JP3970585B2 - 目標追尾装置及び方法 - Google Patents

目標追尾装置及び方法 Download PDF

Info

Publication number
JP3970585B2
JP3970585B2 JP2001359939A JP2001359939A JP3970585B2 JP 3970585 B2 JP3970585 B2 JP 3970585B2 JP 2001359939 A JP2001359939 A JP 2001359939A JP 2001359939 A JP2001359939 A JP 2001359939A JP 3970585 B2 JP3970585 B2 JP 3970585B2
Authority
JP
Japan
Prior art keywords
vector
prediction
observation
acceleration
residual
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001359939A
Other languages
English (en)
Other versions
JP2003161778A (ja
Inventor
隆光 岡田
貴彦 藤坂
義夫 小菅
純 富田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2001359939A priority Critical patent/JP3970585B2/ja
Publication of JP2003161778A publication Critical patent/JP2003161778A/ja
Application granted granted Critical
Publication of JP3970585B2 publication Critical patent/JP3970585B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Radar Systems Or Details Thereof (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、レーダ、レーザ、カメラ等にて観測した、車両、航空機等の移動目標の距離、俯角(仰角)、方位角、位置、またはこれらの時間変化率等の運動諸元を推定する目標追尾装置及び方法に関するものである。
【0002】
【従来の技術】
図6は、例えば、"An Adaptive Two-Dimensional Kalman Tracking Filter", IEEE Transaction on Aerospace and Electronic Systems Vol.AES-16,No.6,1980.に示された従来の目標追尾装置を示す構成図である。
【0003】
図6において、1は目標の位置を観測するレーダ装置、2は予測器13から追尾対象の予測ベクトルを入力し、レーダ装置1により観測された観測ベクトルのうち、予測ベクトルに最も近い観測ベクトルを選択する目標相関器、3は目標相関器2で選択した観測ベクトルから予測器13で算出した予測観測ベクトルを減算する残差演算器である。
【0004】
4は第2の遅延回路9から入力した1サンプリング前の平滑誤差共分散行列と、駆動雑音調整器12から入力した駆動雑音から、予測誤差共分散行列を算出する予測誤差評価器、5は予測誤差評価器4から入力した予測誤差共分散行列と、予め設定されたレーダ装置1の観測誤差共分散行列とからゲイン行列を算出するゲイン行列算出器、6は残差算出器3を介して予測器13から入力した予測ベクトルと、残差算出器3から入力した残差ベクトルと、ゲイン行列算出器5から入力したゲイン行列とから平滑ベクトルを算出する平滑器、7は予測誤差評価器4から入力した予測誤差共分散行列と、ゲイン行列算出器5から入力したゲイン行列とから平滑誤差共分散行列を算出する平滑誤差評価器、8は平滑器6から入力した平滑ベクトルを1サンプリング時間だけ遅延する第1の遅延回路、9は平滑誤差評価器7から入力した平滑誤差共分散行列を1サンプリング時間だけ遅延する第2の遅延回路である。
【0005】
10は残差算出器3から入力した残差ベクトルを、予測器13から入力した予測誤差共分散行列と予め設定されたレーダ装置1の観測誤差共分散行列で正規化する正規化演算器、11は正規化演算器10から入力した正規化後の残差を1サンプリング時間だけ遅延する第3の遅延回路、12は第3の遅延回路11から入力した1サンプリング前の正規化後の残差をもとに目標の加速度運動を判定し駆動雑音の値を決定する駆動雑音調整器、13は第1の遅延回路8から入力した1サンプリング前の平滑ベクトルから、予め定義された等速直線運動モデルに基づき予測ベクトルを算出する予測器である。
【0006】
次に動作について説明する。目標相関器2は、レーダ装置1から観測ベクトルを受け取ると、その観測ベクトルが目標に係る観測ベクトルである可能性が高い場合にのみ有効なデータとして採用するため、予測器13から入力した予測ベクトルに最も近い観測ベクトルを出力する。
【0007】
残差算出器3は、目標相関器2で採用した観測ベクトルと、予測器13で算出した予測ベクトルを入力し、これらの差ベクトルである残差ベクトルを算出し、平滑器6と正規化演算器10にそれぞれ送出する。
【0008】
そして、ゲイン行列算出器5は、予測誤差評価器4から入力した予測誤差共分散行列と、予め設定されたレーダ装置1の観測誤差共分散行列とからゲイン行列を算出する。平滑器6は、残差算出器3から残差ベクトルと予測ベクトルを受け取ると、ゲイン行列算出器5からゲイン行列を入力し、目標の位置及び速度の平滑ベクトルを算出する。
【0009】
ここで、平滑誤差評価器7は、1サンプリング前において、予測誤差評価器4から入力した予測誤差共分散行列と、ゲイン行列算出器5から入力したゲイン行列とから平滑誤差共分散行列を算出し、予測誤差評価器4は第2の遅延回路9から入力した1サンプリング前の平滑誤差共分散行列と、駆動雑音調整器12から入力した駆動雑音から、予測誤差共分散行列を算出する。
【0010】
正規化演算器10は、残差算出器3から残差ベクトル入力すると、予測器13から入力した予測誤差共分散行列と予め設定されたレーダ装置1の観測誤差共分散行列の和で残差ベクトルを正規化し、第3の遅延回路11に送出する。駆動雑音調整器12は、第3の遅延回路から1サンプリング前の正規化後の残差を入力し、その値が予め設定された値より大きい場合にのみ、目標が加速度運動をしていると判断して駆動雑音の値を大きな値に変更し、予測誤差評価器4に送出する。
【0011】
前記のようにして、平滑器6が目標の位置及び速度の平滑ベクトルを算出すると、予測器13は、平滑ベクトルと予め定義された目標の運動モデルを用いて、現時刻より1サンプリング後の目標の予測位置及び速度からなる予測ベクトルを算出する。
【0012】
【発明が解決しようとする課題】
従来の目標追尾装置は以上のように構成されているので、目標が等速直線運動をしているときでも、ランダム性の観測雑音が突発的に大きくなった場合に、正規化後の残差が大きくなって駆動雑音調整器12が加速度運動を誤って検出してしまい、追尾性能が劣化するという課題があった。
【0013】
この発明は前記のような課題を解決するためになされたもので、例えば直線道路を走行する車両のように、目標の運動の特徴として、ある特定の方向の速度変化が大きくそれ以外の方向の速度変化は無視できるような場合に、残差の目標の加減速方向の成分の時間平均もしくは連続するサンプルの複数残差ベクトル間の内積の時間平均を利用して特定の方向の残差成分のみを加速度検出の対象とすることで、ランダム性の観測雑音による加速度運動の誤検出の少ない目標追尾装置及び方法を得ることを目的とする。
【0014】
【課題を解決しようとする手段】
この発明に係る目標追尾装置は、目標を観測して観測ベクトルを得る観測手段と、目標の状態ベクトルの予測ベクトルを演算する予測手段と、目標の状態ベクトルの平滑ベクトルを演算する平滑手段と、所望の方向の単位ベクトルを格納した方向ベクトルデータベースと、前記データベースから入力した所望方向の単位ベクトルと、前記観測手段により観測された観測ベクトルのうち、前記予測手段で演算された予測ベクトルに最も近い観測ベクトルから前記予測ベクトルを減算することで得られる残差ベクトルを正規化した正規化後の残差ベクトルとの内積を算出する方向ベクトル内積演算手段と、前記方向ベクトル内積演算手段により算出された内積をスレッショルド判定して各単位ベクトルの方向に対する加速度運動の有無を判定することにより、特定方向の速度変化を検出する加速度検出手段とを備えたものである。
【0015】
また、前記加速度検出手段にて速度変化が検出された場合に前記予測手段で用いる運動モデルを速度変化を考慮した運動モデルに切り換える等加速度運動モデル切り換え手段をさらに備えたことを特徴とするものである。
【0016】
また、他の発明に係る目標追尾装置は、目標を観測して観測ベクトルを得る観測手段と、目標の状態ベクトルの予測ベクトルを演算する予測手段と、目標の状態ベクトルの平滑ベクトルを演算する平滑手段と、所望の方向の単位ベクトルを格納した方向ベクトルデータベースと、前記データベースから入力した所望方向の単位ベクトルと、前記観測手段により観測された観測ベクトルのうち、前記予測手段で演算された予測ベクトルに最も近い観測ベクトルから前記予測ベクトルを減算することで得られる残差ベクトルを正規化した正規化後の残差ベクトルとの内積を算出する方向ベクトル内積演算手段と、前記方向ベクトル内積演算手段により算出された隣り合うサンプリングにおける内積の変化量をスレッショルド判定して特定方向の加速度変化または速度変化を検出する加速度変化検出手段と、前記加速度変化検出手段により加速度変化または速度変化が検出された場合に前記予測手段で用いる運動モデルを加速度変化または速度変化を考慮した運動モデルに切り換える加速度変化運動モデル切り換え手段とを備えたものである。
【0017】
また、さらに他の発明に係る目標追尾装置は、目標を観測して観測ベクトルを得る観測手段と、目標の状態ベクトルの予測ベクトルを演算する予測手段と、目標の状態ベクトルの平滑ベクトルを演算する平滑手段と、前記観測手段により観測された観測ベクトルのうち、前記予測手段で演算された予測ベクトルに最も近い観測ベクトルから前記予測ベクトルを減算することで得られる残差ベクトルを観測ベクトルの予測誤差共分散行列を用いて正規化後、連続する過去2サンプルの正規化後の残差ベクトルの内積を算出する隣接残差内積演算手段と、前記隣接残差内積演算手段により算出された内積の値によりある一定方向の速度変化を検出する加速度検出手段とを備えたものである。
【0018】
また、前記加速度検出手段にて速度変化が検出された場合に前記予測手段で用いる運動モデルを速度変化を考慮した運動モデルに切り換える等加速度運動モデル切り換え手段をさらに備えたことを特徴とするものである。
【0019】
また、さらに他の発明に係る目標追尾装置は、目標を観測して観測ベクトルを得る観測手段と、目標の状態ベクトルの予測ベクトルを演算する予測手段と、目標の状態ベクトルの平滑ベクトルを演算する平滑手段と、前記観測手段により観測された観測ベクトルのうち、前記予測手段で演算された予測ベクトルに最も近い観測ベクトルから前記予測ベクトルを減算することで得られる残差ベクトルを観測ベクトルの予測誤差共分散行列を用いて正規化後、連続する過去2サンプルの正規化後の残差ベクトルの内積を算出する隣接残差内積演算手段と、前記隣接残差内積演算手段により算出された隣り合うサンプリングにおける内積の変化量をスレッショルド判定して特定方向の加速度変化または速度変化を検出する加速度変化検出手段と、前記加速度変化検出手段にて加速度変化または速度変化が検出された場合に前記予測手段で用いる運動モデルを加速度変化または速度変化を考慮した運動モデルに切り換える加速度変化運動モデル切り換え手段とを備えたものである。
【0020】
また、この発明に係る目標追尾方法は、目標を観測して観測ベクトルを得る観測ステップと、目標の状態ベクトルの予測ベクトルを演算する予測ステップと、目標の状態ベクトルの平滑ベクトルを演算する平滑ステップと、所望の方向の単位ベクトルを格納した方向ベクトルデータベースから入力した所望方向の単位ベクトルと、前記観測ステップにより観測された観測ベクトルのうち、前記予測ステップで演算された予測ベクトルに最も近い観測ベクトルから前記予測ベクトルを減算することで得られる残差ベクトルを正規化した正規化後の残差ベクトルとの内積を算出する方向ベクトル内積演算ステップと、前記方向ベクトル内積演算ステップにより算出された内積をスレッショルド判定して各単位ベクトルの方向に対する加速度運動の有無を判定することにより、特定方向の速度変化を検出する加速度検出ステップとを備えたものである。
【0021】
また、前記加速度検出ステップにて速度変化が検出された場合に前記予測ステップで用いる運動モデルを速度変化を考慮した運動モデルに切り換える等加速度運動モデル切り換えステップをさらに備えたことを特徴とするものである。
【0022】
また、他の発明に係る目標追尾方法は、目標を観測して観測ベクトルを得る観測ステップと、目標の状態ベクトルの予測ベクトルを演算する予測ステップと、目標の状態ベクトルの平滑ベクトルを演算する平滑ステップと、所望の方向の単位ベクトルを格納した方向ベクトルデータベースから入力した所望方向の単位ベクトルと、前記観測ステップにより観測された観測ベクトルのうち、前記予測ステップで演算された予測ベクトルに最も近い観測ベクトルから前記予測ベクトルを減算することで得られる残差ベクトルを正規化した正規化後の残差ベクトルとの内積を算出する方向ベクトル内積演算ステップと、前記方向ベクトル内積演算ステップにより算出された隣り合うサンプリングにおける内積の変化量をスレショルド判定して特定方向の加速度変化または速度変化を検出する加速度変化検出ステップと、前記加速度変化検出ステップにて加速度変化または速度変化が検出された場合に前記予測ステップで用いる運動モデルを加速度変化または速度変化を考慮した運動モデルに切り換える加速度変化運動モデル切り換えステップとを備えたものである。
【0023】
また、さらに他の発明に係る目標追尾方法は、目標を観測して観測ベクトルを得る観測ステップと、目標の状態ベクトルの予測ベクトルを演算する予測ステップと、目標の状態ベクトルの平滑ベクトルを演算する平滑ステップと、前記観測ステップにより観測された観測ベクトルのうち、前記予測ステップで演算された予測ベクトルに最も近い観測ベクトルから前記予測ベクトルを減算することで得られる残差ベクトルを観測ベクトルの予測誤差共分散行列を用いて正規化後、連続する過去2サンプルの正規化後の残差ベクトルの内積を算出する隣接残差内積演算ステップと、前記隣接残差内積演算ステップにより算出された内積の値によりある一定方向速度変化を検出する加速度検出ステップとを備えたものである。
【0024】
また、前記加速度検出ステップにて速度変化が検出された場合に前記予測ステップで用いる運動モデルを速度変化を考慮した運動モデルに切り換える等加速度運動モデル切り換えステップをさらに備えたことを特徴とするものである。
【0025】
また、さらに他の発明に係る目標追尾方法は、目標を観測して観測ベクトルを得る観測ステップと、目標の状態ベクトルの予測ベクトルを演算する予測ステップと、目標の状態ベクトルの平滑ベクトルを演算する平滑ステップと、前記観測ステップにより観測された観測ベクトルのうち、前記予測ステップで演算された予測ベクトルに最も近い観測ベクトルから前記予測ベクトルを減算することで得られる残差ベクトルを観測ベクトルの予測誤差共分散行列を用いて正規化後、連続する過去2サンプルの正規化後の残差ベクトルの内積を算出する隣接残差内積演算ステップと、前記隣接残差内積演算ステップにより算出された隣り合うサンプリングにおける内積の変化量をスレショルド判定して特定方向の加速度変化または速度変化を検出する加速度変化検出ステップと、前記加速度変化検出ステップにて加速度変化または速度変化が検出された場合に前記予測ステップで用いる運動モデルを加速度変化または速度変化を考慮した運動モデルに切り換える加速度変化運動モデル切り換えステップとを備えたものである。
【0026】
【発明の実施の形態】
実施の形態1.
図1は、この実施の形態1による目標追尾装置を示す構成図である。図1において、1は目標の位置を観測するレーダ装置、2は予測器13から追尾対象の予測ベクトルを入力し、レーダ装置1により観測された観測ベクトルのうち、予測ベクトルに最も近い観測ベクトルを選択する目標相関器、3は目標相関器2で選択した観測ベクトルから予測器13で算出した予測観測ベクトルを減算する残差演算器である。
【0027】
4は第2の遅延回路9から入力した1サンプリング前の平滑誤差共分散行列と、予め設定された駆動雑音から、予測誤差共分散行列を算出する予測誤差評価器、5は予測誤差評価器4から入力した予測誤差共分散行列と、予め設定されたレーダ装置1の観測誤差共分散行列とからゲイン行列を算出するゲイン行列算出器、6は残差算出器3を介して予測器13から入力した予測ベクトルと、残差算出器3から入力した残差ベクトルと、ゲイン行列算出器5から入力したゲイン行列とから平滑ベクトルを算出する平滑器である。
【0028】
7は予測誤差評価器4から入力した予測誤差共分散行列と、ゲイン行列算出器5から入力したゲイン行列とから平滑誤差共分散行列を算出する平滑誤差評価器、8は平滑器6から入力した平滑ベクトルを1サンプリング時間だけ遅延する第1の遅延回路、9は平滑誤差評価器7から入力した平滑誤差共分散行列を1サンプリング時間だけ遅延する第2の遅延回路である。
【0029】
10は残差算出器3から入力した残差ベクトルを、予測器13から入力した予測誤差共分散行列と予め設定されたレーダ装置1の観測誤差共分散行列で正規化する正規化演算器、11は正規化演算器10から入力した正規化後の残差を1サンプリング時間だけ遅延する第3の遅延回路、13は第1の遅延回路8から入力した1サンプリング前の平滑ベクトルから、等加速度運動モデル切り換え器17により選択された運動モデルに基づき予測ベクトルを算出する予測器である。
【0030】
14は所望の方向の単位ベクトルが格納されている方向ベクトルデータベース、15は方向ベクトルデータベース14から入力した所望の方向の単位ベクトルと、第3の遅延回路11から入力した1サンプリング前の正規化後の残差と残差ベクトルを入力し、各単位ベクトルと正規化後の残差ベクトルの内積を演算する方向ベクトル内積演算器、16は方向ベクトル内積演算器15から入力した各単位ベクトルと正規化後の残差ベクトルの内積の値をスレッショルド判定し、各単位ベクトルの方向に対する加速度運動の有無を判定する加速度検出器、17は加速度検出器16で目標の加速度運動があると判定された場合に等加速度運動モデルに、ないと判定された場合に等速直線運動モデルに切り換える等加速度運動モデル切り換え器である。
【0031】
次に動作について説明する。最初に、この実施の形態1による目標追尾装置の動作原理を説明する。目標は2次元平面内を運動するものとする。目標の運動する平面をxy平面に取った3次元直交座標を基準座標と呼ぶことにする。図2に示すように、レーダ装置1はz軸上に設置され、その座標を(0,0,zr)とする。レーダ装置1は、目標の距離R及び方位角Az(y軸正の方向より時計回りを正とする)を観測する。
【0032】
目標が等速直線運動をしていることを想定した、xy座標における等速直線運動モデルを式(1)に示す。ただし、アンダーバーxkはサンプリング時刻tkにおける目標運動諸元の真値を表す状態ベクトルであり、基準座標における目標位置ベクトルを式(2)とし、同速度ベクトルを式(3)とすると、目標の状態ベクトルは式(4)で表される。なお、アンダーバーATはベクトルアンダーバーAの転置ベクトルを表す。
【0033】
【数1】
Figure 0003970585
【0034】
ここで、Φk-1はサンプリング時刻tk-1よりtkへの状態ベクトルアンダーバーxkの推移行列であり、式(5)で表される。また、アンダーバーwkはサンプリング時刻tkにおける駆動雑音ベクトルであり、Γ1(k)はサンプリング時刻tkにおける駆動雑音ベクトルの変換行列であり、例えば、目標の運動モデルを等速直線運動と仮定したことによる打ち切り誤差項をΓ1(k−1)アンダーバーwk-1とみれば、アンダーバーwkは加速度ベクトル相当であり、Γ1(k−1)は式(6)で表される。なお、Tはレーダ装置1のサンプリング間隔、Iは2行2列の単位行列である。
【0035】
【数2】
Figure 0003970585
【0036】
また、平均を表す記号としてEを用いると、アンダーバーwkは平均の2次元正規分布白色雑音であり、式(7)及び(8)とする。ただし、アンダーバー0は零ベクトルであり、Qkはサンプリング時刻tkにおける駆動雑音共分散行列である。
【0037】
【数3】
Figure 0003970585
【0038】
次に、目標の距離R及び方位角Azがサンプリング時刻tkにレーダ装置1より観測される場合のxy座標におけるレーダ装置1の観測モデルを式(9)とする。ここで、距離R及び方位角Azは式(10)及び式(11)によりxy座標に変換される。ここで、アンダーバーzkはサンプリング時刻tkにおけるレーダ観測装置1の観測ベクトル、Hは観測行列で、式(12)で表される。
【0039】
また、アンダーバーνkはサンプリング時刻tkにおけるレーダ装置1の観測雑音ベクトルであり、平均アンダーバー0の2次元正規分布白色雑音で、式(13)及び(14)で表される。なお、Rkはサンプリング時刻tkにおけるレーダ装置1の観測雑音共分散行列である。Γ2(k)は極座標よりxy座標への観測雑音ベクトルの変換行列で、式(15)で表される。ここで、式(16)は目標の状態ベクトルアンダーバーxkの予測ベクトルである。
【0040】
サンプリング時刻tkまでに目標の追尾に用いたレーダ装置1の観測ベクトル全体をZkとする(式(17)を参照)。
【0041】
【数4】
Figure 0003970585
【0042】
次に、サンプリング時刻tk-1までのレーダ装置1の観測ベクトルZk-1が得られているときの予測処理について述べる。目標が等速直線運動をしていると仮定した場合のサンプリング時刻tkにおけるアンダーバーxkの予測ベクトルをアンダーバーxkハット(−)、予測誤差共分散行列をPk(−)とすると、それぞれ条件付平均ベクトル、条件付共分散行列で定義され、式(18)及び式(19)で表される。ここで、アンダーバーxkハット(+)及びPk(+)はそれぞれ前サンプリング時刻tk-1の平滑ベクトル及び平滑誤差共分散行列である。これらの算出方法については後で述べる。
【0043】
一方、目標が等加速度運動をしていると仮定した場合のサンプリング時刻tkにおけるアンダーバーxkの予測ベクトルをアンダーバーx’kハットとすると、式(20)で表すことができる。ここで、式(21)とおく。
【0044】
【数5】
Figure 0003970585
【0045】
次に、目標の位置ベクトルがサンプリング時刻tkにおいて、レーダ装置1より観測される場合の目標相関処理について述べる。サンプリング時刻tkにおいてレーダ装置1より観測されたm個の観測ベクトルをアンダーバーzk,i(i=1,2,・・・,m)とすると、目標からの観測ベクトルアンダーバーzkは、式(22)で与えられる予測位置ベクトルアンダーバーzk(−)との距離が最も小さい観測ベクトル、すなわち、式(23)を満たす観測ベクトルとする。
【0046】
【数6】
Figure 0003970585
【0047】
次に、目標の位置ベクトルがサンプリング時刻tkにおいて、レーダ装置1により観測される場合の平滑処理について述べる。ゲイン行列Kk、平滑ベクトルアンダーバーxハット(+)及び平滑誤差共分散行列Pk(+)は通常のカルマンフィルタの理論により、式(24)〜(26)で与えられる。ここで、アンダーバーνkは式(27)で与えられる残差ベクトルである。
【0048】
【数7】
Figure 0003970585
【0049】
残差ベクトルアンダーバーνkは、目標が仮定した等速直線運動モデルと異なる運動を行うほど大きくなるため、その大きさにより目標の速度変化を判定することが可能である。しかし、残差ベクトルアンダーバーνkは同時にランダム性の観測雑音の影響も受ける。しかも、レーダによる観測では、観測誤差はxy座標において一様ではなく、目標の位置によって大きさが異なる(レーダ装置と目標の距離が離れるほど観測誤差は大きくなる)。従って、この目標位置による観測誤差の相違の影響を排除するため、式(28)を用いて、残差ベクトルを観測ベクトルの予測誤差共分散Skで正規化する。ここで、観測ベクトルの予測誤差共分散行列Skは式(29)で与えられる。
【0050】
【数8】
Figure 0003970585
【0051】
次に、正規化した残差ベクトルの大きさVkから目標の速度変化を判定し、その結果に応じて予測処理を準最適化する方法を示す。ある特定の方向の速度変化が大きく、それ以外の方向の速度変化が小さい目標の場合、速度変化が大きい方向の速度変化のみ検出すればよい。例えば、直線道路を走行する車両は、道路に沿った方向の速度変化が大きく、それ以外の方向の速度変化は小さいため、道路や滑走路に沿った方向の残差ベクトルの大きさを判定すればよい。j番目の所望の方向の単位ベクトルをアンダーバーuj(j=1,2,・・・,n)とすると、正規化した残差ベクトルの大きさVkのアンダーバーuj方向の成分Uk,jは、内積を利用して式(30)により得られる。ここで、θjは残差ベクトルアンダーバーνkとアンダーバーujのなす角である。
【0052】
そして、このUk,jのsサンプルの平均オーババーUk,jが、予め設定されたパラメータαに対して式(31)を満たすときに目標が速度変化をしたと判定し、予測処理において、式(18)の代わりに式(20)を用いる。ここで、平均の母数sが大きいほど、加速度検出に遅れを生じるが、観測雑音の方向はランダムであるため、逆に観測雑音によって速度変化を誤検出する危険性が少なくなる。
【0053】
【数9】
Figure 0003970585
【0054】
次に、この実施の形態1による目標追尾装置の動作を具体的に説明する。なお、カルマンフィルタを目標追尾装置に通常適用する場合と同様にして平滑ベクトルの初期値は別途定まっているものとする。
【0055】
レーダ装置1では、図2に示すように、目標の距離R及び方位角Azを観測し、式(9)及び式(10)に従いxy座標に変換する(ステップST1)。
【0056】
目標相関器2では、予測器13から追尾対象の予測ベクトルアンダーバーxkハット(−)を入力して予測位置ベクトルをアンダーバーzkハット(−)式(22)に従い算出し、レーダ装置1から入力した観測ベクトルのうち、観測ベクトルの予測ベクトルアンダーバーzk(−)に最も近い観測ベクトルを式(23)に従い選択する(ステップST2)。
【0057】
残差演算器3では、目標相関器2で選択した観測ベクトルと予測器13で算出した予測観測ベクトルを入力し、式(27)に残差ベクトルアンダーバーνkを算出する(ステップST3)。
【0058】
一方、予測誤差評価器4では、第2の遅延回路9から1サンプリング前の平滑誤差共分散行列Pk-1(+)を入力し、予め設定された駆動雑音Qk-1に基づい、予測誤差共分散行列Pk(−)を式(19)に従い算出する(ステップST4)。
【0059】
ゲイン行列算出器5では、予測誤差評価器4から入力した予測誤差共分散行列Pk(−)と、予め設定されたレーダ装置1の観測誤差共分散行列Rkとから式(24)に従いゲイン行列Kkを算出する(ステップST5)。
【0060】
平滑器6では、予測器13の出力した予測ベクトルアンダーバーxkハット(−)を残差演算器3を経由して入力し、また、残差算出器3から残差ベクトルアンダーバーνkを、ゲイン行列算出器5からゲイン行列Kkをそれぞれ入力し、式(25)に従い平滑ベクトルアンダーバーxkハット(+)を算出する(ステップST6)。
【0061】
平滑誤差評価器7では、予測誤差評価器4から予測誤差共分散行列Pk(−)を、ゲイン行列算出器5からゲイン行列Kkをそれぞれ入力し、式(26)に従い平滑誤差共分散行列Pk(+)を算出する(ステップST7)。
【0062】
残差演算器3が残差ベクトルアンダーバーνkを算出すると、正規化演算器10では、まず、予測器13から予測誤差共分散行列Pk(−)を入力し、これと予め設定されたレーダ装置1の観測誤差共分散行列Rkを用いて式(29)に従い、観測ベクトルの予測誤差共分散行列Skを算出する。次に、残差算出器3から残差ベクトルアンダバーνkを入力し、これを、先に算出した観測ベクトルの予測誤差共分散行列Skを用いて式(28)に従い正規化する(ステップST8)。
【0063】
方向ベクトル内積演算器15では、方向ベクトルデータベース14から所望の方向の単位ベクトルアンダバーujを、第3の遅延回路11から1サンプリング前の正規化後の残差Vk-1と残差ベクトルアンダバーνk-1をそれぞれ入力し、各単位ベクトルアンダバーujと正規化後の残差ベクトルの内積Uk,jの過去sサンプルの平均オーババーUk,jを式(30)及び式(31)に従い演算する(ステップST9)。
【0064】
加速度検出器16では、方向ベクトル内積演算器15から各単位ベクトルと正規化後の残差ベクトルの内積の過去sサンプルの平均オーババーUk,jを入力し、予め設定されたパラメータαについて式(31)を満たす場合にのみ目標の加速度運動があると判定する(ステップST9)。
【0065】
等加速度運動モデル切り換え器17では、加速度検出器16で目標の加速度運動があると判定された場合に式(20)の等加速度運動モデルに、ないと判定された場合に式(18)の等速直線運動モデルに切り換える(ステップST10)。
【0066】
予測器13では1サンプリング前の平滑ベクトルアンダバーxkハット(+)を第1の遅延回路8を介して入力し、等加速度運動モデル切り換え器17により選択された運動モデルに基づき予測ベクトルアンダバーxkハット(−)を算出する(ステップST11)。
以上、追尾終了になるまでこの一連の処理を繰り返す。
【0067】
以上で明らかなように、この実施の形態1によれば、方向ベクトル内積演算器15で所望の方向の単位ベクトルと正規化後の残差ベクトルの内積の過去sサンプルの平均オーババーUk,jを算出し、加速度検出器16において過去sサンプルの平均オーババーUk,jのスレッショルド判定により速度変化を検出しているので、ランダム性の観測誤差の影響によって速度変化が誤って検出されるのを防ぐことができる。
【0068】
また、目標の速度変化を検出した場合に、等加速度運動モデル切り換え器17により、目標の運動モデルを等加速度運動モデルに切り換える構成としているので、目標が加速度運動することにより生じる追従遅れの少ない安定した追尾が可能となる効果を奏する。
【0069】
実施の形態2.
図3は、この実施の形態2による目標追尾装置を示す構成図である。図3において、図1と同一符号である1〜15は実施の形態1と同一または相当部分を示すのでその説明を省略する。
【0070】
18は方向ベクトル内積演算器15から入力した各単位ベクトルと正規化後の残差ベクトルの内積の値を1サンプリング時間だけ遅延する第4の遅延回路、19は方向ベクトル内積演算器15から入力した各単位ベクトルと正規化後の残差ベクトルの内積の値と、第4の遅延回路18から入力した現時刻から1サンプリング前の各単位ベクトルと正規化後の残差ベクトルの内積の値との差をスレッショルド判定し、各単位ベクトルの方向に対する加速度運動または加速度変化運動の有無を判定する加速度変化検出器である。
【0071】
20は加速度変化検出器19で目標の加速度変化運動があると判定された場合に加速度変化運動モデルに、加速度変化運動がないと判定されかつ加速度運動があると判定された場合に等加速度運動モデルに、どちらもないと判定された場合に等速直線運動モデルに切り換える加速度変化運動モデル切り換え器である。
【0072】
次に動作について説明する。最初に、この実施の形態2による目標追尾装置の動作原理を説明する。目標の等速直線運動モデル、レーダ装置1の観測モデルは、実施の形態1における式(1)〜式(17)までの原理と同じであるので省略する。
【0073】
次に、サンプリング時刻tk-1までのレーダ装置1の観測ベクトルZk-1が得られているときの予測処理について述べる。目標が等速直線運動をしていると仮定した場合のサンプリング時刻tkにおけるアンダバーxkの予測ベクトルをアンダバーxkハット(−)、予測誤差共分散行列をPk(−)とすると、それぞれ条件付平均ベクトル、条件付共分散行列で定義され、式(18)及び式(19)で表される。
【0074】
一方、目標が等加速度運動をしていると仮定した場合のサンプリング時刻tkにおけるアンダバーxkの予測ベクトルをアンダバーx’kハットとすると、式(20)で表すことができる。ここで、式(21)とおく。また、目標が加速度変化運動をしていると仮定した場合の同時刻のアンダバーxkの予測ベクトルをアンダバーx”k(−)とすると、式(32)及び式(33)で表すことができる。
【0075】
【数10】
Figure 0003970585
【0076】
目標の位置ベクトルがサンプリング時刻tkにおいて、レーダ装置1より観測される場合の目標相関処理及び平滑処理は、実施の形態1における式(22)〜式(27)までの原理と同じであるので省略する。
【0077】
残差ベクトルアンダバーνkは、目標が仮定した等速直線運動モデルと異なる運動を行うほど大きくなるため、その大きさにより目標の速度変化を判定することが可能である。しかし、残差ベクトルアンダバーνkは同時にランダム性の観測雑音の影響も受ける。しかも、レーダによる観測では、観測誤差はxy座標において一様ではなく、目標の位置によって大きさが異なる(レーダ装置と目標の距離が離れるほど観測誤差は大きくなる)。従って、この目標位置による観測誤差の相違の影響を排除するため、式(28)を用いて、残差ベクトルを観測ベクトルの予測誤差共分散Skで正規化する。ここで、観測ベクトルの予測誤差共分散行列Skは式(29)で与えられる。
【0078】
次に、正規化した残差ベクトルの大きさVkまたはその変化量から目標の速度変化または加速度変化を判定し、その結果に応じて予測処理を準最適化する方法を示す。ある特定の方向の速度変化が大きく、それ以外の方向の速度変化が小さい目標の場合、速度変化が大きい方向の速度変化のみ検出すればよい。例えば、直線道路を走行する車両は、道路に沿った方向の速度変化が大きく、それ以外の方向の速度変化は小さいため、道路や滑走路に沿った方向の残差ベクトルの大きさを判定すればよい。
【0079】
j番目の所望の方向の単位ベクトルをアンダバーuj(j=1,2,・・・,n)とすると、正規化した残差ベクトルの大きさVkのアンダバーuj方向の成分Uk,jは、内積を利用して式(30)により得られる。ここで、θjは残差ベクトルアンダバーνkとアンダバーujのなす角である。そして、隣り合うサンプリングにおけるUk,jの変化量ΔUk,jが、予め設定されたパラメータbに対して式(34)を満たすときに目標が加速度変化をしたと判定し、予測処理において、式(18)の代わりに式(32)を用いる。ΔUk,jが、式(34)を満たさず、Uk,jのsサンプルの平均オーババーUk,jが、予め設定されたパラメータαに対して式(31)を満たすときに目標が速度変化をしたと判定し、予測処理において、式(18)の代わりに式(20)を用いる。ここで、平均の母数sが大きいほど、加速度検出に遅れを生じるが、観測雑音の方向はランダムであるため、逆に観測雑音によって速度変化を誤検出する危険性が少なくなる。
【0080】
【数11】
Figure 0003970585
【0081】
次に、この実施の形態2による目標追尾装置の動作を具体的に説明する。なお、カルマンフィルタを目標追尾装置に通常適用する場合と同様にして平滑ベクトルの初期値は別途定まっているものとする。
【0082】
レーダ装置1では、図2に示すように目標の距離R及び方位角Azを観測し、式(9)及び式(10)に従いxy座標に変換する(ステップST1)。目標相関器2では、予測器13から追尾対象の予測ベクトルアンダバーxkハット(−)を入力して予測位置ベクトルをアンダバーzk(−)を式(22)に従い算出し、レーダ装置1から入力した観測ベクトルのうち、観測ベクトルの予測ベクトルアンダバーzk(−)に最も近い観測ベクトルを式(23)に従い選択する(ステップST2)。残差演算器3では、目標相関器2で選択した観測ベクトルと予測器13で算出した予測観測ベクトルを入力し、式(27)に残差ベクトルアンダバーνkを算出する(ステップST3)。
【0083】
一方、予測誤差評価器4では、第2の遅延回路9から1サンプリング前の平滑誤差共分散行列Pk-1(+)を入力し、予め設定された駆動雑音Qk-1に基づいて、予測誤差共分散行列Pk(−)を式(19)に従い算出する(ステップST4)。
【0084】
ゲイン行列算出器5では、予測誤差評価器4から入力した予測誤差共分散行列Pk(−)と、予め設定されたレーダ装置1の観測誤差共分散行列Rkとから式(24)に従いゲイン行列Kkを算出する(ステップST5)。
【0085】
平滑器6では、予測器13の出力した予測ベクトルアンダバーxkハット(−)を残差演算器3を経由して入力し、また、残差算出器3から残差ベクトルアンダバーνkを、ゲイン行列算出器5からゲイン行列Kkをそれぞれ入力し、式(25)に従い平滑ベクトルアンダバーxkハット(+)を算出する(ステップST6)。
【0086】
平滑誤差評価器7では、予測誤差評価器4から予測誤差共分散行列Pk(−)を、ゲイン行列算出器5からゲイン行列Kkをそれぞれ入力し、式(26)に従い平滑誤差共分散行列Pk(+)を算出する(ステップST7)。
【0087】
残差演算器3が残差ベクトルアンダバーνkを算出すると、正規化演算器10では、まず、予測器13から予測誤差共分散行列Pk(−)を入力し、これと予め設定されたレーダ装置1の観測誤差共分散行列Rkを用いて式(29)に従い、観測ベクトルの予測誤差共分散行列Skを算出する。
【0088】
次に、残差算出器3から残差ベクトルアンダバーνkを入力し、これを、先に算出した観測ベクトルの予測誤差共分散行列Skを用いて式(28)に従い正規化する(ステップST8)。
【0089】
方向ベクトル内積演算器15では、方向ベクトルデータベース14から所望の方向の単位ベクトルアンダバーujを、第3の遅延回路11から1サンプリング前の正規化後の残差Vk-1と残差ベクトルアンダバーνk-1をそれぞれ入力し、各単位ベクトルアンダバーujと正規化後の残差ベクトルの内積Uk,jの過去sサンプルの平均オーババーUk,jを式(30)及び式(31)に従い演算する(ステップST9)。
【0090】
加速度変化検出器19では、方向ベクトル内積演算器15から各単位ベクトルと正規化後の残差ベクトルの内積の値Uk,jと、その過去sサンプルの平均オーババーUk,jを入力し、第4の遅延回路18から現時刻から1サンプリング前の各単位ベクトルと正規化後の残差ベクトルの内積の値Uk-1,jを入力し、まず、式(34)のΔUk,jが予め設定されたパラメータbに対して式(34)を満たすか否かを判定し、満たす場合に目標が加速度変化をしたと判定する。式(34)を満たさない場合は、オーババーUk、jが予め設定されたパラメータαについて式(31)を満たすか否かを判定し、満たす場合に目標の速度変化があると判定する。そして何れも満たさない場合に目標は等速直線運動をしていると判定する(ステップST10)。
【0091】
加速度変化運動モデル切り換え器20では、加速度変化検出器19で目標の加速度変化運動があると判定された場合に式(32)の加速度変化運動モデルに、目標の加速度変化運動がないと判定され、かつ加速度運動があると判定された場合に式(20)の等加速度運動モデルに、どちらもないと判定された場合に式(18)の等速直線運動モデルに切り換える(ステップST11)。予測器13では1サンプリング前の平滑ベクトルアンダバーxk-1ハット(+)を第1の遅延回路8を介して入力し、加速度変化運動モデル切り換え器20により選択された運動モデルに基づき予測ベクトルアンダバーxkハット(−)を算出する(ステップST12)。
以上、追尾終了になるまでこの一連の処理を繰り返す。
【0092】
以上で明らかなように、この実施の形態2によれば、方向ベクトル内積演算器15で所望の方向の単位ベクトルと正規化後の残差ベクトルの内積の過去sサンプルの平均オーババーUk、jを算出し、加速度変化検出器19において過去sサンプルの平均オーババーUk、jのスレッショルド判定により速度変化を検出しているので、ランダム性の観測誤差の影響によって速度変化が誤って検出されるのを防ぐことができる。
【0093】
また、目標の速度変化を検出した場合に、加速度変化運動モデル切り換え器20により、目標の運動モデルを等加速度運動モデルに切り換える構成としているので、目標が加速度運動することにより生じる追従遅れの少ない安定した追尾が可能となる効果を奏する。
【0094】
さらに、実施の形態2では、加速度変化検出器19において、隣り合うサンプリングにおけるUk,jの変化量ΔUk,jのスレッショルド判定により加速度の変化を検出しているので、ランダム性の観測誤差の影響によって加速度変化が誤って検出されるのを防ぐことができる。
【0095】
また、目標の加速度変化を検出した場合に、加速度変化運動モデル切り換え器20により、目標の運動モデルを加速度変化運動モデルに切り換える構成としているので、目標が加速度変化運動することにより生じる追従遅れの少ない安定した追尾が可能となる効果を奏する。
【0096】
実施の形態3.
図4は、この実施の形態3による目標追尾装置を示す構成図である。図4において、図1と同一符号である1〜11及び13は実施の形態1と同一または相当部分を示すのでその説明を省略する。
【0097】
18は第3の遅延回路11から入力した1サンプリング前の正規化後の残差と残差ベクトルを1サンプリング時間だけ遅延する第4の遅延回路、21は第3の遅延回路11から入力した1サンプリング前の正規化後の残差と残差ベクトルと、第4の遅延回路18から入力した2サンプリング前の正規化後の残差と残差ベクトルとから、過去2サンプルの残差ベクトルの内積を演算する隣接残差内積演算器である。
【0098】
16は隣接残差内積演算器21から入力した過去2サンプルの残差ベクトルの内積の値をスレッショルド判定し、加速度運動の有無を判定する加速度検出器、17は加速度検出器16で目標の加速度運動があると判定された場合に等加速度運動モデルに、ないと判定された場合に等速直線運動モデルに切り換える等加速度運動モデル切り換え器、13は第1の遅延回路8から入力した1サンプリング前の平滑ベクトルから、等加速度運動モデル切り換え器17により選択された運動モデルに基づき予測ベクトルを算出する予測器である。
【0099】
次に動作について説明する。最初に、この実施の形態3による目標追尾装置の動作原理を説明する。目標の等速直線運動モデル、レーダ装置1の観測モデルは、実施の形態1における式(1)から式(17)までの原理と同じであるので省略する。
【0100】
次に、サンプリング時刻tk-1までのレーダ装置1の観測ベクトルZk-1が得られているときの予測処理は、実施の形態1における式(18)〜式(21)までの原理と同じであるので省略する。また、目標の位置ベクトルがサンプリング時刻tkにおいて、レーダ装置1より観測される場合の目標相関処理及び平滑処理は、実施の形態1における式(22)〜式(27)までの原理と同じであるので省略する。
【0101】
残差ベクトルアンダバーνkは、目標が仮定した等速直線運動モデルと異なる運動を行うほど大きくなるため、その大きさにより目標の速度変化を判定することが可能である。しかし、残差ベクトルアンダバーνkは同時にランダム性の観測雑音の影響も受ける。しかも、レーダによる観測では、観測誤差はxy座標において一様ではなく、目標の位置によって大きさが異なる(レーダ装置と目標の距離が離れるほど観測誤差は大きくなる)。従って、この目標位置による観測誤差の相違の影響を排除するため、式(28)を用いて、残差ベクトルを観測ベクトルの予測誤差共分散Skで正規化する。ここで、観測ベクトルの予測誤差共分散行列Skは式(29)で与えられる。
【0102】
次に、正規化した残差ベクトルの大きさVkから目標の速度変化を判定し、その結果に応じて予測処理を準最適化する方法を示す。ある特定の方向の速度変化が大きく、それ以外の方向の速度変化が小さい目標の場合、速度変化が大きい方向の速度変化のみ検出すればよい。例えば、直線道路を走行する車両は、道路に沿った方向の速度変化が大きく、それ以外の方向の速度変化は小さいため、道路や滑走路に沿った方向の残差ベクトルの大きさを判定すればよい。大きな加速度の発生する方向が限られているものの、その方向が予め得られない場合について考えると、加速度が生じたときには、ほぼ一定方向の残差が大きくなるため、連続する2サンプルの残差ベクトルの内積は大きな値となる。
【0103】
一方、加速度が生じていないときにはランダム誤差の影響により残差が発生するため、連続する2サンプルの残差ベクトルの内積は先程に比べて小さな値となる。そこで、式(35)で表される連続する2サンプルの残差ベクトルの内積の大きさGkにより、目標の速度変化を判定する。すなわち、2サンプルの残差ベクトルの内積の大きさGkのsサンプルの平均オーババーGkが、予め設定されたパラメータcに対して式(36)を満たすときに目標が速度変化をしたと判定し、予測処理において、式(18)の代わりに式(20)を用いる。ここで、平均の母数sが大きいほど、加速度検出に遅れを生じるが、逆に観測雑音によって速度変化を誤検出する危険性が少なくなる。
【0104】
【数12】
Figure 0003970585
【0105】
次に、この実施の形態3による目標追尾装置の動作を具体的に説明する。なお、カルマンフィルタを目標追尾装置に通常適用する場合と同様にして平滑ベクトルの初期値は別途定まっているものとする。
【0106】
レーダ装置1では、図4に示すように目標の距離R及び方位角Azを観測し、式(9)及び式(10)に従いxy座標に変換する(ステップST1)。目標相関器2では、予測器13から追尾対象の予測ベクトルアンダバーxkハット(−)を入力して予測位置ベクトルアンダバーzk(−)を式(22)に従い算出し、レーダ装置1から入力した観測ベクトルのうち、観測ベクトルの予測ベクトルアンダバーzk(−)に最も近い観測ベクトルを式(23)に従い選択する(ステップST2)。残差演算器3では、目標相関器2で選択した観測ベクトルと予測器13で算出した予測観測ベクトルを入力し、式(27)に残差ベクトルアンダバーνkを算出する(ステップST3)。
【0107】
一方、予測誤差評価器4では、第2の遅延回路9から1サンプリング前の平滑誤差共分散行列Pk-1(+)を入力し、予め設定された駆動雑音Qk-1に基づいて、予測誤差共分散行列Pk(−)を式(19)に従い算出する(ステップST4)。
【0108】
ゲイン行列算出器5では、予測誤差評価器4から入力した予測誤差共分散行列Pk(−)と、予め設定されたレーダ装置1の観測誤差共分散行列Rkとから式(24)に従いゲイン行列Kkを算出する(ステップST5)。
【0109】
平滑器6では、予測器13の出力した予測ベクトルアンダバーxkハット(−)を残差演算器3を経由して入力し、また、残差算出器3から残差ベクトルアンダバーνkを、ゲイン行列算出器5からゲイン行列Kkをそれぞれ入力し、式(25)に従い平滑ベクトルアンダバーxkハット(+)を算出する(ステップST6)。
【0110】
平滑誤差評価器7では、予測誤差評価器4から予測誤差共分散行列Pk(−)を、ゲイン行列算出器5からゲイン行列Kkをそれぞれ入力し、式(26)に従い平滑誤差共分散行列Pk(+)を算出する(ステップST7)。
【0111】
残差演算器3が残差ベクトルアンダバーνkを算出すると、正規化演算器10では、まず、予測器13から予測誤差共分散行列Pk(−)を入力し、これと予め設定されたレーダ装置1の観測誤差共分散行列Rkを用いて式(29)に従い、観測ベクトルの予測誤差共分散行列Skを算出する。次に、残差算出器3から残差ベクトルアンダバーνkを入力し、これを、先に算出した観測ベクトルの予測誤差共分散行列Skを用いて式(28)に従い正規化する(ステップST8)。
【0112】
隣接残差内積演算器21では、第3の遅延回路11から入力した1サンプリング前の正規化後の残差Vk-1と残差ベクトルアンダバーνk-1と、第4の遅延回路18から入力した2サンプリング前の正規化後の残差Vk-2と残差ベクトルアンダバーνk-2とから、過去2サンプルの残差ベクトルの内積Gkの過去sサンプルの平均オーババーGkを式(35)及び式(36)に従い演算する(ステップST9)。
【0113】
加速度検出器16では、隣接残差内積演算器21から過去2サンプルの残差ベクトルの内積Gkの過去sサンプルの平均オーババーGkを入力し、予め設定されたパラメータcについて式(36)を満たす場合にのみ目標の加速度運動があると判定する(ステップST10)。
【0114】
等加速度運動モデル切り換え器17では、加速度検出器16で目標の加速度運動があると判定された場合に式(20)の等加速度運動モデルに、ないと判定された場合に式(18)の等速直線運動モデルに切り換える(ステップST11)。予測器13では1サンプリング前の平滑ベクトルアンダバーxk-1ハット(+)を第1の遅延回路8を介して入力し、等加速度運動モデル切り換え器17により選択された運動モデルに基づき予測ベクトルアンダバーxkハット(−)を算出する(ステップST12)。
以上、追尾終了になるまでこの一連の処理を繰り返す。
【0115】
以上で明らかなように、この実施の形態3によれば、隣接残差内積演算器21で過去2サンプルの残差ベクトルの内積Gkの過去sサンプルの平均オーババーGkを算出し、加速度検出器16において過去sサンプルの平均オーババーGkのスレッショルド判定により速度変化を検出しているので、検出すべき加速度の方向を与えることなく、ランダム性の観測誤差の影響によって速度変化が誤って検出されるのを防ぐことができる。
【0116】
また、目標の速度変化を検出した場合に、等加速度運動モデル切り換え器17により、目標の運動モデルを等加速度運動モデルに切り換える構成としているので、目標が加速度運動することにより生じる追従遅れの少ない安定した追尾が可能となる効果を奏する。
【0117】
実施の形態4.
図5は、この実施の形態4による目標追尾装置を示す構成図である。図5において、図1と同一符号である1〜11及び13は実施の形態1と同一または相当部分を示すのでその説明を省略する。
【0118】
18は第3の遅延回路11から入力した1サンプリング前の正規化後の残差と残差ベクトルを1サンプリング時間だけ遅延する第4の遅延回路、21は第3の遅延回路11から入力した1サンプリング前の正規化後の残差と残差ベクトルと、第4の遅延回路18から入力した2サンプリング前の正規化後の残差と残差ベクトルとから、過去2サンプルの残差ベクトルの内積を演算する隣接残差内積演算器である。
【0119】
22は隣接残差内積演算器21の出力する過去2サンプルの残差ベクトルの内積を1サンプリング時間だけ遅延する第5の遅延回路、19は隣接残差内積演算器21から入力した過去2サンプルの残差ベクトルの内積の値と、第5の遅延回路22から入力した現時刻から1サンプリング前に算出したの過去2サンプルの残差ベクトルの内積の値との差をスレッショルド判定し、各単位ベクトルの方向に対する加速度運動または加速度変化運動の有無を判定する加速度変化検出器である。
【0120】
20は加速度変化検出器19で目標の加速度変化運動があると判定された場合に加速度変化運動モデルに、加速度変化運動がないと判定されかつ加速度運動があると判定された場合に等加速度運動モデルに、どちらもないと判定された場合に等速直線運動モデルに切り換える加速度変化運動モデル切り換え器である、
【0121】
次に動作について説明する。最初に、この実施の形態4による目標追尾装置の動作原理を説明する。目標の等速直線運動モデル、レーダ装置1の観測モデルは、実施の形態1における式(1)〜式(17)までの原理と同じであるので省略する。
【0122】
次に、サンプリング時刻tk-1までのレーダ装置1の観測ベクトルZk-1が得られているときの予測処理は、実施の形態1における式(18)〜式(21)までの原理と同じであるので省略する。また、目標の位置ベクトルがサンプリング時刻tkにおいて、レーダ装置1より観測される場合の目標相関処理及び平滑処理は、実施の形態1における式(22)〜式(27)までの原理と同じであるので省略する。
【0123】
残差ベクトルアンダバーνkは、目標が仮定した等速直線運動モデルと異なる運動を行うほど大きくなるため、その大きさにより目標の速度変化を判定することが可能である。しかし、残差ベクトルアンダバーνkは同時にランダム性の観測雑音の影響も受ける。しかも、レーダによる観測では、観測誤差はxy座標において一様ではなく、目標の位置によって大きさが異なる(レーダ装置と目標の距離が離れるほど観測誤差は大きくなる)。従って、この目標位置による観測誤差の相違の影響を排除するため、式(28)を用いて、残差ベクトルを観測ベクトルの予測誤差共分散Skで正規化する。ここで、観測ベクトルの予測誤差共分散行列Skは式(29)で与えられる。
【0124】
次に、正規化した残差ベクトルの大きさVkから目標の速度変化を判定し、その結果に応じて予測処理を準最適化する方法を示す。ある特定の方向の速度変化が大きく、それ以外の方向の速度変化が小さい目標の場合、速度変化が大きい方向の速度変化のみ検出すればよい。例えば、直線道路を走行する車両は、道路に沿った方向の速度変化が大きく、それ以外の方向の速度変化は小さいため、道路や滑走路に沿った方向の残差ベクトルの大きさを判定すればよい。大きな加速度の発生する方向が限られているものの、その方向が予め得られない場合について考えると、加速度が生じたときには、ほぼ一定方向の残差が大きくなるため、連続する2サンプルの残差ベクトルの内積は大きな値となる。
【0125】
一方、加速度が生じていないときにはランダム誤差の影響により残差が発生するため、連続する2サンプルの残差ベクトルの内積は先程に比べて小さな値となる。そこで、式(35)で表される連続する2サンプルの残差ベクトルの内積の大きさGkにより、目標の速度変化を判定する。さらに、式(37)で表される隣り合うサンプリングにおけるGkの変化量ΔGkにより、目標の加速度変化を判定する。すなわち、予め設定されたパラメータdに対して式(37)を満たすときに目標が加速度変化をしたと判定し、予測処理において、式(18)の代わりに式(32)を用いる。ΔGkが、式(37)を満たさず、Gkのsサンプルの平均オーババーGkが、予め設定されたパラメータcに対して式(36)を満たすときに目標が速度変化をしたと判定し、予測処理において、式(18)の代わりに式(20)を用いる。ここで、平均の母数sが大きいほど、加速度検出に遅れを生じるが、観測雑音の方向はランダムであるため、逆に観測雑音によって速度変化を誤検出する危険性が少なくなる。
【0126】
【数13】
Figure 0003970585
【0127】
次に、この実施の形態4による目標追尾装置の動作を具体的に説明する。なお、カルマンフィルタを目標追尾装置に通常適用する場合と同様にして平滑ベクトルの初期値は別途定まっているものとする。
【0128】
レーダ装置1では、図4に示すように目標の距離R及び方位角Azを観測し、式(9)及び式(10)に従いxy座標に変換する(ステップST1)。目標相関器2では、予測器13から追尾対象の予測ベクトルアンダバーxkハット(−)を入力して予測位置ベクトルアンダバーzk(−)を式(22)に従い算出し、レーダ装置1から入力した観測ベクトルのうち、観測ベクトルの予測ベクトルアンダバーzk(−)に最も近い観測ベクトルを式(23)に従い選択する(ステップST2)。残差演算器3では、目標相関器2で選択した観測ベクトルと予測器13で算出した予測観測ベクトルを入力し、式(27)に残差ベクトルアンダバーνkを算出する(ステップST3)。
【0129】
一方、予測誤差評価器4では、第2の遅延回路9から1サンプリング前の平滑誤差共分散行列Pk-1(+)を入力し、予め設定された駆動雑音Qk-1を入力し、予測誤差共分散行列Pk(−)を式(19)に従い算出する(ステップST4)。
【0130】
ゲイン行列算出器5では、予測誤差評価器4から入力した予測誤差共分散行列Pk(−)と、予め設定されたレーダ装置1の観測誤差共分散行列Rkとから式(24)に従いゲイン行列Kkを算出する(ステップST5)。
【0131】
平滑器6では、予測器13の出力した予測ベクトルアンダバーxkハット(−)を残差演算器3を経由して入力し、また、残差算出器3から残差ベクトルアンダバーνkを、ゲイン行列算出器5からゲイン行列Kkをそれぞれ入力し、式(25)に従い平滑ベクトルアンダバーxkハット(+)を算出する(ステップST6)。
【0132】
平滑誤差評価器7では、予測誤差評価器4から予測誤差共分散行列Pk(−)を、ゲイン行列算出器5からゲイン行列Kkをそれぞれ入力し、式(26)に従い平滑誤差共分散行列Pk(+)を算出する(ステップST7)。
【0133】
残差演算器3が残差ベクトルアンダバーνkを算出すると、正規化演算器10では、まず、予測器13から予測誤差共分散行列Pk(−)を入力し、これと予め設定されたレーダ装置1の観測誤差共分散行列Rkを用いて式(29)に従い、観測ベクトルの予測誤差共分散行列Skを算出する。次に、残差算出器3から残差ベクトルアンダバーνkを入力し、これを、先に算出した観測ベクトルの予測誤差共分散行列Skを用いて式(28)に従い正規化する(ステップST8)。
【0134】
隣接残差内積演算器21では、第3の遅延回路11から入力した1サンプリング前の正規化後の残差Vk-1と残差ベクトルアンダバーνk-1と、第4の遅延回路18から入力した2サンプリング前の正規化後の残差Vk-2と残差ベクトルアンダバーνk-2とから、過去2サンプルの残差ベクトルの内積Gkの過去sサンプルの平均オーババーGkを式(35)及び式(36)に従い演算する(ステップST9)。
【0135】
加速度変化検出器19では、隣接残差内積演算器21から過去2サンプルの残差ベクトルの内積Gkと、その過去sサンプルの平均オーババーGkを入力し、第5の遅延回路22から現時刻から1サンプリング前に算出した過去2サンプルの残差ベクトルの内積Gk-1を入力し、まず、式(37)のΔGkが予め設定されたパラメータdに対して式(37)を満たすか否かを判定し、満たす場合に目標が加速度変化をしたと判定する。式(37)を満たさない場合は、オーババーGkが予め設定されたパラメータcについて式(36)を満たすか否かを判定し、満たす場合に目標の速度変化があると判定する。そして何れも満たさない場合に目標は等速直線運動をしていると判定する(ステップST10)。
【0136】
加速度変化運動モデル切り換え器20では、加速度変化検出器19で目標の加速度変化運動があると判定された場合に式(32)の加速度変化運動モデルに、目標の加速度変化運動がないと判定され、かつ加速度運動があると判定された場合に式(20)の等加速度運動モデルに、どちらもないと判定された場合に式(18)の等速直線運動モデルに切り換える(ステップST11)。
【0137】
予測器13では1サンプリング前の平滑ベクトルアンダバーxk-1ハット(+)を第1の遅延回路8を介して入力し、等加速度運動モデル切り換え器17により選択された運動モデルに基づき予測ベクトルアンダバーxkハット(−)を算出する(ステップST12)。
以上、追尾終了になるまでこの一連の処理を繰り返す。
【0138】
以上で明らかなように、この実施の形態4によれば、隣接残差内積演算器21で過去2サンプルの残差ベクトルの内積Gkの過去sサンプルの平均オーババーGkを算出し、加速度検出器16において過去sサンプルの平均オーババーGkのスレッショルド判定により速度変化を検出しているので、検出すべき加速度の方向を与えることなく、ランダム性の観測誤差の影響によって速度変化が誤って検出されるのを防ぐことができる。
【0139】
また、目標の速度変化を検出した場合に、等加速度運動モデル切り換え器17により、目標の運動モデルを等加速度運動モデルに切り換える構成としているので、目標が加速度運動することにより生じる追従遅れの少ない安定した追尾が可能となる効果を奏する。
【0140】
さらに、実施の形態4では、加速度変化検出器19において、隣り合うサンプリングにおけるGkの変化量ΔGkのスレッショルド判定により加速度の変化を検出しているので、検出すべき加速度の方向を与えることなく、ランダム性の観測誤差の影響によって加速度変化が誤って検出されるのを防ぐことができる。
【0141】
また、目標の加速度変化を検出した場合に、加速度変化運動モデル切り換え器20により、目標の運動モデルを加速度変化運動モデルに切り換える構成としているので、目標が加速度変化運動することにより生じる追従遅れの少ない安定した追尾が可能となる効果を奏する。
【0142】
【発明の効果】
以上のように、この発明によれば、方向ベクトル内積演算手段により所望の方向の単位ベクトルと正規化後の残差ベクトルの内積の過去sサンプルの平均を算出し、加速度検出手段において過去sサンプルの平均のスレッショルド判定により速度変化を検出しているので、ランダム性の観測誤差の影響によって速度変化が誤って検出されるのを防ぐことができる。
【0143】
また、目標の速度変化を検出した場合に、等加速度運動モデル切り換え手段により、目標の運動モデルを等加速度運動モデルに切り換える構成としているので、目標が加速度運動することにより生じる追従遅れの少ない安定した追尾が可能となる効果を奏する。
【0144】
また、加速度変化検出手段において、隣り合うサンプリングにおける残差の変化量のスレッショルド判定により加速度の変化を検出しているので、ランダム性の観測誤差の影響によって加速度変化が誤って検出されるのを防ぐことができる。
【0145】
また、隣接残差内積演算手段により過去2サンプルの残差ベクトルの内積の過去sサンプルの平均を算出し、加速度検出手段において過去sサンプルの平均のスレッショルド判定により速度変化を検出しているので、検出すべき加速度の方向を与えることなく、ランダム性の観測誤差の影響によって速度変化が誤って検出されるのを防ぐことができる。
【0146】
また、目標の速度変化を検出した場合に、等加速度運動モデル切り換え手段により、目標の運動モデルを等加速度運動モデルに切り換える構成としているので、目標が加速度運動することにより生じる追従遅れの少ない安定した追尾が可能となる効果を奏する。
【0147】
さらに、隣接残差内積演算手段により過去2サンプルの残差ベクトルの内積の過去sサンプルの平均を算出し、加速度変化検出手段において、隣り合うサンプリングにおける残差の変化量のスレッショルド判定により加速度の変化を検出し、目標の加速度変化を検出した場合に、加速度変化運動モデル切り換え手段により、目標の運動モデルを加速度変化運動モデルに切り換える構成としているので、検出すべき加速度の方向を与えることなく、ランダム性の観測誤差の影響によって加速度変化が誤って検出されるのを防ぐことができると共に、目標が加速度変化運動することにより生じる追従遅れの少ない安定した追尾が可能となる効果を奏する。
【図面の簡単な説明】
【図1】 この発明の実施の形態1による目標追尾装置を示す構成図である。
【図2】 z軸上に設置されたレーダ装置1の座標と目標の距離R及び方位角Azの観測に係る説明図である。
【図3】 この発明の実施の形態2による目標追尾装置を示す構成図である。
【図4】 この発明の実施の形態3による目標追尾装置を示す構成図である。
【図5】 この発明の実施の形態4による目標追尾装置を示す構成図である。
【図6】 "An Adaptive Two-Dimensional Kalman Tracking Filter", IEEE Transaction on Aerospace and Electronic Systems Vol.AES-16,No.6,1980.に示された従来の目標追尾装置を示す構成図である。
【符号の説明】
1 レーダ装置、2 目標相関器、3 残差算出器、4 予測誤差評価器、5ゲイン行列算出器、6 平滑器、7 平滑誤差評価器、8 第1の遅延回路、9 第2の遅延回路、10 正規化演算器、11 第3の遅延回路、13 予測器、14 方向ベクトルデータベース、15 方向ベクトル内積演算器、16 加速度検出器、17 等加速度運動モデル切り換え器、18 第4の遅延回路、19 加速度変化検出器、20 加速度変化運動モデル切り換え器、21 隣接残差内積演算器、22 第5の遅延回路。

Claims (12)

  1. 目標を観測して観測ベクトルを得る観測手段と、
    目標の状態ベクトルの予測ベクトルを演算する予測手段と、
    目標の状態ベクトルの平滑ベクトルを演算する平滑手段と、
    所望の方向の単位ベクトルを格納した方向ベクトルデータベースと、
    前記データベースから入力した所望方向の単位ベクトルと、前記観測手段により観測された観測ベクトルのうち、前記予測手段で演算された予測ベクトルに最も近い観測ベクトルから前記予測ベクトルを減算することで得られる残差ベクトルを正規化した正規化後の残差ベクトルとの内積を算出する方向ベクトル内積演算手段と、
    前記方向ベクトル内積演算手段により算出された内積をスレッショルド判定して各単位ベクトルの方向に対する加速度運動の有無を判定することにより、特定方向の速度変化を検出する加速度検出手段と
    を備えた目標追尾装置。
  2. 請求項1に記載の目標追尾装置において、
    前記加速度検出手段にて速度変化が検出された場合に前記予測手段で用いる運動モデルを速度変化を考慮した運動モデルに切り換える等加速度運動モデル切り換え手段をさらに備えた
    ことを特徴とする目標追尾装置。
  3. 目標を観測して観測ベクトルを得る観測手段と、
    目標の状態ベクトルの予測ベクトルを演算する予測手段と、
    目標の状態ベクトルの平滑ベクトルを演算する平滑手段と、
    所望の方向の単位ベクトルを格納した方向ベクトルデータベースと、
    前記データベースから入力した所望方向の単位ベクトルと、前記観測手段により観測された観測ベクトルのうち、前記予測手段で演算された予測ベクトルに最も近い観測ベクトルから前記予測ベクトルを減算することで得られる残差ベクトルを正規化した正規化後の残差ベクトルとの内積を算出する方向ベクトル内積演算手段と、
    前記方向ベクトル内積演算手段により算出された隣り合うサンプリングにおける内積の変化量をスレッショルド判定して特定方向の加速度変化または速度変化を検出する加速度変化検出手段と、
    前記加速度変化検出手段により加速度変化または速度変化が検出された場合に前記予測手段で用いる運動モデルを加速度変化または速度変化を考慮した運動モデルに切り換える加速度変化運動モデル切り換え手段と
    を備えた目標追尾装置。
  4. 目標を観測して観測ベクトルを得る観測手段と、
    目標の状態ベクトルの予測ベクトルを演算する予測手段と、
    目標の状態ベクトルの平滑ベクトルを演算する平滑手段と、
    前記観測手段により観測された観測ベクトルのうち、前記予測手段で演算された予測ベクトルに最も近い観測ベクトルから前記予測ベクトルを減算することで得られる残差ベクトルを観測ベクトルの予測誤差共分散行列を用いて正規化後、連続する過去2サンプルの正規化後の残差ベクトルの内積を算出する隣接残差内積演算手段と、
    前記隣接残差内積演算手段により算出された内積の値によりある一定方向の速度変化を検出する加速度検出手段と
    を備えた目標追尾装置。
  5. 請求項4に記載の目標追尾装置において、
    前記加速度検出手段にて速度変化が検出された場合に前記予測手段で用いる運動モデルを速度変化を考慮した運動モデルに切り換える等加速度運動モデル切り換え手段をさらに備えた
    ことを特徴とする目標追尾装置。
  6. 目標を観測して観測ベクトルを得る観測手段と、
    目標の状態ベクトルの予測ベクトルを演算する予測手段と、
    目標の状態ベクトルの平滑ベクトルを演算する平滑手段と、
    前記観測手段により観測された観測ベクトルのうち、前記予測手段で演算された予測ベクトルに最も近い観測ベクトルから前記予測ベクトルを減算することで得られる残差ベクトルを観測ベクトルの予測誤差共分散行列を用いて正規化後、連続する過去2サンプルの正規化後の残差ベクトルの内積を算出する隣接残差内積演算手段と、
    前記隣接残差内積演算手段により算出された隣り合うサンプリングにおける内積の変化量をスレッショルド判定して特定方向の加速度変化または速度変化を検出する加速度変化検出手段と、
    前記加速度変化検出手段にて加速度変化または速度変化が検出された場合に前記予測手段で用いる運動モデルを加速度変化または速度変化を考慮した運動モデルに切り換える加速度変化運動モデル切り換え手段と
    を備えた目標追尾装置。
  7. 目標を観測して観測ベクトルを得る観測ステップと、
    目標の状態ベクトルの予測ベクトルを演算する予測ステップと、
    目標の状態ベクトルの平滑ベクトルを演算する平滑ステップと、
    所望の方向の単位ベクトルを格納した方向ベクトルデータベースから入力した所望方向の単位ベクトルと、前記観測ステップにより観測された観測ベクトルのうち、前記予測ステップで演算された予測ベクトルに最も近い観測ベクトルから前記予測ベクトルを減算することで得られる残差ベクトルを正規化した正規化後の残差ベクトルとの内積を算出する方向ベクトル内積演算ステップと、
    前記方向ベクトル内積演算ステップにより算出された内積をスレッショルド判定して各単位ベクトルの方向に対する加速度運動の有無を判定することにより、特定方向の速度変化を検出する加速度検出ステップと
    を備えた目標追尾方法。
  8. 請求項7に記載の目標追尾方法において、
    前記加速度検出ステップにて速度変化が検出された場合に前記予測ステップで用いる運動モデルを速度変化を考慮した運動モデルに切り換える等加速度運動モデル切り換えステップをさらに備えた
    ことを特徴とする目標追尾方法。
  9. 目標を観測して観測ベクトルを得る観測ステップと、
    目標の状態ベクトルの予測ベクトルを演算する予測ステップと、
    目標の状態ベクトルの平滑ベクトルを演算する平滑ステップと、
    所望の方向の単位ベクトルを格納した方向ベクトルデータベースから入力した所望方向の単位ベクトルと、前記観測ステップにより観測された観測ベクトルのうち、前記予測ステップで演算された予測ベクトルに最も近い観測ベクトルから前記予測ベクトルを減算することで得られる残差ベクトルを正規化した正規化後の残差ベクトルとの内積を算出する方向ベクトル内積演算ステップと、
    前記方向ベクトル内積演算ステップにより算出された隣り合うサンプリングにおける内積の変化量をスレショルド判定して特定方向の加速度変化または速度変化を検出する加速度変化検出ステップと、
    前記加速度変化検出ステップにて加速度変化または速度変化が検出された場合に前記予測ステップで用いる運動モデルを加速度変化または速度変化を考慮した運動モデルに切り換える加速度変化運動モデル切り換えステップと
    を備えた目標追尾方法。
  10. 目標を観測して観測ベクトルを得る観測ステップと、
    目標の状態ベクトルの予測ベクトルを演算する予測ステップと、
    目標の状態ベクトルの平滑ベクトルを演算する平滑ステップと、
    前記観測ステップにより観測された観測ベクトルのうち、前記予測ステップで演算された予測ベクトルに最も近い観測ベクトルから前記予測ベクトルを減算することで得られる残差ベクトルを観測ベクトルの予測誤差共分散行列を用いて正規化後、連続する過去2サ ンプルの正規化後の残差ベクトルの内積を算出する隣接残差内積演算ステップと、
    前記隣接残差内積演算ステップにより算出された内積の値によりある一定方向速度変化を検出する加速度検出ステップと
    を備えた目標追尾方法。
  11. 請求項10に記載の目標追尾方法において、
    前記加速度検出ステップにて速度変化が検出された場合に前記予測ステップで用いる運動モデルを速度変化を考慮した運動モデルに切り換える等加速度運動モデル切り換えステップをさらに備えた
    ことを特徴とする目標追尾方法。
  12. 目標を観測して観測ベクトルを得る観測ステップと、
    目標の状態ベクトルの予測ベクトルを演算する予測ステップと、
    目標の状態ベクトルの平滑ベクトルを演算する平滑ステップと、
    前記観測ステップにより観測された観測ベクトルのうち、前記予測ステップで演算された予測ベクトルに最も近い観測ベクトルから前記予測ベクトルを減算することで得られる残差ベクトルを観測ベクトルの予測誤差共分散行列を用いて正規化後、連続する過去2サンプルの正規化後の残差ベクトルの内積を算出する隣接残差内積演算ステップと、
    前記隣接残差内積演算ステップにより算出された隣り合うサンプリングにおける内積の変化量をスレショルド判定して特定方向の加速度変化または速度変化を検出する加速度変化検出ステップと、
    前記加速度変化検出ステップにて加速度変化または速度変化が検出された場合に前記予測ステップで用いる運動モデルを加速度変化または速度変化を考慮した運動モデルに切り換える加速度変化運動モデル切り換えステップと
    を備えた目標追尾方法。
JP2001359939A 2001-11-26 2001-11-26 目標追尾装置及び方法 Expired - Fee Related JP3970585B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001359939A JP3970585B2 (ja) 2001-11-26 2001-11-26 目標追尾装置及び方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001359939A JP3970585B2 (ja) 2001-11-26 2001-11-26 目標追尾装置及び方法

Publications (2)

Publication Number Publication Date
JP2003161778A JP2003161778A (ja) 2003-06-06
JP3970585B2 true JP3970585B2 (ja) 2007-09-05

Family

ID=19170845

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001359939A Expired - Fee Related JP3970585B2 (ja) 2001-11-26 2001-11-26 目標追尾装置及び方法

Country Status (1)

Country Link
JP (1) JP3970585B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5196971B2 (ja) * 2007-11-27 2013-05-15 三菱電機株式会社 目標追尾装置
JP2014041547A (ja) * 2012-08-23 2014-03-06 Nippon Telegr & Teleph Corp <Ntt> 時系列データ解析装置、方法、及びプログラム

Also Published As

Publication number Publication date
JP2003161778A (ja) 2003-06-06

Similar Documents

Publication Publication Date Title
US6581007B2 (en) System, method, and program for detecting approach to object
JP5784526B2 (ja) 目標追跡装置
US20070211917A1 (en) Obstacle tracking apparatus and method
JP4116898B2 (ja) 目標追尾装置
JP4966794B2 (ja) 水中航走体誘導方法及び装置
CN112912759A (zh) 物体跟踪装置
JP3970585B2 (ja) 目標追尾装置及び方法
WO2020148894A1 (ja) 運動状態判定装置
JP2002341024A (ja) 多目標追尾装置
JP3774093B2 (ja) 追尾処理装置及び方法
JP3926602B2 (ja) 目標追尾装置及び方法
CN113280821A (zh) 基于斜率约束和回溯搜索的水下多目标跟踪方法
JP3440010B2 (ja) 目標追尾装置
JP3848846B2 (ja) 追尾装置
JP2001228245A (ja) 目標追尾装置および目標追尾方法
JP2843910B2 (ja) 多目標追尾装置
JP2002286838A (ja) 目標追尾装置及び目標追尾方法
JP2013253760A (ja) 誘導装置
JPH0643241A (ja) 多目標追尾方法及びその装置
Hashirao et al. Maneuver target tracking with an acceleration estimator using target past positions
JP3583666B2 (ja) 追尾装置
JPH05297947A (ja) 多目標追尾装置
JP3411485B2 (ja) 目標追尾装置
JP2005098840A (ja) 飛しょう体の誘導装置
JP2001289944A (ja) 航跡追尾方法およびその装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041018

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060627

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060704

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060901

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070320

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070516

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070605

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070606

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100615

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110615

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120615

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130615

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees