JP3972151B2 - 負荷トルクのオブザーバ - Google Patents

負荷トルクのオブザーバ Download PDF

Info

Publication number
JP3972151B2
JP3972151B2 JP08581197A JP8581197A JP3972151B2 JP 3972151 B2 JP3972151 B2 JP 3972151B2 JP 08581197 A JP08581197 A JP 08581197A JP 8581197 A JP8581197 A JP 8581197A JP 3972151 B2 JP3972151 B2 JP 3972151B2
Authority
JP
Japan
Prior art keywords
load torque
torque
sampling time
drive shaft
link
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP08581197A
Other languages
English (en)
Other versions
JPH10264057A (ja
Inventor
慎悟 安藤
満徳 川辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Corp filed Critical Yaskawa Electric Corp
Priority to JP08581197A priority Critical patent/JP3972151B2/ja
Publication of JPH10264057A publication Critical patent/JPH10264057A/ja
Application granted granted Critical
Publication of JP3972151B2 publication Critical patent/JP3972151B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Manipulator (AREA)
  • Feedback Control In General (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、マニピュレータなどのメカニカルシステムの駆動軸に加わる外力(負荷トルクを含む)を推定して、その推定値を力制御系に利用する際の、外力の推定方法に関する。
【0002】
【従来の技術】
従来、マニピュレータの力制御方式において、マニピュレータ先端の外力・モーメント、あるいは各関節に加わる外力・負荷トルクを直接計測するセンサを使用せずに、各関節アクチュエータへの指令入力と各関節の位置、速度、加速度などの出力信号を利用して、現代制御理論におけるオブザーバを構成することにより、各関節に加わる外力あるいは負荷トルクを推定し、その推定値に基づいてコンプライアンス制御、インピーダンス制御などの力制御系を構成する手法がある。例えば、特開平6-175705,文献「大石、宮崎、藤田:力センサを用いない位置と力のハイブリッド制御,日本ロボット学会誌,Vol.11, No.3, pp.468-476, 1993」、「則次,朴:外乱オブザーバを用いた空気圧マニピュレータの力制御,日本ロボット学会誌,vol.13, No.5, pp.711-719, 1995」などがある。これらの外力・負荷トルクオブザーバでは、外力(トルク)と静止摩擦、クーロン摩擦(動摩擦)の和を推定することになる。したがって、静止摩擦、クーロン摩擦といった非線形摩擦を補償する必要があるが、その具体的補償法については、あまり言及していない。その他の一般的な図書によれば、クーロン摩擦、最大静止摩擦を駆動軸の速度の関数として、図6のようにモデリングしている。
ここで、図5の1自由度マニピュレータを考える。
図5において、501、502、503、504、505はそれぞれ、アクチュエータ、アクチュエータ回転軸、減速機、リンク回転軸、リンクである。アクチュエータ回転軸、リンク回転軸の発生トルクをそれぞれ、τu,τe とする。ここで、アクチュエータは電磁式のサーボモータとし、サーボモータのドライバ回路には電機子電流のフィードバックループが構成されており、モータ発生トルクτu を直接制御できるものとする。減速機による共振を無視し、減速後のモータ回転角とリンク回転角が等しいと近似すると、図5の1自由度マニピュレータの運動方程式は、
【0003】
【数1】
Figure 0003972151
【0004】
と表せる。ここで、Jm,bm,θ, τfricはそれぞれ、マニピュレータの慣性モーント、減速機の粘性摩擦係数、リンク回転角、減速機の非線形摩擦である。式(1)による従来の負荷トルクオブザーバは図3のように表せる。図3において、301、302はそれぞれ、1自由度マニピュレータのダイナミクス、負荷トルクオブザーバである。303、304はそれぞれ、リンク駆動トルクからリンク回転速度までの伝達関数、積分器である。305a、305b、305cはローパスフィルタ、306は303のダイナミクス補償器である。つまり、マニピュレータに供給されるトルク入力から、リンクの慣性力、粘性摩擦に相当する分を差し引いている。図6(b) の非線形摩擦は、
【0005】
【数2】
Figure 0003972151
【0006】
のように式で表せる。307は式(2)に基づく非線形摩擦τfricの補償器である。また、式(2)におけるτc,τs.max および303のJm 〜, bm 〜は、それぞれパラメータ同定により得られるクーロン摩擦、最大静止摩擦、マニピュレータの慣性モーメント、粘性摩擦係数の公称値である。τe ^が負荷トルクの推定値である。
ここで、図5のモータ固定子は作業空間に固定されているものとする。リンク505の先端も作業空間に固定された剛性の非常に高い環境と接触しており、リンクは環境の方向へは回転しないものとする。このとき、モータ発生トルクからリンク発生トルクへのトルク伝達特性は、図4のようなヒステリシス特性を示す。式(1)のように1自由度マニピュレータをモデリングした場合、リンクは回転しないので、負荷トルクの推定値は、モータ発生トルクと等しくなる。そのため、トルク伝達のヒステリシス特性により、リンク静止時の負荷トルク推定誤差は大きくなる。実際には、減速機のコンプライアンスにより、リンク回転軸が回転しなくても、モータ回転角はスティック・スリップを起こしながら微少に変動している。したがって、モータ回転角を計測することにより、ある程度リンク静止時の負荷トルク推定誤差を軽減できるように思われるが、モータがスリップしたときのみ式(2)の非線形摩擦補償が作動するため、ほとんどヒステリシス特性を補償することはできない。また、モータがスリップした際の回転速度は非常に微少であるため、式(2)における符合関数sgn を精度良く計算できない。減速機のコンプライアンスによるダイナミクスを考慮したモデルを用いて、負荷トルクオブザーバを構成することにより、ヒステリシス特性をある程度補償できるようになるが、モータのスリップの際の回転角、回転速度は微少であり、その補償はモータ回転角の検出精度に非常に影響され、先に述べたように符合関数sgn も精度良く計算できない。したがって、従来の式(2)に基づく非線形摩擦補償器では、図4のヒステリシス特性をうまく補償できず、リンク静止時の負荷トルク推定誤差が大きくなる。
【0007】
【発明が解決しようとする課題】
駆動リンク静止時におけるアクチュエータ発生力(トルク)から出力軸における発生力(トルク)への力(トルク)伝達には、通常ヒステリシス特性がある。特に、駆動軸に減速機構を有する場合は、そのメカニカルなコンプライアンスのために、アクチュエータ発生力(トルク)と減速後の発生力(トルク)のヒステリシス特性は顕著になる。式(2)のように非線形摩擦をモデリングした場合、ヒステリシス特性をうまく補償できないため、駆動軸静止時における外力(トルク)推定誤差が大きくなるという問題がある。
そこで本発明は、駆動軸静止時の外力(トルク)推定精度が向上し、精度の良い力制御系が実現できる方法を提供することを目的とする。
【0008】
【課題を解決するための手段】
上記課題を解決するため、本発明では、減速機構を有するサーボモータと、前記減速機構に回転されるリンクと、からなるマニピュレータの各駆動軸における前記サーボモータへの指令トルクと、該指令トルクから算出される前記リンクの回転速度と、を用いて、前記各駆動軸における前記リンクに加わる負荷トルクを推定するオブザーバにおいて、前記オブザーバが、前記リンク回転速度を監視して、前記リンクが静止していると判断したとき、1サンプリング時刻前の前記サーボモータへの指令トルクが、前記1サンプリング時刻前の負荷トルク推定値から前記駆動軸の最大静止摩擦を減算した値よりも大きく、かつ前記1サンプリング時刻前の負荷トルク推定値に前記駆動軸の最大静止摩擦を加算した値よりも小さいとき、現時刻の負荷トルクを、前記1サンプリング時刻前の負荷トルク推定値として出力し、前記1サンプリング時刻前の前記サーボモータへの指令トルクが、前記1サンプリング時刻前の負荷トルク推定値に前記駆動軸の最大静止摩擦を加算した値以上であり、かつ前記1サンプリング時刻前の前記サーボモータへの指令トルクの増分値が正のとき、前記現時刻の負荷トルクを、前記1サンプリング時刻前の負荷トルク推定値から前記駆動軸の最大静止摩擦を減算した値として出力し、前記1サンプリング時刻前のサーボモータへの指令トルクが、前記1サンプリング時刻前の負荷トルク推定値に前記駆動軸の最大静止摩擦を減算した値以下であり、かつ前記1サンプリング時刻前の前記サーボモータへの指令トルクの増分値が負のとき、前記現時刻の負荷トルクを、前記1サンプリング時刻前の負荷トルク推定値に前記駆動軸の最大静止摩擦を加算した値として出力する、ヒステリシス特性補償器を備えたことを特徴とする負荷トルクのオブザーバとするものである。
【0009】
【発明の実施の形態】
以下、本発明の実施の形態を図1,2により説明する。
図1は、本発明における負荷トルク推定器の制御構成図を表す。図1において101、102はそれぞれ、1自由度マニピュレータのダイナミクス、本発明による負荷トルクオブザーバである。103、104はそれぞれ、リンク駆動トルクからリンク回転速度までの伝達関数、積分器である。105a、105b、105cはローパスフィルタ、106は103のダイナミクス補償器である。つまり、マニピュレータに供給されるトルク入力から、リンクの慣性力、粘性摩擦に相当する分を差し引いている。107は、
【0010】
【数3】
Figure 0003972151
【0011】
によりクーロン摩擦のみを補償するクーロン摩擦補償器である。108は、本発明による駆動軸静止時のヒステリシストルク伝達特性の補償器である。109はリンク回転速度を監視して、回転時と静止時の負荷トルク推定方式の切り換を行う。
【0012】
【数4】
Figure 0003972151
【0013】
のときは、リンクが回転しているとして、106、107により、リンクの慣性、粘性摩擦、クーロン摩擦を補償して負荷トルクを推定する。
【0014】
【数5】
Figure 0003972151
【0015】
のときは、リンクが静止している、もしくは、スティックスリップの状態と判断し、108のヒステリシス特性補償器のみにより、負荷トルクを推定する。τe^が負荷トルクの推定値である。図2は、108のヒステリシス特性補償器のアルゴリズムを表している。図2において、まず201により、テンポラリ変数の演算を行う。201において、サンプリング前の時刻の負荷トルク推定値τe ^(k-1) をτtmp 、サンプリング前の時刻のモータへの指令トルクτu(k-1)をτup、サンプリング前の時刻のモータへの指令トルクの増分値τu(k-1) -τu(k-2)をτudとおく。202は第1の判断部であり、
τtmp −τs.max <τup<τtmp +τs.max (6)
のとき、205により、現時刻の負荷トルクを
τe ^(k) =τtmp (7)
と計算する。203は第2の判断部であり、
τup≧τtmp +τs.max かつτud> 0 (8)
のとき、206により、現時刻の負荷トルクを
τe ^(k) =τup − τs.max (9)
と計算する。204は第3の演算部であり、
τup ≦τtmp −τs.max かつτud<0 (10)
のとき、207により、現時刻の負荷トルクを
τe ^(k) =τup+τs.max (11)
と計算する。208は遅延要素であり、1サンプリング信号を遅らせる作用を持つ。式(6),(8),(10)のいづれの条件も満たさない場合は、モータが回転している場合である。以上のアルゴリズムにより、図4のヒステリシストルク伝達特性を補償することにより、駆動軸静止時における負荷トルク推定精度を向上させることが可能となる。
【0016】
【発明の効果】
以上述べたように、本発明によれば、駆動軸静止時におけるアクチュエータ発生力(トルク)から出力軸発生力(トルク)までの力(トルク)伝達ヒステリシス特性に起因する外力(トルク)推定誤差を、上記ヒステリシス特性の数学モデルとアクチュエータへの指令力(トルク)入力および外力(トルク)推定値の過去から現時刻に至るまでの履歴を用いて補償することにより、駆動軸静止時の外力(トルク)推定精度が向上し、精度の良い力制御系が実現できるという効果がある。
【図面の簡単な説明】
【図1】本発明実施の形態における外力・負荷トルク推定方式の制御ブロック図
【図2】本発明実施の形態における外力・負荷トルク推定方式のヒステリシストルク伝達特性補償器のアルゴリズムを表す図
【図3】従来の外力・負荷トルク推定方式の制御ブロック図
【図4】駆動軸静止時におけるトルク伝達のヒステリシス特性を表す図
【図5】減速機構を有する1自由度マニピュレータの概形図
【図6】従来の非線形摩擦のモデル図
【符号の説明】
101 1自由度マニピュレータのダイナミクス
102 本発明の負荷トルク推定器
103 モータ指令トルクからリンク回転速度までの伝達関数
104 積分器
105a ローパスフィルタ
105b ローパスフィルタ
105c ローパスフィルタ
106 慣性力、粘性摩擦のダイナミクス補償器
107 クーロン摩擦の補償器
108 ヒステリシストルク伝達特性の補償器
109 リンク回転時、静止時の負荷トルク推定方式の切り換部
201 テンポラリ変数の演算部
202 第1の判断部
203 第2の判断部
204 第3の判断部
205 第1の負荷トルクの推定部
206 第2の負荷トルクの推定部
207 第3の負荷トルクの推定部
208 1サンプリングの信号の遅延要素
301 1自由度マニピュレータのダイナミクス
302 従来の負荷トルク推定器
303 モータ指令トルクからリンク回転速度までの伝達関数
304 積分器
305a ローパスフィルタ
305b ローパスフィルタ
305c ローパスフィルタ
306 慣性力、粘性摩擦のダイナミクス補償器
307 従来の非線形摩擦の補償器
501 アクチュエータ
502 アクチュエータ回転軸
503 減速機
504 リンク回転軸
505 リンク

Claims (1)

  1. 減速機構を有するサーボモータと、前記減速機構に回転されるリンクと、からなるマニピュレータの各駆動軸における前記サーボモータへの指令トルクと、該指令トルクから算出される前記リンクの回転速度と、を用いて、前記各駆動軸における前記リンクに加わる負荷トルクを推定するオブザーバにおいて、
    前記オブザーバが、
    前記リンク回転速度を監視して、前記リンクが静止していると判断したとき、
    1サンプリング時刻前の前記サーボモータへの指令トルクが、前記1サンプリング時刻前の負荷トルク推定値から前記駆動軸の最大静止摩擦を減算した値よりも大きく、かつ前記1サンプリング時刻前の負荷トルク推定値に前記駆動軸の最大静止摩擦を加算した値よりも小さいとき、現時刻の負荷トルクを、前記1サンプリング時刻前の負荷トルク推定値として出力し、
    前記1サンプリング時刻前の前記サーボモータへの指令トルクが、前記1サンプリング時刻前の負荷トルク推定値に前記駆動軸の最大静止摩擦を加算した値以上であり、かつ前記1サンプリング時刻前の前記サーボモータへの指令トルクの増分値が正のとき、前記現時刻の負荷トルクを、前記1サンプリング時刻前の負荷トルク推定値から前記駆動軸の最大静止摩擦を減算した値として出力し、
    前記1サンプリング時刻前のサーボモータへの指令トルクが、前記1サンプリング時刻前の負荷トルク推定値に前記駆動軸の最大静止摩擦を減算した値以下であり、かつ前記1サンプリング時刻前の前記サーボモータへの指令トルクの増分値が負のとき、前記現時刻の負荷トルクを、前記1サンプリング時刻前の負荷トルク推定値に前記駆動軸の最大静止摩擦を加算した値として出力する、ヒステリシス特性補償器を備えたことを特徴とする負荷トルクのオブザーバ。
JP08581197A 1997-03-19 1997-03-19 負荷トルクのオブザーバ Expired - Fee Related JP3972151B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08581197A JP3972151B2 (ja) 1997-03-19 1997-03-19 負荷トルクのオブザーバ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08581197A JP3972151B2 (ja) 1997-03-19 1997-03-19 負荷トルクのオブザーバ

Publications (2)

Publication Number Publication Date
JPH10264057A JPH10264057A (ja) 1998-10-06
JP3972151B2 true JP3972151B2 (ja) 2007-09-05

Family

ID=13869258

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08581197A Expired - Fee Related JP3972151B2 (ja) 1997-03-19 1997-03-19 負荷トルクのオブザーバ

Country Status (1)

Country Link
JP (1) JP3972151B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103869841A (zh) * 2012-12-17 2014-06-18 现代自动车株式会社 提取对于可穿戴机器人的目标转矩的方法和系统

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4940720B2 (ja) * 2006-03-22 2012-05-30 株式会社豊田中央研究所 路面反力推定装置
JP4241785B2 (ja) 2006-08-31 2009-03-18 株式会社東芝 サーボ制御装置
KR102693378B1 (ko) * 2021-12-30 2024-08-08 울산과학기술원 재활 로봇 시스템 및 재활 로봇의 제어방법
CN117532623B (zh) * 2024-01-10 2024-03-29 南京鼎臻自动化科技有限公司 一种机械臂外力矩估计方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103869841A (zh) * 2012-12-17 2014-06-18 现代自动车株式会社 提取对于可穿戴机器人的目标转矩的方法和系统

Also Published As

Publication number Publication date
JPH10264057A (ja) 1998-10-06

Similar Documents

Publication Publication Date Title
US6901320B2 (en) Friction compensation in a vehicle steering system
JP3506157B2 (ja) 電動機の位置制御装置
KR19980074456A (ko) 2관성 공진계의 진동 억제방법 및 장치
JP3972151B2 (ja) 負荷トルクのオブザーバ
US5091683A (en) Servo control apparatus
JPH10217173A (ja) ロボットの非干渉化制御装置
JP3220589B2 (ja) メカニカルシステムの制御装置
JPH07121239A (ja) ロボット装置の制御方法
JP7454767B2 (ja) モータ制御システム、モータ制御方法、及びプログラム
JPH08278821A (ja) サーボ制御系の制振方法
JP3503343B2 (ja) 摩擦補償型制御方法及び装置
JP2906255B2 (ja) サーボ制御装置
JP2838578B2 (ja) モータ制御装置、外乱負荷トルク推定装置
JP3374592B2 (ja) ロボットの制御パラメータ推定方法
JP3599127B2 (ja) オブザーバ制御演算装置
JP4507071B2 (ja) モータ制御装置
JP2767637B2 (ja) 電動式パワー・ステアリング装置
JPH0239805B2 (ja)
JPH0378643B2 (ja)
JP2790634B2 (ja) 運動機械系の制御装置
JP7447650B2 (ja) 制御装置
JPH06104307B2 (ja) 多関節マニピユレ−タの制御装置
RU2784456C1 (ru) Устройство для компенсации влияния механического зазора на работу следящего электропривода
JPH117303A (ja) サーボ系の駆動制御装置
JP2798518B2 (ja) マニピュレータの制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040109

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060323

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060328

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060519

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060829

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070314

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070328

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070516

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070529

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100622

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees