JP3914366B2 - 薄膜磁気ヘッド用スライダの製造方法 - Google Patents
薄膜磁気ヘッド用スライダの製造方法 Download PDFInfo
- Publication number
- JP3914366B2 JP3914366B2 JP2000044912A JP2000044912A JP3914366B2 JP 3914366 B2 JP3914366 B2 JP 3914366B2 JP 2000044912 A JP2000044912 A JP 2000044912A JP 2000044912 A JP2000044912 A JP 2000044912A JP 3914366 B2 JP3914366 B2 JP 3914366B2
- Authority
- JP
- Japan
- Prior art keywords
- slider
- thin film
- magnetic head
- film magnetic
- layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Magnetic Heads (AREA)
- Adjustment Of The Magnetic Head Position Track Following On Tapes (AREA)
Description
【発明の属する技術分野】
本発明は、記録媒体に対向する媒体対向面と、媒体対向面の近傍に配置された薄膜磁気ヘッド素子とを有する薄膜磁気ヘッド用スライダの製造方法に関する。
【0002】
【従来の技術】
近年、ハードディスク装置の面記録密度の向上に伴って、薄膜磁気ヘッドの性能向上が求められている。薄膜磁気ヘッドとしては、書き込み用の誘導型電磁変換素子を有する記録ヘッドと読み出し用の磁気抵抗(以下、MR(Magnetoresistive)とも記す。)素子を有する再生ヘッドとを積層した構造の複合型薄膜磁気ヘッドが広く用いられている。MR素子としては、異方性磁気抵抗(以下、AMR(Anisotropic Magnetoresistive)と記す。)効果を用いたAMR素子と、巨大磁気抵抗(以下、GMR(Giant Magnetoresistive )と記す。)効果を用いたGMR素子とがあり、AMR素子を用いた再生ヘッドはAMRヘッドあるいは単にMRヘッドと呼ばれ、GMR素子を用いた再生ヘッドはGMRヘッドと呼ばれる。AMRヘッドは、面記録密度が1ギガビット/(インチ)2を超える再生ヘッドとして利用され、GMRヘッドは、面記録密度が3ギガビット/(インチ)2を超える再生ヘッドとして利用されている。近年は、ほとんどGMRヘッドが利用されるようになってきている。
【0003】
再生ヘッドの性能を向上させる方法としては、MR膜をAMR膜からGMR膜等の磁気抵抗感度の優れた材料に変える方法や、MR膜のパターン幅、すなわち、再生トラック幅やMRハイトを適切化する方法等がある。MRハイトとは、MR素子のエアベアリング面側の端部から反対側の端部までの長さ(高さ)をいう。また、エアベアリング面は、薄膜磁気ヘッドにおける磁気記録媒体と対向する面である。
【0004】
一方、再生ヘッドの性能向上に伴って、記録ヘッドの性能向上も求められている。記録ヘッドの性能のうち面記録密度を高めるには、記録トラック密度を上げる必要がある。このためには、記録ギャップ層を挟んでその上下に形成された下部磁極および上部磁極のエアベアリング面での幅を数ミクロンからサブミクロン寸法まで狭くした狭トラック構造の記録ヘッドを実現する必要があり、これを達成するために半導体加工技術が利用されている。また、記録ヘッドの性能を決定する他の要因としては、パターン幅、特に、スロートハイト(Throat Height)がある。スロートハイトは、2つの磁極層が記録ギャップ層を介して対向する部分、すなわち磁極部分の、エアベアリング面側の端部から反対側の端部までの長さ(高さ)をいう。記録ヘッドの性能向上のためには、スロートハイトの縮小化が望まれている。このスロートハイトは、エアベアリング面の加工の際の研磨量によって決定される。
【0005】
このように、薄膜磁気ヘッドの性能の向上のためには、記録ヘッドと再生ヘッドをバランスよく形成することが重要である。
【0006】
高密度記録を可能にする薄膜磁気ヘッドに要求される条件としては、再生ヘッドについては、再生トラック幅の縮小、再生出力の増加、ノイズの低減等があり、記録ヘッドについては、記録トラックの縮小、記録媒体上の既にデータを書き込んである領域にデータを重ね書きする場合の特性であるオーバーライト特性の向上、非線形トランジションシフト(Non-linear Transition Shift)の向上等がある。
【0007】
ところで、ハードディスク装置等に用いられる浮上型薄膜磁気ヘッドは、一般的に、後端部に薄膜磁気ヘッド素子が形成されたスライダによって構成されるようになっている。スライダは、記録媒体の回転によって生じる空気流によって記録媒体の表面からわずかに浮上するようになっている。
【0008】
ここで、図17ないし図21を参照して、従来の薄膜磁気ヘッド素子の製造方法の一例について説明する。なお、図17ないし図20において、(a)はエアベアリング面に垂直な断面を示し、(b)は磁極部分のエアベアリング面に平行な断面を示している。
【0009】
この製造方法では、まず、図17に示したように、例えばアルティック(Al2O3・TiC)よりなる基板101の上に、例えばアルミナ(Al2O3)よりなる絶縁層102を、約5〜10μm程度の厚みで堆積する。次に、絶縁層102の上に、磁性材料よりなる再生ヘッド用の下部シールド層103を形成する。
【0010】
次に、下部シールド層103の上に、アルミナ等の絶縁材料よりなるシールドギャップ膜104を、例えばスパッタリングにより、例えば100〜200nmの厚みに形成する。次に、下部シールドギャップ膜104の上に、再生用のMR素子105を、数十nmの厚みに形成する。次に、下部シールドギャップ膜104の上に、MR素子105に電気的に接続される一対の電極層106を形成する。
【0011】
次に、下部シールドギャップ膜104、MR素子105および電極層106の上に、アルミナ等の絶縁材料よりなるシールドギャップ膜107を、例えばスパッタリングによって形成し、MR素子105をシールドギャップ膜104,107内に埋設する。
【0012】
次に、上部シールドギャップ膜107の上に、磁性材料からなり、再生ヘッドと記録ヘッドの双方に用いられる上部シールド層兼下部磁極層(以下、下部磁極層と記す。)108を、約3μmの厚みに形成する。
【0013】
次に、図18に示したように、下部磁極層108の上に、絶縁膜、例えばアルミナ膜よりなる記録ギャップ層109を0.2μmの厚みに形成する。次に、磁路形成のために、記録ギャップ層109を部分的にエッチングして、コンタクトホール109aを形成する。次に、磁極部分における記録ギャップ層109の上に、記録ヘッド用の磁性材料よりなる上部磁極チップ110を、0.5〜1.0μmの厚みに形成する。このとき同時に、磁路形成のためのコンタクトホール109aの上に、磁路形成のための磁性材料からなる磁性層119を形成する。
【0014】
次に、図19に示したように、上部磁極チップ110をマスクとして、イオンミリングによって、記録ギャップ層109と下部磁極層108をエッチングする。図19(b)に示したように、上部磁極部分(上部磁極チップ110)、記録ギャップ層109および下部磁極層108の一部の各側壁が垂直に自己整合的に形成された構造は、トリム(Trim)構造と呼ばれる。
【0015】
次に、全面に、例えばアルミナ膜よりなる絶縁層111を、約3μmの厚みに形成する。次に、この絶縁層111を、上部磁極チップ110および磁性層119の表面に至るまで研磨して平坦化する。
【0016】
次に、平坦化された絶縁層111の上に、例えば銅(Cu)よりなる誘導型の記録ヘッド用の第1層目の薄膜コイル112を形成する。次に、絶縁層111およびコイル112の上に、フォトレジスト層113を、所定のパターンに形成する。次に、フォトレジスト層113の表面を平坦にするために所定の温度で熱処理する。次に、フォトレジスト層113の上に、第2層目の薄膜コイル114を形成する。次に、フォトレジスト層113およびコイル114上に、フォトレジスト層115を、所定のパターンに形成する。次に、フォトレジスト層115の表面を平坦にするために所定の温度で熱処理する。
【0017】
次に、図20に示したように、上部磁極チップ110、フォトレジスト層113,115および磁性層119の上に、記録ヘッド用の磁性材料、例えばパーマロイ(NiFe)よりなる上部磁極層116を形成する。次に、上部磁極層116の上に、例えばアルミナよりなるオーバーコート層117を形成する。最後に、上記各層を含むスライダの機械加工を行って、記録ヘッドおよび再生ヘッドのエアベアリング面118を形成して、薄膜磁気ヘッド素子が完成する。
【0018】
図21は、図20に示した薄膜磁気ヘッド素子の平面図である。なお、この図では、オーバーコート層117や、その他の絶縁層および絶縁膜を省略している。
【0019】
次に、図22ないし図24を参照して、スライダの構成とその製造方法について説明する。図22はスライダのエアベアリング面の構成の一例を示す底面図である。この図に示したように、スライダ120におけるエアベアリング面は、磁気ディスク等の記録媒体の回転によって生じる空気流によってスライダ120を記録媒体の表面からわずかに浮上させるために必要な形状に形成されている。なお、図22において、符号121aは凸部を表し、121bは凹部を表している。また、また、スライダ120におけるエアベアリング面の空気流出側(図22における上側)の端部近傍には薄膜磁気ヘッド素子122が配置されている。この薄膜磁気ヘッド素子122の構成は、例えば図20に示したようになっている。図22におけるC部が、図20(b)に対応する。
【0020】
スライダ120は、以下のようにして製造される。まず、それぞれ薄膜磁気ヘッド素子122を含むスライダとなる部分(以下、スライダ部分と言う。)が複数列に配列されたウェハを一方向に切断して、スライダ部分が一列に配列されたバーと呼ばれるブロックを形成する。次に、このバーに対して研磨加工を行ってエアベアリング面を形成し、更に、凸部121aおよび凹部121bを形成する。次に、バーを切断して各スライダ120に分離する。
【0021】
図23は図22のD−D線断面図である。図23では、薄膜磁気ヘッド素子122のうちの主要な部分のみを示している。図23に示したように、スライダ120の大部分は、例えばアルティックよりなる基板101で構成されている。スライダ120のうちの残りの部分は、例えばアルミナよりなる絶縁層127と、この絶縁層127内に形成された薄膜磁気ヘッド素子122等で構成されている。絶縁層127の大部分はオーバーコート層117である。
【0022】
スライダ120におけるエアベアリング面には、下部シールド層103、下部磁極層108、上部磁極チップ110、上部磁極層116等の腐食等を防止するために、例えば特開平9−63027号公報に示されるように、ダイヤモンドライクカーボン(DLC)等を用いた保護膜を形成してもよい。図24は、このようにエアベアリング面に保護膜128を形成したスライダ120が、記録媒体140の表面からわずかに浮上している状態を示す断面図である。
【0023】
【発明が解決しようとする課題】
ところで、ハードディスク装置の性能、特に面記録密度を向上させる方法には、線記録密度を高める方法とトラック密度を高める方法とがある。高性能のハードディスク装置を設計する際には、線記録密度とトラック密度のどちらに重点を置くかによって、記録ヘッド、再生ヘッド、あるいは薄膜磁気ヘッド全体における具体的な方策が異なる。すなわち、トラック密度に重点を置いた設計の場合には、例えば、記録ヘッドと再生ヘッドの双方においてトラック幅の縮小が求められる。
【0024】
一方、線記録密度に重点を置いた設計の場合には、例えば、再生ヘッドにおいて、再生出力の向上や、再生出力における半値幅の縮小が求められる。線記録密度に重点を置いた設計の場合には、更に、ハードディスクとスライダとの間の距離(以下、磁気スペースと言う。)の縮小が求められる。20〜30ギガビット/(インチ)2の面記録密度を実現する場合には、磁気スペースとしては、例えば15〜25nmであることが必要となる。
【0025】
磁気スペースの縮小は、スライダの浮上量の縮小によって達成される。磁気スペースの縮小は、再生ヘッドにおける再生出力の向上や半値幅の縮小に寄与する他に、記録ヘッドにおけるオーバーライト特性の向上に寄与する。
【0026】
以下、磁気スペースを縮小する場合における問題点について説明する。従来、スライダ120のエアベアリング面の研磨は、例えば、ダイヤモンドスラリーを用い、回転するスズ定盤上で行っていた。
【0027】
ところで、スライダ120を構成する複数の材料には硬度に差がある。例えば、基板101に使用されるセラミックス材であるアルティックと、下部シールド層103、下部磁極層108、上部磁極チップ110、上部磁極層116等に使用される磁性材料、例えばNiFeと、絶縁層127に使用されるアルミナとで硬度を比較すると、アルティックの硬度が最も大きく、NiFeの硬度が最も小さく、アルミナの硬度はアルティックの硬度とNiFeの硬度の中間である。
【0028】
このように互いに硬度の異なる複数の層を含むスライダ120を、研磨剤としてダイヤモンドスラリーを用いてスズ定盤上で研磨すると、硬度の異なる複数の層の間で段差が生じることがあった。例えば、図23に示したように、NiFe等の磁性材料よりなる層、例えば上部磁極層116と絶縁層127との間では、絶縁層127に対して上部磁極層116が引っ込んだ状態で1〜2nm程度の段差が生じ、絶縁層127と基板101との間では、基板101に対して絶縁層127が引っ込んだ状態で4〜5nm程度の段差が生じていた。この場合、薄膜磁気ヘッド素子122のエアベアリング面側の面と、保護膜128を除いた状態の基板101のエアベアリング面側の面との間の段差は5〜7nm程度となる。
【0029】
ここで、図24に示したように、保護層128の厚みを5nmとすると、薄膜磁気ヘッド素子122のエアベアリング面側の面と、基板101に対応する部分における保護層128のエアベアリング面側の面との間の段差は10〜12nm程度となる。そして、スライダ120の浮上時におけるスライダ120と記録媒体140との間の距離を10nmとすると、スライダ120の浮上時における薄膜磁気ヘッド素子122のエアベアリング面側の面と記録媒体140との間の距離、すなわち磁気スペースは20〜22nm程度となる。この程度の磁気スペースでは、達成可能な面記録密度は30ギガビット/(インチ)2程度が限界となる。
【0030】
このように、従来の薄膜磁気ヘッドでは、スライダ120のエアベアリング面において、薄膜磁気ヘッド素子122に対応する部分が他の部分よりも引っ込んだ状態で段差が生じることから、磁気スペースを縮小することが困難であり、その結果、記録密度を向上させることが難しいという問題点があった。
【0031】
また、従来の薄膜磁気ヘッドでは、上述のように、磁気スペースを縮小することが困難であることから、特に、再生ヘッドにおける再生出力の向上や半値幅の縮小といった再生ヘッドの特性の向上を十分に図ることができなかった。そのため、従来は、高密度記録用のハードディスク装置のエラーレートが高くなり、ハードディスク装置の歩留りが低くなるという問題点があった。
【0032】
なお、特開平8−339511号公報には、スライダのエアベアリング面を研磨する工程において、薄膜磁気ヘッド素子を構成する構成部材に比べて、構成部材の周囲の絶縁体を不均衡に侵食して、構成部材が絶縁体よりも突き出るようしたスライダの製造方法が開示されている。
【0033】
しかしながら、この技術では、スライダのエアベアリング面において、特に絶縁体と構成部材との間に大きな段差が生じるため、この段差を解消するために保護膜を必要以上に厚く形成する必要が生じるという問題点がある。
【0034】
一方、磁気スペースを縮小してゆくと、スライダと記録媒体との衝突が生じやすくなり、記録媒体の損傷が生じやすくなる。これを防止するには、記録媒体の表面の平滑性を高めることが必要になる。しかし、記録媒体の表面の平滑性を高めると、スライダと記録媒体との吸着が生じやすくなる。
【0035】
そこで、特開平8−287440号公報、特開平8−293111号公報、特開平11−120528号公報等には、スライダの媒体対向面に吸着防止用の突起を設ける技術が示されている。
【0036】
ところで、特開平7−230615号公報には、スライダの浮上面を平坦化するために、スライダの浮上面の加工時にスライダとヘッド素子との間に生じる凹み部に、絶縁膜よりなる保護膜を設ける技術が示されている。特開平7−230615号公報には、凹み部に保護膜を設ける方法として、次のような第1の方法と第2の方法とが示されている。第1の方法は、スライダの浮上面とヘッド素子部の浮上面とを含む面の全面にスパッタリングにより保護膜を形成した後、スライダの浮上面をラッピングすることにより、スライダの浮上面における保護膜を除去する方法である。第2の方法は、スライダの浮上面とヘッド素子部の浮上面とを含む面の全面に感光性有機膜を形成し、ヘッド素子部の浮上面における感光性有機膜のみを感光させて取り除き、その後、全面にスパッタリングにより保護膜を形成し、最後に、残りの感光性有機膜を取り除く方法である。
【0037】
しかしながら、特開平7−230615号公報に示された技術では、スライダの浮上面すなわち媒体対向面は平坦化されるが、スライダの媒体対向面に前述の吸着防止用の突起を設ける等、スライダの媒体対向面を所望の形状に形成することが困難であるという問題点がある。
【0038】
本発明はかかる問題点に鑑みてなされたもので、その目的は、薄膜磁気ヘッド用スライダの低浮上化を可能とし、且つ薄膜磁気ヘッド用スライダの媒体対向面を所望の形状に形成することを可能にした薄膜磁気ヘッド用スライダの製造方法を提供することにある。
【0039】
【課題を解決するための手段】
本発明の薄膜磁気ヘッド用スライダの製造方法は、記録媒体に対向する媒体対向面と、媒体対向面の近傍に配置された薄膜磁気ヘッド素子とを有する薄膜磁気ヘッド用スライダの製造方法であって、
基板と、基板の上に配置された絶縁層と、絶縁層内に形成された薄膜磁気ヘッド素子とを含むスライダ用の素材に対して媒体対向面を形成する工程と、
媒体対向面のうち、薄膜磁気ヘッド素子および絶縁層に対応する部分の上にマスクを形成する工程と、
媒体対向面のうち、薄膜磁気ヘッド素子に対応する部分が、基板に対応する部分のうちの少なくとも一部と同一平面を形成するか、または基板に対応する部分のうちの少なくとも一部よりも記録媒体に近づく位置に配置されるように、マスクを用いて媒体対向面を部分的にエッチングする工程と
を備えたものである。
【0040】
本発明の薄膜磁気ヘッド用スライダの製造方法では、媒体対向面を部分的にエッチングすることにより、スライダの媒体対向面のうち、薄膜磁気ヘッド素子に対応する部分が、基板に対応する部分のうちの少なくとも一部と同一平面を形成するようになるか、または基板に対応する部分のうちの少なくとも一部よりも記録媒体に近づく位置に配置されるようになる。
【0041】
本発明の薄膜磁気ヘッド用スライダの製造方法において、エッチングする工程ではイオンミリングを用いてもよいし、反応性イオンエッチングを用いてもよい。
【0042】
また、本発明の薄膜磁気ヘッド用スライダの製造方法において、媒体対向面を形成する工程は、スライダ用の素材における媒体対向面となる面の研磨を含んでいてもよい。
【0043】
また、本発明の薄膜磁気ヘッド用スライダの製造方法は、更に、エッチングする工程の後に、媒体対向面に保護膜を形成する工程を備えていてもよい。この場合、保護膜はダイヤモンドライクカーボンによって形成されてもよい。
【0044】
また、本発明の薄膜磁気ヘッド用スライダの製造方法は、更に、媒体対向面を形成する工程の後に、媒体対向面に保護膜を形成する工程を備え、媒体対向面を部分的にエッチングする代りに保護膜を部分的にエッチングしてもよい。この場合、保護膜はダイヤモンドライクカーボンによって形成されてもよい。また、保護膜の厚みは、エッチングする工程の前の状態における媒体対向面のうち、薄膜磁気ヘッド素子に対応する部分と基板に対応する部分のうちの少なくとも一部との間の段差以上であってもよい。
【0045】
また、本発明の薄膜磁気ヘッド用スライダの製造方法では、エッチングする工程において、媒体対向面、または保護膜を含めた素材における記録媒体に対向する面のうちの基板に対応する部分に凸部を形成するようにしてもよい。
【0046】
【発明の実施の形態】
以下、本発明の実施の形態について図面を参照して詳細に説明する。
[第1の実施の形態]
本発明の第1の実施の形態が適用される薄膜磁気ヘッド用スライダ(以下、単にスライダと記す。)は、記録媒体に対向する媒体対向面としてのエアベアリング面と、エアベアリング面の近傍に配置された薄膜磁気ヘッド素子とを有している。
【0047】
まず、図1ないし図7を参照して、本発明の第1の実施の形態が適用されるスライダにおける薄膜磁気ヘッド素子の製造方法の一例について説明する。なお、図1ないし図6において、(a)はエアベアリング面に垂直な断面を示し、(b)は磁極部分のエアベアリング面に平行な断面を示している。
【0048】
本例における薄膜磁気ヘッド素子の製造方法では、まず、図1に示したように、例えばアルティック(Al2O3・TiC)よりなる基板1の上に、例えばアルミナ(Al2O3)よりなる絶縁層2を、約5μmの厚みで堆積する。次に、絶縁層2の上に、磁性材料、例えばパーマロイよりなる再生ヘッド用の下部シールド層3を、約3μmの厚みに形成する。下部シールド層3は、例えば、フォトレジスト膜をマスクにして、めっき法によって、絶縁層2の上に選択的に形成する。次に、図示しないが、全体に、例えばアルミナよりなる絶縁層を、例えば4〜5μmの厚みに形成し、例えばCMP(化学機械研磨)によって、下部シールド層3が露出するまで研磨して、表面を平坦化処理する。
【0049】
次に、図2に示したように、下部シールド層3の上に、絶縁膜としての下部シールドギャップ膜4を、例えば約20〜40nmの厚みに形成する。次に、下部シールドギャップ膜4の上に、再生用のMR素子5を、数十nmの厚みに形成する。MR素子5は、一端部がエアベアリング面30に配置される。MR素子5は、例えば、スパッタによって形成したMR膜を選択的にエッチングすることによって形成する。なお、MR素子5には、AMR素子、GMR素子、あるいはTMR(トンネル磁気抵抗効果)素子等の磁気抵抗効果を示す感磁膜を用いた素子を用いることができる。次に、下部シールドギャップ膜4の上に、MR素子5に電気的に接続される一対の電極層6を、数十nmの厚みに形成する。次に、下部シールドギャップ膜4およびMR素子5の上に、絶縁膜としての上部シールドギャップ膜7を、例えば約20〜40nmの厚みに形成し、MR素子5をシールドギャップ膜4,7内に埋設する。シールドギャップ膜4,7に使用する絶縁材料としては、アルミナ、窒化アルミニウム、ダイヤモンドライクカーボン(DLC)等がある。また、シールドギャップ膜4,7は、スパッタ法によって形成してもよいし、化学的気相成長(CVD)法によって形成してもよい。
【0050】
次に、上部シールドギャップ膜7の上に、磁性材料からなり、再生ヘッドと記録ヘッドの双方に用いられる上部シールド層兼下部磁極層(以下、下部磁極層と記す。)8の第1の層8aを、約1.0〜1.5μmの厚みで、選択的に形成する。なお、下部磁極層8は、この第1の層8aと、後述する第2の層8b、第3の層8cとで構成される。下部磁極層8の第1の層8aは、後述する薄膜コイルの少なくとも一部に対向する位置に配置される。
【0051】
次に、下部磁極層8の第1の層8aの上に、下部磁極層8の第2の層8bおよび第3の層8cを、約1.5〜2.5μmの厚みに形成する。第2の層8bは、下部磁極層8の磁極部分を形成し、第1の層8aの後述する記録ギャップ層側(図2において上側)の面に接続される。第3の層8cは、第1の層8aと後述する上部磁極層とを接続するための部分であり、後述する薄膜コイルの中心の近傍の位置に配置される。第2の層8bのうち上部磁極層と対向する部分におけるエアベアリング面30とは反対側の端部の位置は、スロートハイトを規定する。
【0052】
下部磁極層8の第2の層8bおよび第3の層8cは、NiFe(Ni:80重量%,Fe:20重量%)や、高飽和磁束密度材料であるNiFe(Ni:45重量%,Fe:55重量%)等を用い、めっき法によって形成してもよいし、高飽和磁束密度材料であるFeN,FeZrN等の材料を用い、スパッタによって形成してもよい。この他にも、高飽和磁束密度材料であるCoFe,Co系アモルファス材等を用いてもよい。
【0053】
次に、図3に示したように、全体に、例えばアルミナよりなる絶縁膜9を、約0.3〜0.6μmの厚みに形成する。
【0054】
次に、フォトレジストをフォトリソグラフィ工程によりパターニングして、薄膜コイルをフレームめっき法によって形成するための図示しないフレームを形成する。次に、このフレームを用いて、フレームめっき法によって、例えば銅(Cu)よりなる薄膜コイル10を、例えば約1.0〜2.0μmの厚みおよび1.2〜2.0のコイルピッチで形成する。次に、フレームを除去する。なお、図中、符号10aは、薄膜コイル10を、後述する導電層(リード)と接続するための接続部を示している。
【0055】
次に、図4に示したように、全体に、例えばアルミナよりなる絶縁層11を、約3〜4μmの厚みで形成する。次に、例えばCMPによって、下部磁極層8の第2の層8bおよび第3の層8cが露出するまで、絶縁層11を研磨して、表面を平坦化処理する。ここで、図4(a)では、薄膜コイル10は露出していないが、薄膜コイル10が露出するようにしてもよい。
【0056】
次に、露出した下部磁極層8の第2の層8bおよび第3の層8cと絶縁層11の上に、絶縁材料よりなる記録ギャップ層12を、例えば0.2〜0.3μmの厚みに形成する。記録ギャップ層12に使用する絶縁材料としては、一般的に、アルミナ、窒化アルミニウム、シリコン酸化物系材料、シリコン窒化物系材料、ダイヤモンドライクカーボン(DLC)等がある。また、記録ギャップ層12は、スパッタ法によって形成してもよいし、CVD法によって形成してもよい。
【0057】
次に、磁路形成のために、下部磁極層8の第3の層8cの上において、記録ギャップ層12を部分的にエッチングしてコンタクトホールを形成する。また、薄膜コイル10の接続部10aの上の部分において、記録ギャップ層12および絶縁層11を部分的にエッチングしてコンタクトホールを形成する。
【0058】
次に、図5に示したように、記録ギャップ層12の上において、エアベアリング面30から下部磁極層8の第3の層8cの上の部分にかけて上部磁極層13を約2.0〜3.0μmの厚みに形成すると共に、薄膜コイル10の接続部10aに接続されるように導電層16を約2.0〜3.0μmの厚みに形成する。上部磁極層13は、下部磁極層8の第3の層8cの上の部分に形成されたコンタクトホールを介して、下部磁極層8の第3の層8cに接触し、磁気的に連結されている。
【0059】
上部磁極層13は、NiFe(Ni:80重量%,Fe:20重量%)や、高飽和磁束密度材料であるNiFe(Ni:45重量%,Fe:55重量%)等を用い、めっき法によって形成してもよいし、高飽和磁束密度材料であるFeN,FeZrN等の材料を用い、スパッタによって形成してもよい。この他にも、高飽和磁束密度材料であるCoFe,Co系アモルファス材等を用いてもよい。また、高周波特性の改善のため、上部磁極層13を、無機系の絶縁膜とパーマロイ等の磁性層とを何層にも重ね合わせた構造としてもよい。
【0060】
次に、上部磁極層13をマスクとして、ドライエッチングにより、記録ギャップ層12を選択的にエッチングする。このときのドライエッチングには、例えば、BCl2,Cl2等の塩素系ガスや、CF4,SF6等のフッ素系ガス等のガスを用いた反応性イオンエッチング(RIE)が用いられる。次に、例えばアルゴンイオンミリングによって、下部磁極層8の第2の層8bを選択的に約0.3〜0.6μm程度エッチングして、図5(b)に示したようなトリム構造とする。このトリム構造によれば、狭トラックの書き込み時に発生する磁束の広がりによる実効的なトラック幅の増加を防止することができる。
【0061】
次に、図6に示したように、全体に、例えばアルミナよりなるオーバーコート層17を、20〜40μmの厚みに形成し、その表面を平坦化して、その上に、図示しない電極用パッドを形成する。最後に、上記各層を含むスライダの研磨加工を行って、記録ヘッドおよび再生ヘッドのエアベアリング面30を形成して、薄膜磁気ヘッド素子が完成する。
【0062】
図7は、図6に示した薄膜磁気ヘッド素子の主要部分を示す平面図である。なお、図7では、オーバーコート層17や、その他の絶縁層および絶縁膜を省略している。
【0063】
本例における薄膜磁気ヘッド素子は、再生ヘッドと記録ヘッド(誘導型電磁変換素子)とを備えている。再生ヘッドは、MR素子5と、記録媒体に対向する媒体対向面すなわちエアベアリング面30側の一部がMR素子5を挟んで対向するように配置され、MR素子5をシールドする下部シールド層3および上部シールド層(下部磁極層8)とを有している。
【0064】
記録ヘッドは、互いに磁気的に連結され、エアベアリング面30側において互いに対向する磁極部分を含み、それぞれ少なくとも1つの層を含む下部磁極層8および上部磁極層13と、下部磁極層8の磁極部分と上部磁極層13の磁極部分との間に設けられた記録ギャップ層12と、少なくとも一部が下部磁極層8および上部磁極層13の間に、これらに対して絶縁された状態で設けられた薄膜コイル10とを有している。
【0065】
次に、図8を参照して、本実施の形態に係るスライダの製造方法が適用されるスライダの一例について説明する。図8はスライダのエアベアリング面の構成の一例を示す底面図である。この図に示したように、スライダ20におけるエアベアリング面は、磁気ディスク等の記録媒体の回転によって生じる空気流によってスライダ20を記録媒体の表面からわずかに浮上させるために必要な形状に形成されている。なお、図8において、符号21aは凸部を表し、21bは凹部を表している。また、スライダ20におけるエアベアリング面の空気流出側(図8における上側)の端部近傍には薄膜磁気ヘッド素子22が配置されている。この薄膜磁気ヘッド素子22の構成は、例えば図6に示したようになっている。図8におけるA部が、図6(b)に対応する。
【0066】
次に、図9ないし図11を参照して、本実施の形態に係るスライダの製造方法について説明する。図9は本実施の形態に係るスライダの製造方法における一工程を説明するための断面図である。図10は図9に続く工程を示す断面図である。図11は図10に続く工程を示すと共に、スライダが記録媒体の表面からわずかに浮上している状態を示す断面図である。図9ないし図11は、図8におけるB−B線で表される断面を表している。また、図9ないし図11では、薄膜磁気ヘッド素子22のうちの主要な部分のみを示している。
【0067】
本実施の形態に係るスライダの製造方法では、まず、それぞれ薄膜磁気ヘッド素子22を含むスライダ20となる部分(以下、スライダ部分と言う。)が複数列に配列されたウェハを一方向に切断して、スライダ部分が一列に配列されたバーと呼ばれるブロックを形成する。バーは、本発明におけるスライダ用の素材に対応する。
【0068】
次に、図9に示したように、スライダ20となる部分を含むバーに対して研磨加工を行ってエアベアリング面30を形成する。スライダ20の大部分は、例えばアルティックよりなる基板1で構成されている。スライダ20のうちの残りの部分は、例えばアルミナよりなる絶縁層27と、この絶縁層27内に形成された薄膜磁気ヘッド素子22等で構成されている。絶縁層27の大部分はオーバーコート層17である。
【0069】
上記研磨加工の後、スライダ20のエアベアリング面30には、硬度の異なる複数の層の間で段差が生じている。研磨加工は、例えば、研磨剤としてのダイヤモンドにアルカリ系潤滑液を加えたアルカリ系スラリーを用い、回転するスズ定盤上で行われる。この場合には、アルカリ系スラリーによってアルミナよりなる絶縁層27を化学エッチングしながら、絶縁層27と、磁性材料よりなる下部シールド層3、下部磁極層8および上部磁極層13を機械的に研磨することができるので、絶縁層27と、下部シールド層3、下部磁極層8および上部磁極層13と間の段差をほぼゼロにすることができる。
【0070】
しかしながら、上記のアルカリ系スラリーを用いた研磨によっても、絶縁層27と基板1との間で生じる段差を解消することはできず、絶縁層27と基板1との間では、基板1に対して絶縁層27が引っ込んだ状態で4〜5nm程度の段差が生じる。この場合、薄膜磁気ヘッド素子22のエアベアリング面30側の面と、基板1のエアベアリング面30側の面との間の段差は4〜5nm程度となる。
【0071】
本実施の形態では、次に、図10に示したように、スライダ20のエアベアリング面30のうち、薄膜磁気ヘッド素子22および絶縁層27に対応する部分の上に、選択的にフォトレジスト膜31を形成する。次に、フォトレジスト膜31をマスクとして、エッチング、好ましくはイオンミリングや反応性イオンエッチングのようなドライエッチングにより、エアベアリング面30を部分的にエッチングする。このときのエッチング量は、薄膜磁気ヘッド素子22のエアベアリング面30側の面と、基板1のエアベアリング面30側の面との間の段差以上の量、例えば5nmとする。本実施の形態では、エアベアリング面30を部分的にエッチングする工程は基板1をエッチングすることになる。
【0072】
上記のエッチングにより、図11に示したように、保護膜28の形成前におけるスライダ20のエアベアリング面30のうち、薄膜磁気ヘッド素子22に対応する部分が、基板1に対応する部分と同一平面を形成するか、または基板1に対応する部分よりも記録媒体40に近づく位置に配置されるようになる。
【0073】
次に、スライダ20のエアベアリング面30に、例えば図8に示したような凸部21aおよび凹部21bを形成して、エアベアリング面30を、記録媒体の回転によって生じる空気流によってスライダ20を記録媒体の表面からわずかに浮上させるために必要な形状とする。
【0074】
次に、図11に示したように、スライダ20のエアベアリング面30の全面に、薄膜磁気ヘッド素子22を保護するための保護膜28を形成する。この保護膜28の材料には、例えばダイヤモンドライクカーボン(DLC)が用いられる。
【0075】
最後に、バーを切断して各スライダ20に分離する。なお、本実施の形態では、スライダ20のエアベアリング面30に凸部21aおよび凹部21bを形成する工程において、図11に示したように、スライダ20のエアベアリング面30側のエッジのうち、薄膜磁気ヘッド素子22の近傍である空気流出側(図11における左側)のエッジを面取りしている。
【0076】
図11に示したように、本実施の形態に係る製造方法によって製造されたスライダ20では、保護層28の厚みを5nmとし、スライダ20の浮上時におけるスライダ20と記録媒体40との間の距離を10nmとすると、スライダ20の浮上時における薄膜磁気ヘッド素子22のエアベアリング面30側の面と記録媒体40との間の距離、すなわち磁気スペースは15nmとなる。このスライダ20における磁気スペースは、図24に示した従来のスライダ120における磁気スペースに比べて、5nm以上縮小されている。
【0077】
以上説明したように、本実施の形態では、保護膜28の形成前におけるスライダ20のエアベアリング面30のうち、薄膜磁気ヘッド素子22に対応する部分が、基板1に対応する部分と同一平面を形成するか、または基板1に対応する部分よりも記録媒体40に近づく位置に配置されるように、エアベアリング面30を部分的にエッチングし、その後、エアベアリング面30の全面に保護膜28を形成するようにしている。
【0078】
これにより、本実施の形態によれば、薄膜磁気ヘッド素子22のエアベアリング面30側の面と、基板1のエアベアリング面30側の面との間の段差をゼロにしたり、薄膜磁気ヘッド素子22のエアベアリング面30側の面を、基板1のエアベアリング面30側の面よりも記録媒体40に近づく位置に配置することができる。その結果、本実施の形態によれば、スライダ20の低浮上化、すなわち磁気スペースの縮小が可能になる。また、本実施の形態によれば、磁気スペースの縮小により、再生ヘッドにおける再生出力の向上や半値幅の縮小が可能になり、その結果、記録密度を向上させることができる。図12は、本実施の形態に係る製造方法によって製造されたスライダ20の薄膜磁気ヘッド素子22における再生出力の波形の一例を示したものである。この図において、符号PW50は再生出力における半値幅を表している。半値幅PW50は、再生出力がピーク時の50%以上となる時間である。
【0079】
また、本実施の形態によれば、磁気スペースの縮小により、記録ヘッドにおけるオーバーライト特性を向上させることが可能になる。
【0080】
また、本実施の形態によれば、スライダ20のエアベアリング面30を部分的にエッチングするようにしたので、スライダ20のエアベアリング面30を所望の形状、例えば、図11に示したように、エアベアリング面30のうち、薄膜磁気ヘッド素子22に対応する部分が、基板1に対応する部分よりも記録媒体40に近づく位置に配置されるような形状に形成することが可能になる。
【0081】
また、本実施の形態によれば、スライダ20のエアベアリング面30側のエッジのうち、薄膜磁気ヘッド素子22の近傍である空気流出側(図11における左側)のエッジを面取りしたので、スライダ20のより低浮上化が可能になる。
【0082】
[第2の実施の形態]
次に、図13および図14を参照して、本発明の第2の実施の形態に係るスライダの製造方法について説明する。図13は本実施の形態に係るスライダの製造方法における一工程を説明するための断面図である。図14は図13に続く工程を示すと共に、スライダが記録媒体の表面からわずかに浮上している状態を示す断面図である。図13および図14は、図8におけるB−B線で表される断面を表している。また、図13および図14では、薄膜磁気ヘッド素子22のうちの主要な部分のみを示している。
【0083】
本実施の形態に係るスライダの製造方法では、図9に示したように、スライダ20となる部分を含むバーに対して研磨加工を行ってエアベアリング面30を形成する工程までは、第1の実施の形態と同様である。
【0084】
本実施の形態では、次に、図13に示したように、スライダ20のエアベアリング面30のうち、薄膜磁気ヘッド素子22および絶縁層27に対応する部分の上に、選択的にフォトレジスト膜31を形成する。このとき、同時に、スライダ20のエアベアリング面30のうち、基板1に対応する部分の一部の上に、後述する吸着防止等の機能を有する凸部を形成するために用いられるフォトレジスト膜32を形成する。
【0085】
次に、フォトレジスト膜31,32をマスクとして、エッチング、好ましくはイオンミリングや反応性イオンエッチングのようなドライエッチングにより、エアベアリング面30を部分的にエッチングする。このときのエッチング量は、薄膜磁気ヘッド素子22のエアベアリング面30側の面と、基板1のエアベアリング面30側の面との間の段差以上の量、例えば5nmとする。本実施の形態では、エアベアリング面30を部分的にエッチングする工程は基板1をエッチングすることになる。
【0086】
上記のエッチングにより、図14に示したように、保護膜28の形成前におけるスライダ20のエアベアリング面30のうち、基板1に対応する部分の一部に、吸着防止等の機能を有する凸部33が形成される。同時に、エアベアリング面30のうち、薄膜磁気ヘッド素子22に対応する部分が、基板1に対応する部分(凸部33に対応する部分を除く。)と同一平面を形成するか、または基板1に対応する部分(凸部33に対応する部分を除く。)よりも記録媒体40に近づく位置に配置されるようになる。
【0087】
次に、スライダ20のエアベアリング面30に、例えば図8に示したような凸部21aおよび凹部21bを形成して、エアベアリング面30を、記録媒体の回転によって生じる空気流によってスライダ20を記録媒体の表面からわずかに浮上させるために必要な形状とする。
【0088】
次に、図14に示したように、スライダ20のエアベアリング面30の全面に、薄膜磁気ヘッド素子22を保護するための保護膜28を形成する。この保護膜28の材料には、例えばダイヤモンドライクカーボン(DLC)が用いられる。
【0089】
最後に、バーを切断して各スライダ20に分離する。なお、本実施の形態においても、スライダ20のエアベアリング面30に凸部21aおよび凹部21bを形成する工程において、図14に示したように、スライダ20のエアベアリング面30側のエッジのうち、薄膜磁気ヘッド素子22の近傍である空気流出側(図14における左側)のエッジを面取りしている。
【0090】
本実施の形態によれば、保護膜28の形成前におけるスライダ20のエアベアリング面30を部分的にエッチングするようにしたので、スライダ20のエアベアリング面30を所望の形状、例えば、図14に示したように、吸着防止用の凸部33を有するような形状に形成することが可能になる。
【0091】
また、本実施の形態によれば、スライダ20のエアベアリング面30のうち、基板1に対応する部分の一部に凸部33を設けたので、記録媒体40の回転開始時におけるスライダ20と記録媒体40との吸着を防止することができると共に、記録媒体40が回転している状態から回転を停止した状態に移行し、スライダ20が記録媒体40に接触する際における衝撃を軽減することができる。
【0092】
本実施の形態におけるその他の構成、作用および効果は、第1の実施の形態と同様である。
【0093】
[第3の実施の形態]
次に、図15および図16を参照して、本発明の第3の実施の形態に係るスライダの製造方法について説明する。図15は本実施の形態に係るスライダの製造方法における一工程を説明するための断面図である。図16は図15に続く工程を示すと共に、スライダが記録媒体の表面からわずかに浮上している状態を示す断面図である。図15および図16は、図8におけるB−B線で表される断面を表している。また、図15および図16では、薄膜磁気ヘッド素子22のうちの主要な部分のみを示している。
【0094】
本実施の形態に係るスライダの製造方法では、図9に示したように、スライダ20となる部分を含むバーに対して研磨加工を行ってエアベアリング面30を形成する工程までは、第1の実施の形態と同様である。
【0095】
本実施の形態では、次に、図15に示したように、スライダ20のエアベアリング面30の全面に、薄膜磁気ヘッド素子22を保護するための保護膜28を形成する。この保護膜28の材料には、例えばダイヤモンドライクカーボン(DLC)が用いられる。この保護膜28の厚みは、薄膜磁気ヘッド素子22のエアベアリング面30側の面と、基板1のエアベアリング面30側の面との間の段差以上の量、例えば5nmとする。
【0096】
次に、スライダ20のエアベアリング面30のうち、薄膜磁気ヘッド素子22および絶縁層27に対応する部分の上に、選択的にフォトレジスト膜31を形成する。このとき、同時に、スライダ20のエアベアリング面30のうち、基板1に対応する部分の一部の上に、後述する吸着防止等の機能を有する凸部を形成するために用いられるフォトレジスト膜32を形成する。
【0097】
次に、フォトレジスト膜31,32をマスクとして、エッチング、好ましくはイオンミリングや反応性イオンエッチングのようなドライエッチングにより、エアベアリング面30を部分的にエッチングする。このときのエッチング量は、薄膜磁気ヘッド素子22のエアベアリング面30側の面と、基板1のエアベアリング面30側の面との間の段差以上の量、例えば5〜10nmとする。本実施の形態では、エアベアリング面30を部分的にエッチングする工程は、保護膜28をエッチングし、場合によっては更に基板1をエッチングすることになる。
【0098】
上記のエッチングにより、図16に示したように、スライダ20のエアベアリング面30のうち、基板1に対応する部分の一部に、吸着防止等の機能を有する凸部34が形成される。同時に、エアベアリング面30のうち、薄膜磁気ヘッド素子22に対応する部分が、基板1に対応する部分(凸部34に対応する部分を除く。)と同一平面を形成するか、または基板1に対応する部分(凸部34に対応する部分を除く。)よりも記録媒体40に近づく位置に配置されるようになる。
【0099】
次に、スライダ20のエアベアリング面30に、例えば図8に示したような凸部21aおよび凹部21bを形成して、エアベアリング面30を、記録媒体の回転によって生じる空気流によってスライダ20を記録媒体の表面からわずかに浮上させるために必要な形状とする。
【0100】
最後に、バーを切断して各スライダ20に分離する。なお、本実施の形態においても、スライダ20のエアベアリング面30に凸部21aおよび凹部21bを形成する工程において、図16に示したように、スライダ20のエアベアリング面30側のエッジのうち、薄膜磁気ヘッド素子22の近傍である空気流出側(図16における左側)のエッジを面取りしている。
【0101】
図16に示したように、本実施の形態に係る製造方法によって製造されたスライダ20では、保護層28の厚みを5nmとし、スライダ20の浮上時におけるスライダ20と記録媒体40との間の距離を10nmとすると、スライダ20の浮上時における薄膜磁気ヘッド素子22のエアベアリング面30側の面と記録媒体40との間の距離、すなわち磁気スペースは15nmとなる。このスライダ20における磁気スペースは、図24に示した従来のスライダ120における磁気スペースに比べて、5nm以上縮小されている。
【0102】
以上説明したように、本実施の形態では、段差を有するエアベアリング面30に保護膜28を形成した後に、スライダ20のエアベアリング面30のうち、薄膜磁気ヘッド素子22に対応する部分が、基板1に対応する部分と同一平面を形成するか、または基板1に対応する部分よりも記録媒体40に近づく位置に配置されるように、保護膜28を部分的にエッチングするようにしている。
【0103】
これにより、本実施の形態によれば、保護膜28を含めた薄膜磁気ヘッド素子22のエアベアリング面30側の面と、基板1のエアベアリング面30側の面との間の段差をゼロにしたり、保護膜28を含めた薄膜磁気ヘッド素子22のエアベアリング面30側の面を、基板1のエアベアリング面30側の面よりも記録媒体40に近づく位置に配置することができる。その結果、本実施の形態によれば、第1の実施の形態と同様に、スライダ20の低浮上化、すなわち磁気スペースの縮小が可能になる。また、本実施の形態によれば、磁気スペースの縮小により、再生ヘッドにおける再生出力の向上や半値幅の縮小が可能になり、その結果、記録密度を向上させることができる。
【0104】
また、本実施の形態によれば、スライダ20のエアベアリング面30を部分的にエッチングするようにしたので、スライダ20のエアベアリング面30を所望の形状、例えば、図16に示したように、吸着防止用の凸部34を有するような形状に形成することが可能になる。
【0105】
また、本実施の形態によれば、スライダ20のエアベアリング面30のうち、基板1に対応する部分の一部に凸部34を設けたので、記録媒体40の回転開始時におけるスライダ20と記録媒体40との吸着を防止することができると共に、記録媒体40が回転している状態から回転を停止した状態に移行し、スライダ20が記録媒体40に接触する際における衝撃を軽減することができる。
【0106】
本実施の形態におけるその他の構成、作用および効果は、第1の実施の形態と同様である。
【0107】
なお、本発明は、上記各実施の形態に限定されず、種々の変更が可能である。例えば、本発明は、誘導型電磁変換素子を有しない再生専用の薄膜磁気ヘッドや、誘導型電磁変換素子のみを有する記録専用の薄膜磁気ヘッドや、誘導型電磁変換素子によって記録と再生を行う薄膜磁気ヘッドにも適用することができる。
【0108】
【発明の効果】
以上説明したように請求項1ないし7のいずれかに記載の薄膜磁気ヘッド用スライダの製造方法によれば、保護膜を含めた素材における記録媒体に対向する面のうち、薄膜磁気ヘッド素子に対応する部分が、基板に対応する部分のうちの少なくとも一部と同一平面を形成するか、または基板に対応する部分のうち少なくとも一部よりも記録媒体に近づく位置に配置されるように、保護膜を部分的にエッチングするようにしたので、薄膜磁気ヘッド用スライダの低浮上化が可能になり、且つ薄膜磁気ヘッド用スライダの媒体対向面を所望の形状に形成することが可能になるという効果を奏する。
【0109】
また、請求項7記載の薄膜磁気ヘッド用スライダの製造方法によれば、エッチングする工程において、保護膜を含めた素材における記録媒体に対向する面のうちの基板に対応する部分に凸部を形成するようにしたので、スライダと記録媒体との吸着を防止することができるという効果を奏する。
【図面の簡単な説明】
【図1】薄膜磁気ヘッド素子の製造方法の一例における一工程を示す断面図である。
【図2】図1に続く工程を説明するための断面図である。
【図3】図2に続く工程を説明するための断面図である。
【図4】図3に続く工程を説明するための断面図である。
【図5】図4に続く工程を説明するための断面図である。
【図6】薄膜磁気ヘッド素子の一例の構成を示す断面図である。
【図7】図6に示した薄膜磁気ヘッド素子の主要部分を示す平面図である。
【図8】スライダのエアベアリング面の構成の一例を示す底面図である。
【図9】本発明の第1の実施の形態に係るスライダの製造方法における一工程を説明するための断面図である。
【図10】図9に続く工程を示す断面図である。
【図11】図10に続く工程を示すと共にスライダが記録媒体の表面からわずかに浮上している状態を示す断面図である。
【図12】本発明の第1の実施の形態に係る製造方法によって製造されたスライダの薄膜磁気ヘッド素子における再生出力の波形の一例を示す特性図である。
【図13】本発明の第2の実施の形態に係るスライダの製造方法における一工程を説明するための断面図である。
【図14】図13に続く工程を示すと共にスライダが記録媒体の表面からわずかに浮上している状態を示す断面図である。
【図15】本発明の第3の実施の形態に係るスライダの製造方法における一工程を説明するための断面図である。
【図16】図15に続く工程を示すと共にスライダが記録媒体の表面からわずかに浮上している状態を示す断面図である。
【図17】従来の薄膜磁気ヘッド素子の製造方法における一工程を説明するための断面図である。
【図18】図17に続く工程を説明するための断面図である。
【図19】図18に続く工程を説明するための断面図である。
【図20】従来の薄膜磁気ヘッド素子の断面図である。
【図21】従来の薄膜磁気ヘッド素子の平面図である。
【図22】スライダのエアベアリング面の構成の一例を示す底面図である。
【図23】図22のD−D線断面図である。
【図24】スライダが記録媒体の表面からわずかに浮上している状態を示す断面図である。
【符号の説明】
1…基板、2…絶縁層、3…下部シールド層、5…MR素子、8…下部磁極層、10…薄膜コイル、12…記録ギャップ層、13…上部磁極層、17…オーバーコート層、20…スライダ、22…薄膜磁気ヘッド素子、27…絶縁層、28…保護膜、30…エアベアリング面、40…記録媒体。
Claims (7)
- 記録媒体に対向する媒体対向面と、前記媒体対向面の近傍に配置された薄膜磁気ヘッド素子とを有する薄膜磁気ヘッド用スライダの製造方法であって、
基板と、前記基板の上に配置された絶縁層と、前記絶縁層内に形成された薄膜磁気ヘッド素子とを含むスライダ用の素材に対して媒体対向面を形成する工程と、
前記媒体対向面に保護膜を形成する工程と、
前記保護膜の上面のうち、前記薄膜磁気ヘッド素子および絶縁層に対応する部分の上にマスクを形成する工程と、
前記保護膜を含めた前記素材における記録媒体に対向する面のうち、薄膜磁気ヘッド素子に対応する部分が、基板に対応する部分のうちの少なくとも一部と同一平面を形成するか、または基板に対応する部分のうちの少なくとも一部よりも記録媒体に近づく位置に配置されるように、前記マスクを用いて前記保護膜を部分的にエッチングする工程と
を備えたことを特徴とする薄膜磁気ヘッド用スライダの製造方法。 - 前記エッチングする工程ではイオンミリングを用いることを特徴とする請求項1記載の薄膜磁気ヘッド用スライダの製造方法。
- 前記エッチングする工程では反応性イオンエッチングを用いることを特徴とする請求項1記載の薄膜磁気ヘッド用スライダの製造方法。
- 前記媒体対向面を形成する工程は、前記スライダ用の素材における媒体対向面となる面の研磨を含むことを特徴とする請求項1ないし3のいずれかに記載の薄膜磁気ヘッド用スライダの製造方法。
- 前記保護膜はダイヤモンドライクカーボンによって形成されることを特徴とする請求項1ないし4のいずれかに記載の薄膜磁気ヘッド用スライダの製造方法。
- 前記保護膜の厚みは、前記エッチングする工程の前の状態における前記媒体対向面のうち、薄膜磁気ヘッド素子に対応する部分と基板に対応する部分のうちの少なくとも一部との間の段差以上であることを特徴とする請求項1ないし5のいずれかに記載の薄膜磁気ヘッド用スライダの製造方法。
- 前記エッチングする工程において、前記保護膜を含めた前記素材における記録媒体に対向する面のうちの基板に対応する部分に、スライダと記録媒体との吸着を防止するための凸部を形成することを特徴とする請求項1ないし6のいずれかに記載の薄膜磁気ヘッド用スライダの製造方法。
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000044912A JP3914366B2 (ja) | 2000-02-22 | 2000-02-22 | 薄膜磁気ヘッド用スライダの製造方法 |
US09/685,947 US6470565B1 (en) | 2000-02-22 | 2000-10-12 | Method of manufacturing slider of thin-film magnetic head |
SG200005975A SG91886A1 (en) | 2000-02-22 | 2000-10-17 | Method of manufacturing slider of thin-film magnetic head |
CNB2005100755784A CN100350456C (zh) | 2000-02-22 | 2001-01-02 | 薄膜磁头用滑动器的制造方法 |
CNB011013583A CN1232953C (zh) | 2000-02-22 | 2001-01-02 | 薄膜磁头用滑动器的制造方法 |
HK02100958.8A HK1039676A1 (zh) | 2000-02-22 | 2002-02-07 | 薄膜磁頭用滑動器的製造方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000044912A JP3914366B2 (ja) | 2000-02-22 | 2000-02-22 | 薄膜磁気ヘッド用スライダの製造方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2001236619A JP2001236619A (ja) | 2001-08-31 |
JP3914366B2 true JP3914366B2 (ja) | 2007-05-16 |
Family
ID=18567598
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000044912A Expired - Fee Related JP3914366B2 (ja) | 2000-02-22 | 2000-02-22 | 薄膜磁気ヘッド用スライダの製造方法 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP3914366B2 (ja) |
CN (1) | CN100350456C (ja) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030099069A1 (en) | 2001-10-10 | 2003-05-29 | Tdk Corporation | Magnetic head, method of manufacturing same, and head suspension assembly |
JP3990197B2 (ja) | 2002-06-10 | 2007-10-10 | 株式会社日立グローバルストレージテクノロジーズ | 薄膜磁気ヘッド |
JP2009048745A (ja) | 2007-08-22 | 2009-03-05 | Hitachi Maxell Ltd | リニア記録型磁気ヘッドアセンブリ、およびそれを用いた磁気テープ装置 |
JP2009238312A (ja) * | 2008-03-27 | 2009-10-15 | Fujitsu Ltd | 磁気ヘッドスライダーの製造方法、磁気ヘッドスライダー及び磁気ディスク装置 |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4420780A (en) * | 1981-08-17 | 1983-12-13 | International Business Machines | Self-loading magnetic head air bearing slider |
JPH08287440A (ja) * | 1995-04-17 | 1996-11-01 | Fujitsu Ltd | 記録装置、ヘッドスライダ及びその製造方法 |
JPH08293111A (ja) * | 1995-02-22 | 1996-11-05 | Yotaro Hatamura | 摺動体の摺動面微小突起およびその形成方法 |
US5617273A (en) * | 1995-06-07 | 1997-04-01 | International Business Machines Corporation | Thin film slider with protruding R/W element formed by chemical-mechanical polishing |
JPH0963027A (ja) * | 1995-08-28 | 1997-03-07 | Yamaha Corp | 磁気ヘッド |
US5825587A (en) * | 1996-03-01 | 1998-10-20 | International Business Machines Corporation | Shallow etch air bearing surface features for optimized transducer spacing |
US6012218A (en) * | 1997-03-18 | 2000-01-11 | Sanyo Electric Co., Ltd. | Process for producing thin film magnetic heads |
JPH11120528A (ja) * | 1997-10-08 | 1999-04-30 | Tdk Corp | 磁気ヘッド |
JP3755560B2 (ja) * | 1998-06-30 | 2006-03-15 | 富士通株式会社 | 磁気ヘッド及びその製造方法 |
-
2000
- 2000-02-22 JP JP2000044912A patent/JP3914366B2/ja not_active Expired - Fee Related
-
2001
- 2001-01-02 CN CNB2005100755784A patent/CN100350456C/zh not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2001236619A (ja) | 2001-08-31 |
CN1707615A (zh) | 2005-12-14 |
CN100350456C (zh) | 2007-11-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6466404B1 (en) | Magnetic read/write device with insulated coil layer recessed into pole | |
US6315875B1 (en) | Method of manufacturing thin-film magnetic head and method of manufacturing magnetoresistive device | |
JP3859398B2 (ja) | 薄膜磁気ヘッドおよびその製造方法 | |
JP3583649B2 (ja) | 薄膜磁気ヘッドおよびその製造方法ならびに磁気抵抗効果装置 | |
US6400525B1 (en) | Thin-film magnetic head and method of manufacturing same | |
JP3522595B2 (ja) | 薄膜磁気ヘッドおよびその製造方法 | |
US6470565B1 (en) | Method of manufacturing slider of thin-film magnetic head | |
US6673633B2 (en) | Method of forming patterned thin film and method of manufacturing thin-film magnetic head | |
JP3983132B2 (ja) | 薄膜磁気ヘッド用スライダおよびその製造方法 | |
JP3914366B2 (ja) | 薄膜磁気ヘッド用スライダの製造方法 | |
JP3560872B2 (ja) | 薄膜磁気ヘッドおよびその製造方法 | |
JP3588287B2 (ja) | 薄膜磁気ヘッドおよびその製造方法 | |
JP2000357307A (ja) | 薄膜磁気ヘッドおよびその製造方法 | |
US6671133B1 (en) | Thin-film magnetic head and method of manufacturing same | |
US7062839B2 (en) | Method of manufacturing thin-film magnetic head | |
JP2001034911A (ja) | 薄膜磁気ヘッドおよびその製造方法 | |
US6940689B2 (en) | Thin-film magnetic head comprising a first pole layer having multiple layers including a second layer and a thin-film coil having a portion disposed between the second layer and a coupling portion and method of manufacturing the thin-film magnetic head | |
JP3983103B2 (ja) | 薄膜磁気ヘッド用スライダおよびその製造方法 | |
US6490126B1 (en) | Thin-film magnetic head having a magnetic layer including stacked magnetic material layers and a resistance layer and method of manufacturing same | |
JP2001167408A (ja) | 薄膜磁気ヘッドおよびその製造方法 | |
US6958888B2 (en) | Slider of thin-film magnetic head and method of manufacturing same | |
JP2001250214A (ja) | 薄膜磁気ヘッド用スライダの製造方法 | |
JP2001093113A (ja) | 薄膜磁気ヘッドおよびその製造方法 | |
JP3371089B2 (ja) | 薄膜磁気ヘッド | |
JP3490643B2 (ja) | 薄膜磁気ヘッドの製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060317 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060510 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20061024 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20061110 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20061113 |
|
A911 | Transfer of reconsideration by examiner before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20070109 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20070130 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20070202 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110209 Year of fee payment: 4 |
|
LAPS | Cancellation because of no payment of annual fees |