JP3998424B2 - 光ディスク記録再生装置 - Google Patents

光ディスク記録再生装置 Download PDF

Info

Publication number
JP3998424B2
JP3998424B2 JP2001048493A JP2001048493A JP3998424B2 JP 3998424 B2 JP3998424 B2 JP 3998424B2 JP 2001048493 A JP2001048493 A JP 2001048493A JP 2001048493 A JP2001048493 A JP 2001048493A JP 3998424 B2 JP3998424 B2 JP 3998424B2
Authority
JP
Japan
Prior art keywords
defect
disk
optical disc
recording
pickup
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001048493A
Other languages
English (en)
Other versions
JP2002251728A5 (ja
JP2002251728A (ja
Inventor
徹 宇野
実 米澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2001048493A priority Critical patent/JP3998424B2/ja
Publication of JP2002251728A publication Critical patent/JP2002251728A/ja
Publication of JP2002251728A5 publication Critical patent/JP2002251728A5/ja
Application granted granted Critical
Publication of JP3998424B2 publication Critical patent/JP3998424B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は光ディスクに対して情報の記録及び再生を行う光ディスク記録再生装置に関し、特に光ディスク上の汚れ又はキズ等のディフェクト部を検出する光ディスク記録再生装置に関する。
【0002】
【従来の技術】
光ディスク記録再生装置において、ディスク上に汚れあるいはキズ等のディフェクトがあると、トラッキングサーボ更にはフォーカスサーボが不可能となり、ディフェクト部に対する情報の記録又は再生が不可能となることがある。
【0003】
従来、光ディスク全面にわたりディフェクトを検出する方法としては、次に示すような技術がある。第1に、M個所のトラックシークを行い、それぞれN周のトラッキングオン再生を行い、ディスク全面のディフェクトを検出する方法である。
【0004】
第2の方法としては、特開平6−203466号公報のように、トラックカウントキックすなわち光ピックアップをNトラック分高速移動し、そのとき横切ったトラックの数と、トラッキングオンアドレスの差異つまりトラックカウントキックを行う前後のトラッキングオン再生で読取ったアドレスの差異から求められるトラック数との差によりディフェクト検出する方法が有る。
【0005】
【発明が解決しようとする課題】
上記M個所のトラックシークを行う第1の方法では、ディスクのゾーン単位のシークと一周以上のトラッキングオン再生動作を繰り返さなければならず、ディスク全面のディフェクトを検出するのに時間がかかる。その為、ディスク挿入毎などに必ずディフェクト検査をするような製品仕様にはし難い。
【0006】
上記第2の方法では、トラックカウントキック動作の前後でトラッキングオン再生して、物理アドレスのデコードを必ず行う必要があるので、手順に煩雑な点がある。又、ディフェクト上にトラッキングオンした場合の動作異常を考慮していない。
【0007】
従って本発明は、短時間で光ディスク全面にわたりディフェクトを検出し、情報記録不具合を未然に防ぐことができる光ディスク記録再生装置を提供することを目的とする。
【0008】
【課題を解決するための手段】
上記目的を達成するために本発明の光ディスク記録再生装置は、主制御手段が、トラッキング制御手段によるトラッキング制御を行わずに、フォーカス制御手段、フィード制御手段、回転速度制御手段による制御を実行させている際に、ディフェクト判断手段は光ディスクを反射したレーザービームを受光する受光素子から得られるトラッキングエラー信号のピーク値を、基準閾値と比較することにより、前記レーザービームが前記光ディスク上のディフェクト部を照射しているか判断する。
【0009】
一般に光ディスクの反射光レベルは、正常なディスク盤面を反射したときより、ディフェクト部を反射したときの方が低い。従って、前記ディフェクト判断手段は、トラッキングエラー信号のピーク値が所定の基準閾値より低いとき、ディフェクトありと判断する。
【0010】
一般にトラッキングエラー信号はレーザービームが光ディスクの情報記録部を照射しているときより、未記録部を照射しているときの方が振幅レベルが低い。従って、レーザービームが情報記録部を照射している場合と、未記録部を照射している場合とでは互いに異なる基準閾値が適用される。
【0011】
又、前記反射光レベルとして、光ディスクを反射したLED光を受光する受光素子から得られる反射光量を用いることができる。更に前記反射光レベルとして、レーザービームのフォーカスがディスクの表面に制御されている状態で得られるフォーカスエラー信号の振幅値を用いることができる。従って、ディフェクト検出過程時に、ディスク盤面の異常によるピックアップサーボの暴走を伴ない難い。
【0012】
又、本発明の光ディスク記録再生装置では、光ディスクの回転周期と、ピックアップの移動量と、前記ディフェクト判断手段によるディフェクト判断結果を元に、光ディスク上のディフェクト部の面積が求められる。 この結果、ディスク盤面全体の汚れや傷を、直ちに(1〜2秒程度で)検出するディフェクト検出機能が提供される。ディスク上にディフェクトが検出された場合、その旨がディフェクト部の面積と共にユーザに警告される。
【0013】
【発明の実施の形態】
以下、図面を参照しながら本発明の実施の形態について詳細に説明する。
【0014】
図1は本発明の第1の実施形態に係る記録再生装置の構成を示すブロック図である。情報記録再生用の光ディスク1は、スピンドルモータ2によって所定速度で回転する。回転速度検出部19はスピンドルモータ2に設けられたエンコーダから出力される信号からFGパルスを検出し提供する。このFGパルスはスピンドルモータ2の回転角を示す信号であって、その周波数はスピンドルモータ2の回転速度に対応する。ディスク回転周波数制御(AFC)部17は回転速度検出部19から提供されるFGパルスの周波数と、システム制御MPU40により設定され速度目標値記憶部18に記憶された回転速度目標値とを比較し、スピンドルモータ2の回転速度が回転速度目標値に一致するよう制御信号を提供する。この制御信号は回転速度イコライザ15及びアンプ16により、スピンドルモータ2の駆動信号に変換される。
【0015】
光ピックアップ4はレーザービームを光ディスク1に照射することにより、光ディスク1に対して情報の記録及び再生を行う。光ピックアップ4は光ディスク1を反射したレーザービームを4分割フォトダイオード(後述される)により受光し、フォトダイオードの光検出信号PDSIGを提供する。RFアンプ5は光ピックアップから提供される光検出信号PDSIGを増幅し、RFレベル信号、トラックエラー信号TE、フォーカスエラー信号FEを提供する。アドレスデコード部29はRFアンプ5から提供されるRFデータをデコードしアドレスを提供する。
【0016】
フォーカス制御部6はフォーカスサーボを含む処理を実行する。つまりフォーカス制御部6は、ピックアップ4から光ディスク1に照射されるレーザービームのフォーカスが前記ディスクの記録面となるよう前記光ピックアップを制御する。FO.OK判定部31は該フォーカスが前記ディスクの記録面となっているか判定する。
【0017】
トラッキング制御部8はトラッキングサーボを含む処理を実行する。つまりトラッキング制御部8は、レーザービームが前記ディスク上のトラックに追随するよう前記光ピックアップを制御する。TRK.OK判定部32はレーザービームが前記ディスク上のトラックに追随しているか判定する。
【0018】
送りモータ3は光ピックアップ4を光ディスク1の半径方向に移動する。フィード速度検出部10は送りモータ3に設けられたエンコーダの出力信号からTAC信号を検出し提供する。このTAC信号は送りモータ2の回転角を示す信号であって、その周波数は光ピックアップ4の移動速度すなわちフィード速度に対応する。フィードキック制御部11は、フィード速度検出部10から提供されるTAC信号の周波数と、システム制御MPU40により設定され速度目標値記憶部12に記憶されたフィード速度目標値とを比較し、TAC信号の周波数がフィード速度目標値12に一致するよう制御信号を提供する。この制御信号はフィードイコライザ13及びアンプ14により送りモータ3の駆動信号に変換される。
【0019】
ディフェクト検出部20はRFアンプ5から提供されるRFレベル信号及びトラッキングエラーTE信号から、光ディスク1上の汚れやキズ等のディフェクトを検出する。更にディフェクト検出部20は、フィード速度検出部10から提供される光ピックアップ4のフィード速度信号及び回転速度検出部19から提供されるスピンドルモータ2の回転速度信号から、上記検出されたディフェクトの面積を計算する。
【0020】
システム制御MPU40(主制御手段)はこの光ディスク記録再生装置を制御バスを介して総合的に制御する。
【0021】
次に本実施形態の動作を説明する。図2は本実施形態の動作を示すフローチャートである。システム制御MPU40は、ディスク1を適当なFG周期で回転制御して、フォーカス制御部6によりフォーカスサーボをオンする(S1)。これは従来の光ディスク再生装置の手順と同様である。
【0022】
その後、システム制御MPU40は光ディスクの速度目標値記憶部18の値をディフェクト検出動作時の目標速度に設定し(S2)、ディスク回転周波数制御(AFC)がロックした事を確認後、光学式ピックアップ4を光ディスク半径方向に一定速度で移動させるフィードキック動作を行う(S3)。手順としては、先ずフィードキックの速度目標値記憶部12の値を所定の値Vsに設定し、ディスク最内周へのフィードキックを命令し、フィードが最内周に到達したらフィードキックを停止し、次に外周側にフィードキックを行う。
【0023】
システム制御MPU40は最内周からの光学式ピックアップ4の移動量を、フィード速度検出部10から提供されるTACパルスをカウントするTACカウント部27を用いて判断する。ピックアップ4がディフェクト検出を行うべきエリアの開始位置に到達したら(S4)、システム制御MPUはディフェクト検出部20に対してディフェクト検出を命令する(S5)。このディフェクト検出を行うべきエリアとは光ディスク内周側のリードインエリアと外周側のリードアウトエリアの間の記録エリアを示す。
【0024】
TEディフェクト判定部22aはトラッキングエラーTE信号をピーク検波してディフェクトを判定する。
【0025】
判定の様子を図3に示す。図3の(a)〜(d)に示す信号は図1の信号1A〜1Dに対応する。TEディフェクト判定部22aはトラッキングエラーTE信号1Cをピーク検波し、ピーク検波結果が基準となる閾値以下であればディフェクト有りと判定する。
【0026】
ここでディスクの反射率がデータ記録済みの領域か否かで異なることにより、トラッキングエラーピーク値の正常値が異なる場合を想定し、図3(c)の閾値th及びthのように、データー有無により前記ピーク検波閾値を切り替えている。この例ではデータ記録済み領域で反射率が低下し、トラッキングエラーのピーク値が下がる場合についてその閾値切り替え手順を記述している。図3(a)及び(b)において、ハイレベルは記録済み領域を示し、ローレベルは未記録領域を示す。図1のディフェクト検出部20に入力されたRFレベル信号1Aのレベルをレベル検出部21で判定し、記録済みか否かを判定している。
【0027】
図1のディフェクト面積計算部23はディフェクト判定結果1Dと、ディスク周期計測結果1Eと、TAC信号1Fから求めたフィード量(ピックアップ4の移動量)を元にディフェクト面積を算出する(S6)。図4(a)〜(c)に3つの検出結果信号1D〜1Fの関係とディフェクト面積の算出式を示す。
【0028】
システム制御MPU40はピックアップ4がディフェクト検出を行うべきエリアの終端まで至った時に(S7)、ディフェクト検出を終了する命令をシステムに出力し、フィードキックを停止し(S8)、ディフェクト検出結果をディフェクト検出部20aより読み出す(S9)。ディスク上にディフェクトが存在した場合は、警告手段41により製品ユーザーに警告を与える(S10、S11)。
【0029】
この製品ユーザーに対する警告を行う場合に、図4のような手法で算出したディフェクト面積概算値を、警告と同時にユーザーに表示するようにしても良い。また、製品ユーザーに対して、ディスククリーニングを促すような警告をしても良い。
【0030】
また上記では、ディフェクト検出を行うべきエリアの判定をフィード速度検出部10からのTAC信号を用いて行ったが、トラッキングエラーTE信号1Cを2値化カウントすることによって行っても構わない。
【0031】
次に本発明の第2の実施形態を説明する。図5は第2の実施形態に係る記録再生装置の構成を示すブロック図である。先ず、システム制御MPU40はディスク1を適当なFG周期で回転制御して、ピックアップ4内に設けられたディフェクト検出用LEDをオンする。
【0032】
その後、第1の実施例と同様に、システム制御MPU40はディスク速度目標値をディフェクト検出動作時の目標速度に設定し、ディスク回転周波数制御(AFC)がロックした事を確認後に、フィードキックの速度目標値を設定し、ディスク最内周へのフィードキックを命令し、フィードが最内に周到達したらフィードキックを停止し、次に外周側にフィードキックを行う。
【0033】
システム制御MPU40はTACカウント部25の最内周からのカウント値を参照してピックアップ4がディフェクト検出を行うべきエリアに到達したことを確認後、ディフェクト検出部20bに対してディフェクト検出を命令する。ディフェクト判定部22bはLED光の反射レベル信号5Aから、特定レベルを閾値としてディフェクトを判定する。
【0034】
判定の仕組みを図6に示す。図6(a)のように、LED42からディスク盤面に照射されたLED光は、ディスク1及びミラー44を反射しフォトディテクタ43で受光される。図6(b)のように、フォトディテクタ43は例えば4分割構造であり、受光した光を加算することにより前記反射光レベルを検出する。
【0035】
図7はディフェクト検出の様子を示す。図7(a)のように反射光レベル5Aが所定のディフェクト検出閾値th以下であれば、図7(b)のようにディスク盤面にディフェクトが有ると判断する。
【0036】
図5のディフェクト面積計算部23は、ディフェクト判定結果5Bとディスク周期計測結果5Dとから求められるフィード量検出結果5Cを元にディフェクト面積を算出する。図8に3つの検出結果の関係と面積算出式を示す。
【0037】
システム制御MPU40は光ピックアップ4がディフェクト検出を行うべきエリアの終了位置まで至った時に、前述したようにディフェクト検出を終了する命令をシステムに出力し、フィードキックを停止しディフェクト状態をディフェクト検出部20より読み出す。そして、ディスク上にディフェクトが存在した場合は、警告手段41により製品ユーザーに警告を与える。
【0038】
尚、図6に示したディフェクト検出用のLED42と、フォトディテクタ43は、情報の記録再生用光学系とは別途に設けられた光学系であり、情報の記録再生用光学系の光源より波長の長い光源によって構成されることが望ましい。たとえば、光ディスク1の傾きを検出するために設けられたチルトセンサの光学系を兼用する構成とすることが可能である。このように光学系を兼用することで、別途にディフェクト検知光学系を設けることなくコンパクトな構成とすることができる。
【0039】
また、複数の規格のディスクに対応するように、複数の光学系を備えている場合、最も波長の長い光源による光学系を用いる構成とすることが望ましい。
【0040】
次に本発明の第3の実施形態を説明する。図9は第3の実施形態に係る記録再生装置の構成を示すブロック図である。先ず、システム制御MPU40はディスク1を適当なFG周期でドライブして、ディスク1の表面を目標点としてフォーカスサーボをオンする。フォーカスサーボ目標点を図10に示す。フォーカスエラー信号上には記録面に対するフォーカスゼロクロス点F1とディスク表面に対するフォーカスゼロクロス点F2が存在している。本実施形態の場合、このゼロクロス点F2にフォーカスが調節される。
【0041】
次にシステム制御MPU40は第1の実施例と同様に、ディスク速度目標値(18)をディフェクト検出動作時の目標速度に設定し、ディスクAFCがロックした事を確認後に、フィードキック速度目標値(12)を設定し、ディスク最内周へのフィードキックを命令し、フィードが最内周に到達したらフィードキックを停止し、次に外周側にフィードキックを行う。
【0042】
システム制御MPUはピックアップ4がディフェクト検出を行うべきエリアに到達したら、デフェクト検出部20に対してディフェクト検出動作を命令する。ディフェクト判定部20cは反射レベル信号9Aから、特定レベルを閾値としてディフェクトを判定する。
【0043】
判定の仕組みを図11に示す。図11(a)のように、レーザーダイオード45からディスク盤面に照射されたレーザー光は、ディスク1及びハーフプリズム47を反射しフォトディテクタ45で受光される。図11に示した光学系は、情報の記録再生用光学系である。フォトディテクタ46は図11(a)のように、例えば4分割構造であり、受光した光の検出信号を加算することにより前記反射光レベルを検出する。
【0044】
図12はディフェクト検出の様子を示す。図12(a)のように反射光レベル9Aが所定のディフェクト検出閾値th以下であれば、図12(b)のようにディスク盤面にディフェクトが有ると判断する。
【0045】
図9のディフェクト面積計算部23はディフェクト判定結果9Bとディスク周期計測結果9DとTAC信号9Cから求められるフィード量検出結果を元にディフェクト面積を算出する。図13に3つの検出結果の関係と面積算出式を示す。
【0046】
システム制御MPU40は光ピックアップ4がディフェクト検出を行うべきエリアの終了位置まで至った時に、前述したようにディフェクト検出を終了する命令をシステムに出力し、フィードキックを停止しディフェクト状態をディフェクト検出部20より読み出す。そして、ディスク上にディフェクトが存在した場合は、警告手段41により製品ユーザーに警告を与える。
【0047】
次に本発明の第4の実施形態を説明する。第4の実施形態では、第1の実施形態に係る動作を実行時に、図3(c)のトラッキングエラーTE信号を2値化したトラックカウント信号を用いて概略のディフェクト位置アドレスを検出する。
【0048】
図14は第4の実施形態に係る記録再生装置の構成を示すブロック図である。先ずシステム制御MPU40は前述したように、光ディスク1を適当なFG周期で回転制御して、ディスク1の情報記録面にフォーカスサーボをオンする。
【0049】
その後、システム制御MPU40はディスク速度目標値(18)をディフェクト検出動作時の目標速度に設定し、ディスクAFCがロックした事を確認後に、フィードキック速度目標値(12)を設定し、ディスク最内周へのフィードキックを命令し、フィードが最内に周到達したらフィードキックを停止し、次に外周側にフィードキックを行う。
【0050】
システム制御MPU40は最内周からのTAC信号のパルス数をカウントし、ディフェクト検出を行うべきエリアに到達したら、ディフェクト検出部20に対してディフェクト検出動作を命令する。この時、トラックカウント部25はカウント値をクリアし、トラックカウント開始状態となる。
【0051】
TEディフェクト判定部22aによってディフェクトが検出された時に、ディフェクト概略アドレス判定部26は、トラックカウント部25のトラックカウント値を読み出す。このトラックカウント値はそのままディフェクトの存在するトラックの位置を示しており、ディフェクト開始位置の概略アドレスとなる。
【0052】
同様に、ディフェクト終了位置を通過直後のトラックカウント値により、ディフェクト終了位置の概略アドレスを検出できる。各概略アドレスはディフェクト概略アドレス判定部26の中に記憶する。
【0053】
システム制御MPUはフィードキックパルス数がディフェクト検出を行うべきエリアの終了位置まで至った時に、前述したようにディフェクト検出を終了する命令をシステムに出力し、フィードキックを停止し、ディフェクト概略アドレスをディフェクト概略アドレス検出部26より読み出す。そしてその結果を元にシステムコントロールまたは製品ユーザーに対する警告などをする。
【0054】
次に本発明の第5の実施形態を説明する。ディフェクトによりトラックカウントが欠落する場合が考えられる。従って、本実施形態では、光学式ピックアップの移送手段に設けられたエンコーダ信号であるTACパルスカウントとトラックカウントを併用してディフェクトアドレスを求める。
【0055】
この第5の実施形態に係る記録再生装置の構成は図14の第4の実施形態と同様である。先ずシステム制御MPU40は、前述したようにディスクを適当なFG周期でドライブして、フォーカスサーボをオンする。
【0056】
その後、システム制御MPU40はディスク速度目標値(18)をディフェクト検出動作時の目標速度に設定し、ディスクAFCがロックした事を確認後に、フィードキック速度目標値(12)を設定し、ディスク最内周へのフィードキック命令をし、フィードが最内周に到達したらフィードキックを停止し、次に外周側にフィードキックを行う。
【0057】
システム制御MPU40はピックアップ4がディフェクト検出を行うべきエリアに到達したら、デフェクト検出部20に対してディフェクト検出動作を命令する。この時、トラックカウント部25はカウント値がクリアされ、トラックカウントを開始する。同時にTACカウント部27も、カウント値がクリアされ、TACパルスのカウントを開始する。その後、TACパルス発生毎にTACカウント部27は、トラックカウント部25のカウント値をクリアし、トラックカウント再開を指令する。
【0058】
ディフェクト判定部22aによってディフェクトが検出された時に、ディフェクト概略アドレス判定部26aは、TACカウント部27のTACカウント値と、トラックカウント部25のトラックカウント値を読み出す。このTACカウント数とトラックカウント数のカウント値が、ディフェクト検出位置の概略アドレスとなる。
【0059】
同様に、ディフェクト終了部通過直後のTACカウント値とトラックカウント値により、ディフェクト終了位置の概略アドレスを検出できる。各概略アドレスはディフェクト概略アドレス判定部26aの中に記憶する。
【0060】
システム制御MPU40はフィードキックパルス数がディフェクト検出を行うべきエリアの終了位置まで至った時に、前述したようにディフェクト検出を終了する命令をシステムに出力し、フィードキックを停止し、ディフェクト概略アドレスをディフェクト概略アドレス判定部26aより読み出す。そしてその結果を元にシステムコントロールまたは製品ユーザーに対する警告などをする。
【0061】
上記トラックカウント値については、ディフェクトの影響による、カウント欠落が有りうるが、TACパルス長以下のカウント誤差発生の可能性があるものの、ディフェクト位置の概略アドレスを推測可能である。
【0062】
次に本発明の第6の実施形態を説明する。上記実施形態について、前記トラックカウント部25は、タイマーに置き換えても良い。
【0063】
図15は第6の実施形態に係る記録再生装置の構成を示すブロック図である。先ずシステム制御MPU40は、前述したようにディスクを適当なFG周期でドライブして、フォーカスサーボをオンする。
【0064】
その後、システム制御MPU40はディスク速度目標値をディフェクト検出動作時の目標速度に設定し、ディスクAFCがロックした事を確認後に、フィードキック速度目標値を設定し、ディスク最内周へのフィードキックを命令し、フィードが最内周に到達したらフィードキックを停止し、次には外周側にフィードキックを行う。
【0065】
システム制御MPU40は、ピックアップ4がディフェクト検出を行うべきエリアに到達したら、デフェクト検出部20に対してディフェクト検出動作を命令する。この時、タイマー部28はカウント値がクリアされ、タイマー動作を開始する。同時にTACカウント部27も、カウント値がクリアされ、TACカウントを開始する。その後、TACパルス発生毎にTACカウント部27は、タイマー部28のカウント値をクリアし、タイマー動作再開を指令する。
【0066】
ディフェクト判定部22aによってディフェクト検出がされた時に、ディフェクト概略アドレス判定部26bは、TACカウント部27のTACカウント値と、タイマー部28のタイマー値を読み出す。ピックアップ4が所定の速度で移送されているとすると、移動距離と移動時間とには略一意な関係がある為、このTACカウント数とタイマー値により、ディフェクト検出の概略アドレスを検出できる。
【0067】
同様に、ディフェクト終了部通過直後のTACカウント値とタイマー値により、ディフェクト終了位置の概略アドレスを検出できる。各概略アドレスはディフェクト概略アドレス判定部26bの中に記憶する。
【0068】
システム制御MPU40はピックアップ4がディフェクト検出を行うべきエリアの終了位置まで至った時に、前述したようにディフェクト検出を終了する命令をシステムに出力し、フィードキックを停止し、ディフェクト概略アドレスをディフェクト概略アドレス判定部26bより読み出す。そしてその結果を元にシステムコントロールまたは製品ユーザーに対する警告などをする。
【0069】
上記第5及び第6の実施形態は、TACカウント部27とトラックカウント部25、またはTACカウント部27とタイマー部28の双方のカウント値を概略アドレスとしているが、TACカウント部のみのカウント値を概略アドレスとしても良い。
【0070】
次に本発明の第7の実施形態を説明する。上記TACカウント部27とトラックカウント部25、またはTACカウント部27とタイマー部28により構成されたカウント手段は、タイマー手段のみで実施しても良い。
【0071】
図16は第7の実施形態に係る記録再生装置の構成を示すブロック図である。先ずシステム制御MPU40は、前述したようにディスクを適当なFG周期でドライブして、フォーカスサーボをオンする。
【0072】
その後、システム制御MPU40はディスク速度目標値をディフェクト検出動作時の目標速度に設定し、ディスクAFCがロックした事を確認後に、フィードキック速度目標値を設定し、ディスク最内周へのフィードキックを命令し、フィードが最内周に到達したらフィードキックを停止し、次に外周側にフィードキックを行う。
【0073】
システム制御MPU40は、ピックアップ4がディフェクト検出を行うべきエリアに到達したら、デフェクト検出部20に対してディフェクト検出動作を命令する。この時、タイマー部28はカウント値がクリアされタイマー動作を開始する。
【0074】
ディフェクト判定部22aによってディフェクト検出がされた時に、ディフェクト概略アドレス判定部26cは、タイマー部28のタイマー値を読み出す。このタイマー値からディフェクト検出位置の概略アドレスを判定できる。
【0075】
同様に、ディフェクト終了部通過直後のタイマー値を記憶することで、ディフェクト終了位置の概略アドレスを判定できる。各概略アドレスはディフェクト概略アドレス判定部26cの中に記憶する。
【0076】
システム制御MPU40はピックアップ4がディフェクト検出を行うべきエリアの終了位置まで至った時に、前述したようにディフェクト検出を終了する命令をシステムに出力し、フィードキックを停止し、ディフェクト概略アドレスをディフェクト概略アドレス判定部26cより読み出す。そしてその結果を元に、例えば無効トラックの容量を、ディフェクト概略アドレスを物理アドレスに変換するような手法で算出し、製品ユーザーに対する容量低下量の警告などをしても良い。また、製品ユーザーに対して、ディスククリーニングを促すような警告をしても良い。
【0077】
次に本発明の第8の実施形態を説明する。上記ディフェクト位置概略アドレスの検出を行った場合に、概略アドレスで認識されるディフェクト範囲に対して、情報記録を行わないようにシステムコントロールしても良い。その手順例を図17のフローチャートを参照して以下に記述する。
【0078】
情報記録を行う場合に、ディスク上の情報記録予定位置の物理アドレスと、ディフェクト概略アドレスで示されるディフェクト範囲を比較する。その比較方法は以下の様になる。
【0079】
物理アドレスはディスク上の絶対番地を示し、その物理アドレスを元に、システムコントロールMPU40によって、ディスク半径方向の位置すなわち半径位置を計算する(S21)。そして、システムコントロールMPU40は、計算した半径位置と前記ディフェクト位置の概略アドレスを比較して、物理アドレスがディフェクト範囲か否かを判定する(S22、S23)。
【0080】
もし半径位置がディフェクト範囲内であれば、情報記録予定の物理アドレスを、ディフェクトが存在しない位置にシフトして、シフト先の物理アドレスにシークをし記録動作をする(S25)。
【0081】
又、上記ステップS23において、上記半径位置がディフェクト範囲内である場合、情報記録予定の物理アドレスを、欠陥セクタに対して予め決めた交代領域にシフトしして情報記録しても良い。
【0082】
この欠陥セクタに対する交代領域は、本来、ディフェクト有無にかかわらず、情報記録をしている時に、例えば記録ベリファイの結果、ECC訂正不能エラーなどで記録情報の保障ができない場合の情報記録交代領域である。記録不能の原因は、例えばディスク記録面の繰り返し記録による劣化や、ディフェクトの存在などが考えられる。なお、例えば、DVD−RAMのメディアは、このような交代領域を有する事が、規格で定められている。交代領域の運用は、そのメディア規格に定められた運用方法で良い。
【0083】
なお、前記の概略ディフェクト範囲が、交代領域に存在する場合もありうる。この場合、交代セクタエリアをシフトするような処理をしても良く、これもまた、メディア規格に定められた運用方法をもちいて良い。
【0084】
次に本発明の第9の実施形態を説明する。上記ディフェクト位置概略アドレスの検出を行った場合に、概略アドレスで認識されるディフェクト範囲に対して、情報再生を行わないようにシステムコントロールしても良い。その手順例を図18のフローチャートを参照して以下記述する。
【0085】
情報再生を行う場合に、ディスク上の情報再生予定位置の物理アドレスに対応するディスク半径位置と、ディフェクト概略アドレスで示されるディフェクト範囲を前述したように比較する(S31、S32)。
【0086】
もし半径位置がディフェクト範囲内であれば、再生不能を警告手段41に警告して、再生動作を停止する(S33、S35)。この時、製品仕様によっては、ディフェクト範囲外にシークをして、そこから再生するように操作しても良い。
【0087】
また、単に再生しないのではなく、ディフェクト部においてのみサーボ系または信号処理系のゲインなどを調整して再生する構成とすることも可能である。
【0088】
次に本発明の第10の実施形態を説明する。第1〜第3の実施形態のように検出したディフェクト範囲について、その詳細アドレスを検出することもできる。以下、第1の実施形態に係る図1の構成によりディフェクトを検出し、該ディフェクトの詳細物理アドレスを検出する手順を説明する。
【0089】
なお、下記でディフェクト開始位置と定義している位置は図19に示すD1のような位置であり、ディフェクト終了位置と定義している位置については、図19に示すD2のような位置である。
【0090】
図20はディスク内周側から外周側へピックアップ4を移動し、ディフェクト開始位置を検出し、その詳細物理アドレスを求める処理を示すフローチャートである。
【0091】
ピックアップ4をフォワード方向へのフィードキック途中で、ディフェクト検出部20がディフェクト有りを検出した場合(S41、S42)、ディフェクト検出部20はシステム制御MPU40に対してディフェクト有りのステイタスを発行する。
【0092】
システム制御MPU40は、フィードキックの停止を命令し、フィードキック停止後に、ディフェクト検出部20に対して、ディスク一周分のディフェクト検出を再び命令する(S43、S44)。これは、フィードキック中にディフェクトを検出したときのピックアップ4の位置と、実際に停止した位置が異なることがあるからである。
【0093】
次のステップS45でディフェクトがあった場合には、バックワード方向に低速のフィードキックをしながら、ディスク一周毎のディフェクト有無を判定し、ディスク一周中にディフェクトが無いところでフィードキックを停止してトラッキングサーボをオンする(S50〜S54)。
【0094】
ステップS45でディフェクトが無かった場合には、フォワード方向に低速のフィードキックをしながら、ディスク一周毎のディフェクト有無を判定し、ディスク一周中にディフェクトが有るところでフィードキックを停止する(S46〜S49)。そして、バックワード方向に再度低速のフィードキックをしながら、ディスク一周毎のディフェクト有無を判定し、ディスク一周中にディフェクトが無いところでフィードキックを停止してトラッキングサーボをオンする(S50〜S54)。
【0095】
トラッキングサーボオン後の処理を以下に示す。先ずシステム制御MPU40は、アドレスデコード部29よりディスク上の物理アドレスを検出しながら、FO.OK判定部31によりフォーカスサーボの状態、又はTRK.OK判定部32によりトラッキングサーボの状態、またはRF.OK判定部31によりRF信号の状態を検出する事により、ディフェクトを検出する(S54、S55)。
【0096】
このディフェクト検出は、前述した実施形態に示すものとは異なり、従来のトラッキングサーボオン時のディフェクト検出方法を用いる。
【0097】
例えば、トラッキングエラー信号のバンドパスフィルタ通過後のショック検出をする方法、同様にフォーカスエラー信号のバンドパスフィルタ通過後のショック検出をする方法、同様にRFレベル検出結果のバンドパスフィルタ後のショック検出をする方法、等が適用できる。
【0098】
システム制御MPU40は物理アドレスを読むと共に、トラッキングサーボオン時のディフェクトを監視し、ディスク一周を見る。そして、その一周でのトラッキングサーボオン時のディフェクト検出結果によるディフェクト有無を確認し、ディフェクトが無い場合には、フォワードにnトラックキックする(S55〜S57)。ここでnトラックのnは、例えば10トラック程度が適当と思われるが、この数字はシステム仕様や、ディスク種類によって適当に決めて良い。また、ディフェクトの影響を受けずに正確にnトラックキックするために、このnトラックキックを行う位置を、例えば図22のように、トラッキングオフ再生時に既に検出しているディフェクトを避ける位置としても良い。
【0099】
上記のように、ディスク一周のトラッキングオン再生時におけるディフェクト検出(S55)と、ディフェクト無しの場合にフォワード方向にnトラックキックを行うステップ(S57)を繰り返し、ディスク一周のトラッキングオン再生時でディフェクトが有る、と判定された場合(ステップS55でYESの場合)には次のステップに移る。
【0100】
システム制御MPU40は、ディスク再生のデータ信号をデコードしたアドレスデコード部29の物理アドレスを読み取り、同時にディスクのトラッキングオン再生時のディフェクト検出を行う(S58、S59)。そして、トラッキングオン再生時のディフェクトが有ることを検出したら、ディフェクト検出直前の物理アドレス(ステップS58で読み込んだアドレス)を記憶する(S60)。そして、ディスク一周を再生し、一周内にディフェクトがあった場合は、2トラックキックバックを行い(S61、S62)、トラッキングオンし1トラックフォワード側のトラックで、再度、物理アドレスの読み取りと、トラッキングオン再生時のディフェクト検出を行う。
【0101】
2トラックキックバックとトラッキングオン再生との軌跡を図23に示す。ステップS59でディフェクトを検出した後、1トラック内側のトラックのディフェクトを検出し、2トラックキックバック及びトラッキングオン再生で、ディフェクト直前の物理アドレスを記憶し、この動作を繰り返す。このキックバック処理は図22で説明したように、トラッキングオフ再生時に既に検出しているディフェクト位置を避けるようにしても良い。
【0102】
上記のステップは、一周のトラッキングオン再生で、トラッキングオン時のディフェクトが検出されなくなるまで行う。そして、一周のトラッキングオン再生でのディフェクトが無いと検出したら(ステップS63でYESの場合)、一周前のトラッキングオン再生でディフェクト検出される直前の物理アドレスを、ディフェクト開始位置の詳細物理アドレスとしてシステム制御MPUが記憶し(S64)、次のステップに移る。
【0103】
ディフェクト開始位置の詳細物理アドレスを記憶した後の処理を図21に示す。図21はディスク内周側から見たディフェクト終了位置を検出し、その詳細物理アドレスを求める処理を示すフローチャートである。システム制御MPU40は、前記図21の処理で、ディフェクト開始位置の詳細アドレスを検出後に、トラッキングオフし、フォワード方向へのフィードキックを行う(S71)。
【0104】
フォワード方向へのフィードキック途中で、ディフェクト検出部20でディスク一周でのディフェクトが検出されなかった場合(S72)、ディフェクト検出部20は、システム制御MPUに対してディフェクト領域を抜けた意味のステイタスを発行する。
【0105】
システム制御MPU40は、フィードキックを停止を命令し、フィードキック停止後に、確認のためディフェクト検出部20に対して、ディスク一周分のディフェクト検出を再び命令する(S73、74)。ここで、ディフェクトの有無により処理の分岐が異なる。
【0106】
上記でディフェクトがあった場合には、フォワード方向に低速のフィードキックをしながら、ディスク一周毎のディフェクト有無を判定し、ディスク一周中にディフェクトが無いところでフィードキックを停止してトラッキングサーボをオンする(S80〜S84)。
【0107】
ステップ75でディフェクトが無かった場合には、バックワード方向に低速のフィードキックをしながら、ディスク一周毎のディフェクト有無を判定し、ディスク一周中にディフェクトが有るところでフィードキックを停止する(S76〜79)。そして、フォワード方向に再度低速のフィードキックをしながら、ディスク一周毎のディフェクト有無を判定し、ディスク一周中にディフェクトが無いところでフィードキックを停止してトラッキングサーボをオンする(S80〜S84)。
【0108】
トラッキングサーボオン後の処理を以下に示す。先ずシステム制御MPU40は、アドレスデコード部29よりディスク上の物理アドレスを検出しながら、FO.OK判定部31によりフォーカスサーボの状態、又はTRK.OK判定部32によりトラッキングサーボの状態、またはRF.OK判定部31によりRF信号の状態を検出する事により、ディフェクトを検出する(S84、S85)。
【0109】
前述したように、このディフェクト検出は上記実施形態に示したディフェクト検出部20によるものとは異なり、従来のトラッキングサーボオン時のディフェクト検出方法を用いる。
【0110】
システム制御MPU40は物理アドレスを読むと共に、トラッキングサーボオン時のディフェクトを監視し、ディスク一周を見る。そして、その一周でのトラッキングサーボオン時のディフェクト検出結果によるディフェクト有無を確認し、ディフェクトが無い場合には、バックワードにnトラックキックバックする(S85〜S87)。ここでnトラックのnは、例えば10トラック程度が適当と思われるが、この数字はシステム仕様や、ディスク種類によって適当に決めて良い。また、ディフェクトの影響を受けずに正確にnトラックキックバックするために、このnトラックキックを行う位置を、例えば図22のように、トラッキングオフ再生時に既に検出しているディフェクトを避ける位置としても良い。
【0111】
上記のように、ディスク一周のトラッキングオン再生時におけるディフェクト検出(S85)と、ディフェクト無しの場合にバックワード方向にnトラックキックバックを行うステップ(S87)を繰り返し、ディスク一周のトラッキングオン再生時でディフェクトが有る、と判定された場合(ステップS85でYESの場合)には次のステップに移る。
【0112】
システム制御MPU40は、ディスク再生のデータ信号をデコードしたアドレスデコード部29の物理アドレスを読み取り、同時にディスクのトラッキングオン再生時のディフェクト検出を行う(S88、S89)。そして、トラッキングオン再生時のディフェクトが有ることを検出したら、ディフェクト検出直前の物理アドレス(ステップS88で読み込んだアドレス)を記憶する(S90)。そして、ディスク一周を再生し、一周内にディフェクトがあった場合は、次のトラックをオントラック再生し、再度、物理アドレスの読み取りと、トラッキングオン再生時のディフェクト検出を行う。
【0113】
上記のステップは、一周のトラッキングオン再生で、トラッキングオン時のディフェクトが検出されなくなるまで行う。そして、一周のトラッキングオン再生でのディフェクトが無いと検出したら(ステップS92でYESの場合)、一周前のトラッキングオン再生でディフェクト検出される直前の物理アドレスを、ディフェクト終了位置の詳細物理アドレスとしてシステム制御MPUが記憶し、図20の処理に戻る。
【0114】
上記図20、21の各処理フローを繰り返し行い、同時に検出した物理アドレスとフィードキック移動距離との関係により、ディスク最外周の位置に相当する場所を判断し、詳細ディフェクト位置の物理アドレス検出を終了する。
【0115】
製品仕様によっては、上記結果を元に、例えば無効トラックの容量を算出し、製品ユーザーに対する容量低下量の警告などをしても良い。
【0116】
またディフェクト範囲物理アドレスと概記録情報の物理アドレスとの関係で、概記録情報ファイルの再生に支障ある可能性のあるファイル名を警告する等しても良い。
【0117】
いずれの場合でも、製品ユーザーに対して、ディスククリーニングを促すような警告をしても良い。
【0118】
次に本発明の第11の実施形態を説明する。上記第9及び10の実施形態のように、ディフェクト位置詳細物理アドレスの検出を行った場合に、物理アドレスで認識されるディフェクト範囲に対して、情報の記録または再生を行わないようにシステムコントロールしても良い。
【0119】
この第11の実施形態では、先ず情報記録を行う場合に、ディスク上の情報記録予定位置の物理アドレスと、ディフェクト範囲の物理アドレスを比較し、情報記録予定位置がディフェクト範囲内であれば、情報記録予定位置を、ディスク上のディフェクト範囲外にシフトする処理を行う。
【0120】
また、DVD−RAMのようなディスク構造の場合、記録領域の欠陥セクタを代替する領域である、交代領域が存在する。この欠陥セクタに対する交代領域は、ディスク有無にかかわらず、情報記録をしている時に、例えば記録ベリファイの結果、ECC訂正不能エラーなどで記録情報の保障ができない場合の情報記録交代領域である。記録不能の原因は、例えばディスク記録面の繰り返し記録による劣化や、ディフェクトの存在などが、考えられる。なお、このような交代領域は、例えば、DVD−RAMのメディアは、交代領域を有する事が、規格で定められている。交代領域の運用は、そのメディア規格に定められた運用方法で良い。
【0121】
情報記録ディスクが元々このような交代領域を持つ場合、情報記録予定の物理アドレスを、欠陥セクタに対する予め定めた交代領域にシフトして、情報記録するような処理としても良い。
【0122】
なお、前記の概略ディフェクト範囲が、交代領域に存在する場合もありうる。この場合、交代セクタエリアをシフトするような処理をしても良く、これもまた、メディア規格に定められた運用方法をもちいて良い。
【0123】
また、前記のディフェクト位置を表す物理アドレスの検出を行った場合に、物理アドレスで認識されるディフェクト範囲に対して、情報再生を行わないようにシステムコントロールしても良い。その手順を以下に示す。
【0124】
情報記録を行う場合に、ディスク上の情報再生予定位置ファイルブロックの物理アドレス範囲と、ディフェクト範囲を表す物理アドレス範囲を比較する。
【0125】
情報再生予定位置ファイルブロックの物理アドレス範囲に対応する半径位置が、ディフェクト範囲内であれば、再生不能を警告手段41に警告して、再生動作を停止する。この時、製品仕様によっては、ディフェクト範囲外にシークをして、そこから再生するように操作をしても良い。
【0126】
次に本発明の第12の実施形態を説明する。第12の実施形態では、図9を参照して説明した第3の実施形態による処理を実施する場合に、レーザーダイオード光の波長を切りかえ、焦点距離を変更してフォーカスをディスク表面に調節する操作が行なわれる。
【0127】
図24に示すように、フォーカスサーボを行うにあたり、レーザーダイオード光の波長を切りかえることにより、照射ビームのスポット径と、ディスク及びレンズ間の焦点距離が異なってくる。
【0128】
例えば、ディフェクト検出中に、ディフェクトによるフォーカスサーボ外乱の影響で、レンズがディスク面に衝突する可能性を考慮して、レーザーダイオード光の波長が長い光学系に切り替えて、第3の実施形態による処理を実行する。
【0129】
また、例えばビームスポット径を大きくし、ディフェクト検出精度を向上させる目的で、レーザーダイオード光の波長が長いものに、切り替えて、第3の実施形態による処理を実行しても良い。
【0130】
次に本発明の第11の実施形態を説明する。図1の第1の実施形態もしくは図9の第3の実施形態による処理を実施する場合に、ディスク表面に対するフォーカスサーボのサーボはずれを検出する処理と、ディフェクト検出する処理を併用する方法を用いても良い。
【0131】
図25はフォーカスサーボはずれを検出する構成の一例、図26はフォーカスはずれ検出信号のタイミングを表す。
【0132】
図25のように、フォーカスエラー信号25Aの、バンドパスフィルタ33通過後の信号25Bを、2つのスライスSL1とSL2を各閾値とする2系統のコンパレータ34、35でスライスし、各スライス結果をオアゲート36で論理加算した結果が、フォーカスサーボホールド信号25Cとして検出される。このフォーカスサーボホールド信号25Cは、ディフェクトなどによる、フォーカスエラー信号の大きなレベル変動に対して、フォーカス制御が追従せずに直流ホールドする為のタイミング信号である。
【0133】
直流ホールド信号25Eは、フォーカスエラー信号25Aがローパスフィルタ37を通過して得られる信号25Dを、サンプルホールド38によりホールドした結果得られる信号である。この直流ホールド信号25Eのサンプルホールドクロックは、フォーカスサーボホールド信号25Cとサンプルクロック25GをORゲート39でOR演算した結果得られるサンプルクロック25Hである。
【0134】
従ってサンプルホールド38は、フォーカスサーボホールド信号25C発生直後にはサンプルホールドを停止し、フォーカスエラー正常時の直流値をホールドする。そして、フォーカスエラー25Aと、直流ホールド信号25Eを、インバータ47、トランスファーゲート48、49を用いて、フォーカスサーボホールド信号25Cのレベルに応じて切りかえて、フォーカスイコライザ6に入力することにより、フォーカスサーボホールドを行っている。
【0135】
フォーカスはずれ検出部50は、フォーカスサーボホールド信号25Cのパルス幅が、あらかじめ定められた幅WFO以上である場合に、フォーカスはずれであると判定するような処理を行い、フォーカスはずれ信号25Fを生成する。フォーカスはずれ信号25Fは、フォーカスイコライザ6に入力される。フォーカスイコライザ6は、フォーカスはずれ信号を検出したら、例えば、ピックアップヘッドのレンズがディスク面に衝突することを防止する為に、レンズをディスクから退避するような制御信号を出力する。以上のプロセスで、結果的に、25Iのようなフォーカス駆動信号が生成される。
【0136】
本実施形態の場合、図1の第1の実施形態もしくは図9の第3の実施形態によるディフェクト検出を行っている時に、ディフェクトなどの影響で、上記フォーカス外れが検出された場合には、フォワード方向へのフィードキックを所定距離行った後に、フィードキックを停止し、フォーカスサーボをリトライする処理を行う。
【0137】
また、上記のフォーカスはずれ検出は、フォーカスエラーの外乱情報を元に行っても良いが、上記第1もしくは第3の実施形態によるディフェクト検出を行っている場合に、ディフェクト有り検出時にただちにフォーカスサーボをオフし、レンズをディスク面から退避し、所定距離のフィードキックを行い、リトライ動作を再開するような処理としても良い。この場合、25Cのフォーカスサーボホールド信号の代わりに、SW1を制御してディフェクト検出信号を用いても良いし、25Fのフォーカスはずれ検出信号の代わりに、SW2を制御してディフェクト検出信号を用いても良い。
【0138】
【発明の効果】
以上説明したように本発明によれば、非常に短時間でディスク全面のディフェクト検査が可能となり、情報記録不具合を未然に防ぐことができ、ユーザーフレンドリーな光ディスク情報記録再生装置を提供できる。
【図面の簡単な説明】
【図1】本発明の第1の実施形態に係る記録再生装置の構成を示すブロック図。
【図2】本実施形態の動作を示すフローチャート。
【図3】図1の信号1A〜1Dの波形を示す図。
【図4】ディフェクト面積の計算を説明するための図。
【図5】第2の実施形態に係る記録再生装置の構成を示すブロック図。
【図6】第2の実施形態に係るフォトディテクタ周辺の構成を示す図。
【図7】ディフェクト検出信号を説明するための波形図。
【図8】第2の実施形態に係るディフェクト面積の計算を説明するための図。
【図9】第3の実施形態に係る記録再生装置の構成を示すブロック図。
【図10】フォーカスサーボ目標点を示す図。
【図11】第3の実施形態に係るフォトディテクタ周辺の構成を示す図。
【図12】第3の実施形態に係るフォディフェクト検出信号を説明するための波形図。
【図13】第3の実施形態に係るフォディフェクト面積の計算を説明するための図。
【図14】第4及び第5の実施形態に係る記録再生装置の構成を示すブロック図。
【図15】第6の実施形態に係る記録再生装置の構成を示すブロック図。
【図16】第7の実施形態に係る記録再生装置の構成を示すブロック図。
【図17】第8の実施形態の動作を説明するフローチャート。
【図18】第9の実施形態の動作を説明するフローチャート。
【図19】光ディスク上のディフェクト開始位置終了位置を説明するための図。
【図20】ディフェクト開始位置を検出し、その詳細物理アドレスを求める処理を示すフローチャート。
【図21】ディフェクト終了位置を検出し、その詳細物理アドレスを求める処理を示すフローチャート。
【図22】nトラックキックを行う位置を示す図。
【図23】2トラックキックバック及びトラッキングオン再生の軌跡を示す図。
【図24】レーザーダイオード光の波長に応じて、照射ビームのスポット径と、ディスク及びレンズ間の焦点距離が異なる様子を示す図。
【図25】フォーカスサーボはずれを検出する構成の一例。
【図26】フォーカスはずれ検出信号のタイミングを表す図。
【符号の説明】
1…光ディスク、2…スピンドルモータ、3…送りモータ、4…光ピックアップ、5…RFアンプ、7、9、14、16…アンプ、17…ディスク回転周波数制御部、42…LED、44…ミラー、47…ハーフプリズム。

Claims (7)

  1. 光ディスクに対して、レーザービームを用いて情報記録再生を行う光学式ピックアップと、
    前記光ディスクを回転し、該回転速度を制御する回転速度制御手段と、
    前記ピックアップを前記光ディスクの半径方向に移動し、該移動速度を制御するフィード制御手段と、
    前記レーザービームのフォーカスが前記ディスク記録面上となるよう前記光ピックアップを制御するフォーカス制御手段と、
    前記レーザービームが前記ディスク上のトラックに追随するよう前記光ピックアップを制御するトラッキング制御手段と、
    装置を総合的に制御する主制御手段と、
    前記主制御手段が、前記トラッキング制御手段によるトラッキング制御を行わずに、フォーカス制御手段、フィード制御手段、回転速度制御手段による制御を実行させている際に、前記光ディスクを反射した前記レーザービームを受光する受光素子から得られるトラッキングエラー信号のピーク値を、基準閾値と比較することにより、前記レーザービームが前記光ディスク上のディフェクト部を照射しているか判断するディフェクト判断手段とを具備し、
    前記ディフェクト判断手段は、前記レーザービームが光ディスクの情報記録部を照射しているか未記録部を照射しているか判断する手段を更に具備し、前記レーザービームが前記情報記録部を照射している場合に、前記基準閾値として第1の基準閾値を適用し、前記未記録部を照射している場合に、前記基準閾値として前記第1より大きい第2の基準閾値を適用することを特徴とする光ディスク記録再生装置。
  2. 前記回転駆動手段により回転される前記光ディスクの回転周期を検出する周期検出手段と、
    前記移動手段により移動された前記ピックアップの移動量を検出する移動量検出手段と、
    前記周期検出手段により検出された前記光ディスクの回転周期と、前記移動量検出手段により検出された前記ピックアップの移動量と、前記ディフェクト判断手段によるディフェクト判断結果を元に、前記光ディスク上のディフェクト部の量を検出するディフェクト量検知手段と、
    を更に具備することを特徴とする請求項1記載の光ディスク記録再生装置。
  3. 前記光ディスクを反射した前記レーザービームを受光する受光素子から得られるトラッキングエラー信号を用いて、前記レーザービームが前記光ディスク上のトラックを通過した数をカウントするカウント手段と、
    前記ディフェクト判断手段による判断結果及び前記カウント手段のカウント値から、前記ディフェクト部の概略アドレスを判断するアドレス判断手段と、
    前記概略アドレスを記憶する記憶手段と、
    を更に具備することを特徴とする請求項1記載の光ディスク記録再生装置。
  4. 前記ディフェクト判断手段によるディフェクト判断動作の経過時間を計測するタイマー手段と、
    前記ディフェクト判断手段によるディフェクト部検出時の前記タイマー手段の計測結果と、前記ピックアップ移動手段の移動目標速度との関係からディフェクト部の概略アドレスを判断する手段と、
    前記概略アドレスを記憶する記憶手段と、
    を更に具備することを特徴とする請求項1記載の光ディスク記録再生装置。
  5. 前記移動手段により前記ピックアップが移動した距離を計測する移動距離計測手段と、
    前記ディフェクト判断手段によりディフェクト部が検出されたときの前記移動距離計測手段の計測結果から、前記ディフェクト部の概略アドレスを判断する判断手段と、
    前記概略アドレスを記憶する記憶手段と、
    を更に具備することを特徴とする請求項1記載の光ディスク記録再生装置。
  6. 前記ピックアップは複数波長のレーザー光源を有し、前記主制御手段は、前記光ディスクに対する情報の記録又は再生と、前記ディフェクト判断手段によるディフェクト判断処理を、互いに異なる波長のレーザー光源を用いて行うことを特徴とする請求項1記載の光ディスク記録再生装置。
  7. 前記フォーカス制御手段は、フォーカスサーボ外れ検出手段を有し、
    前記主制御手段は、ディフェクト検出と同時に前記フォーカスサーボ外れ検出手段でフォーカスサーボ外れが検出された時に、フォーカス外れが発生した位置から所定距離の位置に前記ピックアップを移動し、あらためてフォーカスサーボを行い、ディフェクト検出動作を再開するリトライ手段を更に具備することを特徴とする請求項1記載の光ディスク記録再生装置。
JP2001048493A 2001-02-23 2001-02-23 光ディスク記録再生装置 Expired - Fee Related JP3998424B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001048493A JP3998424B2 (ja) 2001-02-23 2001-02-23 光ディスク記録再生装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001048493A JP3998424B2 (ja) 2001-02-23 2001-02-23 光ディスク記録再生装置

Publications (3)

Publication Number Publication Date
JP2002251728A JP2002251728A (ja) 2002-09-06
JP2002251728A5 JP2002251728A5 (ja) 2005-03-17
JP3998424B2 true JP3998424B2 (ja) 2007-10-24

Family

ID=18909751

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001048493A Expired - Fee Related JP3998424B2 (ja) 2001-02-23 2001-02-23 光ディスク記録再生装置

Country Status (1)

Country Link
JP (1) JP3998424B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1324582C (zh) * 2004-05-26 2007-07-04 联发科技股份有限公司 自动式光驱载具烧录重接方法
US7921435B2 (en) 2005-03-17 2011-04-05 Panasonic Corporation Optical disk drive

Also Published As

Publication number Publication date
JP2002251728A (ja) 2002-09-06

Similar Documents

Publication Publication Date Title
CN101174434B (zh) 光学记录介质驱动设备和球面像差调节方法
JP2002117534A (ja) 光ディスク再生装置およびディスク種別判別方法
KR100430249B1 (ko) 정보 기록매체의 판별장치 및 그 방법
JP2004335084A (ja) 記録可能ディスクの判別方法及びその装置
WO2006009082A1 (ja) 光ディスク記録再生装置及び光ディスク記録再生装置のディスク判別方法
JP3998424B2 (ja) 光ディスク記録再生装置
JP4342930B2 (ja) 光ディスク装置及びその制御方法及び記録媒体
EP1580736B1 (en) Optical disc reproduction device and optical disc reproduction method
JP2007265596A (ja) 情報記録再生装置
JP3975630B2 (ja) 光ディスク装置とそのフォーカス制御方法
KR101607856B1 (ko) 광디스크 재생 장치 및 그 제어방법
US20050174275A1 (en) Optical disk system with improved playability
JP3854075B2 (ja) 光ディスク駆動装置及び光ディスク装置
JP4192667B2 (ja) 二値化回路、二値化方法、光ディスク装置
JP3887822B2 (ja) 光ディスク再生装置
JP2008234831A (ja) 書き替え型記録媒体
JP2007066484A (ja) 光ディスク装置の制御方法および光ディスク装置
JP4479750B2 (ja) 光ディスク記録再生装置
JP4626691B2 (ja) 光ディスク装置及び光ディスクの判別方法
JP3953987B2 (ja) 光ディスク再生方法、光ディスク再生装置
JP2009211773A (ja) 光ディスク再生装置及び光ディスクの再生方法
JP2009116990A (ja) 光ディスクの判別方法及び光ディスク装置
JP2001126270A (ja) シーク制御方法及びシーク制御装置
JPH11213529A (ja) ディスク再生装置のディスク判別装置
US20080304381A1 (en) Method and Apparatus for Detecting Cracks in an Optical Record Carrier

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040422

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040422

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061017

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070508

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070706

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070731

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070807

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100817

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees