JP3925618B2 - 燃料噴射装置および噴霧燃料供給方法、並びに内燃機関 - Google Patents

燃料噴射装置および噴霧燃料供給方法、並びに内燃機関 Download PDF

Info

Publication number
JP3925618B2
JP3925618B2 JP2001345111A JP2001345111A JP3925618B2 JP 3925618 B2 JP3925618 B2 JP 3925618B2 JP 2001345111 A JP2001345111 A JP 2001345111A JP 2001345111 A JP2001345111 A JP 2001345111A JP 3925618 B2 JP3925618 B2 JP 3925618B2
Authority
JP
Japan
Prior art keywords
fuel
spray
fuel injection
fuel spray
intake
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001345111A
Other languages
English (en)
Other versions
JP2003148301A (ja
Inventor
天羽  清
裕三 門向
浩昭 佐伯
研二 渡邉
隆信 市原
正美 永野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Hitachi Automotive Systems Engineering Co Ltd
Original Assignee
Hitachi Ltd
Hitachi Car Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Hitachi Car Engineering Co Ltd filed Critical Hitachi Ltd
Priority to JP2001345111A priority Critical patent/JP3925618B2/ja
Publication of JP2003148301A publication Critical patent/JP2003148301A/ja
Application granted granted Critical
Publication of JP3925618B2 publication Critical patent/JP3925618B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/3094Controlling fuel injection the fuel injection being effected by at least two different injectors, e.g. one in the intake manifold and one in the cylinder

Description

【0001】
【発明の属する技術分野】
本発明は、自動車内燃機関の燃料噴射装置およびこれを搭載した内燃機関に関するものであって、内燃機関の始動性の向上を図るとともに、内燃機関より排出される有害物質、特にHCの低減を図るのに好適な技術に関するものである。
【0002】
【従来の技術】
内燃機関の始動性向上、燃費向上および排気浄化、特にHC低減の手段として、燃料噴射弁(インジェクタ)から噴射する燃料噴霧を微粒化し、かつ気化することにより、吸気管内壁面への付着を低減することが有効である。さらに、燃料を微粒化し、かつ気化して供給することにより燃焼室内の燃焼の安定が図られる。
【0003】
内燃機関に微粒化し、かつ気化した燃料噴霧を供給するために、主として内燃機関の始動時などに補助的に使用される燃料噴射弁(インジェクタ)を設けることが知られている。USP5、894、832号公報には、コールドスタートフューエルインジェクタと、ヒータと、アイドルスピードコントロールバルブ(以下ISCバルブという)とを備えたコールドスタートフューエルコントロールシステムが記載されている。
【0004】
このシステムでは、内燃機関のISCバルブ下流に配設した燃料噴射弁より噴射された噴霧とISCバルブを通過した吸入空気に旋回を加えることで混合促進を図るとともに、混合促進された混合気を燃料噴射弁下流に配設されたヒータに衝突させることにより加熱気化し、燃料の吸気管内壁面付着の低減が図られる。これらにより、自動車用内燃機関の始動性向上、燃費向上および排気浄化の改善が図られている。
【0005】
【発明が解決しようとする課題】
上記従来システムでは、燃料噴霧を燃料噴射弁下流に配設されたヒータに衝突させ、ヒータの発熱により噴霧の気化促進を図っている。よって、燃料が噴射される間、ヒータの内壁面に常に燃料噴霧が接触することになる。また、噴射される全燃料を気化促進するため、燃料噴霧の気化に用いられるヒータの負担は大きくなり、消費される電力も大きくなる。
【0006】
本発明の目的は、ヒータに使用される電気的エネルギーを小さくすることにある。また、消費される電気的エネルギーを低減することにより、ヒータの信頼性および耐久性の向上を図ることにある。さらに、低温始動時に噴霧の微粒化および気化促進を図り、燃料の吸気管内壁面付着を低減し、自動車用内燃機関の始動性向上、燃費向上および排気浄化促進が実現できるコンパクトで低コストな自動車用内燃機関の燃料噴射装置およびこれを搭載した内燃機関を提供することである。
【0007】
【課題を解決するための手段】
上記目的を達成するために、本発明は、燃料噴射弁下流に配設された噴霧偏向部に発熱体と伝熱部とで構成、あるいは撥水処理した構成になる燃料噴霧粒径保持装置を設けた。更に、本発明は、主として始動時などに補助的に使用される燃料噴射弁下流側に配設された噴霧偏向部の一部もしくは全部を180℃以上であり、液体燃料の発火点以下とするとともに、噴霧偏向部の伝熱面表面の形状にて、噴霧粒径を損なわずに噴霧を偏向することを可能とした。これにより、燃料を全量気化する方式を採用することなく、吸気管内壁面への燃料噴霧の付着を抑制でき、効率よく燃焼室内へ燃料を供給でき、ヒータに使用される電気的エネルギーの低減および信頼性と耐久性の向上を図る。さらにリタードして排気浄化促進が実現できる自動車用内燃機関を実現する。
【0008】
本発明は、燃料噴射弁から吸入空気の流れる分岐通路に燃料噴霧を噴射し、該分岐通路の一部を構成し、噴射された燃料噴霧を吸気集合管に連通する連通管に向けて偏向する噴霧偏向部を備えた燃料噴射装置において、該噴霧偏向部に、燃料噴霧粒径保持装置を設置した燃料噴射装置を提供する。
【0009】
前記燃料噴霧粒径保持装置は、発熱体および伝熱体で構成、もしくは撥水部で構成することができる。
【0010】
また、本発明は、燃料噴射弁から吸入空気の流れる分岐通路に燃料噴霧を噴射し、噴射された燃料噴霧を吸気集合管および吸気マニホールドを介して吸気弁に搬送、供給を行う噴霧燃料供給方法において、吸気集合管に連通する連通管に向けて燃料噴霧を偏向する噴霧偏向部に設置した発熱体の表面温度を180℃以上、液体燃料の発火点以下として噴霧燃料と前記噴霧偏向部に設けた伝熱部に衝突、偏向させ、保持された燃料噴霧粒径の状態で吸気弁に搬送、供給を行う噴霧燃料供給方法を提供する。
【0011】
本発明は、燃料噴射弁から吸入空気の流れる分岐通路に燃料噴霧を噴射し、噴射された燃料噴霧を吸気集合管および吸気マニホールドを介して吸気弁に搬送、供給を行う噴霧燃料供給方法において、吸気集合管に連通する連通管に向けて燃料噴霧を偏向する噴霧偏向部に設置した燃料噴霧粒径保持装置に噴霧燃料を衝突、偏向させ、保持された燃料噴霧粒径の状態で吸気弁に搬送、供給を行う噴霧燃料供給方法を提供する。
【0012】
本発明は、燃焼室に点火プラグと、混合空気を取り入れる吸気弁と排気を行う排気弁と、吸入空気の流量を電気的に制御する電気制御スロットルバルブと燃料微粒化装置および噴霧偏向部を有する燃料噴射装置とを連通させる連通管と、混合空気を各気筒に分岐する吸気マニホールドと、および内燃機関の状態を検出する各種センサの信号から燃料信号を演算し、燃料噴射量および燃料噴射時期を制御する燃料噴射制御装置とを備えた内燃機関において、前記燃料噴射制御装置は、燃料噴霧粒径および噴霧偏向部に設けた発熱部の温度に基づいて、点火時期のリタードを行う内燃機関を提供する。
【0013】
点火時期をリタードして高温の燃焼ガスを排出することによってHCを低減する触媒を暖機することができる。
【0014】
【発明の実施の形態】
以下、本発明の一実施例について、図1乃至図9を用いて説明する。
【0015】
図1において、内燃機関1はガソリンを燃料とする周知の点火式内燃機関であるが、1つの気筒のみに着目し図示している。
内燃機関1は、燃焼室2に点火プラグ3を配置し、混合空気63を取り入れる吸気弁4と燃焼後の排気を行う排気弁5を備えている。燃焼室2の側部には、エンジン冷却水6の温度を検知する水温センサ7とエンジンの回転数を検知する回転センサ(図示省略)を備え、運転状態を検知している。
【0016】
燃焼室2に吸気を行う吸気系は、エアクリーナ(図示省略)を通過して吸入される吸入空気8の計測をするエアフローセンサ9と、運転者のアクセルペダル操作もしくは、内燃機関1の運転状態に連動して回動する回転軸17に取り付けられて開閉し、吸入空気38の流量を電気的に制御する電子制御スロットルバルブ10及びスロットルポジショニングセンサ11と、吸気集合管12と、電子制御スロットルバルブ10と吸気集合管12と後述する燃料噴射装置100とを連通させる連通管34と、吸気集合管12から内燃機関1の各気筒に分岐する吸気マニホールド13と、吸気弁4を備えた吸気ポート14等を備える。
【0017】
エアフローセンサ9およびスロットルポジショニングセンサ11で計測した吸入空気8の流量、およびスロットルバルブ10のバルブ部15の開度情報は、コントローラ16に入力し、内燃機関1の運転状態の検出や種々の制御に使用する。
【0018】
燃料噴射装置は、第1の燃料噴射弁18と第2の燃料噴射弁19と、で構成される。第1の燃料噴射弁18は、吸気集合管12の下流で各気筒の吸気弁4に向けて噴射するように吸気ポート14に取り付けられている。
【0019】
第2の燃料噴射弁19は、燃料噴射装置100に取り付けられている。電子制御スロットルバルブ10の下流側には、連通管34(主吸気管)に開口した分岐通路20(副吸気管)が設けられており、燃料噴射弁19より噴射された燃料噴霧83は、分岐通路20を通過し、吸気集合管12(図2)に導入される。
【0020】
燃料系は、燃料21を貯える燃料タンク22と、燃料タンク22から燃料21を圧送する燃料ポンプ23と、燃料フィルタ24と、圧送された燃料21の圧力を所定の圧力に調整するプレッシャレギュレータ25と、各気筒の吸気ポート14に燃料を噴射する第1の燃料噴射弁18と、スロットルバルブ部15下流に燃料21を供給する第2の燃料噴射弁19を備え、これらは、燃料配管26で接続されている。
【0021】
排気系は、各気筒の排気弁5を備える排気ポート27と、排気マニホールド28と、排気中の酸素濃度を計測する酸素濃度センサ29と、排気を浄化するための三元触媒コンバータ30と、消音マフラー(図示省略)等を備える。酸素濃度センサ29で計測した酸素濃度情報は、コントローラ16に入力して内燃機関1の運転状態の検出や種々の制御に使用する。三元触媒コンバータ30は、理論空燃比付近で運転される内燃機関1から排気されるNOx、CO、HCを同時に高い浄化率で浄化するものである。
【0022】
燃料噴射装置100は、電子制御スロットルバルブ10と吸気集合管12の間に配設された連通管34に開口された分岐通路20に接続されている。また、エアフローセンサ9で計量された吸入空気8を、燃料噴射装置100へ導入するために、電子制御スロットルバルブ10の上流から下流へバイパスするように、吸気管31から分岐されたバイパス通路32が形成されている。バイパス通路32は、第2の燃料噴射弁19から噴射された燃料噴霧を搬送および微粒化促進するため吸入空気8の一部である吸入空気36を通過させる空気通路である。
【0023】
上記構成において、燃焼室2では、燃料噴射弁18、19により噴射された燃料噴霧と吸入空気8の混合気が吸入される。吸入された混合気は、圧縮され、点火プラグ3で着火され、燃焼が行われる。内燃機関1から排出される排気33は排気系から大気中に放出される。
【0024】
吸入空気流れは、内燃機関1の運転に伴い、吸入空気8としてエアフローセンサ9を通過することにより計量される。ここで、吸入空気量は、電子制御スロットルバルブ10により制御される。前記のごとく、吸入空気8の一部は、バイパス通路32内を通過する吸入空気36として供給されたのち、燃料噴射装置100内を通過し、燃料噴霧83と吸入空気36の混合気37として、スロットルバルブ10下流の分岐通路20を介して連通管34に供給される。また、電子制御スロットルバルブ10を介して、燃料噴射装置100に供給される吸入空気36とは異なる吸入空気38が電子制御スロットルバルブ10下流へ供給される。ここで、吸入空気38と混合気37は、連通管34内で合流・混合されながら、混合気63として吸気集合管12、所定の吸気マニホールド13、吸気ポート14を介して燃焼室2へ供給される。
【0025】
図2は、図1中の電子制御スロットルバルブ10、燃料噴射装置100、吸気マニホールド系52(吸気集合管12、吸気マニホールド13、吸気ポート14等で構成された)、およびそれらを連通する連通管34で構成された吸気系部の外観斜視図である。第1の燃料噴射弁取付部35に第1の燃料噴射弁18が設置固定される。図中では、燃料噴射弁18を省略している。
【0026】
図3は、燃料噴射装置100の外観斜視図を示す。燃料噴射装置100の構成は、ボディ43とヒータボディ52にて構成され、ボディ43には、主に第2の燃料噴射弁19と、吸入空気導入管32aが配設されている。吸入空気導入管32aには、バイパス通路32が連通しており、吸入空気36が流入する。そして、燃料噴射弁19には、燃料タンク22より燃料ポンプ23にて圧送され、燃料配管26を介して燃料21が供給される。ヒータボディ52には、後述するヒータが内蔵されており、そのヒータへ通電するためのプラス電極の電極端子65が配設され、マイナス電極部66は、燃料21と吸入空気36の混合気37の出口部に配設されている。ヒータボディ52内にて微粒化および気化された燃料は、白抜き矢印で示す混合気37として、燃料噴射装置100外へと供給される。
【0027】
図4は、図3に示す燃料噴射装置100の縦断面図である。なお、分かりやすくするために燃料噴射弁19は、外観形状を図示している。
図中の燃料噴射装置100のヒータボディ52内の副通路76開口部であるマイナス電極部66が分流部34に開口された分岐通路20に取り付けられている。ヒータボディ52内部には、副通路76が形成されている。また、副通路76は、燃料噴霧気化促進部と燃料噴霧偏向部が形成されている(詳細は後述)。燃料噴霧偏向部である伝熱面51で燃料噴射弁19より噴射される燃料噴霧噴射方向A方向(白抜き矢印)をB方向(白抜き矢印)に偏向するためにA方向に対して、所定の偏向角度を持つように形成されている。
【0028】
副通路76の外周には、板状のヒータ48、50が配置されている。本ヒータは、上下の平面部が電極となっているセラミックヒータである。このヒータの上下の電極に電流を印加することにより、発熱を行うものである。さらに、発熱体であるヒータ48、50は、温度が所定値以上になると、電気抵抗が急増して、電流が低下し、温度を一定に保持することのできるPTC(Positive Temperature Coefficient Thermistor)ヒータを用いている。
【0029】
ヒータ48、50であるPTCヒータは、マイナス電極となる副通路76の壁面と、プラス電極板77に接触するように固定されている。プラス電極板77は、断熱部材78に保持され、電極部47を介し、ヒータボディ52の外側に配設されたプラス電極端子65に接続されている。導電性のある副通路76壁面はマイナス電極部66と圧入固定されている。よって、プラス電極端子65とマイナス電極部66に通電することによりPTCヒータ48、50が発熱し副通路76壁面を加熱する構造である。なお、燃料噴射弁19の噴射孔73側に配設されるヒータ48は、燃料噴霧気化促進部を構成しており、周方向にヒータ列群が配置している。本ヒータ48の表面には、副通路76の一部である伝熱部(伝熱面)49が設けられており、その伝熱部49の表面温度を120〜180℃とするためにヒータ48温度を設定している。また、燃料噴射弁19より噴射される燃料噴霧83噴射方向に下流側の位置に配設されている燃料噴霧83の噴射方向偏向部である伝熱部51の表面温度が180℃以上であり、燃料噴霧83の発火点以下とするようにヒータ50温度を設定している。
【0030】
副通路76はOリング90等により内部通路からシールされている。
【0031】
ボディ43には、ヒータボディ52と同軸上に配置された第2の燃料噴射弁19を有し、燃料噴射弁19は、空気導入孔74を持つケース42に圧入固定されたエアアトマイザ44と、Oリング41でボディ34に内部通路をシールするように位置決めされ、燃料パイプ39と燃料パイプオサエ39aでボディ43に固定されている。燃料通路95は燃料パイプ39と燃料噴射弁19の間にOリング40を配置しシールされている。
【0032】
このように、燃料噴射装置100には、前記燃料噴射弁19より噴射された燃料噴霧の粒径を損なわずに噴霧を偏向する機能をもたせるために噴霧偏向部71に発熱体であるヒータ50と伝熱部51を設けている。発熱体と伝熱部は燃料噴霧粒径保持装置を構成する。
【0033】
図5は燃料噴霧粒径保持装置103の一例を示し、この場合、図4のC−C方向の一部形状を示す。図4および図5において、燃料噴霧粒径保持装置103は、分岐通路20の一部を構成し、吸気集合管12に連通する連通管34に向けて噴霧を偏向する噴霧偏向部60に設けられ、ヒータボディ52内でヒータ50である発熱体と伝熱部51によって構成される。
【0034】
本実施の形態では、電子制御スロットルバルブ10のバルブ部15の上流と下流では圧力差が生じており、このため、電子制御スロットルバルブ10のバルブ部15の開度に応じて、電子制御スロットルバルブ10をバイパスする空気通路32に空気が流れる。また、バイパス通路32は、燃料噴射装置100の吸入空気導入管32aに連通している。
【0035】
燃料噴射装置100の燃料噴射弁19から噴射された燃料噴霧83に、微粒化空気36bを燃料噴射弁19先端とエアアトマイザ44で形成された通路により、燃料噴射弁19より噴射された噴霧に衝突させ、燃料噴霧83の微粒化および噴霧角度を調整して混合室79に噴射している。そして、吸入空気導入管32aを介して取り入れられた吸入空気36の一部である搬送空気36aを、ボディ43内周部とケース42外周部およびエアアトマイザ44の先端部外周部で形成された通路を通過する搬送空気36aとして微粒化空気36bで微粒化を促進させた噴霧83外周より供給して、加熱された副通路76内面の伝熱部49、51に沿って噴霧83を搬送する。よって、燃料噴霧83を微粒化および気化促進するとともに、噴霧83を搬送することにより、噴霧噴射方向を噴霧粒径を保持しつつ偏向するように設計されている。
【0036】
図6は、本実施例に用いた燃料噴射弁19から噴射される噴霧に吸入空気8の一部である微粒化空気36bを衝突させて微粒化を促進した噴霧粒径分布(噴霧A)と、吸入空気8の一部を用いた微粒化を促進しない場合の噴霧粒径分布(噴霧B)を示す図である。ここで、噴霧AとBのどちらの噴霧も燃料噴射弁19の噴孔の上流側で燃料に旋回を加えて微粒化を促進する上流旋回式燃料噴射弁から噴射される燃料噴霧をベースとしている。
【0037】
噴霧Aに示す吸入空気の一部である微粒化空気36bを用いて燃料噴霧を微粒化する手段を用いることにより、燃料噴霧の粒径を大幅に小さくすることが可能となる。噴霧Bは、本実施例を用いた燃料噴射弁19の噴孔の上流側で燃料に旋回を加えることによりコーン状の噴霧を形成した場合の噴霧粒径分布であり、平均粒径でおよそ60μm程度の噴霧を実現している。しかし、粒径分布より明らかなごとく、20μm以上の粒径で噴霧Bは構成されていることがわかる。これに対して、噴霧Aは、前記噴霧Bに吸入空気の一部である微粒化空気36Bを用いることにより微粒化が促進されて、ザウタ平均粒径でおよそ10μm程度の噴霧を実現している。この噴霧の粒径分布をみるとそのほとんどが20μm以下の噴霧粒径で構成されていることがわかる。
【0038】
ここで、SAE99010792「An Internally Heated Tip Injector to Reduce HC Emissions During Cold-Start」に記載のごとく噴霧の粒径が20μm程度であれば、吸気管内流動に乗って噴霧が燃焼室へ搬送されると言われている。噴霧Aでは、粒径分布より明らかなように、そのほとんどが20μm以下であり、燃焼室2へ搬送することが可能であると言える。よって、噴霧Aは充分に吸気管内壁面に噴霧の付着が生じさせないことが可能となる。吸気管内流動に乗らないごくわずかの粒径20μm以上の噴霧は、副通路76内を通過させ、または伝熱部49に衝突させることによりさらなる微粒化および気化促進を図り、吸気管内壁面への燃料噴霧の付着を低減する。
【0039】
しかし、噴霧粒径が20μm以下の噴霧であっても、噴霧液滴のもつ速度成分が吸入空気のもつ速度成分より大きければ、噴霧液滴は吸入空気流れに乗って噴霧が燃焼室へ搬送されない。すなわち、燃料噴射弁19より噴射された噴霧に吸入空気の一部である微粒化空気36bを衝突させ噴霧の平均粒径を10μmとし、噴霧中の粒径を20μm以下とした前記噴霧Aを実現したとしても、搬送空気36aの流れに乗る流れでない場合、燃料噴霧は吸気管内壁面に衝突し吸気管内壁面状で液流を生じさせる。図4の場合では、吸入空気流れの一部である搬送空気36a流れに沿わない噴霧は、微粒化空気36bにより微粒化された燃料噴霧83の噴射方向下流側に配設された燃料噴霧噴射方向偏向を行う噴霧偏向部60を構成する伝熱部51(図5)に衝突することになる。伝熱部51に衝突した燃料噴霧は、ライデンフロスト効果(詳細は後述)により、燃料液滴がはじかれるために、噴霧83の粒径を損なわずに噴霧噴射方向を偏向することが可能となる仕様となっている。偏向された噴霧83は連通管34に流れる。
【0040】
図7は、燃料噴射装置100内に配設された伝熱部表面温度と気化時間の関係を噴霧の平均粒径で整理した図である。図示のごとく燃料噴霧の平均粒径が小さくなるほど気化時間が短くなることがわかる。また、伝熱部表面温度が140℃以上になると気化時間が平均粒径の影響をほとんど受けなくなることがわかる。さらに、伝熱部表面温度がおよそ140℃から180℃の間をA領域と定義する。この領域では、燃料噴霧の一部が伝熱部表面に付着しのち気化するものと、気化せずにそのまま伝熱部表面に衝突後飛散する噴霧が存在する領域である。A領域の範囲では、伝熱部表面温度が高いほど、燃料噴霧の伝熱部表面での噴霧の飛散する割合が増えてくる傾向にある。さらに、温度を上げて伝熱部表面温度が180℃以上をB領域と定義する。このB領域では、燃料噴霧のほとんどが伝熱部表面に付着することなく飛散する。すなわち、伝熱部表面では、燃料噴霧の気化促進が効果的に行われず噴霧が伝熱部表面で粒径を保持したまま飛散する(はじかれる)傾向にある。
【0041】
この現象は、ライデンフロスト現象とよばれ、燃料液滴の蒸発速度と加熱面温度の関係として特開平9−88740号に触れられている。すなわち、伝熱部表面の温度が比較的低いうちは、燃料噴霧の液滴表面から気化が進行し、温度が上昇して、燃料の飽和温度を超えるとともに液滴中に気泡が発生しはじめ、さらに温度が上昇すると、その気泡の数が多くなりいわゆる核沸騰状態となり蒸発速度が極めて速くなる。そして、燃料の蒸発速度は最大蒸発点と呼ばれる温度で最大に達する。この核沸騰状態より加熱面温度が高くなると、大きくなった気泡により加熱面と液滴の接触面積が減少して、加熱面から液滴に熱が伝達され難くなるため、液滴の蒸発速度が次第に低下する(遷移沸騰領域=A領域)。そして、その接触面積が著しく小さくなると、ついには、液滴が加熱面から浮き上がる(ライデンフロスト現象)膜沸騰状態(膜沸騰域=B領域)となる。
【0042】
この沸騰状態では、加熱面からの液滴への熱の伝熱がされ難くなるために、燃料液滴の蒸発速度は、著しく低下する。ここでは、充分に微粒化された噴霧をはじく(飛散させる)効果が充分にあり、燃料液滴を大きくすることなく(噴霧粒径を損なうことなく)噴霧の噴射方向を偏向させることが実現可能となる。
【0043】
図8は、内燃機関1の運転条件と排気特性とを示す図である。(a)は燃料噴霧の平均粒径と点火時期の関係を示す図であり、(b)は点火時期と触媒の温度の関係を示す図であり、(c)は(b)の触媒温度の上昇時間とHCの排出量関係を示す図である。上記した燃料気化促進装置および/または燃料噴霧粒径保持装置103を備えた内燃機関を用いることにより、内燃機関より排出されるHCを低減することが可能となる。以下、図8を用いて説明する。
【0044】
図8(a)は、燃料噴霧の粒径と燃焼の安定性を維持したまま遅くできる(リタードできる)点火時期の限界との関係を示す図である。本実施の形態で得られる燃料噴霧の粒径はザウタ平均粒径でおよそ10μmであり、そのときの粒径分布から噴霧中の粒径のほとんどが20μmであるためと、燃料噴霧噴射方向偏向機能を有する伝熱部51により、吸気管内を流れる吸入空気流れに乗る噴霧が形成でき、燃料噴霧粒径を損なうことなく燃料噴霧を内燃機関1の吸気弁4を介して燃焼室2に供給するために、膨張行程に入るまで点火時期を大きくリタードさせることが可能となる。膨張行程で点火を行うと燃焼室内の燃焼ガスが膨張する割合が減るため、燃焼ガスが膨張仕事によって消費する熱量が少なくなり、高温を保ったままの燃焼ガスを排気マニホールド28に排出することができる。つまり、図8(b)に示すように、点火時期をリタードして高温の燃焼ガスを排出することによって触媒30を急速に暖機することが可能になり、内燃機関1の始動後、触媒30が活性化温度に達するまでの時間が短縮される。すなわち、図8(c)に示すように、触媒30の浄化作用が早期に開始されるので、内燃機関1の始動後に排出されるHCの量を大幅に低減することができる。なお、触媒(三元触媒コンバータ)30の早期暖機により、HCのみならず、NOx、COの低減も可能である。HCで総称することにする。
【0045】
図9は、ヒータ48、50に電力を供給する際の特性を示す図であり、(a)はヒータ48、50に加えられる電圧と時間の関係を示す図であり、(b)はヒータ48、50に流れる電流と時間の関係を表わす図である。
【0046】
図9(a)に示すように、一定の電圧がヒータ48、50にはバッテリ106、オルタネータ等からの発電機(図1)から印加される。このときヒータ48、50に流れる電圧、電流は、図9に示すごとく時間とともに変化する。すなわち、本実施の形態では、ヒータ48、50として、PTCヒータを用いているので、通電開始直後で、ヒータの温度が低いときには、その抵抗値が小さく、大きな電流がヒータ48、50に流れ込む。ヒータ48、50の温度が上昇するにともなって、ヒータの抵抗は加速度的に大きくなるので、電流はピークを迎えたのちに減少していき、最終的には、ヒータから奪われる熱量と均衝する熱量を発生する電流値に落ち着く。ここで、本実施例では、燃料噴霧を微粒化促進して、燃料噴霧偏向部60に設けた伝熱部51を前述したように所定温度範囲に加熱する方式としているために、燃料噴霧を全量気化する必要が無い。よって、図9(b)中の破線で示す燃料噴霧を全量気化する場合に比べ、本実施例の燃料噴射装置100では燃料噴霧を全量気化させることなく、必要な電気的エネルギーを格段に少なくできるために、ヒータ枚数の大幅な削減ができ、実線で示すごとくヒータ使用時の電圧降下や、消費電流を大幅に改善できる。よって、燃料噴射装置100の小型化ができるとともに、消費電流が小さくできるために比較的安価で、信頼性および耐久性の高いシステムの提供が可能となる。
【0047】
次に本発明の第2の実施例につき、図10乃至図12を用いて説明する。第1の実施例と同一の構成には同一の番号を付している。
図10は、本発明の第2の実施例の燃料噴射装置101を搭載した電子制御スロットルバルブ10、燃料噴射装置101、吸気マニホールド系52(吸気集合管12、吸気マニホールド13、吸気ポート14等で構成)、およびそれらを連通する連通管61で構成された斜視図である。第1の燃料噴射弁取付部35に第1の燃料噴射弁18が設置固定される。図中では、燃料噴射弁を省略している。
【0048】
図11は、図10に示す燃料噴射装置101の燃料噴射弁19噴射方向縦断面図である。なお、分かりやすくするために燃料噴射弁19は、外観形状を図示している。
【0049】
図12は、燃料噴射装置101に搭載されている噴霧偏向部(噴霧偏向部材)62の形状を示す図であり、図12(a)は、本実施例の噴霧偏向部62を示すものであり、図12(b)は、噴霧偏向部62の形状が異なる第3の実施例である噴霧偏向部材81の形状を示す図である。
【0050】
第1の実施例との違いは、燃料噴射装置101と連通管61の構成の違いにある。その他の構成は、第1の実施例と同様の構成であるために説明を省略する。燃料噴射装置101は、連通管61に固定されている。連通管61は、電子制御スロットルバルブ10と吸気マニホールド系52の吸気集合管12との間に直列に配設されている。連通管61には、ホルダー69を介して燃料噴射弁19が固定されている。燃料噴射弁19とホルダー69内周面で形成される環状空間である整圧室84には、ホルダー69に配設される吸入空気導入管67より供給される吸入空気36が流入する構成である。連通管61には、分岐通路82が形成されており、分岐通路82内には、噴霧偏向部62が配設されている。分岐通路82と、ホルダー69に穿かれた噴孔72は連通している。また、燃料噴射弁19の先端部とホルダー69内面底部には、整圧室84に流入した微粒化空気70が分岐通路82へと流入するごとく、エアアトマイザ71と燃料噴射弁19先端で形成される通路が形成されている。ここで、整圧室84に流入した微粒化空気70が、エアアトマイザ71と燃料噴射弁19先端で形成された通路を通過し、燃料噴射弁19より噴射された噴射直後の噴霧外周より、噴霧に衝突する。この微粒化空気70の噴霧への衝突により、燃料噴霧の微粒化促進が促進されて、噴霧の平均粒径がおよそ10μmとなり、噴霧中の粒径のほとんどが20μm以下の噴霧の生成が可能となる。本実施例では、燃料噴射弁19の噴孔直下にホルダー69の噴孔72が配設され、その下流側に噴霧偏向部62が配設されている。よって、微粒化促進された燃料噴霧は、噴霧偏向部62へ衝突することになる。ここで、噴霧偏向部62には、図12(a)に記載のごとく、燃料噴霧が衝突する側に伝熱部62a、その反対側に発熱体であるPTCヒータ64が密着固定されて、燃料噴射弁19より噴射される燃料噴霧噴射方向に対して所定角度をもって噴孔72下流側に配設されている。
【0051】
燃料噴射弁19より噴射された燃料噴霧は微粒化空気70にてホルダー噴孔72部で微粒化促進されたのちに連通管61の分岐通路82に到達したのち、噴孔70下流側に配設された噴霧偏向部62へと衝突することになる。伝熱部62aの表面温度は、発熱体であるPTCヒータ64の発熱により、180℃以上であり、燃料噴霧の発火点以下に設定されている。よって、伝熱部62aに衝突した微粒化の促進された燃料噴霧は、ライデンフロスト効果により噴霧の粒径を損なうことなく、伝熱部62a表面に沿って、図11白抜き矢印のごとく混合気37として、燃料噴射弁19の燃料噴霧噴射方向が偏向され、白抜き矢印で示す混合気37方向へ供給されることになる。これにより、電子制御スロットルバルブ10を介して、吸入された吸入空気38の流れ方向に乗りやすい混合気37の流れが形成することができ、吸気管内壁面付着が低減できる。また、噴霧偏向部62の形状により、噴霧の噴射方向を偏向するほかに噴霧形状も比較的容易に形成することが可能となる。たとえば図12(a)のL1を大きくし、L2を固定した場合には、噴霧は、偏平噴霧が形成できる。同様に角度θ1およびL1、2、Hの形状の制御により、吸入空気38流れに乗りやすく、吸気管形状沿った噴霧の形状を形成することが可能である。
【0052】
図12(b)は噴霧偏向部62の伝熱部形状を半径rの曲面形状とした噴霧偏向部62の異なる形状の実施例である。本実施例でもこれも角度θ2、半径rの形状を制御することにより、噴霧の形状を図12(a)の噴霧偏向部62とほぼ同様に制御することが可能な噴霧偏向部材81となる。
【0053】
本実施例では、燃料噴霧を積極的に気化させるのではなく、あらかじめ微粒化が促進された燃料噴霧の粒径を損なわずに噴霧の噴射方向を偏向させるために噴霧噴射方向偏向部に発熱体であるPTCヒータ64を用いているために、ヒータ枚数も少なくできるためにPTCヒータ64で消費される電気的エネルギーを格段に低減できる。そして、吸入空気38流れに沿った混合気37の生成が実現できる効果がある。
【0054】
上記記載の実施例では、燃料噴射弁19の微粒化促進の手段として、吸入空気の一部である微粒化空気36を用いたエアアシスト式燃料噴射弁につき述べてきたが、燃料噴霧の微粒化を促進させる手段は、エアアシスト式に限定するものではない。たとえば、燃料噴射弁19内の燃料21を高圧ポンプ等を用いて高圧して微粒化を促進する高圧燃料式燃料噴射弁を用いても良い。また、燃料噴射弁19先端に超音波振動素子等の何らかの微粒化手段を設けた燃料噴射弁を用いても実現可能である。すなわち、噴霧の粒径が20μm以下の噴霧を発生できる燃料噴射装置を用いることにより、本実施例は実現可能である。
【0055】
また、燃料噴射弁19より噴射された微粒化の促進された燃料噴霧の噴射方向偏向部としてPTCヒータにより伝熱部を加熱した実施例を述べてきたが、噴射方向偏向部を撥水性処理を施すこと、すなわち撥水部の使用により、伝熱部を加熱した場合とほぼ同等の効果である噴霧粒径を損なわずに噴霧の噴射方向を偏向することが可能である。
【0056】
【発明の効果】
本発明によれば、燃料噴霧を完全気化することなく、燃料噴霧を微粒化促進し、吸入空気流れに沿った燃料噴霧を噴霧偏向部に設けた伝熱部に衝突させるようにしているために、ヒータの温度を所定範囲に抑え、ヒータに使用される電気的エネルギーを格段に低減できる。よって、ヒータの信頼性および耐久性の向上を図ることができる。さらに低温始動時の噴霧の微粒化および気化促進が図れ、吸入空気流れに沿った吸入空気の一部と燃料噴霧の混合気が生成でき燃料の吸気管内壁面付着を低減でき、内燃機関の始動性向上、燃費向上および、リタードに伴う排気浄化促進を実現できる。また、撥水部を使用すれば、電気的エネルギーを更に少なく、場合によってはヒータを設けることを要せず電気的エネルギーを必要としない。
【図面の簡単な説明】
【図1】本発明に係る燃料噴射装置を搭載した内燃機関の一実施例を示す構成図である。
【図2】本発明に係る燃料噴射装置周辺の部品を組み立て時の斜視図である。
【図3】本発明に係る図1および図2中に示した燃料噴射装置の斜視図である。
【図4】本発明に係る図1および図2中に示した燃料噴射装置の燃料噴射弁19噴射方向縦断面図を示す図である。
【図5】図4のC−C方向の一部構成図である。
【図6】本発明に係る燃料噴射装置より供給される噴霧の粒径分布を示す図である。
【図7】本発明に係る燃料噴射装置の伝熱部温度と気化時間および噴霧粒径の関係を示す図である。
【図8】内燃機関1の運転条件と排気特性とを示す図である。(a)は燃料噴霧の平均粒径と点火時期の関係を示す図であり、(b)は点火時期と触媒の温度の関係を示す図であり、(c)は(b)の触媒温度の上昇時間とHCの排出量関係を示す図である。
【図9】伝熱部を加熱するヒータに電力を供給する際の特性を示す図であり、(a)はヒータに加えられる電圧と時間の関係を示す図であり、(b)はヒータに流れる電流と時間の関係を表わす図である。
【図10】本発明に係る第2の実施例の燃料噴射装置101を搭載した電子制御スロットルバルブ10、燃料噴射装置101、吸気マニホールド系52(吸気集合管12、吸気マニホールド13、吸気ポート14等で構成)、およびそれらを連通する連通管61で構成された斜視図である。
【図11】本発明に係る第2の実施例の燃料気化促進装置と電子制御スロットルバルブの断面図である。
【図12】本発明に係る第2の実施例の燃料噴霧の伝熱部形状を示す図である。
【符号の説明】
1…内燃機関、2…燃焼室、3…点火プラグ、4…吸気弁、5…排気弁、8…吸入空気、9…エアフローセンサ、10…電子制御スロットルバルブ、12…吸気集合管、18…第1の燃料噴射弁、19第2の燃料噴射弁、30…三元触媒コンバータ、31…吸気管、32…バイパス通路、36a…搬送空気、36b…微粒化空気、48、50、64…(PTC)ヒータ、49、51、62a…伝熱部(伝熱面)、60、62…噴霧偏向部、100、101…燃料噴射装置、103…燃料噴霧粒径保持装置。

Claims (8)

  1. 燃料噴射弁から吸入空気の流れる分岐通路に噴射した燃料噴霧を微粒化し、該分岐通路の一部を構成し、微粒化された燃料噴霧を吸気集合管に連通する連通管に向けて偏向する噴霧偏向部を備えた燃料噴射装置において、
    前記分岐通路に、第一のヒータ温度を設定したヒータで構成した燃料噴霧気化促進部を設け、前記噴霧偏向部に、第一のヒータ温度よりも高い第二の温度の表面温度を設定した伝熱部と発熱体とで構成した燃料噴霧粒径保持装置を設置し、気化促進された燃料噴霧について粒径保持をするようにしたこと
    を特徴とする燃料噴射装置。
  2. 請求項1において、前記伝熱部は、前記燃料噴霧気化促進部で燃料噴霧気化促進された燃料の液滴が衝突する部分に配設されることを特徴とする燃料噴射装置。
  3. 燃料噴射弁から吸入空気の流れる分岐通路に噴射した燃料噴霧を微粒化し、該分岐通路の一部を構成し、微粒化された燃料噴霧を吸気集合管に連通する連通管に向けて偏向する噴霧偏向部を備えた燃料噴射装置において、
    前記分岐通路に、ヒータで構成した燃料噴霧気化促進部を設け、前記噴霧偏向部に、撥水部で構成した燃料噴霧粒径保持装置を設置し、気化促進された燃料噴霧について粒径保持をするようにしたこと
    を特徴とする燃料噴射装置。
  4. 請求項3において、前記撥水部は、前記燃料噴霧気化促進部で燃料噴霧気化促進された燃料の液滴が衝突する部分に配設されることを特徴とする燃料噴射装置。
  5. 燃料噴射弁から吸入空気の流れる分岐通路に噴射した燃料噴霧を微粒化し、該微粒化された燃料噴霧を吸気集合管および吸気マニホールドを介して吸気弁に搬送、供給を行う噴霧燃料供給方法において、
    前記分岐通路に設けたヒータによって前記微粒化された燃料噴霧を120〜180℃に加熱して燃料噴霧気化促進し、該気化促進した噴霧について吸気集合管に連通する連通管に向けて燃料噴霧を偏向する噴霧偏向部に設置した発熱体から伝熱される伝熱部の表面温度を180℃以上、液体燃料の発火点以下として噴霧燃料と前記噴霧偏向部に設けた伝熱部に衝突、偏向させ、保持された燃料噴霧粒径の状態で燃焼室弁に搬送、供給を行うこと
    を特徴とする噴霧燃料供給方法。
  6. 燃料噴射弁から吸入空気の流れる分岐通路に噴射した燃料噴霧を微粒化し、該微粒化された燃料噴霧を吸気集合管および吸気マニホールドを介して吸気弁に搬送、供給を行う噴霧燃料供給方法において、
    前記分岐通路に設けたヒータによって前記微粒化された燃料噴霧を120〜180℃に加熱して燃料噴霧気化促進し、該気化促進した噴霧について吸気集合管に連通する連通管に向けて燃料噴霧を偏向する噴霧偏向部に設置した撥水部に噴霧燃料を衝突、偏向させ、保持された燃料噴霧粒径の状態で燃焼室弁に搬送、供給を行うこと
    を特徴とする噴霧燃料供給方法。
  7. 燃焼室に点火プラグと、混合空気を取り入れる吸気弁と排気を行う排気弁と、吸入空気の流量を制御するスロットルバルブと燃料微粒化装置および噴霧偏向部を有する燃料噴射装置とを連通させる連通管と、混合空気を各気筒に分岐する吸気マニホールドと、および内燃機関の状態を検出する各種センサの信号から燃料信号を演算し、燃料噴射量および燃料噴射時期を制御する燃料噴射制御装置とを備えた内燃機関において、
    前記燃料噴射制御装置は、請求項1から4のいずれかに記載した燃料噴射装置を備え、点火時期のリタード制御を行うこと
    を特徴とする内燃機関。
  8. 請求項において、
    前記燃料噴射制御装置は、点火時期をリタードして高温の燃焼ガスを排出することによってHCを低減する触媒の活性化温度制御を行うことを特徴とする内燃機関。
JP2001345111A 2001-11-09 2001-11-09 燃料噴射装置および噴霧燃料供給方法、並びに内燃機関 Expired - Fee Related JP3925618B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001345111A JP3925618B2 (ja) 2001-11-09 2001-11-09 燃料噴射装置および噴霧燃料供給方法、並びに内燃機関

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001345111A JP3925618B2 (ja) 2001-11-09 2001-11-09 燃料噴射装置および噴霧燃料供給方法、並びに内燃機関

Publications (2)

Publication Number Publication Date
JP2003148301A JP2003148301A (ja) 2003-05-21
JP3925618B2 true JP3925618B2 (ja) 2007-06-06

Family

ID=19158510

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001345111A Expired - Fee Related JP3925618B2 (ja) 2001-11-09 2001-11-09 燃料噴射装置および噴霧燃料供給方法、並びに内燃機関

Country Status (1)

Country Link
JP (1) JP3925618B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114233494B (zh) * 2021-09-29 2023-07-11 太原理工大学 一种甲醇发动机冷启动装置及方法

Also Published As

Publication number Publication date
JP2003148301A (ja) 2003-05-21

Similar Documents

Publication Publication Date Title
US6543412B2 (en) Intake air control device and internal combustion engine mounting the same
USRE41860E1 (en) Cold start engine control apparatus and method
US6895747B2 (en) Diesel aftertreatment systems
EP1488097A1 (en) Fuel injector for an internal combustion engine
JP2004514829A (ja) 排ガスを後処理するための装置および方法
US6820864B2 (en) Fuel vaporization promoting apparatus and fuel carburetion accelerator
US6508236B2 (en) Fuel supply device and internal combustion engine mounting the same
JP2003343367A (ja) 燃料加熱式燃料噴射装置及びそれを備える内燃機関
JP2002206445A (ja) 内燃機関の燃料供給装置
CA2480083C (en) Fuel injector for an internal combustion engine
JP2004324585A (ja) 気化混合装置
JP3925618B2 (ja) 燃料噴射装置および噴霧燃料供給方法、並びに内燃機関
JP3867508B2 (ja) 内燃機関の燃料供給装置
JP2002195136A (ja) 吸気制御装置およびこれを搭載した内燃機関
JP2003301749A (ja) 燃料気化促進装置
JP3735590B2 (ja) 燃料気化促進装置用ヒータユニット及びそれを備えた燃料気化促進装置
JP3914773B2 (ja) 燃料気化促進装置
JP2004132241A (ja) 内燃機関の燃料供給装置
JP3921338B2 (ja) 内燃機関の燃料供給装置
JP2004138012A (ja) 燃料気化促進装置およびこれを搭載した内燃機関
JP2003301758A (ja) 燃料気化促進装置およびこれを搭載した内燃機関
JP2002206471A (ja) 燃料供給装置およびこれを搭載した内燃機関
JP4048032B2 (ja) 燃料供給装置およびこれを搭載した内燃機関
JP2003254203A (ja) 内燃機関およびこれに搭載する燃料噴射装置
JPH06129243A (ja) 内燃機関の排気浄化装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040301

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061016

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061017

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070123

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees