JP3943305B2 - スペクトル拡散受信装置、およびスペクトル拡散受信方法 - Google Patents

スペクトル拡散受信装置、およびスペクトル拡散受信方法 Download PDF

Info

Publication number
JP3943305B2
JP3943305B2 JP2000010410A JP2000010410A JP3943305B2 JP 3943305 B2 JP3943305 B2 JP 3943305B2 JP 2000010410 A JP2000010410 A JP 2000010410A JP 2000010410 A JP2000010410 A JP 2000010410A JP 3943305 B2 JP3943305 B2 JP 3943305B2
Authority
JP
Japan
Prior art keywords
signal
delay profile
delay
value
correlation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000010410A
Other languages
English (en)
Other versions
JP2001203608A (ja
Inventor
和明 石岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2000010410A priority Critical patent/JP3943305B2/ja
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to US09/926,124 priority patent/US6912243B1/en
Priority to KR10-2001-7011873A priority patent/KR100406667B1/ko
Priority to DE2000608355 priority patent/DE60008355T2/de
Priority to CNB00805214XA priority patent/CN1161890C/zh
Priority to EP20000931709 priority patent/EP1164710B1/en
Priority to CA 2360979 priority patent/CA2360979A1/en
Priority to PCT/JP2000/003661 priority patent/WO2001054294A1/ja
Publication of JP2001203608A publication Critical patent/JP2001203608A/ja
Application granted granted Critical
Publication of JP3943305B2 publication Critical patent/JP3943305B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/707Spread spectrum techniques using direct sequence modulation
    • H04B1/7097Interference-related aspects
    • H04B1/711Interference-related aspects the interference being multi-path interference
    • H04B1/7115Constructive combining of multi-path signals, i.e. RAKE receivers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/707Spread spectrum techniques using direct sequence modulation
    • H04B1/7097Interference-related aspects
    • H04B1/711Interference-related aspects the interference being multi-path interference
    • H04B1/7113Determination of path profile
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/707Spread spectrum techniques using direct sequence modulation
    • H04B1/7097Interference-related aspects
    • H04B1/711Interference-related aspects the interference being multi-path interference
    • H04B1/7115Constructive combining of multi-path signals, i.e. RAKE receivers
    • H04B1/7117Selection, re-selection, allocation or re-allocation of paths to fingers, e.g. timing offset control of allocated fingers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/707Spread spectrum techniques using direct sequence modulation
    • H04B1/7097Interference-related aspects
    • H04B1/711Interference-related aspects the interference being multi-path interference
    • H04B1/7115Constructive combining of multi-path signals, i.e. RAKE receivers
    • H04B1/712Weighting of fingers for combining, e.g. amplitude control or phase rotation using an inner loop

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Noise Elimination (AREA)
  • Mobile Radio Communication Systems (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、スペクトル拡散受信装置に関するものであって、特にRAKE合成に適した信号を検出するRAKE合成信号の検出に関する。
【0002】
【従来の技術】
DS−CDMA(直接拡散CDMA)方式を用いて通信するスペクトル拡散受信装置は、情報信号を送信するとき、情報信号にQPSK等の一次変調を施した後、PN系列等の拡散符号を用いて拡散変調して送信する。受信側のスペクトル拡散受信装置は、受信したスペクトル拡散信号と所定の参照用拡散符号の相関値を演算して拡散符号の同期位相を検出し、検出した同期位相に基づいて生成した逆拡散符号を用いて受信スペクトル拡散信号を逆拡散する。そして、逆拡散した信号を情報復調することにより情報信号を取り出す。
【0003】
移動通信環境においては、送信信号のうち一部は、ビルなどの建造物や地形により反射、回折、散乱され、異なる経路を経由して異なる時間に受信側に到達する。例えば、建造物で反射して受信側に到達した反射波は、送信側から受信側に直接到達した直接波に比べて経路長が長いため時間的に遅れて到達する。反射波など時間的に遅れて到達した遅延波と直接波の到達時間差はおよそ数十マイクロ秒程度になる。送信側から受信側に到達する信号の経路をパスといい、送信信号が複数のパスを経由して到来する通信環境のことをマルチパスという。マルチパス環境下では、同じスペクトル拡散信号が異なる時間に複数到達するため、受信側は遅延時間の異なる複数のパスの信号が重畳された多重波を受信することになる。移動体通信では送信側または受信側が動くので、位相の合成具合が常に変化しており、多重波の振幅が変わるフェージングが発生する。
【0004】
RAKE受信器は、受信した多重波を逆拡散して所定のパスの信号を分離する複数のRAKEフィンガから出力された信号をコンバイナでRAKE合成(最大比合成)して受信信号レベルに応じた重み付けを行う。RAKE受信を行うことにより、受信したマルチパス信号の熱雑音や干渉に対する信号電力比を向上させることができ、ダイバーシチ受信を実現できる。しかしながら、多重波から各パスの信号を逆拡散してRAKE合成するためには、RAKE合成に適したパスの信号を複数個選択する必要がある。
【0005】
RAKE合成に適したパスの信号の選択は、受信スペクトル拡散信号と所定の参照用拡散符号より演算された相関値とその遅延時間をサンプル点ごとに示す遅延プロファイルを用いて行われる。遅延プロファイルのサンプル点のうち相関電力値が大きい信号に情報信号が含まれていると考えられる。したがって、RAKE合成に適したパスの信号の選択は、相関電力値が大きいサンプル点から選択することになる。例えば、逆拡散するRAKEフィンガを3組備えたスペクトル拡散受信装置の場合、RAKE合成できるパス数は3パスであるため、図18に示すように相関値が大きい順に3つサンプル点を検出することによりパスの信号を選択する方法がある。
【0006】
図18に示すサンプル点間の熱雑音や干渉に時間相関がなければ、相関値が大きい順にサンプル点を検出し、検出したサンプル点の遅延時間に応じてそれぞれ逆拡散した信号をRAKE合成すると、RAKE合成後の干渉+熱雑音で規格化した信号電力Scは最大となり次式で表わすことができる。Siは第iの検出パスタイミングにおける相関電力値を示す。
【0007】
【数1】
Figure 0003943305
【0008】
しかしながら、実際のサンプル点間の熱雑音や干渉には時間相関があるため、単純に相関値が大きい順に検出したパスの信号をRAKE合成したのでは信号電力Scはより小さな値となる。具体的には次式で表わされる。ただし、s=(s1、s2、s3)Tである。また、siはタイミングiに対応する相関値を示す。
【0009】
【数2】
Figure 0003943305
【0010】
【数3】
Figure 0003943305
【0011】
ρijはタイミングi、j間のノイズや干渉の時間相関係数を表わす。つまり、検出するサンプル点の間隔が狭いほど、いいかえれば、受信側に到達した時刻が極めて近い場合(遅延プロファイルにおいて遅延時間が近接している場合)、これらの信号間の熱雑音や干渉の時間相関は大きくなる。サンプル点間の熱雑音や干渉の時間相関による影響を排し、干渉+熱雑音で規格化した信号電力を大きくするため、図19に示すように、検出したサンプル点とは遅延時間が充分に離れたサンプル点より、相関値が大きいサンプル点を順に検出する方法がある。
【0012】
また、特開平10−336072号公報に開示された従来発明は、図20に示す遅延プロファイルのうち、相関値が最も大きいサンプル点を選択して第1のパスを検出する(図20(a))。そして、既に検出したサンプル点に対して±k個(kは自然数)の範囲内に位置するサンプル点を選択対象から除外し、±k個(kは自然数)の範囲外のサンプル点から最も相関値が大きいサンプル点を選択して第2のパスを検出する(図20(b))。そして、第2のパスのサンプル点に対して±k個の範囲外のサンプル点から最も相関値が大きいサンプル点を選択して第3のパスを検出する(図20(c))。以上説明したように、選択するサンプル点の間隔をkサンプル以上にして、RAKE合成に適したパスを選択する方法もある。
【0013】
また、特開平10−308688号公報に開示された従来発明は、フェージング変動や送受信のキャリア周波数偏差の影響を排除して平均化を行なうために電力に変換して巡回積分を行い遅延プロファイルを作成する。そして、理想的な受信信号と参照符号の逆拡散結果の理論値を求め、疑似相関除去部により相関値の最大振幅部分を除いた部分を遅延プロファイルから差し引くことにより遅延プロファイルをインパルス状にしてから、RAKE合成するパスを検出する方法が示されている。また、理想的な受信信号と参照符号の逆拡散結果の理論値と受信信号の行列演算によりRAKE合成するパスを検出する方法も示されている。
【0014】
【発明が解決しようとする課題】
以上説明したように、マルチパス環境下では送信されたスペクトル拡散信号が複数のパスを経由して異なる時間に到達するため、受信側は遅延時間の異なる信号が重畳された多重波を受信することになる。したがって、マルチパスフェージングの影響を除去するためには、所定の参照用拡散符号と受信多重信号の相関値を演算して作成した遅延プロファイルより、RAKEフィンガの個数分パスの信号を選択し、選択されたパス信号の遅延時間に応じて多重波を逆拡散することによりパスの信号を分離し、分離されたパスの信号をRAKE合成することにより、干渉+熱雑音に対する信号電力比を改善させる必要がある。したがって、RAKE合成による信号電力比の改善効果を最適にするためには、RAKE合成に適したパスの信号をいかに選択するかが重要となる。
【0015】
例えば、選択されたパス間で熱雑音や干渉の時間相関が非常に大きい場合にはRAKE合成による信号電力比の改善効果は少ない。また、RAKE合成することにより却って信号電力の特性が劣化することもあり得る。このように、RAKE合成による信号電力比改善効果は、各パス信号の熱雑音と干渉の時間相関に大きく依存している。また、RAKE合成復調器を構成するRAKEフィンガ数には限りがあるので、熱雑音や干渉の時間相関が大きなパス信号はRAKE合成せず、熱雑音や干渉の時間相関が小さなパス信号をRAKE合成する方が、単純に相関値が大きい順に合成するよりもRAKE合成の効果は大きくなる。
【0016】
特開平10−336072号公報に開示された従来発明によると、第1のパスとして検出したサンプル点に対して±k個の範囲内に位置するサンプル点を第2のパスの選択対象から除外するので、RAKE合成することにより特性が改善できるサンプル点であっても第2のパスとして検出できないという問題がある。さらに、第1のパスとして検出したサンプル点に対して±k個の範囲外に位置するサンプル点を、熱雑音や干渉の時間相関に関わらず相関値が大きければ第2のパスとして検出するので、RAKE合成することにより特性が劣化する可能性もある。つまり、従来発明は、熱雑音や干渉の時間相関を考慮して各パスを検出していないため、検出した各パスの信号の遅延時間に応じて逆拡散した信号をRAKE合成すると却って信号特性が劣化する可能性がある。
【0017】
また、特開平10−308688号公報に開示された従来発明によると、電力に変換して巡回積分を行って遅延プロファイルを作成する。しかし、この遅延プロファイルは電力に変換した影響が考慮されていないため、RAKE合成するのに最適なパスを検出することができない。また、特開平10−308688号公報に開示された従来発明によると、遅延プロファイルをインパルス状にしてからRAKE合成するパスを検出する。しかし、RAKE合成して特性が改善できるパスであっても切り捨ててしまい、また、RAKE合成することにより特性が劣化するパスであっても電力が大きければ検出してしまうという問題がある。また、電圧レベルで巡回加算を行い、電圧レベルで遅延プロファイルを補正しているが、電圧レベルの遅延プロファイルの信号対干渉比は劣悪で補正を行なうことが困難である。
【0018】
拡散符号がシンボル周期より長い長周期拡散符号が用いられた場合や、既知送信シンボル列の長さが長い場合は、受信信号と参照符号の逆拡散結果の理論値を求める演算は膨大なものとなり装置の回路規模が大きくなってしまう。したがって、RAKE合成パスタイミングの検出のたびに膨大な演算処理を行うことにより消費電力が増大する。例えば、都市部でセル半径10km、チップレート4MHz程度を考えると遅延の広がりは256チップ程度考慮する必要があり、4倍のオーバサンプルで動作すると1024×1024程度の行列を逆行列する必要がある。これは高速で移動する移動局の伝搬環境に追従してRAKE合成に適したパスの信号を検出するにはあまりにも演算量が膨大で現実的ではない。また、この逆行列は必ず存在する保証がなく、逆行列が存在せずRAKE合成パスタイミングが検出できない場合がある。
【0019】
また、特開平10−308688に開示された従来発明によると、遅延プロファイルを補正する疑似相関除去部とRAKE合成するパスを検出する同期検出部が別構成となっているので、ハードウエアの規模が大きくなり、消費電力も増大するという問題がある。
【0020】
本発明は、以上説明した問題点を解決するためになされたもので、熱雑音や干渉の時間相関を考慮してRAKE合成に適したパスの信号を選択するとともに、選択したパス信号をRAKE合成することにより干渉、熱雑音に対する信号電力比を改善するスペクトル拡散受信装置を提供することを目的とする。
【0021】
【課題を解決するための手段】
この発明に係るスペクトル拡散受信装置は、拡散変調して送信されたスペクトル拡散信号を、所定時間遅延させた逆拡散符号を用いて逆拡散することにより、所定の遅延時間の信号を前記スペクトル拡散信号より分離する複数の逆拡散手段、これらの逆拡散手段が逆拡散した信号をRAKE合成する合成手段、前記逆拡散手段に供給される逆拡散符号を外部から入力された遅延制御信号に応じて遅延させる遅延手段を有するRAKE合成手段と、
前記スペクトル拡散信号と参照用拡散符号の相関値を電力に変換した相関電力値とその遅延時間より遅延プロファイルを作成する遅延プロファイル作成手段、干渉と熱雑音の時間相関より予め演算された補正係数を遅延時間の偏差ごとに記憶する補正係数記憶手段、相関電力値が最大となる信号の遅延時間と前記遅延プロファイルの信号の遅延時間の偏差を測定し、測定した偏差に応じて前記補正係数記憶手段から読み出した補正係数と前記遅延プロファイルのうち最大の相関電力値を乗算した乗算値を用いて前記遅延プロファイルの相関電力値を補正する遅延プロファイル補正手段、前記遅延プロファイル作成手段が作成した遅延プロファイルのうち相関電力値が最大になる信号を検出し、検出された信号の遅延時間を第一の遅延制御信号として、前記遅延プロファイル補正手段が補正した遅延プロファイルのうち相関電力値が最大になる信号の遅延時間を第二の遅延制御信号として前記遅延手段に出力する信号検出手段を有するRAKE合成信号検出手段を備えたものである。
【0022】
また、この発明に係るスペクトル拡散受信装置は、遅延プロファイルの相関電力値の平均値を演算する平均値演算手段を有し、前記遅延プロファイルのうち最大の相関電力値から前記平均値演算手段が演算した平均値を減算した値と補正係数を乗算する遅延プロファイル補正手段を備えたものである。
【0023】
また、この発明に係るスペクトル拡散受信装置は、相関電力値を所定のしきい値と比較して、相関電力値が所定のしきい値以上か判定するしきい値判定手段を備え、前記しきい値よりも大きい相関電力値より遅延プロファイルを作成する遅延プロファイル作成手段を備えたものである。
【0024】
また、この発明に係るスペクトル拡散受信装置は、しきい値判定手段によりしきい値よりも相関電力値が大きい信号の相関電力値を記憶する相関電力値記憶手段と、前記しきい値よりも相関電力値が大きい信号の遅延時間を記憶する遅延時間記憶手段を有する遅延プロファイル作成手段を備えたものである。
【0025】
この発明にかかるスペクトル拡散受信方法は、受信スペクトル拡散信号と参照用拡散符号の相関値より作成した遅延プロファイルより相関値が大きい信号を複数個検出し、検出した信号の遅延時間に応じて遅延させた逆拡散符号を用いて前記受信スペクトル拡散信号より分離した信号をRAKE合成するスペクトル拡散受信方法において、
前記相関値を電力に変換した相関電力値より遅延プロファイルを作成する遅延プロファイル作成工程と、
この遅延プロファイル作成工程において作成された遅延プロファイルより相関電力値が最大になる信号の遅延時間を検出する第1のRAKE合成信号検出工程と、
この第1のRAKE合成信号検出工程において検出された前記遅延時間と前記遅延プロファイルの他の信号の遅延時間の偏差を測定し、干渉と熱雑音の時間相関より予め演算されて偏差ごとに記憶された補正係数のうち、前記偏差に対応する補正係数と前記第1のRAKE合成信号検出工程が検出した信号の相関電力値を用いて前記遅延プロファイルを補正する遅延プロファイル補正工程と、
この遅延プロファイル補正工程において補正された遅延プロファイルより相関電力値が最大になる信号の遅延時間を検出する第2のRAKE合成信号検出工程を含むものである。
【0026】
また、この発明にかかるスペクトル拡散受信方法は、遅延プロファイルの相関電力値の平均値を演算するとともに、演算された平均値を用いて前記遅延プロファイルの相関電力値を補正する遅延プロファイル補正工程を含むものである。
【0027】
また、この発明にかかるスペクトル拡散受信方法は、相関電力値と所定のしきい値を比較するとともに、相関電力値が前記しきい値よりも大きい信号より遅延プロファイルを作成する遅延プロファイル作成工程を含むものである。
【0028】
【発明の実施の形態】
実施の形態1.
図1は本発明に係るスペクトル拡散受信装置の構成を示すブロック図である。図2はRAKE合成パスタイミング検出器の構成を示すブロック図である。図1において、1はアンテナ、2はRF増幅器、3A、3Bはミクサ、4は局部発振器、5は90°移相器、6A、6Bは低域通過フィルタ、7A、7BはA/D変換器、8はRAKE合成パスタイミング検出器、9はRAKE合成復調器、10はディジタル処理回路である。
【0029】
次に構成および動作について説明する。局部発振器4は、希望信号にほぼ等しい周波数の局部発振信号をミクサ3A、3Bに供給する。ミクサ3Bと局部発振器4の間には90°移相器5が設けられている。この90°移相器5は局部発振器4から出力された局部発振信号を90度移相してミクサ3Bに出力する。また、これらのミクサ3A、3Bには局部発振信号のほか、アンテナ1を介して入力され、RF増幅器2において増幅されるとともに2チャンネルに分配された受信多重信号が入力される。ミクサ3A、ミクサ3B、局部発振器4、90°移相器5は受信したスペクトル拡散信号を直交検波してIチャネルベースバンド信号、Qチャネルベースバンド信号を出力する。
【0030】
低域通過フィルタ6Aは、ミクサ3AからIチャネルベースバンド信号が入力され、低域通過フィルタ6Bは、ミクサ3BからQチャネルベースバンド信号が入力される。低域通過フィルタ6Aおよび低域通過フィルタ6BはIチャネルベースバンド信号とQチャネルベースバンド信号を濾波して希望信号を取り出すものである。濾波されたIチャネルベースバンド信号、Qチャネルベースバンド信号はA/D変換器7A、7Bに出力されて、アナログ信号からディジタル信号に変換される。
【0031】
A/D変換器7AおよびA/D変換器7Bは、アナログ信号であるIチャネルベースバンド信号とQチャネルベースバンド信号をサンプリング等の処理を行ってディジタル信号に変換し、Iチャネルディジタル信号、Qチャネルディジタル信号をRAKE合成パスタイミング検出器8およびRAKE合成復調器9に出力する。
【0032】
次にRAKE合成パスタイミング検出器8、RAKE合成復調器9について説明する。マルチパス環境下では送信されたスペクトル拡散信号が複数のパスを経由して異なる時間に到達するため、受信側は遅延時間の異なる信号が重畳された多重波を受信することは既に説明した。したがって、マルチパスフェージングの影響を除去するためには、所定の参照用拡散符号とIチャネル、Qチャネルディジタル信号(この時点では複数のパスの信号が含まれた多重信号である)の相関値を演算して作成した遅延プロファイルより、RAKE合成に適したパスの信号をRAKEフィンガの個数分選択し、選択されたパス信号の遅延時間に応じて多重波を逆拡散することによりパスの信号を分離し、分離されたパスの信号をRAKE合成する必要がある。
【0033】
遅延プロファイルを作成して、RAKE合成に適したパスの信号を選択するとともに選択された信号の遅延時間を遅延制御信号として出力するのがRAKE合成パスタイミング検出器8であり、RAKE合成パスタイミング検出器8が検出したパス信号の遅延時間に応じて遅延させた逆拡散コードを用いて多重波を逆拡散して所定のパスの信号を分離し、分離されたパスの信号をRAKE合成するとともに、情報復調するのがRAKE合成復調器9である。RAKE合成パスタイミング検出器8は検出したパス信号の遅延時間を遅延制御信号としてRAKE合成復調器9に出力し、RAKE合成復調器9は、RAKE合成パスタイミング検出器8から出力された遅延制御信号に応じて遅延させた逆拡散符号を用いて多重信号を逆拡散し、逆拡散した各パスの信号をRAKE合成することにより干渉+熱雑音に対する信号電力比を最適に改善することが可能となる。RAKE合成復調器9において逆拡散およびRAKE合成され、情報復調された復調信号はディジタル処理回路10にて誤り訂正処理等がなされて情報信号が再現される。
【0034】
図2は、図1に示すスペクトル拡散受信装置の備えられたRAKE合成タイミング検出器8の構成を示すブロック図である。図2において、11はマッチドフィルタ、12は電圧巡回積分器、13は電力変換器、14は切り換え手段、15は加算器、16は電力巡回積分メモリ、17はアドレス生成手段、18は最大値検出器、19は偏差測定器、20は補正係数ROM、21は乗算器である。図2に示すRAKE合成パスタイミング検出器8は、所定の参照用拡散符号とIチャネル、Qチャネルディジタルデータの相関値を演算して遅延プロファイルを作成する遅延プロファイル作成モードと、RAKE合成に適したパスの信号をRAKEフィンガの個数分選択するRAKE合成パスタイミング検出モードの2つの動作モードを切り換えながら動作する。
【0035】
次に図2に示すRAKE合成パスタイミング検出器8の構成と動作について説明する。遅延プロファイルを作成するときには、切り換え手段14は電力変換器13と加算器15間で信号経路を形成するように切り換える。遅延プロファイル作成モードにおいて、A/D変換器7Aから出力されたIチャネルディジタルデータ、およびA/D変換器7Bから出力されたQチャネルディジタルデータはマッチドフィルタ11に入力される。マッチドフィルタ11は所定の参照用拡散符号とIチャネルディジタルデータおよびQチャネルディジタルデータの相関演算を行い1サンプルごとに相関値を電圧巡回積分器12に出力する。マッチドフィルタ11はトランスバーサルフィルタであり、データシフトレジスタを備えトランスバーサルフィルタの重み係数として参照用拡散符号を入力したものでサンプルごとに相関値を出力する。
【0036】
図3はマッチドフィルタ11の出力を示す図である。図3において、(a)、(b)、(c)、(d)はそれぞれ異なるタイミングのマッチドフィルタ11出力である。しかし、マッチドフィルタ11の出力段では熱雑音や他チャンネル干渉が多く、殆ど信号成分を観測することはできない。そこで、電圧巡回積分器12は、マッチドフィルタ11からサンプルごとに出力された図3(a)〜(d)に示す相関値を遅延時間ごとに対し合わせる巡回積分を行い、干渉と熱雑音に対する信号電力比を改善させる。図4は電圧巡回積分器12の出力を示す図である。電圧巡回積分器12における巡回積分の結果、図4では図3に比べて鋭いピークが現れており、信号らしきレベルを観測することができる。つまり、電圧巡回積分によって干渉と熱雑音に対する信号電力比が不十分ながら改善されていることがわかる。
【0037】
電圧巡回積分器12が出力した相関値の干渉+熱雑音に対する信号電力比を改善するにはさらに電圧巡回積分する必要がある。しかし、フェージング変動や送受信間の搬送波周波数偏差の影響でこれ以上電圧巡回積分しても同相で加算することができない。そこで、電力計算器13は図4(a)〜(d)に示す相関値を遅延時間ごとに電力に変換し、切り換え手段14を介して加算器15、電力巡回積分メモリ16に出力する。そして、加算器15と電力巡回積分メモリ16は、電力計算器13から出力された相関電力値を遅延時間ごとに対し合わせる電力巡回積分を行うことにより干渉+熱雑音に対する信号電力比をさらに改善させる。巡回積分することにより干渉+熱雑音に対する信号電力比が改善された相関電力値は電力巡回積分メモリ16に書き込まれる。
【0038】
また、アドレス生成手段17は、それぞれ所定の相関電力値を有するサンプル点を識別するためのアドレスとしてアドレス番号を電力巡回積分メモリ16に出力する。以上の処理により、それぞれ所定の相関電力値を有するサンプル点が遅延時間ごとに配列されて、それぞれアドレス番号を付されたサンプル点を記録した遅延プロファイルが作成される。作成された遅延プロファイルは電力巡回積分メモリ16に記憶される。図5は遅延プロファイルを示す図である。図5に示す遅延プロファイルによると、64個のサンプル点のうち、アドレス番号が20〜30のサンプル点の相関電力が大きいことが分かる。図2に示すRAKE合成パスタイミング検出器8は、以上の処理により作成された遅延プロファイルを用いてRAKE合成に適したパスの信号を選択する。
【0039】
遅延プロファイルを用いてRAKE合成に適したパスの信号を選択し、その遅延時間を検出するRAKE合成パスタイミング検出を行うときには、切り換え手段14は乗算器21と加算器15間で信号経路を形成するように切り換える。以下、RAKE合成パスタイミング検出について図2と図6〜図8を用いて説明する。図6は第1のパス検出に用いる遅延プロファイルと第1のパス検出を説明する説明図である。図7は第2のパス検出に用いる遅延プロファイルと第2のパス検出を説明する説明図である。図8は第3のパス検出に用いる遅延プロファイルと第3のパス検出を説明する説明図である。また、RAKE合成パスタイミング検出を説明する数値を表1に示す。
【0040】
【表1】
Figure 0003943305
【0041】
表1のうち、「第1のパス検出時の相関電力値」の欄に示す数値は、図6に示す遅延プロファイルのサンプル点の相関電力値を示す。また、表1の「第2のパス検出時の相関電力値」および「第3のパス検出時の相関電力値」は、それぞれ図7、図8に示す遅延プロファイルのサンプル点の相関電力値を示す。
【0042】
RAKE合成パスタイミング検出モードにおいて、最大値検出器18は、電力巡回積分メモリ16から遅延プロファイルを読み出し、表1に示す各サンプル点の相関電力値を比較する。そして、表1および図6に示すように、相関電力値が211のサンプル点を第1のパスとして選択して、その相関電力値(211)を検出相関値として乗算器21に出力する。また、最大値検出器18は、第1のパスとして選択したサンプル点の遅延時間を遅延制御信号としてRAKE合成復調器9に出力し、また、アドレス番号(24)を図2に示すyとして偏差測定器19に出力する。偏差測定器19には図2に示すxとして、アドレス生成手段17から遅延プロファイルの全てのアドレス番号(1〜64)が順に入力される。
【0043】
偏差測定器19はxとして入力されたアドレス番号(1〜64)と、yとして入力されたアドレス番号(24)の偏差の絶対値(|x−y|)を演算する。例えば、アドレス番号1(x=1)のサンプル点とアドレス番号24(y=24)のサンプル点の偏差の絶対値は|1−24|=23となる。また、アドレス番号が23、25(x=23、x=25)の信号は双方とも偏差が1となる。受信側への到達時間が極めて近い信号、すなわち、偏差が近い信号同士は互いに干渉しやすいので、遅延時間が近接した信号をRAKE合成するパスとして選択するのは不適である。つまり、偏差測定器19が行う処理は、第1のパスとして選択したアドレス番号24のサンプル点の遅延時間に対する他のサンプル点の遅延時間の偏差を測定して、第1のパスとRAKE合成するのに適したパスと不適なパスを区別するために行うものである。偏差測定器19は演算した偏差の絶対値を補正係数ROM20に出力する。補正係数ROM20には偏差(0〜10)に対応する補正係数が記憶される。偏差に対応した補正係数の一例を表2に示す。
【0044】
【表2】
Figure 0003943305
【0045】
補正係数ROM20に記憶される補正係数は干渉や熱雑音の時間相関から求められる。まず、理想的な時間相関は以下の式で表される。
【0046】
【数4】
Figure 0003943305
【0047】
また、熱雑音の時間相関は以下の式で表される。
【0048】
【数5】
Figure 0003943305
【0049】
そして、受信信号に想定される干渉電力と熱雑音の比率をa:a−1(a=0.8)として補正係数を以下の式で演算する。
【0050】
【数6】
Figure 0003943305
【0051】
さらにディジタルで時間が離散系となっているためのタイミングジッタを考慮して、
【0052】
【数7】
Figure 0003943305
【0053】
さらに、ノイズにより遅延プロファイルにばらつきがあることを考慮して、係数k(k=1.1)を乗じる。また、必要に応じて、検出した信号の±1/2chip以内に割り当てを行わないなど条件を付けて以下の式で補正係数を演算する。
【0054】
【数8】
Figure 0003943305
【0055】
以上説明したように補正係数は干渉や熱雑音の時間相関より求められる。またタイミング差が2/4chip程度では、割り当ては行われないのでタイミング差が0から2では係数は−1以下の値ならどのような値でも用いることができる。補正係数ROM20は、偏差測定器19が出力した偏差の絶対値に応じて補正係数を読み出して乗算器21に順に出力する。例えば、表2に示すように、偏差測定器19から入力された偏差が0〜2であれば−1を、偏差が3であれば−0.15を、偏差が10であれば−0.02を乗算器21に出力する。また、偏差が11以上の場合には0を出力する。相関電力値が最も大きいサンプル点のアドレス番号は24であるため、偏差が10以内のサンプル点はアドレス番号が14から34のサンプル点である。補正係数ROM20はアドレス番号が14〜34のサンプル点の相関電力値を補正するための係数をアドレス番号順に出力する。
【0056】
乗算器21は最大値検出器18が出力した検出相関値(211)と補正係数ROM20が出力したアドレス番号が14〜34に対応する補正係数を乗算して、乗算結果を切り換え手段14を介して加算器15に出力する。乗算結果は表1の「検出相関値に補正係数を乗じた値」の欄に示すとおりである。例えば、偏差が10であるアドレス番号14の場合、補正係数−0.02を検出相関値211に乗算して、乗算結果−4.2を加算器15に出力する。アドレス番号15〜34についても同様に補正係数と検出相関値を乗算し加算器15に出力する。加算器15は、乗算器21から出力された乗算結果と、対応するアドレス番号の相関電力値を加算して遅延プロファイルの相関電力値を補正する。補正結果は表1の「第2のパス検出時の相関電力値」の欄に示すとおりである。
【0057】
例えば、アドレス番号が14の相関電力値は、もとの相関電力値26.8と乗算結果−4.2が加算された結果22.6に補正される。同様にアドレス番号15〜34の相関電力値も補正される。なお、検出相関値のアドレス番号24に対する偏差が2以内のアドレス番号22〜26のサンプル点の相関電力値はいずれも0に補正される。以上説明した処理により補正された、表1の「第2のパス検出時の相関電力値」に示す相関電力値は電力巡回積分メモリ16に出力されて、図7に示す第2のパス検出用の遅延プロファイルが作成される。
【0058】
第2のパス検出も第1のパス検出と同様の処理で行われる。すなわち、最大値検出器18は、電力巡回積分メモリ16から第2のパス検出時の遅延プロファイルを読み出し、表1の「第2のパス検出時の相関電力値」に示す各サンプル点の相関電力値を比較する。そして、図7に示すように、相関電力値が118のサンプル点を第2のパスとして選択して、その相関電力値(118)を検出相関値として乗算器21に、そのサンプル点の遅延時間を遅延制御信号としてRAKE合成復調器9に出力する。また、最大値検出器18はアドレス番号(29)を図2に示すyとして偏差測定器19に出力する。偏差測定器19はxとして入力されたアドレス番号(1〜64)と、yとして入力されたアドレス番号(29)の偏差の絶対値(|x−y|)を演算し、偏差の絶対値を補正係数ROM20に出力する。補正係数ROM20は、偏差測定器19が出力した偏差の絶対値に応じて補正係数を読み出して乗算器21に出力する。
【0059】
乗算器21は最大値検出器18が出力した検出相関値(118)と補正係数ROM20が出力した補正係数を乗算して、乗算結果を切り換え手段14を介して加算器15に出力する。加算器15は、乗算器21から出力された乗算結果と、表1に示す対応するアドレス番号の相関電力値を加算して遅延プロファイルの相関電力値を補正し、電力巡回積分メモリ16に出力する。以上説明した処理によって、図7に示す第2のパス検出に用いられた遅延プロファイルは補正され、図8に示す第3のパス検出に用いる遅延プロファイルが作成される。
【0060】
第3のパス検出は図8に示す遅延プロファイルを用いて行われる。すなわち、最大値検出器18は、電力巡回積分メモリ16から第3のパス検出時の遅延プロファイルを読み出し、相関電力値が最も大きい(80.2 アドレス番号20)サンプル点を第3のパスとして選択して、そのサンプル点の遅延時間を遅延制御信号としてRAKE合成復調器9に出力する。検出するべきパス数は3つなので、遅延プロファイルの補正を行う必要はなく、偏差測定器19、乗算器21への信号出力は行わない。以上説明したように、RAKE合成パスタイミング検出器8は、第1のパスとして選択したアドレス番号24のサンプル点の遅延時間、第2のパスとして選択したアドレス番号29のサンプル点の遅延時間、第3のパスとして選択したアドレス番号20のサンプル点の遅延時間を遅延制御信号としてRAKE合成復調器9に出力することにより、RAKE合成復調器が逆拡散するパス信号が特定される。
【0061】
次にRAKE合成復調器9について説明する。図9はRAKE合成復調器9の構成を示すブロック図である。図9において、22はPN発生器、23は遅延回路、24、25、26はRAKEフィンガ、27はコンバイナ、28は復調部である。図2に示すRAKE合成復調器9は、A/D変換器7A、7Bから入力されたIチャネル、Qチャネルディジタルデータを、RAKE合成パスタイミング検出器8から出力された各パスの遅延時間に応じて逆拡散し、逆拡散した各パスの信号をRAKE合成するとともに情報復調するものである。
【0062】
次に図9に示すRAKE合成復調器9の構成と動作について説明する。PN発生器22は逆拡散符号であるPN系列を生成して遅延回路23に出力する。RAKE合成パスタイミング検出器8は遅延制御信号を遅延回路23に出力する。遅延回路23は、RAKE合成パスタイミング検出器8から入力された遅延制御信号より、PN発生器22から入力されたPN系列を各パスの遅延時間に応じて遅延させ、第1のパス信号の遅延時間に応じて遅延させたPN系列をRAKEフィンガ24に、第2のパス信号の遅延時間に応じて遅延させたPN系列をRAKEフィンガ25に、第3のパス信号の遅延時間に応じて遅延させたPN系列をRAKEフィンガ26にそれぞれ出力する。
【0063】
RAKEフィンガ24、25、26にはA/D変換器7A、7BからIチャネル、Qチャネルディジタル信号が入力される。RAKEフィンガ24は第1のパス信号の遅延時間に応じて遅延させたPN系列を用いて、Iチャネル、Qチャネルディジタル信号を逆拡散することにより、Iチャネル、Qチャネルディジタル信号に含まれる複数のパスの信号より第1のパスの信号だけを分離することができる。同様に、RAKEフィンガ25、26は第2、第3のパス信号の遅延時間に応じて遅延させたPN系列を用いて、Iチャネル、Qチャネルディジタル信号を逆拡散することにより、それぞれIチャネル、Qチャネルディジタル信号に含まれる複数のパスの信号より第2、第3のパスの信号を分離する。
【0064】
RAKEフィンガ24、25、26は、逆拡散して得た第1、第2、第3のパス信号をコンバイナ27にそれぞれ出力する。コンバイナ27は、RAKEフィンガ24、25、26から出力された第1、第2、第3のパス信号に重み付けをして合成するRAKE合成を行うものである。重み付けの重みとしては信号の振幅レベルが用いられる。コンバイナ27はRAKE合成した合成信号を復調部28に出力する。復調部28はRAKE合成されて干渉+熱雑音に対する信号電力比が改善された合成信号を情報復調し、復調信号を図1に示すディジタル処理回路10に出力する。
【0065】
以上説明したスペクトル拡散受信装置が採用するスペクトル拡散受信方法について説明する。図10は本発明に係るスペクトル拡散受信方法を説明するフローチャートである。図10において、STEP1は受信スペクトル拡散信号と参照用拡散符号より相関値を演算する工程で、STEP2はSTEP1で演算されて、電圧巡回積分された相関値を電力に変換する工程である。STEP3は相関値が電力に変換された相関電力値より遅延プロファイルを作成する工程である。STEP4はSTEP3で作成された遅延プロファイルのうち、相関電力値が最大の信号を検出して、検出された信号の遅延時間を遅延制御信号としてRAKE合成復調器9に出力する第1のRAKE合成信号検出工程である。STEP5はSTEP4までの工程でRAKE合成する信号の検出を終えたか判定する工程である。RAKE合成する信号の数はRAKE合成復調器9に設けられたRAKEフィンガ24、25、26の個数と等しく、上記説明によるスペクトル拡散受信装置の場合、RAKE合成可能な信号の数は3つである。
【0066】
STEP5において、RAKE合成信号検出が終了していない場合、STEP6において遅延プロファイルが補正される。STEP7は、STEP6において補正された遅延プロファイルから第2のRAKE合成信号を検出する工程である。STEP6における第2のRAKE合成信号検出工程はSTEP4における第1のRAKE合成信号検出工程と同様の処理を行うものである。STEP7を終えると再度STEP5が実行されてRAKE合成する信号の検出を終えたか判定される。RAKE合成可能な、言い換えればRAKEフィンガの個数分の信号を検出していない場合にはSTEP6において遅延プロファイルが補正され、STEP7において、補正された遅延プロファイルよりRAKE合成信号が検出される。以上の工程で、RAKE合成可能な3つの信号の検出を終えたので、STEP5は処理をSTEP8に引き渡してRAKE合成信号検出工程を終了させる。
【0067】
以上説明したように本発明に係るスペクトル拡散受信方法は、RAKE合成信号を検出すると遅延プロファイルを補正するものである。次に遅延プロファイルを補正する工程である図10、STEP6の内容について説明する。図11は遅延プロファイル補正工程の内容を説明するフローチャートである。図11において、STEP9は相関電力値が最大となる検出信号の遅延時間と補正前の遅延プロファイルの信号の遅延時間の偏差を測定する偏差測定工程である。STEP9は図2に示す偏差測定器19が実行するものである。STEP10はSTEP9の偏差測定工程で測定された偏差に対応する補正係数を読み出す工程である。補正係数は干渉と熱雑音の時間相関よりあらかじめ演算されて補正係数ROM20に記憶されているものである。STEP11は、STEP10において読み出された補正係数と検出信号の相関電力値を乗算し、乗算値を順次出力する工程である。STEP11は乗算器21が実行するものである。
【0068】
STEP12は、STEP11で演算された乗算値と補正前の相関電力値を加算し、遅延プロファイルの信号の相関電力値を補正する工程である。STEP12は加算器15が実行するものである。STEP13は、STEP12から出力された相関電力値より遅延プロファイルを補正するとともに、補正した遅延プロファイルを記憶する工程である。補正された遅延プロファイルは電力巡回積分メモリ16に記憶される。
【0069】
以上説明したように、本発明に係るスペクトル拡散受信装置は、電圧巡回積分器12出力を電力変換器13によって電力に変換し、加算器15、電力巡回積分メモリ16によって電力巡回積分を行い、信号電力比の高い遅延プロファイルを作成するRAKE合成パスタイミング検出器8を備えたので、精度の高い遅延プロファイルを作成することができる。したがって、従来例と比較してRAKE合成に適したパスの検出確率が高くなり、検出したパスの遅延時間も高精度に求めることができる。
【0070】
また、本発明に係るスペクトル拡散受信装置は、上記説明による信号電力比の高い遅延プロファイルを用いてパスの検出を行い、パスを検出する度に干渉や熱雑音を考慮した補正係数を用いて遅延プロファイルを補正するRAKE合成パスタイミング検出器8を備えたので、RAKE合成に適した、すなわち、RAKE合成後の信号電力比が最大となるパスの信号を選択することができる。また、補正係数を用いて遅延プロファイルを補正する処理は巡回積分を行なう処理と同様にフィードバックで行なうことが可能であるので、電力巡回積分メモリ16や加算器15は遅延プロファイル作成モードでもRAKE合成パスタイミング検出モードでも共用可能であるため、別回路にする場合と比べ回路規模を削減できる。
【0071】
また、上記説明によると、補正係数は10個程度であるため補正係数ROM20のサイズは10word程度と小さく、補正するデータの数は観測する遅延プロファイル長によらず1回の補正につき20程度であるため、演算量及び消費電力も小さい。また、補正係数は拡散符号や伝搬環境によらず固定値で良いので、拡散符号が変わっても再計算の必要がなく従来例と比べ回路規模や消費電力を削減している。
【0072】
また、本発明に係るスペクトル拡散受信装置は、参照用拡散符号として拡散符号周期が1シンボル周期より長い長周期符号を用いた場合は、電力巡回積分を行い十分平均化するRAKE合成パスタイミング検出器8を備えたので、参照符号の自己相関特性による疑似相関は十分に平均化され、自己相関の影響を排除することができる。したがって、パスの検出や遅延プロファイルの補正を精度良く行うことができ、RAKE合成後の信号電力比を改善できる。また、遅延プロファイルの補正は干渉と熱雑音の相互相関を考慮して検出タイミングの近傍だけ行なえば良いので、大幅に処理量と回路規模を削減することができる。
【0073】
また、本発明に係るスペクトル拡散受信装置は、RAKE合成パスタイミング検出器8が検出した、RAKE合成後の信号電力比が最大となるパスの信号をRAKE合成するRAKE合成復調器9を備えたので、RAKE合成により干渉+熱雑音に対する信号電力を大幅に改善することができ、高性能なスペクトル拡散受信装置を得ることができる。
【0074】
すなわち、上記説明によるスペクトル拡散受信装置を携帯電話として用いることにより感度が良くなり、通信が切れにくくなるという効果がある。さらに、CDMA方式を採用した通信システムにおいて、上記説明による感度の良いスペクトル拡散受信装置を端末として用いることにより、1セルに収容できる端末の数が増加するので、セルの半径を大きくすることが可能となる。したがって、基地局の設置数を減らしてインフラにかかるコストを削減することができる。
【0075】
また、本発明に係るスペクトル拡散受信方法は、相関値を電力に変換した相関電力値より遅延プロファイルを作成するので、精度の高い遅延プロファイルを作成することができる。この遅延プロファイルを用いてRAKE合成する信号を検出することによりRAKE合成に適した信号を高精度に検出することができる。また、第1のRAKE合成信号以降の第2、第3のRAKE合成信号は、干渉や熱雑音の時間相関から求められた補正係数を用いて遅延プロファイルを補正しながら検出するので、第2、第3のRAKE合成信号を高精度に検出することができ、これらのRAKE合成信号をRAKE合成することにより、干渉および熱雑音に対する信号電力比の改善効果を大きくすることができる。
【0076】
実施の形態2.
図12は本発明の実施の形態2に係るスペクトル拡散受信装置に備えられたRAKE合成パスタイミング検出器の構成を示すブロック図である。図12において、81はRAKE合成パスタイミング検出器、29は平均値計算器、30は第二の加算器である。なお、図12において図2に示す符号と同一の符号は同一または相当部分を示すので説明は省略する。本発明に係るスペクトル拡散受信装置に備えられたRAKE合成パスタイミング検出器81は、電圧巡回積分器12出力を電力変換器13によって電力に変換し、さらに、加算器15、電力巡回積分メモリ16によって電力巡回積分を行って信号電力比を改善する。しかしながら、RAKE合成に適したパスをより高精度に検出するためには、電圧巡回積分器12出力を電力変換器13によって電力に変換した影響を考慮する必要がある。
【0077】
すなわち、電力に変換すると0以下がなくなるなど波形が変形する。また、帯域幅が2倍になりピークが鋭くなる。さらに、干渉や熱雑音が直流成分として現れ、信号レベルを評価する場合は干渉や熱雑音レベルを差し引く必要がある。図13は電力巡回積分を繰り返すうちに干渉、熱雑音電力が加算された遅延プロファイルを示す図である。図5に示す遅延プロファイルは干渉電力+雑音電力+信号電力が観測されている。この状態から電力巡回積分を繰り返すと信号電力のみならず干渉電力と雑音電力も加算され、図13に示すように遅延プロファイルのサンプル点全体が上方に移動する。したがって、より正確に遅延プロファイルを補正するには電力巡回積分結果から干渉電力+雑音電力を減算する必要がある。
【0078】
信号電力が存在するタイミングは、遅延プロファイル全体のわずかな部分、すなわち相関電力が大きい部分であるため遅延プロファイルの平均値を計算すればおよそ干渉電力+雑音電力と見なすことができる。図12において、平均値計算器29は、遅延プロファイルのサンプル点の相関電力値から平均値を演算する。そして、第二の加算器30は最大値検出器18が検出した検出相関値から平均値計算器29が演算した平均値を減算し、減算した検出相関値を乗算器21に出力する。以上説明したように、検出相関値から平均値を減算することにより、遅延プロファイルを補正する度に干渉電力+雑音電力が除去される。したがって、精度の高い遅延プロファイルを作成することができる。また、この遅延プロファイルを用いることによりRAKE合成に適したパスを正確に選択することができる。さらに選択されたパスの遅延時間も正確に求めることができるのでRAKE合成の精度が改善される。
【0079】
図14は遅延プロファイル補正工程を説明するフローチャートである。図14においてSTEP10以前の工程とSTEP11以後の工程は図10、図11に示した工程と同一であるので説明は省略する。STEP14は、補正前の遅延プロファイルの信号の相関電力値の平均値を演算する工程である。この工程は図12に示す平均値計算器29により実行される。STEP15は、STEP4において検出された相関電力値からSTEP14において演算された平均値を減算することにより、検出相関電力値を補正する工程である。この工程は第二の加算器30により実行される。以上説明したSTEP14、STEP15の工程を経てSTEP11〜STEP13の工程を実行することにより、干渉電力+雑音電力の成分を含まないように遅延プロファイルを補正することができる。
【0080】
実施の形態3.
図15は本発明の実施の形態3に係るスペクトル拡散受信装置に備えられたRAKE合成パスタイミング検出器の構成を示すブロック図である。図15において、82はRAKE合成パスタイミング検出器、31は第一の加算器、32は電力巡回積分メモリ、33は閾値判定器、34は切り換え手段、35は相関値メモリ、36はアドレス生成手段1、37はアドレス生成手段2、38はタイミングメモリ、39は最大値検出器、40は第二の加算器、41は平均値計算器、42は偏差測定手段、43は補正係数ROM、44は乗算器、45は第三の加算器である。なお、図15において図2および図12に示す符号と同一の符号は同一または相当部分を示すので説明は省略する。図16は遅延プロファイルの連続測定例を示す図である。
【0081】
図16に示す遅延プロファイルは、図5に示した遅延プロファイルに比べて測定時間が長いものであり、遅延プロファイルに含まれるサンプル点の数も桁違いに多い。このような測定時間の長い遅延プロファイルからRAKE合成に適したパスを検出するには、相関電力値を所定のしきい値と比較して、相関電力値がしきい値を下回るサンプル点を除外することにより、パス検出対象となるサンプル点の個数を減少させることが必要となる。
【0082】
以下、実施の形態3に係るスペクトル拡散受信装置に備えられたRAKE合成パスタイミング検出器82の構成と動作について説明する。遅延プロファイルを作成するときには、切り換え手段34は閾値判定器33と相関値メモリ35間で信号経路を形成するように切り換える。遅延プロファイル作成モードにおいて、RAKE合成パスタイミング検出器82は、電圧巡回積分器12出力を電力変換器13によって電力に変換し、さらに、第一の加算器31、電力巡回積分メモリ32によって電力巡回積分を行って信号電力比を改善する。アドレス生成手段(1)36はアドレス番号を電力巡回積分メモリ32に出力する。電力巡回積分メモリ32は相関電力値を平均値計算器41に出力する。
【0083】
閾値判定器33は、電力巡回積分メモリ32から入力された相関電力値を所定のしきい値と比較し、相関電力値がしきい値よりも大きいサンプル点の相関電力値を相関値メモリ34に出力する。相関値メモリ34はしきい値よりも大きいサンプル点の相関電力値を記憶するものである。アドレス生成手段(1)36、アドレス生成手段(2)37はサンプル点を識別するアドレス番号を生成するものであり、アドレス生成手段(1)36は電力巡回積分メモリ32とタイミングメモリ38に、アドレス生成手段(2)37は相関値メモリ35とタイミングメモリ38にアドレス番号を出力する。タイミングメモリ38は、相関電力値がしきい値よりも大きいサンプル点の遅延時間を記憶するものである。以上の処理により、遅延プロファイルが作成され、相関電力値がしきい値よりも大きいサンプル点の相関電力値、遅延時間が特定される。
【0084】
以上の処理を経て、RAKE合成パスタイミング検出器82は、RAKE合成に適したパスを選択するパスタイミング検出を行う。パスタイミング検出モードにおいて、切り換え手段34は、第三の加算器45と相関値メモリ35間で信号経路を形成するように切り換える。最大値検出器39は、相関値メモリ35から遅延プロファイルを読み出し、各サンプル点の相関電力値を比較して相関電力値が最大のサンプル点とその相関電力値を検出する。そして、相関電力値が最大となるサンプル点の遅延時間を遅延制御信号としてRAKE合成復調器9の遅延回路22に出力する。以上の処理によってRAKE合成する第1のパスの信号が特定される。また、最大値検出器39は検出したサンプル点の相関電力値を検出相関値として第二の加算器40に出力する。第二の加算器40は、最大値検出器39から出力された検出相関値から、平均値計算器41が計算した遅延プロファイルの相関電力値から演算した平均値(干渉電力+雑音電力)を減算して乗算器44に出力する。
【0085】
また、最大値検出器39はタイミングメモリ38から入力された各サンプル点に対応するアドレス番号のうち、相関電力値が最大となるサンプル点のアドレス番号yを偏差測定器42に出力する。偏差測定器42には、タイミングメモリ38から各サンプル点のアドレス番号xが入力される。偏差測定器42は相関電力値が最大となるサンプル点のアドレス番号と、他のサンプル点のアドレス番号の偏差の絶対値を演算して、偏差を補正係数ROM43に出力する。補正係数ROM43は偏差測定器42から出力された偏差に応じた係数を乗算器44に出力する。乗算器44は、補正係数ROM43から出力された補正係数に第二の加算器40にて平均値が減算された検出相関値を乗算して第三の加算器45に出力する。
【0086】
第三の加算器45は、相関値メモリ35から出力された遅延プロファイルのサンプル点の相関電力値を乗算器44から入力された値を加算して、偏差が10以内のサンプル点の相関電力値を補正する。補正された相関電力値は切り換え手段34を介して相関値メモリ35に書き込まれる。以上の処理によって、第1のパス検出に用いられた遅延プロファイルは補正され、第2のパス検出に用いる遅延プロファイルが作成される。第2のパス、第3のパスも、以上説明した第1のパスの検出と同様の処理により検出される。第2のパス、第3のパスとして検出されたサンプル点の遅延時間も遅延制御信号としてRAKE合成復調器の遅延回路22に出力される。
【0087】
図17は遅延プロファイル作成工程を説明するフローチャートである。図17においてSTEP2以前の工程とSTEP5以後の工程は図10、図11に示した工程と同一であるので説明は省略する。STEP16は、電力に変換した信号の相関電力値をしきい値と比較する工程である。STEP17は相関電力値がしきい値より大きい信号を検出する工程である。STEP16、STEP17の工程は図15に示す閾値判定器33により実行される。STEP18は、STEP17において検出された信号の相関電力値と遅延時間より遅延プロファイルを作成する工程である。STEP16〜STEP18の工程を経て作成された遅延プロファイルは相関値メモリ35、タイミングメモリ38に記憶される。こうして作成された遅延プロファイルを用いてRAKE合成信号を検出することにより、長時間連続測定した遅延プロファイルより効率的にRAKE合成信号を検出することができる。
【0088】
以上説明したスペクトル拡散受信装置は、実施の形態1、実施の形態2において説明したスペクトル拡散受信装置と同様の効果を奏する。また、電力巡回積分された相関電力値を所定のしきい値と比較する閾値判定器33を有するRAKE合成パスタイミング検出器を備えたので、パス検出対象となるサンプル点の個数を削減することが可能になり、パス検出処理に要する処理量を削減することができる。
【0089】
また、相関電力値がしきい値より大きいサンプル点の相関電力値を記憶する相関値メモリ35と、相関電力値がしきい値より大きいサンプル点の遅延時間を記憶するタイミングメモリ38を備えたので、遅延プロファイルを記憶する電力巡回積分メモリ32の内容を、遅延プロファイルを補正するたびに書き換える必要がなくなる。したがって、忘却係数付きの巡回積分を行なうことが可能となる。つまり、忘却係数付き巡回積分が可能になるということは、積分時間に関わらず任意の間隔でデータを出力することができるので、定期的にメモリの中身を0にする放電操作を行いメモリのオーバーフローを防ぐ積分放電方式に比べて動作の自由度が増すという効果がある。
【0090】
また、相関値メモリ35やタイミングメモリ38は閾値判定後のデータを収納できる程度のメモリ容量が有ればよく、電力巡回積分メモリ32と比べて十分に小さなメモリ容量で実現できる。
【発明の効果】
【0091】
この発明に係るスペクトル拡散受信装置は、拡散変調して送信されたスペクトル拡散信号を、所定時間遅延させた逆拡散符号を用いて逆拡散することにより、所定の遅延時間の信号を前記スペクトル拡散信号より分離する複数の逆拡散手段、これらの逆拡散手段が逆拡散した信号をRAKE合成する合成手段、前記逆拡散手段に供給される逆拡散符号を外部から入力された遅延制御信号に応じて遅延させる遅延手段を有するRAKE合成手段と、
前記スペクトル拡散信号と参照用拡散符号の相関値を電力に変換した相関電力値とその遅延時間より遅延プロファイルを作成する遅延プロファイル作成手段、干渉と熱雑音の時間相関より予め演算された補正係数を遅延時間の偏差ごとに記憶する補正係数記憶手段、相関電力値が最大となる信号の遅延時間と前記遅延プロファイルの信号の遅延時間の偏差を測定し、測定した偏差に応じて前記補正係数記憶手段から読み出した補正係数と前記遅延プロファイルのうち最大の相関電力値を乗算した乗算値を用いて前記遅延プロファイルの相関電力値を補正する遅延プロファイル補正手段、前記遅延プロファイル作成手段が作成した遅延プロファイルのうち相関電力値が最大になる信号を検出し、検出された信号の遅延時間を第一の遅延制御信号として、前記遅延プロファイル補正手段が補正した遅延プロファイルのうち相関電力値が最大になる信号の遅延時間を第二の遅延制御信号として前記遅延手段に出力する信号検出手段を有するRAKE合成信号検出手段を備えたので、信号電力比の改善された相関電力値から精度の高い遅延プロファイルを用いて遅延時間の検出と遅延プロファイルの補正を行い、RAKE合成に適した、すなわち、RAKE合成後の信号電力比が最大となるパスの信号を選択することができる。
【0092】
また、この発明に係るスペクトル拡散受信装置は、遅延プロファイルの相関電力値の平均値を演算する平均値演算手段を有し、前記遅延プロファイルのうち最大の相関電力値から前記平均値演算手段が演算した平均値を減算した値と補正係数を乗算する遅延プロファイル補正手段を備えたので、電力に変換した影響を考慮して、遅延プロファイルを補正する度に干渉電力+雑音電力が除去される。
【0093】
また、この発明に係るスペクトル拡散受信装置は、相関電力値を所定のしきい値と比較して、相関電力値が所定のしきい値以上か判定するしきい値判定手段を備え、前記しきい値よりも大きい相関電力値より遅延プロファイルを作成する遅延プロファイル作成手段を備えたので、パス検出対象となるサンプル点の個数を削減することが可能になり、パス検出処理に要する処理量を削減することができる。
【0094】
また、この発明に係るスペクトル拡散受信装置は、しきい値判定手段によりしきい値よりも相関電力値が大きい信号の相関電力値を記憶する相関電力値記憶手段と、前記しきい値よりも相関電力値が大きい信号の遅延時間を記憶する遅延時間記憶手段を有する遅延プロファイル作成手段を備えたので、電力巡回積分メモリと比べて十分に小さなメモリ容量で実現できる。
【0095】
この発明に係るスペクトル拡散受信方法は、受信スペクトル拡散信号と参照用拡散符号の相関値より作成した遅延プロファイルより相関値が大きい信号を複数個検出し、検出した信号の遅延時間に応じて遅延させた逆拡散符号を用いて前記受信スペクトル拡散信号より分離した信号をRAKE合成するスペクトル拡散受信方法において、
前記相関値を電力に変換した相関電力値より遅延プロファイルを作成する遅延プロファイル作成工程と、
この遅延プロファイル作成工程において作成された遅延プロファイルより相関電力値が最大になる信号の遅延時間を検出する第1のRAKE合成信号検出工程と、
この第1のRAKE合成信号検出工程において検出された前記遅延時間と前記遅延プロファイルの他の信号の遅延時間の偏差を測定し、干渉と熱雑音の時間相関より予め演算されて偏差ごとに記憶された補正係数のうち、前記偏差に対応する補正係数と前記第1のRAKE合成信号検出工程が検出した信号の相関電力値を用いて前記遅延プロファイルを補正する遅延プロファイル補正工程と、
この遅延プロファイル補正工程において補正された遅延プロファイルより相関電力値が最大になる信号の遅延時間を検出する第2のRAKE合成信号検出工程を含むので、第1のRAKE合成信号以外のRAKE合成信号は、干渉や熱雑音を考慮した補正係数を用いて補正された遅延プロファイルより検出され、第2、第3のRAKE合成信号を高精度に検出できる。
【0096】
また、この発明に係るスペクトル拡散受信方法は、遅延プロファイルの相関電力値の平均値を演算するとともに、演算された平均値を用いて前記遅延プロファイルの相関電力値を補正する遅延プロファイル補正工程を含むので、干渉電力+雑音電力の成分を含まないように遅延プロファイルを補正することができる。
【0097】
また、この発明に係るスペクトル拡散受信方法は、相関電力値と所定のしきい値を比較するとともに、相関電力値が前記しきい値よりも大きい信号より遅延プロファイルを作成する遅延プロファイル作成工程を含むので、長時間連続測定した遅延プロファイルであっても効率的にRAKE合成信号を検出することができる。
【図面の簡単な説明】
【図1】 本発明に係るスペクトル拡散受信装置の構成を示すブロック図である。
【図2】 本発明の実施の形態1に係るスペクトル拡散受信装置に備えられたRAKE合成パスタイミング検出器の構成を示すブロック図である。
【図3】 相関値演算結果を示す図である。
【図4】 電圧巡回積分結果を示す図である。
【図5】 作成された遅延プロファイルを示す図である。
【図6】 第1のパス検出に用いる遅延プロファイルと第1のパス検出を説明する説明図である。
【図7】 第2のパス検出に用いる遅延プロファイルと第2のパス検出を説明する説明図である。
【図8】 第3のパス検出に用いる遅延プロファイルと第3のパス検出を説明する説明図である。
【図9】 RAKE合成復調器の構成を示すブロック図である。
【図10】 本発明に係るスペクトル拡散受信方法におけるRAKE合成信号検出方法を説明するフローチャートである。
【図11】 遅延プロファイル補正工程の内容を説明するフローチャートである。
【図12】 本発明の実施の形態2に係るスペクトル拡散受信装置に備えられたRAKE合成パスタイミング検出器の構成を示すブロック図である。
【図13】 雑音電力および干渉電力が加算された遅延プロファイルを示す図である。
【図14】 遅延プロファイル補正工程の内容を説明するフローチャートである。
【図15】 本発明の実施の形態3に係るスペクトル拡散受信装置に備えられたRAKE合成パスタイミング検出器の構成を示すブロック図である。
【図16】 遅延プロファイルの連続測定例を示す図である。
【図17】 遅延プロファイル作成工程を説明するフローチャートである。
【図18】 従来のパス検出の一例を示す説明図である。
【図19】 従来のパス検出の一例を示す説明図である。
【図20】 従来のパス検出の一例を示す説明図である。
【符号の説明】
1 アンテナ、2 RF増幅器、3A、3B ミクサ、4 90°移相器、
5 局部発振器、6A、6B ローパスフィルタ、7A、7B A/D変換器、
8 RAKE合成パスタイミング検出器、9 RAKE合成復調器、
10 ディジタル処理回路、11 マッチドフィルタ、12 電圧巡回積分器、
13 電力変換器、14 切り換え手段、15 加算器、
16 電力巡回積分メモリ、17 アドレス生成手段、
18 最大値検出器、19 偏差測定器、20 補正係数ROM、
21 乗算器、22 遅延回路、23 PN系列発生器、
24 RAKEフィンガ、25 RAKEフィンガ、26 RAKEフィンガ、
27 コンバイナ、28 復調部、29 平均値計算器、30 第二の加算器、
31 第一の加算器、32 電力巡回積分メモリ、33 閾値判定器、
34 切り換え手段、35 相関値メモリ、36 アドレス生成手段1、
37 アドレス生成手段2、38 タイミングメモリ、39 最大値検出器、
40 第二の加算器、41 平均値計算器、42 偏差測定手段、
43 補正係数ROM、44 乗算器、45 第三の加算器、
81 RAKE合成パスタイミング検出器、
82 RAKE合成パスタイミング検出器

Claims (7)

  1. 拡散変調して送信されたスペクトル拡散信号を、所定時間遅延させた逆拡散符号を用いて逆拡散することにより、所定の遅延時間の信号を前記スペクトル拡散信号より分離する複数の逆拡散手段、これらの逆拡散手段が逆拡散した信号をRAKE合成する合成手段、前記逆拡散手段に供給される逆拡散符号を外部から入力された遅延制御信号に応じて遅延させる遅延手段を有するRAKE合成手段と、
    前記スペクトル拡散信号と参照用拡散符号の相関値を電力に変換した相関電力値とその遅延時間より遅延プロファイルを作成する遅延プロファイル作成手段、干渉と熱雑音の時間相関より予め演算された補正係数を遅延時間の偏差ごとに記憶する補正係数記憶手段、相関電力値が最大となる信号の遅延時間と前記遅延プロファイルの信号の遅延時間の偏差を測定し、測定した偏差に応じて前記補正係数記憶手段から読み出した補正係数と前記遅延プロファイルのうち最大の相関電力値を乗算した乗算値を用いて前記遅延プロファイルの相関電力値を補正する遅延プロファイル補正手段、前記遅延プロファイル作成手段が作成した遅延プロファイルのうち相関電力値が最大になる信号を検出し、検出された信号の遅延時間を第一の遅延制御信号として、前記遅延プロファイル補正手段が補正した遅延プロファイルのうち相関電力値が最大になる信号の遅延時間を第二の遅延制御信号として前記遅延手段に出力する信号検出手段を有するRAKE合成信号検出手段を備えたことを特徴とするスペクトル拡散受信装置。
  2. 遅延プロファイル補正手段は、遅延プロファイルの相関電力値の平均値を演算する平均値演算手段を有し、前記遅延プロファイルのうち最大の相関電力値から前記平均値演算手段が演算した平均値を減算した値と補正係数を乗算することを特徴とする請求項1に記載のスペクトル拡散受信装置。
  3. 遅延プロファイル作成手段は、相関電力値を所定のしきい値と比較して、相関電力値が所定のしきい値以上か判定するしきい値判定手段を備え、前記しきい値よりも大きい相関電力値より遅延プロファイルを作成することを特徴とする請求項1または請求項2に記載のスペクトル拡散受信装置。
  4. 遅延プロファイル作成手段は、しきい値判定手段によりしきい値よりも相関電力値が大きい信号の相関電力値を記憶する相関電力値記憶手段と、前記しきい値よりも相関電力値が大きい信号の遅延時間を記憶する遅延時間記憶手段を備えたことを特徴とする請求項3に記載のスペクトル拡散受信装置。
  5. 受信スペクトル拡散信号と参照用拡散符号の相関値より作成した遅延プロファイルより相関値が大きい信号を複数個検出し、検出した信号の遅延時間に応じて遅延させた逆拡散符号を用いて前記受信スペクトル拡散信号より分離した信号をRAKE合成するスペクトル拡散受信方法において、
    前記相関値を電力に変換した相関電力値より遅延プロファイルを作成する遅延プロファイル作成工程と、
    この遅延プロファイル作成工程において作成された遅延プロファイルより相関電力値が最大になる信号の遅延時間を検出する第1のRAKE合成信号検出工程と、
    この第1のRAKE合成信号検出工程において検出された前記遅延時間と前記遅延プロファイルの他の信号の遅延時間の偏差を測定し、干渉と熱雑音の時間相関より予め演算されて偏差ごとに記憶された補正係数のうち、前記偏差に対応する補正係数と前記第1のRAKE合成信号検出工程が検出した信号の相関電力値を用いて前記遅延プロファイルを補正する遅延プロファイル補正工程と、
    この遅延プロファイル補正工程において補正された遅延プロファイルより相関電力値が最大になる信号の遅延時間を検出する第2のRAKE合成信号検出工程を含むことを特徴とするスペクトル拡散受信方法。
  6. 遅延プロファイル補正工程は、遅延プロファイルの相関電力値の平均値を演算するとともに、演算された平均値を用いて前記遅延プロファイルの相関電力値を補正することを特徴とする請求項に記載のスペクトル拡散受信方法。
  7. 遅延プロファイル作成工程は、相関電力値と所定のしきい値を比較するとともに、相関電力値が前記しきい値よりも大きい信号より遅延プロファイルを作成することを特徴とする請求項5または請求項6に記載のスペクトル拡散受信方法。
JP2000010410A 2000-01-19 2000-01-19 スペクトル拡散受信装置、およびスペクトル拡散受信方法 Expired - Fee Related JP3943305B2 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2000010410A JP3943305B2 (ja) 2000-01-19 2000-01-19 スペクトル拡散受信装置、およびスペクトル拡散受信方法
KR10-2001-7011873A KR100406667B1 (ko) 2000-01-19 2000-06-06 스펙트럼 확산 수신 장치 및 스펙트럼 확산 수신 방법
DE2000608355 DE60008355T2 (de) 2000-01-19 2000-06-06 Spreizspektrumempfänger und spreizspektrumempfangsverfahren
CNB00805214XA CN1161890C (zh) 2000-01-19 2000-06-06 扩展频谱接收装置及接收方法
US09/926,124 US6912243B1 (en) 2000-01-19 2000-06-06 Spread spectrum receiver and spread spectrum receiving method
EP20000931709 EP1164710B1 (en) 2000-01-19 2000-06-06 Spread spectrum receiver and spread spectrum receiving method
CA 2360979 CA2360979A1 (en) 2000-01-19 2000-06-06 Method of and apparatus for spread spectrum reception
PCT/JP2000/003661 WO2001054294A1 (fr) 2000-01-19 2000-06-06 Recepteur a etalement de spectre et procede correspondant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000010410A JP3943305B2 (ja) 2000-01-19 2000-01-19 スペクトル拡散受信装置、およびスペクトル拡散受信方法

Publications (2)

Publication Number Publication Date
JP2001203608A JP2001203608A (ja) 2001-07-27
JP3943305B2 true JP3943305B2 (ja) 2007-07-11

Family

ID=18538433

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000010410A Expired - Fee Related JP3943305B2 (ja) 2000-01-19 2000-01-19 スペクトル拡散受信装置、およびスペクトル拡散受信方法

Country Status (8)

Country Link
US (1) US6912243B1 (ja)
EP (1) EP1164710B1 (ja)
JP (1) JP3943305B2 (ja)
KR (1) KR100406667B1 (ja)
CN (1) CN1161890C (ja)
CA (1) CA2360979A1 (ja)
DE (1) DE60008355T2 (ja)
WO (1) WO2001054294A1 (ja)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6826169B1 (en) * 1996-12-20 2004-11-30 Fujitsu Limited Code multiplexing transmitting apparatus
JP3468189B2 (ja) 2000-02-02 2003-11-17 日本電気株式会社 パターン生成回路及びそれを用いたマルチパス検出回路並びにそのマルチパス検出方法
DE60230794D1 (de) * 2001-11-20 2009-02-26 Mediatek Inc Verfahren und vorrichtungen zur spreizspektrum-signalverarbeitung unter verwendung eines unkonfigurierbaren koprozessors
JP3884309B2 (ja) 2002-03-14 2007-02-21 三菱電機株式会社 スペクトラム拡散用受信装置
US7212591B2 (en) * 2003-04-28 2007-05-01 Telefonaktiebolaget Lm Ericsson (Publ) Methods and receivers that estimate multi-path delays by removing signal rays from a power-delay profile
JP4097615B2 (ja) * 2004-03-23 2008-06-11 三洋電機株式会社 信号検出方法および装置ならびにそれを利用した送信装置および受信装置
CN101030997B (zh) * 2006-03-03 2011-01-12 华为技术有限公司 一种获取串扰信息的方法及装置
US8831139B2 (en) * 2006-12-01 2014-09-09 Broadcom Corporation Method and system for delay matching in a rake receiver
US20130343372A1 (en) * 2012-06-22 2013-12-26 Nicholas William Whinnett Femtocell base station synchronization
JP2014099713A (ja) * 2012-11-13 2014-05-29 Fujitsu Ltd 無線通信装置及び1パス判定方法
BR112017020558B1 (pt) * 2015-05-29 2022-08-09 Huawei Technologies Co., Ltd Método, aparelho e dispositivo para obter tempo de chegada quando um terminal móvel é localizado
GB201908534D0 (en) * 2019-06-13 2019-07-31 Decawave Ltd Secure ultra wide band ranging

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2605648B2 (ja) 1994-12-22 1997-04-30 日本電気株式会社 Ss受信機における逆拡散符号位相検出装置
JPH09321667A (ja) * 1996-05-29 1997-12-12 Yozan:Kk Cdma通信システム用受信機
JP2850958B2 (ja) 1997-05-02 1999-01-27 日本電気株式会社 スペクトラム拡散通信用受信装置
JP3462364B2 (ja) 1997-06-02 2003-11-05 株式会社エヌ・ティ・ティ・ドコモ 直接拡散cdma伝送方式におけるrake受信機
JP3305639B2 (ja) 1997-12-24 2002-07-24 株式会社エヌ・ティ・ティ・ドコモ 直接拡散cdma伝送方式におけるrake受信機
JPH11298401A (ja) 1998-04-14 1999-10-29 Matsushita Electric Ind Co Ltd 同期処理装置及び同期処理方法
DE19824218C1 (de) * 1998-05-29 2000-03-23 Ericsson Telefon Ab L M Multipfad-Ausbreitungsverzögerungs-Bestimmungsvorrichtung unter Verwendung von periodisch eingefügten Pilotsymbolen
JP2982795B1 (ja) * 1998-06-29 1999-11-29 日本電気株式会社 スペクトラム拡散信号受信方法および受信機
JP2000078110A (ja) * 1998-08-31 2000-03-14 Mitsubishi Electric Corp Rake受信機,無線受信装置およびrake受信機のパス検出方法
JP3031351B2 (ja) 1998-09-24 2000-04-10 日本電気株式会社 Cdma受信装置及びそれに用いるパス検出方法並びにその制御プログラムを記録した記録媒体
JP3031354B1 (ja) * 1998-09-30 2000-04-10 日本電気株式会社 Cdma受信装置及びそのマルチパスのフィンガ割り当て方法並びにその制御プログラムを記録した記録媒体
JP3322253B2 (ja) * 1999-10-27 2002-09-09 日本電気株式会社 Cdma受信装置及びそれに用いるパス検出方法並びにその制御プログラムを記録した記録媒体
JP3438701B2 (ja) * 2000-06-09 2003-08-18 日本電気株式会社 Ds−cdmaシステムにおける受信パスタイミング検出回路

Also Published As

Publication number Publication date
CA2360979A1 (en) 2001-07-26
EP1164710A1 (en) 2001-12-19
KR20010113768A (ko) 2001-12-28
EP1164710A4 (en) 2002-08-21
DE60008355T2 (de) 2004-12-09
CN1161890C (zh) 2004-08-11
CN1344443A (zh) 2002-04-10
WO2001054294A1 (fr) 2001-07-26
US6912243B1 (en) 2005-06-28
EP1164710B1 (en) 2004-02-18
KR100406667B1 (ko) 2003-11-20
DE60008355D1 (de) 2004-03-25
JP2001203608A (ja) 2001-07-27

Similar Documents

Publication Publication Date Title
KR100694927B1 (ko) 주기적으로 삽입되는 파일럿 기호를 사용하는 다중 경로전파 지연 결정 장치
KR100552076B1 (ko) Cdma통신시스템에있어서의신호수신장치
EP1121767B1 (en) A cdma receiver that shares a tracking device among multiple rake branches
CA2313893C (en) Path search circuit for simultaneously performing antenna directivity control and path search
JPH1051355A (ja) スペクトル拡散通信装置
JP3228405B2 (ja) 直接拡散cdma伝送方式の受信機
WO1999034546A1 (fr) Recepteur rake pour transmission cdma a etalement direct
WO2004001983A2 (en) Multipath channel tap delay estimation in a cdma spread spectrum receiver
JP3943305B2 (ja) スペクトル拡散受信装置、およびスペクトル拡散受信方法
JP2850959B2 (ja) スペクトラム拡散通信同期捕捉復調装置
JP3462364B2 (ja) 直接拡散cdma伝送方式におけるrake受信機
EP1381169B1 (en) Method of and apparatus for path search
US6275521B1 (en) Demodulating apparatus and demodulating method
KR100257671B1 (ko) 통신시스템에 사용되는 스프레드 스펙트럼 수신기
EP1065795A2 (en) CDMA communication terminal apparatus and radio reception method
US7106783B2 (en) Method and apparatus for searching multipaths of mobile communication system
JP2000078110A (ja) Rake受信機,無線受信装置およびrake受信機のパス検出方法
KR20010078096A (ko) 저역 통과 필터를 갖는 레이크 수신기
JP3989900B2 (ja) 無線移動機
US20020176487A1 (en) Fading pitch measuring apparatus, fading pitch measuring method and portable information terminal using them
JP2000091973A (ja) Rake合成回路
KR100421413B1 (ko) 코드분할 다중접속 시스템에서 분할 역확산된 파일럿심볼을 이용한 신호대간섭비 측정 장치 및 그 방법
US7756191B2 (en) Deconvolution searcher for wireless communication system
JP4661560B2 (ja) 同期追跡回路及びcdma受信装置
JPH09233049A (ja) 符号分割多元接続通信用受信装置

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20040628

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20040917

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041004

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070123

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070319

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070403

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070405

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100413

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110413

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120413

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120413

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130413

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees