JP3941274B2 - 距離測定装置 - Google Patents

距離測定装置 Download PDF

Info

Publication number
JP3941274B2
JP3941274B2 JP36785698A JP36785698A JP3941274B2 JP 3941274 B2 JP3941274 B2 JP 3941274B2 JP 36785698 A JP36785698 A JP 36785698A JP 36785698 A JP36785698 A JP 36785698A JP 3941274 B2 JP3941274 B2 JP 3941274B2
Authority
JP
Japan
Prior art keywords
time
measurement
signal
stop
reference clock
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP36785698A
Other languages
English (en)
Other versions
JPH11281744A (ja
Inventor
智弘 田中
久 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP36785698A priority Critical patent/JP3941274B2/ja
Publication of JPH11281744A publication Critical patent/JPH11281744A/ja
Application granted granted Critical
Publication of JP3941274B2 publication Critical patent/JP3941274B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Measurement Of Optical Distance (AREA)
  • Optical Radar Systems And Details Thereof (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Measurement Of Unknown Time Intervals (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、距離測定装置に関し、特に、ターゲットに向けてパルス光を発光し、ターゲットで反射されたパルス光を受光するまでの時間をもとにターゲットまでの距離を求めるパルス光方式の距離測定装置に関する。
【0002】
【従来の技術】
図9は、従来の距離測定装置300の説明図で、図9(1)はそのブロック図である。時間計測部301は、測定スタート信号S50を生成して計測時間の測定を開始すると同時に、レーザドライブ回路302に測定スタート信号S50を出力する。レーザドライブ回路302は、レーザダイオード303にレーザ駆動信号S51を出力し、レーザダイオード303を発光させる。
【0003】
レーザダイオード303から出射したパルス光L50は、ターゲット306で反射され、パルス光L51となって光電変換部304に入射する。光電変換部304は、パルス光L51を受光すると、その光量に対応した受光信号S52をコンパレータ部305に出力する。
【0004】
コンパレータ部305は、受光信号S52のピーク時点を検出し、そのピーク時点で測定ストップ信号S53を時間計測部301に出力する。時間計測部301は、測定スタート信号S50から測定ストップ信号S53までの計測時間Tを求める。
【0005】
図9(2)は、時間測定のタイムチャートである。図9(2)▲1▼は、時間計測部301内の基準クロック(周波数f)を示し、基準クロックは計測時間Tを求める基準となる。図9(2)▲2▼は、測定スタート信号S50を示し、この信号の立ち上がりエッジから計測時間Tの測定が開始される。
【0006】
図9(2)▲3▼は、レーザダイオード303から出射するパルス光L50を示す。レーザダイオード303は、測定スタート信号S50の立ち上がりエッジと同時に発光を開始する。図9(2)▲4▼は、光電変換部304で電気信号に変換された受光信号S52を示す。
【0007】
図9(2)▲5▼は、測定ストップ信号S53を示す。前述のように、コンパレータ部305は、受光信号S52のピーク時点を検出し、そのピーク時点で測定ストップ信号S53を時間計測部301に出力する。測定スタート信号S50から測定ストップ信号S53までの時間が、計測時間Tである。計測時間Tは、レーザダイオード303の発光開始から、受光信号S52のピーク時までの時間、即ち光走行時間に等しい。
【0008】
一方、測定スタート信号S50と測定ストップ信号S53は、基準クロックに同期していない。このため、測定スタート信号S50及び測定ストップ信号S53から基準クロックの次の立ち上がりエッジまでの間に、それぞれ基準クロックの1クロック以下の端数時間が生じる。
【0009】
図9(2)▲6▼は、スタート側端数時間信号を示す。スタート側端数時間信号は、測定スタート信号S50の立ち上がりエッジから基準クロックの次の次の立ち上がりエッジまでで、そのパルス幅はTaである。端数時間を基準クロックの次の次の立ち上がりエッジまでとしたのは、基準クロックの次の立ち上がりエッジまでの時間とすると、端数時間が非常に短くなり、測定できない場合が生ずるためである。
【0010】
図9(2)▲7▼は、ストップ側端数時間信号を示す。ストップ側端数時間信号は、測定ストップ信号S53の立ち上がりエッジから基準クロックの次の次の立ち上がりエッジまでで、そのパルス幅はTbである。
【0011】
図9(2)▲8▼は、粗カウント信号を示す。粗カウント信号は、スタート側端数時間信号の立ち下がりエッジからストップ側端数時間信号の立ち下がりエッジまでの期間(N/f)の基準クロックを抜き出したものである。図9(2)▲8▼では、粗カウント信号は基準クロックのN=4クロック分である。
【0012】
ここで、測定スタート信号S50から測定ストップ信号S53までの計測時間Tは次のように表される。
【0013】
T=Ta+N/f−Tb ・・・ (1)
従って、スタート側端数時間信号のパルス幅Ta、ストップ側端数時間信号のパルス幅Tb、粗カウント信号のクロック数Nを測定すれば、(1)式から計測時間Tが求まり、計測時間Tと光速からターゲット306までの距離が求まる。
【0014】
【発明が解決しようとする課題】
図10は、従来の距離測定装置でターゲットまでの距離が短い近距離測定を行った場合のタイムチャートである。近距離測定の場合は、図10(1)▲2▼に示す測定スタート信号S50から、図10(1)▲5▼に示す測定ストップ信号S53までの計測時間Tは短くなる。従って、図10(1)▲6▼に示すスタート側端数時間信号の立ち下がりエッジと、図10(1)▲7▼に示すストップ側端数時間信号の立ち上がりエッジが時間的にほぼ一致する場合が発生する。
【0015】
図10(2)は、スタート側端数時間信号の立ち下がりエッジとストップ側端数時間信号の立ち上がりエッジが時間的にほぼ一致する場合の拡大図である。スタート側端数時間信号が立ち下がる時にストップ側端数時間信号が立ち上がっており、相互のスイッチングノイズの影響でエッジ部分の波形が乱れる。それぞれの信号のパルス幅Ta、Tbは、エッジ部分が所定のしきい値を横切る時間で決まるため、エッジ部分の波形の乱れはパルス幅Ta、Tbの変動となる。
【0016】
このように、近距離測定の場合は、スタート側及びストップ側端数時間信号の同時スイッチングによる信号エッジのタイミングずれを生じ、それぞれのパルス幅Ta、Tbの測定誤差が大きくなり、ターゲットまでの距離の測定精度が低下する。
【0017】
そこで本発明は、端数時間の測定誤差をなくし、近距離測定における測定精度を向上させた距離測定装置を提供することを目的とする。
【0018】
【課題を解決するための手段】
上記の目的は、測定スタート信号に応答して目標物にパルス光を発光する発光部と、前記目標物からの反射パルス光の受光に応答して測定ストップ信号を出力する受光部と、前記測定スタート信号から前記測定ストップ信号までの計測時間を、前記測定スタート信号から基準クロックの所定クロック数未満のスタート側端数時間と、前記測定ストップ信号から前記基準クロックの所定クロック数未満のストップ側端数時間と、前記スタート側端数時間の終了時から前記ストップ側端数時間の終了時までの前記基準クロックのクロック数とを測定することにより求める時間計測部とを有し、前記計測時間から前記目標物までの距離を求める距離測定装置において、
前記発光部は、前記測定スタート信号から所定の遅延時間経過後に前記パルス光を発光することを特徴とする距離測定装置を提供することにより達成される。
【0019】
本発明によれば、スタート側端数時間が、測定スタート信号から基準クロックの所定クロック未満であるのに対して、発光部は、測定スタート信号から所定の遅延時間経過後にパルス光を発光する。そして、その遅延時間をスタート側端数時間の最大値である基準クロックの所定クロック以上とすれば、スタート側端数時間信号とストップ側端数時間信号が時間的に重なることはない。従って、同時スイッチングによる端数時間の測定誤差がなくなり、近距離測定における測定精度が向上する。
【0020】
また、本発明の距離測定装置は、測定スタート信号に応答して目標物にパルス光を発光する発光部と、前記目標物からの反射パルス光の受光に応答して測定ストップ信号を出力する受光部と、前記測定スタート信号から前記測定ストップ信号までの計測時間を、前記測定スタート信号から基準クロックの所定クロック数未満のスタート側端数時間と、前記測定ストップ信号から前記基準クロックの所定クロック数未満のストップ側端数時間と、前記スタート側端数時間の終了時から前記ストップ側端数時間の終了時までの前記基準クロックのクロック数とを測定することにより求める時間計測部とを有し、前記計測時間から前記目標物までの距離を求める距離測定装置において、
前記受光部は、前記反射パルス光の受光から所定の遅延時間経過後に前記測定ストップ信号を出力することを特徴とする。
【0021】
本発明によれば、スタート側端数時間が、測定スタート信号から基準クロックの所定クロック未満であるのに対して、受光部は、反射パルス光の受光から所定の遅延時間経過後に測定ストップ信号を出力する。従ってこの場合も、その遅延時間をスタート側端数時間の最大値である基準クロックの所定クロック以上とすれば、スタート側端数時間信号とストップ側端数時間信号が時間的に重なることはなく、同時スイッチングによる端数時間の測定誤差がなくなり、近距離測定における測定精度が向上する。
【0022】
また、本発明の距離測定装置は、測定スタート信号に応答して目標物にパルス光を発光する発光部と、前記目標物からの反射パルス光の受光に応答して測定ストップ信号を出力する受光部と、前記測定スタート信号から前記測定ストップ信号までの計測時間を、前記測定スタート信号から基準クロックの所定クロック数未満のスタート側端数時間と、前記測定ストップ信号から前記基準クロックの所定クロック数未満のストップ側端数時間と、前記スタート側端数時間の終了時から前記ストップ側端数時間の終了時までの前記基準クロックのクロック数とを測定することにより求める時間計測部とを有し、前記計測時間から前記目標物までの距離を求める距離測定装置において、
前記測定スタート信号から前記パルス光を発光するまでの第1の遅延時間と、前記反射パルス光の受光から前記測定ストップ信号を出力するまでの第2の遅延時間との合計が、前記スタート側端数時間の最大値よりも長いことを特徴とする。
【0023】
本発明によれば、所定の遅延時間を複数の遅延時間の合計で設定できるので、高精度に設定可能な短い遅延時間を合計することにより、所定の遅延時間を高精度に設定することができる。
【0024】
また、本発明の距離測定装置の時間計測部は、前記スタート側端数時間を測定する第1の端数時間測定部と、前記ストップ側端数時間を測定する第2の端数時間測定部とを有することを特徴とする。
【0025】
本発明によれば、スタート側端数時間及びストップ側端数時間を別個の端数時間測定部で測定することにより、スタート側端数時間信号とストップ側端数時間信号が接近している場合でも、それぞれの端数時間を高精度に測定し、しかも全体の測定時間を短縮することができる。
【0026】
即ち、距離測定装置は、測定精度を向上させるために数千回の測定値の平均が取られる。同時スイッチングによる測定誤差の防止のためには、スタート側端数時間信号とストップ側端数時間信号をできるだけ離したほうがよいが、それでは全体の測定時間が長くなってしまう。本発明によれば、別個の端数時間測定部を有することにより、両信号の重なりを避けつつできるだけ近づけることができ、同時スイッチングによる測定誤差を防止し、かつ、全体の測定時間を短縮することができる。
【0027】
【発明の実施の形態】
以下、本発明の実施の形態の例について図面に従って説明する。しかしながら、かかる実施の形態例が本発明の技術的範囲を限定するものではない。
【0028】
図1は、本発明の実施の形態の距離測定装置100のブロック図である。マイクロプロセッサ115は、測定開始指令S1を時間計測部101に出力して測定動作を開始させると共に、時間計測部101から入力される測定データS10、S11、S12に基づきターゲット114までの距離を求める。
【0029】
時間計測部101は、マイクロプロセッサ115からの測定開始指令S1に基づいて、ディレイ回路102に測定スタート信号S2を出力すると同時に、計測時間Tの測定を開始する。計測時間Tは、測定スタート信号S2から後述するコンパレータ部113から供給される測定ストップ信号S9までの時間である。なお、信号S13は、測定スタート信号S2に所定の遅延時間Tdを与えるために使用される。
【0030】
ディレイ回路102は、測定スタート信号S2を遅延時間Tdだけ遅らせ、レーザドライブ回路103にディレイ信号S3を出力する。遅延時間Tdは、後で詳述するように、基準クロックの2クロック分以上に設定される。この遅延時間Tdにより、近距離測定においてもスタート側端数時間信号とストップ側端数時間信号のエッジが時間的に重なることはない。
【0031】
レーザドライブ回路103は、ディレイ信号S3に同期してレーザダイオード104を駆動するレーザ駆動信号S4をレーザダイオード104に出力する。レーザダイオード104は、このレーザ駆動信号S4によりパルス点灯し、パルス光L1を送光光学系105に送る。
【0032】
送光光学系105に入射したパルス光L1は、内部のハーフミラー等で分岐され、パルス光L2及びパルス光L3となる。パルス光L2の方向が装置の外部へ光を出射する外部光路であり、パルス光L3の方向が装置の内部のみで光路を形成する内部光路である。
【0033】
送光光学系105の出射側には移動可能な光路切り替え用セクタ106があり、パルス光L2又はパルス光L3のどちらか一方の光路を塞ぐことにより外部光路又は内部光路を選択する。図1では光路切り替え用セクタ106がパルス光L3を塞いでおり、外部光路が選択された状態を示す。
【0034】
一方、光路切り替え用セクタ106がパルス光L2を塞ぐ場合は、内部光路が選択された状態となり、送光光学系105から出射されるパルス光L3は、内部用光学式アッテネータ116で光量を所定のレベルに調整された後、受光光学系110に送られる。
【0035】
図1に示すように外部光路が選択されている場合は、送光光学系105から出射したパルス光L2は、送光光学系107に入射しパルス光L4となって外部のターゲット114を照射する。ターゲット114で反射したパルス光L5は、受光光学系108に入射し装置内部に戻る。
【0036】
受光光学系108を通ったパルス光L6は、外部用光学式アッテネータ109で光量を調整され、パルス光L7となって受光光学系110に入射する。外部用光学式アッテネータ109は、レベル検出回路114からの信号S7により濃度が連続的に可変される。そして、光電変換部111から出力される受光信号S5が所定のレベルとなるようにパルス光L7の光量を調整する。
【0037】
受光光学系110は、内部にハーフミラー等を有し、外部光路又は内部光路を通ったパルス光をパルス光L8として光電変換部111に送る。なお、外部光路と内部光路は時分割に交互に選択され、それぞれの光路の距離が測定される。
【0038】
光電変換部111は、光学式バンドパスフィルタ、受光素子及び電流−電圧変換素子等からなり、パルス光L8を受光信号S5に変換する。アンプ部112は、受光信号S5を増幅して信号S8とし、信号S8をコンパレータ部113に出力する。また、アンプ部112は、受光信号S5の大きさに比例した信号S6を前述のレベル検出回路114に出力する。
【0039】
コンパレータ部113は、ピーク検出回路を含み、信号S8のピーク時点に対応する測定ストップ信号S9を時間計測部101に送る。時間計測部101は、内部光路又は外部光路のそれぞれの光路において、測定スタート信号S2から測定ストップ信号S9までの計測時間Tを測定する。
【0040】
マイクロプロセッサ115は、計測時間Tと光速Cからそれぞれの光路の距離を求める。また、内部及び外部光路それぞれの測定値の差を取ることにより、電気回路の温度特性等に起因する測定値の変動をキャンセルする。
【0041】
図2(1)は、本実施の形態の時間計測部101のブロック図である。時間計測部101は、前述のマイクロプロセッサ115から測定開始指令S1が入力されると、一連の測定動作を開始する。
【0042】
レーザダイオード点灯クロック発振器(以下、LD点灯クロックという。)204は、マイクロプロセッサ115からの測定開始指令S1に応答して、分周回路203と前述のディレイ回路102にクロック信号S13を出力する。分周回路203は、クロック信号S13を分周して測定スタート信号S2とし、前述のディレイ回路102及びスタート側端数時間信号生成部212に出力する。
【0043】
基準クロック発振器211は、計測時間Tの測定の基準となる基準クロック信号S30を、スタート側端数時間信号生成部212、ストップ側端数時間信号生成部217及びAND回路215に出力する。ストップ側端数時間信号生成部217には、測定ストップ信号S9が入力される。
【0044】
スタート側又はストップ側端数時間信号生成部212、217は、前述のように、測定スタート信号S2又は測定ストップ信号S9から基準クロック信号S30の次の次の立ち上がりエッジまでの時間Ta又はTbをパルス幅とする信号S31、S32を生成する。
【0045】
時間−電圧変換部213、218は、スタート側端数時間信号S31及びストップ側端数時間信号S32のパルス幅をアナログ電圧に変換し、更にそのアナログ電圧をディジタルデータの信号S10、S12に変換し前述のマイクロプロセッサ115に出力する。
【0046】
SRフリップフロップ214は、S端子及びR端子にそれぞれスタート側端数時間信号S31、ストップ側端数時間信号S32が入力され、信号S31の立ち下がりエッジから信号S32の立ち下がりエッジまでの期間Hレベルとなるゲート信号S33を、AND回路215に出力する。AND回路215は、ゲート信号S33がHレベルの間だけ基準クロック信号S30を通過させ、粗カウント信号S34をカウンタ216に出力する。
【0047】
カウンタ216は、ゲート信号S33がHレベルの期間の基準クロック信号S30をカウントし、そのカウント値を粗カウントデータS11として前述のマイクロプロセッサ115に出力する。
【0048】
図2(2)は、時間−電圧変換部213、218のブロック図である。インバータ251は、スタート側又はストップ側端数時間信号S31又はS32を反転した信号S34をトランジスタ252のベース端子に出力する。トランジスタ252は、信号S34がLレベルの期間は非導通となるので、その期間の定電流回路250の電流は、ダイオード253を介してコンデンサ257を充電する。従って、コンデンサ257の充電電圧は、スタート側又はストップ側端数時間信号S31又はS32のパルス幅Ta又はTbに比例したアナログ電圧信号S35となる。
【0049】
コンデンサ257のアナログ電圧信号S35は、アンプ254で増幅され、A/Dコンバータ255に入力される。A/Dコンバータ255は、スタート側又はストップ側端数時間信号S31、S32のパルス幅Ta、Tbに対応したディジタル信号S10、S12を前述のマイクロプロセッサ115に出力する。なお、コンデンサ257の充電電圧は、それぞれの測定が終了すると、トランジスタ256によりリセットされる。
【0050】
図3は、本実施の形態の距離測定装置100で使用されるディレイ回路102の1例を示す。図3(1)は、ディレイ回路102及び時間計測部101の一部のブロック図である。前述のように分周回路203の出力である測定スタート信号S2と、LD点灯クロック204のクロック信号S13が、ディレイ回路102に入力される。
【0051】
測定スタート信号S2は、ディレイ回路102のDフリップフロップ202のD端子に入力される。Dフリップフロップ202のQ1端子は、Dフリップフロップ201のD端子に接続され、Dフリップフロップ201のQ2端子からディレイ信号S3が出力される。また、LD点灯クロック204のクロック信号S13が、Dフリップフロップ201、202のクロック端子clkに入力される。
【0052】
図3(2)は、ディレイ回路102のタイムチャートである。図3(2)▲1▼は、LD点灯クロック信号S13を示し、図3(2)▲2▼は、測定スタート信号S2を示す。測定スタート信号S2は、LD点灯クロック信号S13を分周した信号であり、測定スタート信号S2とLD点灯クロック信号S13は同期する。
【0053】
図3(2)▲3▼は、Dフリップフロップ202の出力信号S20を示す。出力信号S20は、測定スタート信号S2をLD点灯クロック信号S13の1クロック分遅らせた信号となる。また、図3(2)▲4▼は、Dフリップフロップ201の出力であるディレイ信号S3を示す。Dフリップフロップ201においても、信号S20はLD点灯クロック信号S13の1クロック分遅れるので、ディレイ信号S3は、測定スタート信号S2をLD点灯クロック信号S13の2クロック分遅れた信号となる。このLD点灯クロック信号S13の2クロック分が、ディレイ回路102の遅延時間Tdとなる。
【0054】
LD点灯クロック信号S13の周波数は、前述の計測時間を測定する基準となる基準クロック信号S30の周波数より低く設定されているので、ディレイ回路102の遅延時間Tdは、基準クロック信号S30の2クロック以上となる。この遅延時間Tdにより、近距離測定においてもスタート側端数時間信号S31とストップ側端数時間信号S32のエッジが時間的に重なることはない。
【0055】
ここでは、周波数の安定なクロックにより必要なクロック数を遅延させる回路を説明したが、遅延時間が安定なディレイ素子、あるいはマイクロコンピュータの入出力ポートを介して遅延させることも可能である。
【0056】
図4は、本実施の形態における距離測定装置のタイムチャートである。図4▲1▼は、時間計測部101内の基準クロック信号S30を示し、図4▲2▼は、測定スタート信号S2を示す。測定スタート信号S2は、ディレイ回路102で所定の遅延時間Tdが与えられる。図4▲3▼は、ディレイ回路102から出力されるディレイ信号S3を示す。ディレイ信号S3の遅延時間Tdは、前述のように基準クロック信号S30の2クロック分以上に設定される。
【0057】
図4▲4▼は、レーザダイオード104から出射されるパルス光L1を示し、図4▲5▼は、光電変換部111から出力される受光信号S5を示す。光電変換部111では、光量を電気信号に変換すると共に、そのピーク時点を検出し、測定ストップ信号S9を時間計測部101に出力する。図4▲6▼は、受光信号S5のピーク時点で出力される測定ストップ信号S9を示す。測定スタート信号S2から測定ストップ信号S9までの時間が、計測時間Tである。尚、前述のようにレーザダイオード104は、測定スタート信号S2から遅延時間Tdだけ遅延したディレイ信号S3と同期したレーザ駆動信号S4によって点灯するので、光の走行時間、即ち、レーザダイオード104の発光開始から受光信号S5のピーク時までの時間は、図4▲4▼のTeであり、T=Te+Tdである。
【0058】
図4▲7▼は、スタート側端数時間信号S31を示す。前述のように、スタート側端数時間信号は、測定スタート信号S50から基準クロック信号S30の次の次の立ち上がりエッジまでであり、そのパルス幅はTaである。このため、パルス幅Taは、基準クロック信号S30の2クロック分未満となる。
【0059】
図4▲8▼は、ストップ側端数時間信号S32を示す。ストップ側端数時間信号S32は、測定ストップ信号S9から基準クロック信号S30の次の次の立ち上がりエッジまでで、そのパルス幅はTbである。
【0060】
図4▲9▼は、図2(1)に示したSRフリップフロップ214の出力であるゲート信号S33を示す。ゲート信号S33は、スタート側端数時間信号S31の立ち下がりエッジからストップ側端数時間信号S32の立ち下がりエッジまでの期間Hレベルとなり、そのパルス幅はN/fとなる。
【0061】
図4(10)は、粗カウント信号S34を示す。粗カウント信号S34は、基準クロック信号S30をゲート信号S33がHレベルとなる期間だけ抜き出したものである。粗カウント信号S34は、図2(1)に示したカウンタ216によりカウントされる。図4の場合、そのカウント値はN=3クロックである。
【0062】
このように本実施の形態では、測定スタート信号S2から基準クロック信号S30の2クロック分以上の遅延時間Tdの経過後に発光パルスL1が出射される。一方、スタート側端数時間信号S31は、測定スタート信号S2から基準クロック信号S30の次の次の立ち上がりエッジまでであるので、そのパルス幅Taは、基準クロック信号S30の2クロック分未満である。このため、近距離測定においても、スタート側端数時間信号S31の立ち下がりエッジとストップ側端数時間信号S32の立ち上がりエッジは時間的に重なることはなく、それぞれのパルス幅Ta、Tbを精度良く測定することができる。
【0063】
なお、外部光路及び内部光路による計測時間は、光の走行時間に対しそれぞれディレイ回路102の遅延時間Td分だけ長くなるが、このオフセット分は外部光路の計測時間から内部光路の計測時間を引くことによりキャンセルされるため、特に補正計算は必要としない。即ち、外部光路による計測時間T1=Td+Te1、内部光路による計測時間T2=Td+Te2であるから、両方の差をとると、T1-T2 =Te1-Te2 となり、ディレイ時間Tdの影響はない。但し、Te1、Te2はそれぞれの外部光路の光走行時間、内部光路の光走行時間である。
【0064】
本実施の形態例の距離測定装置100は、図2(1)で示したように時間計測部101内に、別個の端数時間測定部212、213及び217、218を有する。即ち、スタート側端数時間Taは、スタート側端数時間信号生成部212と時間−電圧変換部213により測定され、ストップ側端数時間Tbは、ストップ側端数時間信号生成部217と時間−電圧変換部218により測定される。
【0065】
本実施の形態例によれば、スタート側端数時間Ta及びストップ側端数時間Tbを別個の端数時間測定部で測定することにより、スタート側端数時間信号S31の立ち下がりエッジとストップ側端数時間信号S32の立ち上がりエッジを、従来の誤り測定を防止できる程度にできるだけ接近させることができる。従って、信号S31の立ち下がりエッジと信号S32の立ち上がりエッジの重なりをなくして、それぞれの端数時間を高精度に測定し、しかも信号S31の立ち下がりエッジと信号S32の立ち上がりエッジをできるだけ近づけて、全体の測定時間を短縮することができる。
【0066】
即ち、距離測定装置100は、測定精度を向上させるためにマイクロプロセッサ115からの測定開始指令S1に応答して数千回の測定を行い、その平均を取って1回の測定値としている。
【0067】
従って、遅延回路102の遅延時間Tdを信号S31の立ち下がりエッジと信号S32の立ち上がりエッジとが重ならない程度にその間をできるだけ短くすることで、複数回の測定を要する時間を短くすることができる。
【0068】
端数時間測定部を共通化する場合は、コンデンサ257のリセットに伴う放電時間や、A/Dコンバータ255の変換時間を確保するために、信号S31の立ち下がりエッジと信号S32の立ち上がりエッジとの間に十分な時間をおく必要があり、測定時間の長期化を招く。
【0069】
図5は、本発明の他の実施の形態の距離測定装置のブロック図である。図1の実施の形態と同様の部分の説明を省略し異なる部分を説明する。本実施の形態では、ディレイ回路102が、コンパレータ部113と時間計測部101の間に挿入される。ディレイ回路102は、受光信号S5のピーク時点で出力されるコンパレータ信号S9を遅延時間Tdだけ遅らせ、測定ストップ信号S40を時間計測部101に出力する。本実施の形態においても、遅延時間Tdは基準クロック信号S30の2クロック分以上である。
【0070】
図6は、図5に示した距離測定装置100のタイムチャートである。図6▲6▼に示す測定ストップ信号S40は、図6▲4▼に示す受光信号S5のピーク時点から遅延時間Tdだけ遅れている。スタート側端数時間信号S31(図6▲7▼)のパルス幅Taは、前述のように、基準クロック信号S30の2クロック分未満であるので、スタート側端数時間信号S31は、ストップ側端数時間信号S32(図6▲8▼)と時間的に重なることはない。
【0071】
図7は、本発明の第3の実施の形態の距離測定装置のブロック図である。図5の実施の形態と同様の部分には同じ引用番号を与えた。本実施の形態では、図5の実施の形態に加えて、アンプ116とコンパレータ117が設けられる。この実施の形態では、信号S2をスタート信号にする代わりに、発光トリガ信号S4に応答してレーザ104が発光したことを検出する信号S42を基準にして生成される信号S44を、計測のスタート信号に利用する。こうすることにより、ドライブ回路103とレーザ104の遅延時間の変動分を計測時間から除去することができ、より正確な時間を計測することができる。
【0072】
図8は、図7に示した距離測定装置100のタイムチャートである。この図を参照して動作を説明する。まず、マイクロプロセッサ115が時間計測部101に測定開始信号S1を送ると、時間計測部101内の発振回路が所定の周期の分周クロック信号S2をドライブ回路103に送る。これに同期してドライブ回路103は、レーザ104に発光トリガ信号S4を送る。レーザ104は、発光トリガ信号S4に同期してパルス光L1を出射するが、レーザ104には内部に発光モニタ用のフォトダイオードが内蔵されており、パルス光L1の出射と同時にこのフォトダイオードからパルス電流S42がアンプ116に出力される。
【0073】
アンプ116は、電流・電圧変換アンプ及び電圧増幅アンプから構成されており、図8▲5▼に示される通り、十分に増幅されて振幅が電源電圧付近で飽和したパルス電圧信号S43をコンパレータ117に出力する。コンパレータ117は、入力信号S43の立ち上がりエッジを検出して、時間計測部101に時間計測スタート信号S44を出力する。その後の動作は、図5,6の実施の形態と同じである。
【0074】
第3の実施の形態では、レーザが発光したタイミングを時間計測スタートのタイミングにしているため、レーザのトリガから発光までの遅延時間の変動が含まれないので、計測時間のばらつきを小さくすることができる。
【0075】
以上の実施の形態では、同時スイッチングによる測定誤差を防止するため、図1では単一のディレイ回路102をスタート側に設け、図5、図7では単一のディレイ回路102をストップ側に設けているが、本発明の実施の形態はこれらには限定されない。
【0076】
即ち、ディレイ回路をスタート側とストップ側の両方に設けて、それら複数のディレイ回路の遅延時間の合計で必要とする遅延時間Tdを発生させることもできる。例えば、第1のディレイ回路により測定スタート信号S2を遅延時間Td/2だけ遅らせ、第2のディレイ回路によりコンパレータ信号S9を遅延時間Td/2だけ遅らせてもよい。
【0077】
ディレイ回路の遅延時間は短い程その時間精度が向上するので、高精度の第1と第2のディレイ回路を使用して、より高精度の遅延時間Tdを発生させることができる。
【0078】
【発明の効果】
以上説明した通り、本発明によれば、測定スタート信号から測定ストップ信号までの間に所定の遅延時間が与えられているため、スタート側端数時間信号とストップ側端数時間信号が時間的に重なることはない。
【0079】
従って、同時スイッチングによる端数時間の測定誤差がなくなり、近距離測定における測定精度が向上する。また、別個の端数時間測定部を有することにより、全体の測定時間を短縮することができる。
【図面の簡単な説明】
【図1】本発明の実施の形態の距離測定装置のブロック図である。
【図2】本発明の実施の形態の距離測定装置の時間計測部のブロック図である。
【図3】本発明の実施の形態の距離測定装置のディレイ回路の説明図である。
【図4】本発明の実施の形態の距離測定装置のタイムチャートである。
【図5】本発明の他の実施の形態の距離測定装置のブロック図である。
【図6】本発明の他の実施の形態の距離測定装置のタイムチャートである。
【図7】本発明の第3の実施の形態の距離測定装置のブロック図である。
【図8】本発明の第3の実施の形態の距離測定装置のタイムチャートである。
【図9】従来の距離測定装置の説明図である。
【図10】従来の距離測定装置の誤差原因の説明図である。
【符号の説明】
101 時間計測部
102 ディレイ回路
103 レーザドライブ回路
104 レーザダイオード
105、107 送光光学系
106 光路切り替え用セクタ
108、110 受光光学系
109 光学式アッテネータ
111 光電変換部
112 アンプ部
113 コンパレータ部

Claims (5)

  1. 測定スタート信号に応答して目標物にパルス光を発光する発光部と、前記目標物からの反射パルス光の受光に応答して測定ストップ信号を出力する受光部と、前記測定スタート信号から前記測定ストップ信号までの計測時間を、前記測定スタート信号から基準クロックの所定クロック数未満のスタート側端数時間と、前記測定ストップ信号から前記基準クロックの所定クロック数未満のストップ側端数時間と、前記スタート側端数時間の終了時から前記ストップ側端数時間の終了時までの前記基準クロックのクロック数とを測定することにより求める時間計測部とを有し、前記計測時間から前記目標物までの距離を求める距離測定装置において、
    前記発光部は、前記測定スタート信号から所定の遅延時間経過後に前記パルス光を発光することを特徴とする距離測定装置。
  2. 測定スタート信号に応答して目標物にパルス光を発光する発光部と、前記目標物からの反射パルス光の受光に応答して測定ストップ信号を出力する受光部と、前記測定スタート信号から前記測定ストップ信号までの計測時間を、前記測定スタート信号から基準クロックの所定クロック数未満のスタート側端数時間と、前記測定ストップ信号から前記基準クロックの所定クロック数未満のストップ側端数時間と、前記スタート側端数時間の終了時から前記ストップ側端数時間の終了時までの前記基準クロックのクロック数とを測定することにより求める時間計測部とを有し、前記計測時間から前記目標物までの距離を求める距離測定装置において、
    前記受光部は、前記反射パルス光の受光から所定の遅延時間経過後に前記測定ストップ信号を出力することを特徴とする距離測定装置。
  3. 請求項1又は2において、
    前記遅延時間は、前記スタート側端数時間の最大値よりも長いことを特徴とする距離測定装置。
  4. 測定スタート信号に応答して目標物にパルス光を発光する発光部と、前記目標物からの反射パルス光の受光に応答して測定ストップ信号を出力する受光部と、前記測定スタート信号から前記測定ストップ信号までの計測時間を、前記測定スタート信号から基準クロックの所定クロック数未満のスタート側端数時間と、前記測定ストップ信号から前記基準クロックの所定クロック数未満のストップ側端数時間と、前記スタート側端数時間の終了時から前記ストップ側端数時間の終了時までの前記基準クロックのクロック数とを測定することにより求める時間計測部とを有し、前記計測時間から前記目標物までの距離を求める距離測定装置において、
    前記測定スタート信号から前記パルス光を発光するまでの第1の遅延時間と、前記反射パルス光の受光から前記測定ストップ信号を出力するまでの第2の遅延時間との合計が、前記スタート側端数時間の最大値よりも長いことを特徴とする距離測定装置。
  5. 請求項1乃至4のいずれかにおいて、
    前記時間計測部は、前記スタート側端数時間を測定する第1の端数時間測定部と、前記ストップ側端数時間を測定する第2の端数時間測定部とを有することを特徴とする距離測定装置。
JP36785698A 1998-01-28 1998-12-24 距離測定装置 Expired - Fee Related JP3941274B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP36785698A JP3941274B2 (ja) 1998-01-28 1998-12-24 距離測定装置

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP1519498 1998-01-28
JP10-15194 1998-01-28
JP36785698A JP3941274B2 (ja) 1998-01-28 1998-12-24 距離測定装置

Publications (2)

Publication Number Publication Date
JPH11281744A JPH11281744A (ja) 1999-10-15
JP3941274B2 true JP3941274B2 (ja) 2007-07-04

Family

ID=26351316

Family Applications (1)

Application Number Title Priority Date Filing Date
JP36785698A Expired - Fee Related JP3941274B2 (ja) 1998-01-28 1998-12-24 距離測定装置

Country Status (1)

Country Link
JP (1) JP3941274B2 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4188361B2 (ja) 2005-11-22 2008-11-26 三菱電機株式会社 車載用パルスレーダ装置
EP1876469B1 (de) * 2006-07-04 2009-11-25 Pepperl + Fuchs Gmbh Verfahren und Vorrichtung zur optoelektronischen berührungslosen Distanzmessung nach dem Laufzeitprinzip
TW201303533A (zh) * 2011-07-15 2013-01-16 Askey Technology Jiangsu Ltd 距離量測方法及系統
JP6891528B2 (ja) * 2017-02-17 2021-06-18 セイコーエプソン株式会社 回路装置、物理量測定装置、電子機器及び移動体
KR102163661B1 (ko) * 2018-11-14 2020-10-08 현대오트론 주식회사 라이다 비행시간 측정 장치 및 방법
JP2021099271A (ja) * 2019-12-23 2021-07-01 ソニーセミコンダクタソリューションズ株式会社 測距装置およびその制御方法、並びに、電子機器
JP2022025424A (ja) * 2020-07-29 2022-02-10 株式会社デンソー 時間差デジタル変換回路

Also Published As

Publication number Publication date
JPH11281744A (ja) 1999-10-15

Similar Documents

Publication Publication Date Title
US9797996B2 (en) Distance-measuring-device
JP2909742B2 (ja) 遅延時間測定装置
JP2896782B2 (ja) パルス方式の光波距離計
US8879048B2 (en) Device and method for determining the distance to an object
US7280069B2 (en) Range-finding radar apparatus with high-resolution pulse-width calculation unit
US6133992A (en) Distance measurement apparatus
Cova et al. Differential linearity testing and precision calibration of multichannel time sorters
JP3941274B2 (ja) 距離測定装置
JP2001124855A (ja) 距離計測方法およびその装置
US5107449A (en) Distance measuring device
US20240183953A1 (en) Tdc apparatus, distance measuring apparatus and correction method
US4584477A (en) Method for measuring distance and optical distance meter
JP4404978B2 (ja) 光電測定方法及び装置と紙幣確認
JPH0476480A (ja) パルス測距装置
JP2790590B2 (ja) 距離測定装置
JP3552123B2 (ja) 時間測定装置及び距離測定装置
JP3271323B2 (ja) 時間測定回路
JPH04214690A (ja) 発振器及びこの発振器を利用した光周波数測定装置
JP2000227483A (ja) 時間測定回路
JPS6324273B2 (ja)
JPH07333336A (ja) パルスレーダ装置
CN117355770A (zh) Tdc装置、测距装置以及测距方法
RU2627136C1 (ru) Многоканальное устройство для измерения временных интервалов
JPH0119112Y2 (ja)
JPH04131788A (ja) 距離の測定装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061219

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070313

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070326

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100413

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130413

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130413

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130413

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140413

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees