となるまでに所望の遅延時間(t〜RC)を与える半導体装置である。
【0084】
その後、一定時間出力端子62の電位が“H”となった後(図6の期間6−3)、再び出力端子61の電位が“L”となった場合は、同様の作用によってキャパシタの電位Xが“H”となり、遅延することなく出力端子62には“L”が出力される(図6の時点6−4)。
【0085】
しかし、抵抗素子55には寄生容量56が付加しているために、抵抗素子55の電位Yを完全に“H”に充電するためには図6の時間6−5で示すように一定の時間trがかかってしまう。これに要する時間は抵抗素子55の寄生容量56の容量値をCp、抵抗値をRとすると概ねRCp程度となる。
【0086】
本実施形態では、PMOSトランジスタ60が追加されている。これにより、入力端子の電位が“L”となった際(図6の時点6−4)でも、PMOSトランジスタ52の他にさらにPMOSトランジスタ60によっても抵抗素子55を他方の端子側から充電できるため、速やかに抵抗素子55の内部の電位Yを“H”とすることが出来る。
【0087】
従って、抵抗素子55の電位Yを充電するのに必要な時間trを、従来のそれよりも大幅に小さくすることが出来る(図6の期間6−5)。つまり、入力端子61が“L”となるリセットタイムに対して、図14における従来の抵抗素子の電位が“H”なる時間tr´より短い場合(図6の期間6−6)であっても、抵抗素子55の電位Yを速やかに“H”に充電することが出来る。そのため、所望の遅延時定数t〜RCの時定数の遅延を得ることが出来る(図6の期間6−7)。
【0088】
(第4の実施形態)
本発明の第4の実施形態を図7に示す。図7は、半導体基板上に形成された抵抗素子を有する半導体装置の回路を示し、上述のように所望の遅延時間を得るため使用されるもので、図5の実施形態を更に改良したものである。
【0089】
第3の実施形態にさらに、PMOSトランジスタ70が新たに加えられたことが特徴である。即ち、ソースが第1の電源端子51に接続され、ドレインが抵抗素子55の中間位置に接続するノード71に接続され、ゲートが入力端子61に接続された、PMOSトランジスタ70を含む第3の充電回路を更に具備することが特徴である。
【0090】
以下、第3の実施形態と同一の部分については同一の参照符号を付して重複した説明を省略し、第3の実施形態との相違点について詳説する。
【0091】
まず、入力端子61に“L”の電位が印加されると、PMOSトランジスタ70のゲート、PMOSトランジスタ60のゲート、PMOSトランジスタ52のゲート、及びNMOSトランジスタ58のゲートの電位が“L”にされる。そのため、PMOSトランジスタ70、PMOSトランジスタ60及びPMOSトランジスタ52はオンし、NMOSトランジスタ58はオフする。
【0092】
従って、PMOSトランジスタ60が導通することにより電源端子51によって抵抗素子55の他端の電位が“H”に印加される。PMOSトランジスタ52により電源端子51によって抵抗素子55の一端の電位及びノード53に接続されたキャパシタ54の電位Xが“H”になる。さらに、PMOSトランジスタ70が導通されることで、電源端子51によって抵抗の中間点ノード71からも抵抗素子55の電位を“H”することが出来る。
【0093】
その後、ノード53の電位が“H”になると、この電位がPMOSトランジスタ63及びNMOSトランジスタ64のゲートに印加される。そのため、PMOSトランジスタ63はオフし、NMOSトランジスタ64はオンする。その結果、出力端子62には“L”の電位が出力される。
【0094】
次に、入力端子61に“H”の電位が印加されると、PMOSトランジスタ70のゲート、PMOSトランジスタ60のゲート、PMOSトランジスタ52のゲート、及びNMOSトランジスタ58のゲートの電位が“H”にされる。そのため、PMOSトランジスタ70、PMOSトランジスタ60、及びPMOSトランジスタ52はオフし、NMOSトランジスタ58はオンする。
【0095】
ここで、NMOSトランジスタ58が導通することにより、キャパシタ54に蓄えられていた電荷が抵抗素子55を介して、電源端子59へ放電される。この放電に要する時間は抵抗素子55の抵抗値をR、キャパシタ54の容量値をCとすれば、概ねRとCを乗じた程度の時定数(t〜RC)となる。この時定数を利用して、入力から出力に信号が伝達する時間に意図的に遅延を加えている。
【0096】
その遅延後に、NMOSトランジスタ58が導通することによりノード53の電位が“L”になる。そのため、ノード53の電位の“L”がPMOSトランジスタ63及びNMOSトランジスタ64のゲートに印加され、PMOSトランジスタ63はオンし、NMOSトランジスタ64はオフする。その結果、出力端子62には“H”の電位が出力される。
【0097】
また、この動作波形は基本的には図6と同様なので省略する。
【0098】
本実施形態では、新たなPMOSトランジスタ70が抵抗素子55の抵抗値の中間の位置であるノード71に接続されていることにより、ノード71も速やかに“H”に充電できる。これによって、前実施形態よりも速やかに抵抗素子55の内部を“H”とすることが出来る。その結果、リセットタイムが第3の実施形態よりもさらに短い場合であっても、所望の時定数t〜RCの遅延を得ることが出来る。
【0099】
尚、ノード71の位置は一般に抵抗素子の抵抗値のちょうど中間であることが本実施形態の効果上で望ましいが、必ずしも抵抗値のちょうど中間である必要はない。つまり、ノード71は寄生容量のちょうど中間となるべき位置であり、一般的に寄生容量は抵抗素子の印加電圧等にも依存するため、抵抗素子の抵抗値の中間の位置が必ずしも寄生容量の中間を示す位置とは限らないからである。
【0100】
即ち、本実施形態の効果を十分に発揮するためには、中間ノード71は印加電圧等を考慮して寄生容量がちょうど半分となる位置であることが最も望ましい。
【0101】
尚、第3、第4の実施形態では2つないし3つのPMOSトランジスタによって抵抗素子55のノードXの充電を行っているが、PMOSトランジスタの数はさらに多くても良い。さらに、追加された複数のPMOSトランジスタによって抵抗素子55を充電される個所は、寄生容量を効果的に充電できる位置であることが望ましいのは上記と同様である。
【0102】
さらに、少なくとも第2、第3の充電回路は第1の充電回路と同じ駆動能力であっても良いが、異なっていても良い。例えば、PMOSトランジスタ60、PMOSトランジスタ70及びその他追加された複数のPMOSトランジスタの駆動能力ついては、PMOSトランジスタ52のそれよりも低くてもよい。
【0103】
これは、PMOSトランジスタ60及びPMOSトランジスタ70が主に抵抗素子内部の寄生容量を充電するのに用いられるのに対し、PMOSトランジスタ52は主にキャパシタ54を充電するためにも用いられるからである。
【0104】
(第5の実施形態)
本発明の第5の実施形態を図8に示す。図8は半導体基板上に形成された抵抗素子を有する半導体装置の等価回路である。図9は本実施形態に係わる等価回路の動作波形である。
【0105】
図5で示す実施形態の遅延回路と比較すると、図8の実施形態では、抵抗55の寄生容量56の放電回路としてNMOSトランジスタ58による放電回路に加えて、NMOSトランジスタ80による放電回路が新たに加えられたことが特徴である。
【0106】
即ち、図8の実施形態は、1個の抵抗素子55と、ソースが第1の電源端子59に接続され、ドレインが抵抗素子55の一端に接続されるノード53に接続され、ゲートが入力端子61に接続された、NMOSトランジスタ58を含む第1の放電回路と、ドレインが抵抗素子55の他端に接続されるノード81に接続され、ソースが第1の電源端子59に接続され、ゲートが入力端子61に接続された、NMOSトランジスタ80を含む第2の放電回路と、ドレインが抵抗素子55の他端に接続されるノード81に接続され、ソースが第2の電源端子51に接続され、ゲートが入力端子61に接続された、PMOSトランジスタ52を含む充電回路と、を具備する半導体装置である。
【0107】
以下、第3の実施形態と同一の部分については同一の参照符号を付して重複した説明を省略する。
【0108】
図7の第3の実施形態では、PMOSトランジスタ60を介して、正の電源である第1の電源端子51によって抵抗素子55の寄生容量を速やかに充電し、キャパシタ54の放電時に所望の遅延時間を得ることが目的であった。図7の実施形態では、特に、入力端子61の電圧が“L”となるリセットタイムが、RCpよりも短いときに発生する問題を解決するように構成されている。
【0109】
これに対して図8の本実施形態は、NMOSトランジスタ80を介して接地電源である電源端子59に対して抵抗55の寄生容量にある電荷の放電を促し、抵抗素子55のノードX側の電位Yが“L”となる時間を短縮し、入力信号がHとなってから所定の遅延時間TをもってHとなる出力信号を得ることができるように構成されている。さらに、入力信号がHとなってから比較的短い時間でLとなっても必ず対応するHの出力信号が得られるように構成されていることも特徴である。
【0110】
次に、本実施形態の動作について説明する。
【0111】
まず、入力端子61に“L”の電位が印加されると、PMOSトランジスタ52のゲート、NMOSトランジスタ58のゲート、及びNMOSトランジスタ80のゲートの電位が“L”にされる。そのため、PMOSトランジスタ52はオンし、NMOSトランジスタ58及びNMOSトランジスタ80はオフする。
【0112】
従って、PMOSトランジスタ52を介して電源端子51によって抵抗素子55を介してノード53に接続されたキャパシタ54の電位Xが“H”になる。
【0113】
その後、ノード53の電位の“H”がPMOSトランジスタ63及びNMOSトランジスタ64のゲートに印加される。そのため、PMOSトランジスタ63はオフし、NMOSトランジスタ64はオンする。その結果、出力端子62には“L”の電位が所定の遅延により出力される(図9の期間9−1)。
【0114】
次に、入力端子61に“H”の電位が印加されると(図9の入力A1)、PMOSトランジスタ52のゲート、NMOSトランジスタ58、及びNMOSトランジスタ80のゲートの電位が“H”にされる。そのため、PMOSトランジスタ52はオフし、NMOSトランジスタ58及びNMOSトランジスタ80はオンする。
【0115】
ここで、NMOSトランジスタ58、及びNMOSトランジスタ80が導通することにより、これらのトランジスタを介してキャパシタ54及び抵抗素子55に蓄えられていた電荷が電源端子59に向けて放電される。この間、つまりノード53の電位Xが“H”である時間tの間は、出力端子62の電位は“L”のままとなる。即ち、遅延時間Tをもって入力から出力に信号が伝達する時間に意図的に遅延を加えている(図9の期間9−2)。
【0116】
その遅延後、NMOSトランジスタ58及びNMOSトランジスタ80の導通により、電源端子59によってノード53の電位が“L”になる。そのため、ノード53の電位の“L”がPMOSトランジスタ63及びNMOSトランジスタ64のゲートに印加され、PMOSトランジスタ63はオンし、NMOSトランジスタ64はオフする。その結果、出力端子62には“H”の電位が印加され、出力信号A1´が出力される(図9の期間9−3)。
【0117】
さらに、入力信号A1が出力された後で、再び入力端子61の電位が“L”にされると、出力端子には直ちに出力の変化が現れることなく“H”の電位のままである。
【0118】
このとき、キャパシタ54の電位Xは図9に示すように充電が進行するにつれて“H”方向に上昇される。しかし、抵抗素子55には寄生容量があるため、一定時間(リセット時間)後に抵抗素子55の電位Yは“H”となる。
【0119】
ノードXの電位が所定の値まで上昇すると、トランジスタ64が導通し、出力信号A1´がLになる(図9の期間9−4の中途)。
【0120】
その後、期間9−5の始めにおいて入力端子61の電位が“H”となり、入力信号A2が入力されると、ノードX、Yの電位はトランジスタ58、80の放電回路によって速やかに低下し、トランジスタ63の導通により、遅延時間Tの後に出力端子62の電位が“H”となり、所望の出力信号A2´が出力される(図9の期間9−6)。
【0121】
ここで、図15で示す図13の等価回路における従来の動作波形のように、電位X、Yが電荷を放電し“L”となるのに長い時間t´が必要であった(図15の期間15−1)。そのため、入力端子の電位が“H”である時間が図15のTに示すように短いと、放電が間に合わず、電位X、Yが“L”となる前に入力端子61の電位が“L”となるという問題があった。
【0122】
つまり、図15のレベル差150に示すように電位X、Yが完全に“L”とならず、入力信号A2に対し遅延して出力されるべき出力信号A2´が出力しないという問題があった。
【0123】
しかし、本実施形態では上述のように、PMOSトランジスタ80によっても抵抗素子55の電荷を放電することが出来る。そのため、電位X、Yが“L”とするのに要する時間をtという短い時間とすることが出来る(t<t´)(図9の期間9−5)。
【0124】
従って、入力端子の電位が“H”である時間が図9のTで示すように短い場合であっても、所望の遅延時間Tを持った入力信号A2に対応して出力されるべき出力信号A2´を得ることが出来る(図9の期間9−6)。
【0125】
以上により、NMOSトランジスタ80によっても抵抗素子55の寄生容量の電荷の放電を促すことが出来るため、速やかに抵抗素子55の内部の電位Yを“L”とすることが出来る。これにより、入力端子の電位が“H”である時間が図9に示すTのように短い場合であっても、所望の遅延時間Tを持った出力信号A2´を得ることが出来る。
【0126】
(第6の実施形態)
本発明の第6の実施形態を図10に示す。図10は、半導体基板上に形成された抵抗素子を有する半導体装置の回路図であり、上述の各実施形態と同様に入出力端子間で所望の遅延時間を得るため使用される。
【0127】
第5の実施形態と比較して、抵抗55の位置は異なるが、NMOSトランジスタ90が新たに加えられたことが特徴である。即ち、入力端子61に接続されたゲートと、第1の電源端子59に接続されたソースと、抵抗素子55の抵抗値の中間となるノード91に接続されたドレインと、を有するNMOSトランジスタ90を第3の放電回路として含む半導体装置である。
【0128】
以下、第5の実施形態と同一の部分については同一の参照符号を付して重複した説明を省略し、第5の実施形態との動作の相違点について詳説する。
【0129】
まず、入力端子61に“L”の電位が印加されると、PMOSトランジスタ52のゲート、NMOSトランジスタ58のゲート、NMOSトランジスタ80ゲート、及びNMOSトランジスタ90のゲートの電位が“L”にされる。そのため、PMOSトランジスタ52はオンし、NMOSトランジスタ58、NMOSトランジスタ80、及びNMOSトランジスタ90はオフする。
【0130】
従って、PMOSトランジスタ52が導通して電源端子51に接続された電源によって抵抗素子55の電位Y、及びノード53に接続されたキャパシタ54の電位Xが“H”になる。
【0131】
その後、ノード53の電位の“H”がPMOSトランジスタ63及びNMOSトランジスタ64のゲートに印加される。そのため、PMOSトランジスタ63はオフし、NMOSトランジスタ64はオンする。その結果、出力端子62には“L”の電位が出力される。
【0132】
次に、入力端子61に“H”の電位が印加されると、PMOSトランジスタ52のゲート、NMOSトランジスタ58、NMOSトランジスタ80のゲート、及NMOSトランジスタ90のゲートの電位が“H”にされる。そのため、PMOSトランジスタ52はオフし、NMOSトランジスタ58、NMOSトランジスタ80、及びNMOSトランジスタ90はオンする。
【0133】
ここで、NMOSトランジスタ58、NMOSトランジスタ80、NMOSトランジスタ90が導通することにより、キャパシタ54及び抵抗素子55に蓄えられていた電荷が電源端子59に向けて放電される。この放電する時間により、遅延時間をもつ所望の出力信号を得ることが出来る。
【0134】
放電された後、ノード53の電位“L”がPMOSトランジスタ63及びNMOSトランジスタ64のゲートに印加され、PMOSトランジスタ63はオンし、NMOSトランジスタ64はオフする。その結果、出力端子62には“H”の電位が出力される。
【0135】
なお、本実施形態の動作波形は既に説明した各実施形態から明らかであるので省略する。
【0136】
本実施形態においては、PMOSトランジスタ80及びNMOSトランジスタ90においても抵抗素子55の寄生容量の電荷を放電することが出来る。そのため、ノード53の電位が“L”となるのに要する時間をさらに短縮することが出来る。
【0137】
従って、入力端子の電位が“H”である時間が図9で示すTよりもさらに短い場合であっても、入力信号に対応して所望の遅延時間を持った出力信号を得ることが出来る。
【0138】
以上により、NMOSトランジスタ90によっても抵抗素子55のノードYにおける放電を促すことが出来るため、速やかに抵抗素子55の内部の電位Yを“L”とすることが出来る。これにより、入力端子の電位が“H”である時間が図9で示すTよりもさらに短い場合であっても、所望の遅延時間を持った出力信号を得ることが出来る。
【0139】
また、ノード91の位置は第4の実施形態と同様の趣旨により、必ずしも抵抗素子55の抵抗値の中間の位置である必要はなく、寄生容量の半分となるべき位置が望ましい。
【0140】
さらに、抵抗素子55に放電のため付け加えられるNMOSトランジスタは、さらに複数でもよい。この場合、抵抗素子55に接続されるトランジスタのドレインの位置は、寄生容量に蓄えられた電荷を最も効率的に放電することが出来る位置が望ましいということは上述と同様である。
【0141】
尚、第4の実施形態と同様の趣旨から、少なくとも第2、第3の放電回路を構成するトランジスタは充電回路のトランジスタよりも駆動能力が低くてもよい。即ち、NMOSトランジスタ90、NMOSトランジスタ80、さらに追加された複数のNMOSトランジスタの駆動能力は、NMOSトランジスタ58のそれよりも低くてもよい。
【0142】
【発明の効果】
以上詳述したように本発明によれば、抵抗素子に付随する寄生容量が回路動作に与える不安定性を排除し、安定に動作する半導体装置を提供することが出来る。
【図面の簡単な説明】
【図1】この発明の第1の実施形態に係る、抵抗素子を有する半導体装置およびその内部に用いられるスイッチの種々の例を示す回路図。
【図2】第1の実施形態に係る、第1の出力設定回路およびこの回路をブロック化して示した図。
【図3】第1の実施形態に係る、図2の方法によりブロック化した図1の抵抗素子を有する半導体装置のブロック回路図。
【図4】この発明の第2の実施形態に係る、抵抗素子を有する半導体装置の構成を示すブロック回路図。
【図5】この発明の第3の実施形態に係る、抵抗素子を有する半導体装置の等価回路図。
【図6】第3の実施形態に係る、図5に示した抵抗素子を有する半導体装置の動作波形図。
【図7】この発明の第4の実施形態に係る、抵抗素子を有する半導体装置の回路図。
【図8】この発明の第5の実施形態に係る、抵抗素子を有する半導体装置の等価回路図。
【図9】第5の実施形態に係る、図8に示した抵抗素子を有する半導体装置の動作波形図。
【図10】この発明の第6の実施形態に係る、抵抗素子を有する半導体装置の回路図。
【図11】従来技術に係る、抵抗素子を有する半導体装置の回路図および拡散抵抗の寄生容量を示す図。
【図12】従来技術に係る、図11に示した抵抗素子を有する半導体装置における寄生容量による影響を説明する図。
【図13】従来技術に係る、抵抗素子を有する半導体装置の回路図。
【図14】図13の従来技術に係る、抵抗素子を有する半導体装置の第1の動作波形図。
【図15】図13の従来技術に係る、抵抗素子を有する半導体装置の第2の動作波形図。
【符号の説明】
1…出力調整回路
2…出力設定装置
3…第2の出力設定回路
4…第1の出力設定回路
5…モードコントローラ
10…一定電圧を供給する端子
11…参照電圧を供給する端子
12…比較回路
13…電源端子
14…PMOSトランジスタ
15…出力端子
16、16A、16B、16C…スイッチ
16A…PMOSトランジスタ
16B…NMOSトランジスタ
16C…並列に接続されたPMOSトランジスタとNMOSトランジスタ
N1…基準電位端子
N2…第2のノード
NREF…参照ノード
R1…第1の抵抗素子
R2…第2の抵抗素子
r3…第3の抵抗素子
r4…第4の抵抗素子
R3…第5の抵抗素子
R4…第6の抵抗素子
r3…第7の抵抗素子
r4…第8の抵抗素子
NX1…第1の分圧ノード
NX2…第2の分圧ノード
NX3…第1の分圧ノード
NX4…第2の分圧ノード

Claims (3)

  1. 第1乃至第8の抵抗素子を有し、
    前記第1から第4の抵抗素子のそれぞれ第1端が第1のノードにおいて互いに接続され、前記第5から第8の抵抗素子のそれぞれ第1端が第2のノードにおいて互いに接続され、
    スタンバイモードおよびアクティブモードを切り替えて動作する半導体装置において、
    前記第1および第2の抵抗素子のそれぞれの第2端がそれぞれ第3のノードおよび参照ノードに接続され、
    前記第3および第4の抵抗素子のそれぞれの第2端が第4のノードおよび前記参照ノードにそれぞれ第1および第2のスイッチを介して接続され、
    前記第5および第6の抵抗素子のそれぞれの第2端がそれぞれ前記参照ノードおよび第5のノードに接続され、
    前記第7および第8の抵抗素子のそれぞれの第2端が前記参照ノードおよび第6のノードにそれぞれ第3および第4のスイッチを介して接続され、
    前記スタンバイモードにおいては前記第1乃至第4のスイッチは開放され、前記アクティブモードにおいては前記第1乃至第4のスイッチは短絡され、
    前記アクティブモードの際に、前記第3,第4のノードの電位が等しくなり、前記第5,第6のノードの電位が等しくなり、
    前記第1の抵抗素子の抵抗値と前記第2の抵抗素子の抵抗値の比率が、前記第3の抵抗素子の抵抗値と前記第4の抵抗素子の抵抗値の比率と等しく、
    前記第5の抵抗素子の抵抗値前記第6の抵抗素子の抵抗値の比率が、前記第7の抵抗素子の抵抗値前記第8の抵抗素子の抵抗値の比率と等しく、
    前記第3,第4,第7,第8の抵抗素子が拡散層により構成され、前記第3の抵抗素子に対応する前記拡散層の拡散面積と前記第4の抵抗素子に対応する前記拡散層の拡散面積とが等しく、前記第7の抵抗素子に対応する前記拡散層の拡散面積と前記第8の抵抗素子に対応する前記拡散層の拡散面積とが等しいこと
    を特徴とする抵抗素子を有する半導体装置。
  2. 前記第1乃至第4のスイッチは、半導体基板中に形成されたPMOSトランジスタまたはNMOSトランジスタを含むこと
    を特徴とする請求項1に記載の抵抗素子を有する半導体装置。
  3. 前記第1乃至第4のスイッチに、前記スタンバイモードまたは前記アクティブモードを制御するモード指定信号を出力するモードコントローラを更に具備すること
    を特徴とする請求項1または2に記載の抵抗素子を有する半導体装置。
JP2002302759A 2002-10-17 2002-10-17 抵抗素子を有する半導体装置 Expired - Fee Related JP4025167B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2002302759A JP4025167B2 (ja) 2002-10-17 2002-10-17 抵抗素子を有する半導体装置
US10/685,490 US7053696B2 (en) 2002-10-17 2003-10-16 Semiconductor device with resistor element
US11/401,303 US20060181339A1 (en) 2002-10-17 2006-04-11 Semiconductor device with resistor element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002302759A JP4025167B2 (ja) 2002-10-17 2002-10-17 抵抗素子を有する半導体装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2006001457A Division JP4021918B2 (ja) 2006-01-06 2006-01-06 半導体装置

Publications (3)

Publication Number Publication Date
JP2004140144A JP2004140144A (ja) 2004-05-13
JP2004140144A5 JP2004140144A5 (ja) 2005-07-14
JP4025167B2 true JP4025167B2 (ja) 2007-12-19

Family

ID=32450735

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002302759A Expired - Fee Related JP4025167B2 (ja) 2002-10-17 2002-10-17 抵抗素子を有する半導体装置

Country Status (2)

Country Link
US (2) US7053696B2 (ja)
JP (1) JP4025167B2 (ja)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7621463B2 (en) * 2005-01-12 2009-11-24 Flodesign, Inc. Fluid nozzle system using self-propelling toroidal vortices for long-range jet impact
US7737765B2 (en) * 2005-03-14 2010-06-15 Silicon Storage Technology, Inc. Fast start charge pump for voltage regulators
US7362084B2 (en) 2005-03-14 2008-04-22 Silicon Storage Technology, Inc. Fast voltage regulators for charge pumps
US7479824B2 (en) * 2006-07-13 2009-01-20 Freescale Semiconductor, Inc. Dual mode voltage supply circuit
JP2008070977A (ja) * 2006-09-12 2008-03-27 Fujitsu Ltd 電源降圧回路及び半導体装置
JP2008083850A (ja) * 2006-09-26 2008-04-10 Nec Electronics Corp レギュレータ回路
KR100816214B1 (ko) * 2006-09-29 2008-03-21 주식회사 하이닉스반도체 플래쉬 메모리 장치의 전압 생성기
KR101045069B1 (ko) * 2010-03-31 2011-06-29 주식회사 하이닉스반도체 반도체 집적회로
JP2012151186A (ja) * 2011-01-17 2012-08-09 Seiko Instruments Inc 抵抗分割回路及び電圧検出回路
JP6084764B2 (ja) * 2011-02-22 2017-02-22 ピーエスフォー ルクスコ エスエイアールエルPS4 Luxco S.a.r.l. 半導体装置
KR101730198B1 (ko) * 2012-12-26 2017-04-25 삼성전기주식회사 Spdt 스위치 회로
US9317053B2 (en) 2014-04-28 2016-04-19 Winbond Electronics Corp. Voltage regulator for a flash memory
JP2016057913A (ja) * 2014-09-10 2016-04-21 株式会社東芝 電圧生成回路
JP6719233B2 (ja) * 2016-03-07 2020-07-08 エイブリック株式会社 出力回路
KR101716434B1 (ko) 2016-08-10 2017-03-14 윈본드 일렉트로닉스 코포레이션 반도체 장치

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4158786A (en) * 1976-07-27 1979-06-19 Tokyo Shibaura Electric Co., Ltd. Display device driving voltage providing circuit
JPS5865481A (ja) * 1981-10-15 1983-04-19 株式会社東芝 液晶駆動用電圧分割回路
US5179539A (en) 1988-05-25 1993-01-12 Hitachi, Ltd., Hitachi Vlsi Engineering Corporation Large scale integrated circuit having low internal operating voltage
DE3904901A1 (de) * 1989-02-17 1990-08-23 Texas Instruments Deutschland Integrierte gegentakt-ausgangsstufe
JP3036176B2 (ja) 1991-11-12 2000-04-24 日本電気株式会社 入力プルアップ回路付半導体集積回路
JP2950093B2 (ja) 1993-05-13 1999-09-20 日本電気株式会社 半導体集積回路装置
JP3705842B2 (ja) * 1994-08-04 2005-10-12 株式会社ルネサステクノロジ 半導体装置
JPH0897701A (ja) * 1994-09-21 1996-04-12 Mitsubishi Electric Corp 半導体回路
KR100190101B1 (ko) * 1996-10-18 1999-06-01 윤종용 반도체 장치의 내부 전압 변환 회로
JP3076300B2 (ja) * 1998-04-20 2000-08-14 日本電気アイシーマイコンシステム株式会社 出力バッファ回路
US6744294B1 (en) * 1999-05-12 2004-06-01 Telefonaktiebolaget Lm Ericsson (Publ) Cascode signal driver with low harmonic content
JP2002231000A (ja) * 2001-02-05 2002-08-16 Mitsubishi Electric Corp 半導体記憶装置
JP3851791B2 (ja) * 2001-09-04 2006-11-29 株式会社東芝 半導体集積回路
US6686789B2 (en) * 2002-03-28 2004-02-03 Agere Systems, Inc. Dynamic low power reference circuit
US6759880B2 (en) * 2002-06-13 2004-07-06 Hewlett-Packard Development Company, L.P. Driver circuit connected to a switched capacitor and method of operating same
JP2004096493A (ja) * 2002-08-30 2004-03-25 Nec Electronics Corp パルス発生回路及び半導体装置

Also Published As

Publication number Publication date
US20060181339A1 (en) 2006-08-17
US7053696B2 (en) 2006-05-30
US20040129980A1 (en) 2004-07-08
JP2004140144A (ja) 2004-05-13

Similar Documents

Publication Publication Date Title
JP4025167B2 (ja) 抵抗素子を有する半導体装置
US6680637B2 (en) Phase splitter circuit with clock duty/skew correction function
US8508273B2 (en) Apparatus and method for outputting data of semiconductor memory apparatus
US4853654A (en) MOS semiconductor circuit
KR0171228B1 (ko) 기준 전압 발생 회로
US6894543B2 (en) Series terminated CMOS output driver with impedance calibration
US7307468B1 (en) Bandgap system with tunable temperature coefficient of the output voltage
US5548237A (en) Process tolerant delay circuit
EP1274067B1 (en) Driver Circuit
JPH10508175A (ja) 不揮発性メモリ集積回路における高電圧切換え用高電圧レベルシフタ
KR100799120B1 (ko) 지연회로
KR100410987B1 (ko) 내부 전원전압 발생회로
KR100715845B1 (ko) 위상혼합기 및 이를 이용한 다중위상 발생기
JP3464278B2 (ja) ノイズ低減出力段を備えた集積回路
CN113541606B (zh) 振荡电路以及半导体集成电路
US10139850B2 (en) Analog boost circuit for fast recovery of mirrored current
US20050151581A1 (en) Internal step-down power supply circuit
JP4021918B2 (ja) 半導体装置
US20050225363A1 (en) Output driver circuit
US5694032A (en) Band gap current reference circuit
JPH06230840A (ja) バイアス回路
JPH03162011A (ja) 電流制限出力ドライバ
US6348814B1 (en) Constant edge output buffer circuit and method
WO2001047121A1 (en) High voltage buffer for submicron cmos
JP2016042676A (ja) 遅延装置

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041122

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041122

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051027

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061010

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070612

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070810

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071002

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071004

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101012

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111012

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111012

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121012

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131012

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees