JP3887171B2 - 半導体集積回路 - Google Patents

半導体集積回路 Download PDF

Info

Publication number
JP3887171B2
JP3887171B2 JP2000595422A JP2000595422A JP3887171B2 JP 3887171 B2 JP3887171 B2 JP 3887171B2 JP 2000595422 A JP2000595422 A JP 2000595422A JP 2000595422 A JP2000595422 A JP 2000595422A JP 3887171 B2 JP3887171 B2 JP 3887171B2
Authority
JP
Japan
Prior art keywords
circuit
transconductance
terminal
output terminal
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000595422A
Other languages
English (en)
Inventor
聡 田中
茂孝 高木
信生 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renesas Technology Corp
Original Assignee
Renesas Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renesas Technology Corp filed Critical Renesas Technology Corp
Application granted granted Critical
Publication of JP3887171B2 publication Critical patent/JP3887171B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/45Differential amplifiers
    • H03F3/45071Differential amplifiers with semiconductor devices only
    • H03F3/45479Differential amplifiers with semiconductor devices only characterised by the way of common mode signal rejection
    • H03F3/45928Differential amplifiers with semiconductor devices only characterised by the way of common mode signal rejection using IC blocks as the active amplifying circuit
    • H03F3/4595Differential amplifiers with semiconductor devices only characterised by the way of common mode signal rejection using IC blocks as the active amplifying circuit by using feedforward means
    • H03F3/45955Measuring at the input circuit of the differential amplifier
    • H03F3/45959Controlling the input circuit of the differential amplifier
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/45Differential amplifiers
    • H03F3/45071Differential amplifiers with semiconductor devices only
    • H03F3/45076Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier
    • H03F3/45278Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier using BiFET transistors as the active amplifying circuit
    • H03F3/45282Long tailed pairs
    • H03F3/45291Folded cascode stages
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/45Differential amplifiers
    • H03F3/45071Differential amplifiers with semiconductor devices only
    • H03F3/45479Differential amplifiers with semiconductor devices only characterised by the way of common mode signal rejection
    • H03F3/45928Differential amplifiers with semiconductor devices only characterised by the way of common mode signal rejection using IC blocks as the active amplifying circuit
    • H03F3/45932Differential amplifiers with semiconductor devices only characterised by the way of common mode signal rejection using IC blocks as the active amplifying circuit by using feedback means
    • H03F3/45937Measuring at the loading circuit of the differential amplifier
    • H03F3/45946Controlling the loading circuit of the differential amplifier
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/372Noise reduction and elimination in amplifier
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H11/00Networks using active elements
    • H03H11/02Multiple-port networks
    • H03H11/04Frequency selective two-port networks
    • H03H11/0422Frequency selective two-port networks using transconductance amplifiers, e.g. gmC filters
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H11/00Networks using active elements
    • H03H11/02Multiple-port networks
    • H03H11/04Frequency selective two-port networks
    • H03H2011/0494Complex filters

Description

技術分野
本発明は同相信号除去比の優れた半導体集積回路に関するもので集積化増幅器、積分器、フィルタ等の回路の同相信号除去比を改善するものである。
背景技術
平衡型信号処理(差動信号処理)はアナログブロックのダイナミックレンジを増大するために使われる有効な回路技術のひとつである。平衡型信号処理は、同相で入ってくる電源カップリング、妨害波などの同相雑音に高い除去能力をもつだけではなく、偶数次の高調波成分の抑制、設計の融通性など、不平衡型の信号処理に比べて様々なメリットをもっている。
しかし、平衡型回路の設計では、差動成分帰還が同相成分出力に影響を及ぼさないため、同相信号は開ループのまま出力電位が決まらない。そのため同相出力電圧をある基準電圧に維持するためには、同相出力電圧レベルがその電位に押えられるように、別の負帰還ループを同相信号路に入れなければならない。
一般に、この新たに加えられた同相回路用帰還ループの設計は難しく、場合によっては回路が不安定になることも生じる。この問題を解決するため、同相回路用帰還ループを使用しない回路もいくつか提案されている。代表的な従来例として、1992年2月、電気電子技術者学会発行のジャーナル、オブ、ソリッドステート、サーキット第27巻、第2号、第142頁から第153頁記載のナウタによる「高周波CMOS相互コンダクタンス−容量フィルタ技術」(B.Nauta,A CMOS transcondactance−C filter technique for very high frequencies,IEEE J.Solid−State Circuits vol.27,No.2pp.142−153,February 1992)が挙げられる。第2図にナウタ提案のフィルタ用積分器を示す。動作原理の詳細は後に述べるがこの回路では同相成分を完全に除去することが出来なく、同相除去比は素子変動を含まない理想的な状態でも制限を受ける。
発明の開示
増幅すべき入力信号が微小であり、かつ入力に周波数の高い大きな妨害波が含まれ、これを除去するための移動体通信用フィルタを構成する場合、同相信号除去比が小さなときには妨害波の抑圧が不十分になる。また、高利得の増幅器を構成することを考えると、同相雑音による飽和を回避するため、同相除去比を改善する必要が生じる。以上のことから同相利得を大きく低減する平衡型回路の実現が本発明の課題となる。
上記課題を達成するため本発明ではナウタ提案の積分回路の入力の相互コンダクタンス回路を差動化し、たすきがけ接続した。このことで、入力段に同相除去特性を付加することが出来、全体の同相除去比を改善する。
発明を実施するための最良の形態
以下、図面を用いて本発明の具体的な実施形態について詳細に説明する。
図面における記号は以下の通りである。
11,12は入力端子、13,14は出力端子、21,22は入力端子、23,24は出力端子、25はシングルエンドトランスコンダクタgm1、26はシングルエンドトランスコンダクタ詳細回路、27はシングルエンドトランスコンダクタgm2A、28はシングルエンドトランスコンダクタgm2B、31,32は入力端子、33,34は出力端子、41,42は入力端子、43,44は出力端子、45は負荷インピーダンスZ、46は差動入力シングル出力トランスコンダクタgm13A、47は差動入力シングル出力トランスコンダクタgm13B、48,49は出力電流の和、40は伝達関数T11、51は差動入力シングル出力トランスコンダクタgm2A、52は差動入力シングル出力トランスコンダクタgm2B、53は容量、61,62は抵抗、63はトランジスタ、71は差動入力シングル出力トランスコンダクタgm4A、72は差動入力シングル出力トランスコンダクタgm4B、73,74は節点、81,82は入力端子、83は出力端子、84は接地電位VSS、85は電源電位VDD、91,92は片端接地差動入力端子、93,94は差動入力端子対、95は差動3入力トランスコンダクタ、101,102,103,104は差動入力端子、105はシングル出力端子、106,107,108,109はバイアス制御端子、1101は差動3入力トランスコンダクタ、1102は差動2入力トランスコンダクタ、1103,1104は入力端子、1105,1106は出力端子、1201はカップリング抵抗、1202はトランジスタ、1203差動2入力トランスコンダクタ、1301はアンテナ、1302は受信信号、1303は受信帯域内妨害波、1304は受信帯域外妨害波、1305は第1の帯域通過フィルタ、1306は低雑音増幅器、1307は第1の帯域通過フィルタ、1308はミキサ回路、1309は中間周波帯域通過フィルタ、1310は直交変調器、1311はI信号、1312はQ信号、1313はベースバンドフィルタ回路、1401は1次低域通過フィルタ、1402は2次ノッチフィルタ、1403は1次高域通過フィルタ、1404は3次リープフロッグ型低域通過フィルタ、1405は1次全域通過フィルタ、1501は信号源インピーダンス、1502は抵抗、1503は容量、1504はバッファ増幅器、1701は差動オペレーショナル増幅器、1702はバッファ増幅器、1703,1704は抵抗、1705は容量、1801はトランスコンダクタ、1802はバッファ増幅器、1803は容量である。
本発明の第1の実施形態を第1、2、3、4、5、6図を用いて説明する。先ず一般の構造対称な回路を検討するため、第3図に示す回路について考える。第3図は、入力が31,32(vin1,vin2)出力が33,34(vout1,vout2)である、2入力2出力の回路である。出力vout1,やvout2は、それらからの帰還も考慮すると、入力vin1,vin2を用いて
Figure 0003887171
Figure 0003887171
と表される。ここでTijは、入力または出力から各出力への伝達関数である。差動成分と同相成分に関する伝達特性がそれぞれ所望の伝達特性となるための条件を導く。まず、上記の式に基づき、差動信号に関する特性を求める。差動出力電圧voutd=vout1−vout2は、(数1)ならびに(数2)から、
Figure 0003887171
となる。ここで、voutdが差動入力電圧vind=vin1−vin2だけの関数となるためには
Figure 0003887171
Figure 0003887171
であることが必要である。このとき、(数3)は
Figure 0003887171
となる。
次に同相信号に関する特性を求める。同相出力電圧voute=vout1+vout2は、(数1)、(数2)より、
Figure 0003887171
となる。ここで、vouteが同相入力電圧Vine=vin1+vin2だけの関数となるためには
Figure 0003887171
Figure 0003887171
であることが必要である。このとき、(数7)は
Figure 0003887171
となる。(数4)、(数5)並びに(数8)、(数9)がすべて成り立つとすれば、
Figure 0003887171
という等価な条件が導かれる。
ここで、例として平衡型フィルタの実現を考える。平衡型フィルタにおいて同相信号出力は零であることが望ましい。そこで同相入力信号vineから同相出力信号vouteへの伝達関数が零であるためには
Figure 0003887171
でなければならない。また、差動入力信号vindから差動出力信号voutdへの特性が所望の伝達関数Tであるためには、(数13)を満足すれば良い。
Figure 0003887171
さらに簡単のため、
Figure 0003887171
とすれば
Figure 0003887171
が得られる。
同相出力電圧が現れず、差動出力電圧が差動入力電圧だけの関数として表される条件式である、(数11)、(数12)、(数14)を(数1)、(数2)に代入すると出力vout1とvout2
Figure 0003887171
Figure 0003887171
となる。以上から、全体のブロック図として第1図が得られる。
回路を構成する上で、(数11)、(数12)と(数14)以外に回路が安定になるための条件が不可欠である。第1図の平衡型回路構造が安定となる条件式を導出する。(数1)、(数2)に基づき、各入力11,12から出力13,14(vout1、vout2)への伝達特性を求めると、
Figure 0003887171
となる。ここでT,T,T,T
Figure 0003887171
である。ここで(数11)、(数12)に対して十分条件の関係にある、
Figure 0003887171
を満足するように各Tijを設計する。但し、N11,N13,D,Dはラプラス変数sの多項式である。この十分条件を(数18)、(数19)に代入すると、
Figure 0003887171
Figure 0003887171
が得られる。
これらの式から、第1図の回路が安定であるための条件は、D並びにD−2N13の固有値の実部がすべて負になる、Hurwitz多項式の条件を満たすことにある。Dは所望の伝達関数の分母多項式であるためHurwitz多項式である。従って、D−2N13がHurwitz多項式となるように選べば第1図の平衡型回路は安定である。
第1図の回路の実現方法について更に詳細を述べる。第1図の回路構造から様々な平衡型回路を導出できる。関数T13の選び方に自由度があるため、どのような関数を選ぶかによって、全体回路の性能や回路規模が異なる。2個のOTA(Operational Transcondactance Amplifier以下OTAと略記する)でT13を実現した構成例を第4図に示す。第4図ではプラス、マイナス入力端子41、42から出力節点43,44までの伝達関数がT11である。トランスコンダクタンス46(gm13A)と47(gm13B)の出力電流の和48,49(i0j(j=1,2))から出力節点43,44までのトランスインピーダンス45をZとする。この場合T13はgm13A=gm13B=gとしたとき−Zfgmとして与えられる。
集積回路上では同じ構造の素子の素子値は良く一致するが、プロセス条件により若干の不整合が生じる。(数16)、(数17)は素子値が完全に整合した場合、つまり両式内の伝達関数T11、T13が互いに一致した場合同相利得が零となることを示している。
伝達関数に不整合が生じた場合の影響を調べる。(数16)、(数17)を改めて以下のように書き換える。
Figure 0003887171
Figure 0003887171
ここで(数26)内のT11p、T13p、は伝達関数に誤差を含むことを示す。この場合の同相出力電圧voute=vout1+vout2は、(数25)、(数26)より、
Figure 0003887171
となる。ここで、第4図の構成例に基づき、T13とT13pをおのおの
Figure 0003887171
とすると、vouteは、
Figure 0003887171
となる。(数29)から分かるように、T11≠T11pの場合、同相出力電圧vouteは零とならない。帰還回路が無い場合は、(数16)、(数17)から、T13=0であっても同相出力電圧vouteは零となるので、gm3=gm3p=0とするとvouteは、
Figure 0003887171
となる。
例えば、積分器の構成を考えた場合、T11やT11pは直流で非常に大きな利得が得られるように実現されるので、直流差動成分が同相出力成分を大きく変化させ、通常は出力が飽和する。一方、たとえミスマッチがあっても、(数29)からgm13とgm13pを増加させると同相出力電圧は単調に減少する。したがって、T11とT11pを構成する素子値に不整合があって同相利得が零にならない場合でも、T13で構成される帰還ループによって同相成分を十分に小さくすることができる。
第4図の構成例に基づいて、容量53を接続し、積分器を構成した場合の回路構成を第5図に示す。このときの伝達関数T11やT13はトランスコンダクタンス51,52(gm2A、gm2B)に関して、gm2A=gm2B=gm2とした場合それぞれ
Figure 0003887171
である。
第4図に示す本発明の回路構成と、第2図に示す従来例の相違について詳細を述べる。どちらもgm2Aとgm2Bで構成される帰還ループを持っている点は同じであり、その効果も同じである。両者の違いは入力のOTAが2入力になり、入力の端子間電圧に比例した電流を出力している点にある。入力をたすきがけすることにより、同相入力信号が相殺される。この差を示すために第2図の従来例の入力信号から出力信号への伝達関数を求める。まず簡単のため、gm1=gm2A=gm2B=gとすれば、出力vout1やvout2
Figure 0003887171
Figure 0003887171
と表される。(数32)並びに(数33)から、差動出力電圧voutdと同相出力電圧vouteは各々
Figure 0003887171
となる。(数35)からも分かるように、第2図の平衡型積分器回路では、同相入力信号vineから同相出力信号vouteへの伝達関数が零とならないので、入力の同相成分が出力される。
第5図でgm2Aの自己帰還は抵抗1個でも実現可能であり、gm2Bは電圧制御電流源であるためトランジスタのベース電流の影響とエミッタ抵抗を無視すると1個の抵抗と1個のトランジスタで実現可能である。
13を構成するgm2A、gm2Bを抵抗とトランジスタで置き換えた回路構成を第6図に示す。第6図の回路構成では、2個のトランジスタ63が平衡型負性インピーダンス変換器を構成しており、gm2A=gm2Bの場合、OTAの負荷抵抗61(1/gm2A)がトランジスタ63によって生成された負性抵抗−1/gm2Bと打ち消し合う。これにより本実施例により簡単な素子構成で同相除去比を改善する積分器が実現できる。なお本実施例の回路は、負荷を容量ではなく抵抗に置き換えることで電圧増幅器として用いることもできる。
第7,8図を用いて本発明第2の実施例について述べる。ここではフィルタの伝達関数をT11として同相除去比の大きなフィルタ回路を実現することを考える。
(数15)から、T=2T11であるので、第5図や第6図のように積分器をT11としてフィルタを構成した場合には、gの値が2倍になり、その分、同じ時定数を得るために必要な容量も2倍になる。それに対して、フィルタの伝達関数をT11として直接実現すると、フィルタ伝達関数が2倍になるため、フィルタの直流利得は6dB上昇するが、同一のフィルタ伝達関数を実現するのに必要な容量値が、積分器をT11として構成した場合に比べて半分となる。
更に、第5図の構成では積分器ごとにT13を実現するためのOTAが必要なのに対して、フィルタの伝達関数をT11として直接実現する場合にはより少ないOTAの数でフィルタを構成できる。
2次フィルタを基本ビルディングブロックとした平衡型2次低域通過フィルタを第7図に示す。T13を構成するトランスコンダクタンス71,72(gm4Aとgm4B)の出力電流の和i0j(j=1,2)を節点73、74どちらに接続しても、そのT13としての効果は殆ど同じであるので、ここでは第7図のように節点74、即ち、フィルタの出力端子に接続したときについて検討を行う。
先ず、安定性を調べる。第7図においてgm4A=gm4B=gm4とした場合、T13
Figure 0003887171
と求められる。DはDと同一であるので、Dも常にHurwitz多項式である。従って、フィルタの安定性を決定するD−2N13について、任意の値を取り得るgm4が及ぼす影響だけを考慮すれば良い。D−2N13は、任意の正のgm4に対して、正の係数のみを有するラプラス変数sの2次多項式であるので、常に安定であることが分かる。
第7図では、平衡型帯域通過出力と低域通過出力が各々節点AとBから得られる。OTAとしては第8図に示すような従来から知られている、差動電圧入力81,82、シングル電流出力83のCMOSトランジスタ適用、差動トランスコンダクタを適用することが出来る。
すべてのOTAの相互コンダクタンスgの値を39.52μA/V、容量値を10pFとすると、遮断周波数630kHz、Q値が1の2次フィルタが得られる。標準的な1.2μCMOSプロセスのデバイス定数を適用し、シミュレーションしたところ、通過帯域で60dB以上の同相除去比を達成し、本実施例の有効性が確認された。
第9,10図を用いて本発明第3の実施例を説明する。第9図はT11に3次のリープフロッグ型低域通過フィルタを適用した例である。図中95の多入力トランスコンダクタは3つの差動入力を持つ。93、94は一組の差動対であり、91、92はそれぞれ対の端子を接地した差動入力の一端である。
多入力積分器の一例として、差動2入力積分器の具体的回路を第10図に示す。ここではバイポーラトランジスタとCMOSトランジスタを混在させたプロセスを適用した。101,102で一組目、103,104で2組目の差動入力端子を構成する。105は電流出力端子であり、106〜109はバイアス制御端子である。
第9,10図の回路に対して、0.6μmのBiCMOSプロセスのデバイス定数を適用し、シミュレーションを行ったところ、52dBの同相除去比を達成した。またモンテカルロ法を適用し、回路中の抵抗値を無相関に±1%ばらつかせた場合にも42dB以上の同相除去比を達成した。本実施例により、素子間バラツキが存在しても大きな同相除去比を達成するフィルタ回路が実現された。
第11,12図を用いて本発明第4の実施例を説明する。本実施例は第2、第3の実施例とは異なり、第1の実施例で紹介した積分器を適用しており、フィルタを構成する積分器ごとに帰還を設けている。
第11図にフィルタの全体構成を示す。端子対1103,1104から信号が入り、端子対1105,1106から出力を取り出す。フィルタは1つの6入力積分器(差動3入力)1101と2つの4入力積分器(差動2入力)1102から構成される。
4入力積分器を第12図に示す。これは第3の実施例の第10図で紹介した積分器1203を2個適用し、帰還回路を加えたものである。帰還ループには第6図で示したトランジスタと抵抗で構成する回路を基本に、エミッタカップリング抵抗1201とトランジスタのインピーダンスを補正するためのダイオード接続したトランジスタ1202を加えている。
第3の実施例同様、0.6μmのBiCMOSプロセスのデバイス定数を適用し、シミュレーションを行ったところ、通過帯域内で105dB以上の同相除去比を達成した。またモンテカルロ法を適用し、回路中の抵抗値を無相関に±1%ばらつかせた場合にも85dB以上の同相除去比を達成した。本実施例は各積分器で帰還をかけるため、第2,3の実施例に比べて回路規模は大きくなるが優れた同相除去比を達成できる。
第13〜18図を用いて本発明の第5の実施例を説明する。本実施例は移動体通信用ベースバンドフィルタを実現したものである。受信回路での信号処理の概略を第13図を用いて説明する。アンテナ1301より入力する信号は受信信号1302のみならず不要な妨害波も含まれる。妨害波には受信周波数帯域内に発生する同一アプリケーション動作に起因する受信帯域内妨害波1303と、公共放送、業務無線等、他のアプリケーションによる受信帯域外妨害波1304がある。
アンテナから入った信号は第1の帯域通過フィルタ1305を通過する。このとき帯域外妨害波が減衰する。低雑音増幅器1306にて増幅された後、第2の帯域通過フィルタ1307を通過する。ここでも帯域外妨害波のみが減衰し、帯域内妨害波は減衰することなく通過する。ミキサ回路1308にて中間周波信号に変換された後、中間周波帯域通過フィルタ1309を通過する。ここでは帯域外妨害波が更に減衰すると共に、帯域内妨害波もある程度の減衰をする。
信号は直交変調器1310にてI信号1311とQ信号1312に分離される。このとき受信信号はDCから占有帯域幅の半分の周波数までに含まれそれより高い周波数の信号は、不要な妨害波となる。ベースバンドにおける妨害波の強度は受信波よりも50dB以上も大きな信号である場合もあり、その巨大な妨害波の除去は大きな課題となる。受信信号に対してこのように大きな信号が入力されるため、ベースバンドフィルタ回路1313は余裕を持った、十分大きな同相除去比を達成する必要があることも理解される。
第14図に本実施例のフィルタ構成を示す。フィルタの構成は、1次の低域通過フィルタ(出力バッファ増幅器を含む)1401、2次のノッチフィルタ1402、1次の高城通過フィルタ1403、3次のリープフロッグ型低域通過フィルタ1404、1次の全域通過フィルタ1405の直列接続で構成される。各部の伝達関数は通過帯域周波数で規格化すると例えば次のようになる。
Figure 0003887171
ここでTint,Tnoteh,Tdiff,Tleapfrog,Tallはそれぞれ1次の低域通過フィルタ(出力バッファ増幅器を含む)、2次のノッチフィルタ、1次の高城通過フィルタ、3次のリープフロッグ型低域通過フィルタ、1次の全域通過フィルタの伝達関数を示す。
1次の低域通過フィルタは第15図に示すように信号源インピーダンス1501と抵抗1502と容量1503によって構成される。完全な受動素子であるので大きな振幅の信号が入力されても歪むことは無い。また、大きな振幅の信号は高い周波数の妨害波であるのでこの1次のフィルタにより効率良く減衰させ、次段の入力信号振幅を低減することができる。1次のフィルタの時定数が他の回路の影響を受けないようにバッファ増幅器1504を設け、次段へ信号が伝達される。
2次ノッチフィルタはベースバンド信号帯域外での減衰を急峻にするために設けてある。その構成例を第16図に示す。フィルタの伝達関数をT11に対応させる第2、3の実施例と同様な構成を取っている。
次に接続されるのが1次の高域通過フィルタである。回路構成例を第17図に示す。差動オペレーショナル増幅器1701とバッファ増幅器1702、抵抗1703,1704、容量1705で構成される。これは初段の1次低域通過フィルタの素子値変動による遮断周波数の変動を打ち消すために設けてある。このため構成要素である、抵抗、容量は1次の低域通過フィルタと同じ構造のものを用いる必要がある。3次のリープフロッグ型低域通過フィルタは第3の実施例の回路を適用できる。
最終段の全域通過フィルタの構成例を図18に示す。全域通過フィルタは通過帯域内の位相偏差を補正するために用いられる。OTA1801のマイナス極性入力端子と出力端子を接続し、抵抗として用いる。この抵抗と位相を制御するための容量1803とにより、振幅特性が一定で位相が変化する回路特性が得られる。回路出力にはバッファ増幅器1802を設け、次段の回路のフィルタ時定数に与える影響を低減した。
以上の回路を遮断周波数を仮に1.25MHzとして設計し、第3の実施例同様、0.6μmのBiCMOSプロセスのデバイス定数を適用し、シミュレーションを行ったところ、通過域最大利得0dB、1.25MHzにおける減衰量、2.92dB、2.5MHzにおける減衰量、50.1dB、群遅延偏差0.17μsec、同相除去比120dB以上、最大入力振幅450mV以上の結果を得、本実施例の有効性を確認した。
本発明により同相除去比を大きく改善したフィルタ並びに増幅器を実現できる。改善効果はシミュレーションによりCMOSプロセス、BiCMOSプロセス、どちらを適用した場合においても確認され、さらに素子バラツキを含む場合においてもその効果が確認された。
産業上の利用可能性
以上のように、本発明に係る半導体集積回路は、フィルタ、積分器、増幅器等の信号を伝送するシステムに用いる回路として有用であり、特に無線通信システムに用いるのに適している。
【図面の簡単な説明】
第1図は、本発明第1の実施例の基本ブロック図であり、第2図は、従来の平衡型トランスコンダクタンス回路を適用した積分器を示すブロック図であり、第3図は、一般的な平衡信号入出力ブロック図であり、第4図は、トランスコンダクタンスによる帰還回路を持つ本発明第1の実施例のブロック図であり、第5図は、本発明第1の実施例適用による積分器を示すブロック図であり、第6図は、帰還回路をトランジスタと抵抗で構成した本発明第1の実施例による積分器を示すブロック図であり、第7図は、フィルタに対して帰還をかける本発明第2の実施例のブロック図であり、第8図は、本発明第2の実施例のシミュレーションによる検証に用いた広く知られるCMOSOTAを示す回路図であり、第9図は、リープフロッグ型低域通過フィルタに対して帰還をかける本発明第3の実施例のブロック図であり、第10図は、本発明第3の実施例に適用したBiCMOS差動2入力積分器を示す回路図であり、第11図は、各積分器に帰還をかけて構成した本発明第4の実施例であるリープフロッグ型低域通過フィルタを示すブロック図であり、第12図は、本発明第4の実施例に適用した帰還回路つきBiCMOS差動2入力積分器を示すブロック図であり、第13図は、移動体通信向け受信回路ブロック図と各段での受信波、と妨害波の関係を示す図であり、第14図は、本発明第5の実施例であるフィルタを示すブロック図であり、第15図は、本発明第5の実施例に適用する1次低域通過フィルタの回路図であり、第16図は、本発明第5の実施例に適用する2次ノッチフィルタを示すブロック図であり、第17図は、本発明第5の実施例に適用する1次高域通過フィルタを示す回路図であり、第18図は、本発明第5の実施例に適用する全域通過フィルタを示す回路図である。

Claims (32)

  1. 入力が単数または複数の差動信号であり、出力が単相である電子回路複数で構成され、第1の電子回路と第2の電子回路の入力極性を反転させ、第1の電子回路の出力端子と第2の電子回路の出力端子を、両端子間の同相信号成分を抑圧し、差動信号を増幅する機能を持つ回路に接続することによって形成されており、当該回路は、それぞれ2個の入力端子を有する第3の電子回路及び第4の電子回路と、第1の電子回路の出力端子からの出力信号と第3の電子回路の出力信号を加算して得る信号を受ける第1の出力端子と、第2の電子回路の出力端子からの出力信号と第4の電子回路の出力信号を加算して得る信号を受ける第2の出力端子とを有し、第3の電子回路の一方の入力端子に第1の出力端子が接続されかつ他方の入力端子に第2の出力端子が接続され、第4の電子回路の一方の入力端子に第2の出力端子が接続されかつ他方の入力端子に第1の出力端子が接続されていることを特徴とした半導体集積回路。
  2. 請求項1記載の回路において構成要素である電子回路が複数の入力信号を持った場合その入力の総和に比例した出力を持つことを特徴とした半導体集積回路。
  3. 請求項1記載の回路において構成要素である電子回路がトランスコンダクタンス回路であることを特徴とした半導体集積回路。
  4. 請求項2記載の回路において、構成要素である電子回路がトランスコンダクタンス回路であることを特徴とした半導体集積回路。
  5. 請求項3記載の回路において、第1のトランスコンダクタンス回路と第2のトランスコンダクタンス回路の入力極性を反転させ、第1のトランスコンダクタンス回路の出力端子に第3、第4のトランスコンダクタンス回路の出力端子を接続し、第3のトランスコンダクタンスの負極性の入力端子を第1のトランスコンダクタンス回路の出力端子に接続し、第3のトランスコンダクタンス回路の正極性の入力端子を接地し、第4のトランスコンダクタンス回路の負極性の入力端子を第2のトランスコンダクタンス回路の出力端子に接続し、第4のトランスコンダクタンス回路の正極性の入力端子を接地し、第2のトランスコンダクタンス回路の出力端子に第5、第6のトランスコンダクタンス回路の出力端子を接続し、第5のトランスコンダクタンスの負極性の入力端子を第2のトランスコンダクタンス回路の出力端子に接続し、第5のトランスコンダクタンス回路の正極性の入力端子を接地し、第6のトランスコンダクタンス回路の負極性の入力端子を第1のトランスコンダクタンス回路の出力端子に接続し、第6のトランスコンダクタンス回路の正極性の入力端子を接地したことを特徴とする半導体集積回路。
  6. 請求項4記載の回路において、第1のトランスコンダクタンス回路と第2のトランスコンダクタンス回路の入力極性を反転させ、第1のトランスコンダクタンス回路の出力端子に第3、第4のトランスコンダクタンス回路の出力端子を接続し、第3のトランスコンダクタンスの負極性の入力端子を第1のトランスコンダクタンス回路の出力端子に接続し、第3のトランスコンダクタンス回路の正極性の入力端子を接地し、第4のトランスコンダクタンス回路の負極性の入力端子を第2のトランスコンダクタンス回路の出力端子に接続し、第4のトランスコンダクタンス回路の正極性の入力端子を接地し、第2のトランスコンダクタンス回路の出力端子に第5、第6のトランスコンダクタンス回路の出力端子を接続し、第5のトランスコンダクタンスの負極性の入力端子を第2のトランスコンダクタンス回路の出力端子に接続し、第5のトランスコンダクタンス回路の正極性の入力端子を接地し、第6のトランスコンダクタンス回路の負極性の入力端子を第1のトランスコンダクタンス回路の出力端子に接続し、第6のトランスコンダクタンス回路の正極性の入力端子を接地したことを特徴とする半導体集積回路。
  7. 請求項5記載の回路において、第1のトランスコンダクタンス回路の出力端子に第1の容量の第1の端子を接続し、該容量の第2の端子を接地し、第2のトランスコンダクタンス回路の出力端子に第2の容量の第1の端子を接続し、該容量の第2の端子を接地したことを特徴とする半導体集積回路。
  8. 請求項6記載の回路において、第1のトランスコンダクタンス回路の出力端子に第1の容量の第1の端子を接続し、該容量の第2の端子を接地し、第2のトランスコンダクタンス回路の出力端子に第2の容量の第1の端子を接続し、該容量の第2の端子を接地したことを特徴とする半導体集積回路。
  9. 請求項5記載の回路において、第1のトランスコンダクタンス回路と第2のトランスコンダクタンス回路を周波数特性を持ち且つ差動入力、単相出力のフィルタ回路に置き換えたことを特徴とする半導体集積回路。
  10. 請求項6記載の回路において、第1のトランスコンダクタンス回路と第2のトランスコンダクタンス回路を周波数特性を持ち且つ差動入力、単相出力のフィルタ回路に置き換えたことを特徴とする半導体集積回路。
  11. 請求項7記載の回路を積分器としてフィルタを構成したことを特徴とする半導体集積回路。
  12. 請求項8記載の回路を積分器としてフィルタを構成したことを特徴とする半導体集積回路。
  13. 請求項3記載の回路において、第1のトランスコンダクタンス回路と第2のトランスコンダクタンス回路の入力極性を反転させ、第1のトランスコンダクタンス回路の出力端子に第1のバイポーラトラジスタのベースを接続し、第1のトランジスタのコレクタを第2のトランスコンダクタンスの出力端子に接続し、第2のトランスコンダクタンス回路の出力端子に第2のバイポーラトラジスタのベースを接続し、第2のトランジスタのコレクタを第1のトランスコンダクタンスの出力端子に接続したことを特徴とする半導体集積回路。
  14. 請求項4記載の回路において、第1のトランスコンダクタンス回路と第2のトランスコンダクタンス回路の入力極性を反転させ、第1のトランスコンダクタンス回路の出力端子に第1のバイポーラトラジスタのベースを接続し、第1のトランジスタのコレクタを第2のトランスコンダクタンスの出力端子に接続し、第2のトランスコンダクタンス回路の出力端子に第2のバイポーラトラジスタのベースを接続し、第2のトランジスタのコレクタを第1のトランスコンダクタンスの出力端子に接続したことを特徴とする半導体集積回路。
  15. 請求項13記載の回路において、第1、第2のバイポーラトランジスタを電界効果トランジスタに置き換えたことを特徴とする半導体集積回路。
  16. 請求項14記載の回路において、第1、第2のバイポーラトランジスタを電界効果トランジスタに置き換えたことを特徴とする半導体集積回路。
  17. 半導体集積回路を含んだ移動体通信用のベースバンドフィルタであって、上記半導体集積回路は、
    入力が単数または複数の差動信号であり、出力が単相である電子回路複数で構成され、第1の電子回路と第2の電子回路の入力極性を反転させ、第1の電子回路の出力端子と第2の電子回路の出力端子を、両端子間の同相信号成分を抑圧し、差動信号を増幅する機能を持つ回路に接続することによって形成されており、当該回路は、それぞれ2個の入力端子を有する第3の電子回路及び第4の電子回路と、第1の電子回路の出力端子からの出力信号と第3の電子回路の出力信号を加算して得る信号を受ける第1の出力端子と、第2の電子回路の出力端子からの出力信号と第4の電子回路の出力信号を加算して得る信号を受ける第2の出力端子とを有し、第3の電子回路の一方の入力端子に第1の出力端子が接続されかつ他方の入力端子に第2の出力端子が接続され、第4の電子回路の一方の入力端子に第2の出力端子が接続されかつ他方の入力端子に第1の出力端子が接続されていることを特徴としたベースバンドフィルタ。
  18. 上記半導体集積回路において、構成要素である電子回路が複数の入力信号を持った場合その入力の総和に比例した出力を持つことを特徴とした請求項17記載のベースバンドフィルタ。
  19. 上記半導体集積回路において、構成要素である電子回路がトランスコンダクタンス回路であることを特徴とした請求項17記載のベースバンドフィルタ。
  20. 上記半導体集積回路において、構成要素である電子回路がトランスコンダクタンス回路であることを特徴とした請求項18記載のベースバンドフィルタ。
  21. 上記半導体集積回路において、第1のトランスコンダクタンス回路と第2のトランスコンダクタンス回路の入力極性を反転させ、第1のトランスコンダクタンス回路の出力端子に第3、第4のトランスコンダクタンス回路の出力端子を接続し、第3のトランスコンダクタンスの負極性の入力端子を第1のトランスコンダクタンス回路の出力端子に接続し、第3のトランスコンダクタンス回路の正極性の入力端子を接地し、第4のトランスコンダクタンス回路の負極性の入力端子を第2のトランスコンダクタンス回路の出力端子に接続し、第4のトランスコンダクタンス回路の正極性の入力端子を接地し、第2のトランスコンダクタンス回路の出力端子に第5、第6のトランスコンダクタンス回路の出力端子を接続し、第5のトランスコンダクタンスの負極性の入力端子を第2のトランスコンダクタンス回路の出力端子に接続し、第5のトランスコンダクタンス回路の正極性の入力端子を接地し、第6のトランスコンダクタンス回路の負極性の入力端子を第1のトランスコンダクタンス回路の出力端子に接続し、第6のトランスコンダクタンス回路の正極性の入力端子を接地したことを特徴とする請求項19記載のベースバンドフィルタ。
  22. 上記半導体集積回路において、第1のトランスコンダクタンス回路と第2のトランスコンダクタンス回路の入力極性を反転させ、第1のトランスコンダクタンス回路の出力端子に第3、第4のトランスコンダクタンス回路の出力端子を接続し、第3のトランスコンダクタンスの負極性の入力端子を第1のトランスコンダクタンス回路の出力端子に接続し、第3のトランスコンダクタンス回路の正極性の入力端子を接地し、第4のトランスコンダクタンス回路の負極性の入力端子を第2のトランスコンダクタンス回路の出力端子に接続し、第4のトランスコンダクタンス回路の正極性の入力端子を接地し、第2のトランスコンダクタンス回路の出力端子に第5、第6のトランスコンダクタンス回路の出力端子を接続し、第5のトランスコンダクタンスの負極性の入力端子を第2のトランスコンダクタンス回路の出力端子に接続し、第5のトランスコンダクタンス回路の正極性の入力端子を接地し、第6のトランスコンダクタンス回路の負極性の入力端子を第1のトランスコンダクタンス回路の出力端子に接続し、第6のトランスコンダクタンス回路の正極性の入力端子を接地したことを特徴とする請求項20記載のベースバンドフィルタ。
  23. 上記半導体集積回路において、第1のトランスコンダクタンス回路の出力端子に第1の容量の第1の端子を接続し、該容量の第2の端子を接地し、第2のトランスコンダクタンス回路の出力端子に第2の容量の第1の端子を接続し、該容量の第2の端子を接地したことを特徴とする請求項21記載のベースバンドフィルタ。
  24. 上記半導体集積回路において、第1のトランスコンダクタンス回路の出力端子に第1の容量の第1の端子を接続し、該容量の第2の端子を接地し、第2のトランスコンダクタンス回路の出力端子に第2の容量の第1の端子を接続し、該容量の第2の端子を接地したことを特徴とする請求項22記載のベースバンドフィルタ。
  25. 上記半導体集積回路において、第1のトランスコンダクタンス回路と第2のトランスコンダクタンス回路を周波数特性を持ち且つ差動入力、単相出力のフィルタ回路に置き換えたことを特徴とする請求項21記載のベースバンドフィルタ。
  26. 上記半導体集積回路において、第1のトランスコンダクタンス回路と第2のトランスコンダクタンス回路を周波数特性を持ち且つ差動入力、単相出力のフィルタ回路に置き換えたことを特徴とする請求項22記載のベースバンドフィルタ。
  27. 上記半導体集積回路を積分器としてフィルタを構成したことを特徴とする請求項23記載のベースバンドフィルタ。
  28. 上記半導体集積回路を積分器としてフィルタを構成したことを特徴とする請求項24記載のベースバンドフィルタ。
  29. 上記半導体集積回路において、第1のトランスコンダクタンス回路と第2のトランスコンダクタンス回路の入力極性を反転させ、第1のトランスコンダクタンス回路の出力端子に第1のバイポーラトラジスタのベースを接続し、第1のトランジスタのコレクタを第2のトランスコンダクタンスの出力端子に接続し、第2のトランスコンダクタンス回路の出力端子に第2のバイポーラトラジスタのベースを接続し、第2のトランジスタのコレクタを第1のトランスコンダクタンスの出力端子に接続したことを特徴とする請求項19記載のベースバンドフィルタ。
  30. 上記半導体集積回路において、第1のトランスコンダクタンス回路と第2のトランスコンダクタンス回路の入力極性を反転させ、第1のトランスコンダクタンス回路の出力端子に第1のバイポーラトラジスタのベースを接続し、第1のトランジスタのコレクタを第2のトランスコンダクタンスの出力端子に接続し、第2のトランスコンダクタンス回路の出力端子に第2のバイポーラトラジスタのベースを接続し、第2のトランジスタのコレクタを第1のトランスコンダクタンスの出力端子に接続したことを特徴とする請求項20記載のベースバンドフィルタ。
  31. 上記半導体集積回路において、第1、第2のバイポーラトランジスタを電界効果トランジスタに置き換えたことを特徴とする請求項29記載のベースバンドフィルタ。
  32. 上記半導体集積回路において、第1、第2のバイポーラトランジスタを電界効果トランジスタに置き換えたことを特徴とする請求項30記載のベースバンドフィルタ。
JP2000595422A 1999-01-19 2000-01-17 半導体集積回路 Expired - Fee Related JP3887171B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP1017499 1999-01-19
PCT/JP2000/000172 WO2000044090A1 (fr) 1999-01-19 2000-01-17 Circuit integre a semiconducteur

Publications (1)

Publication Number Publication Date
JP3887171B2 true JP3887171B2 (ja) 2007-02-28

Family

ID=11742933

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000595422A Expired - Fee Related JP3887171B2 (ja) 1999-01-19 2000-01-17 半導体集積回路

Country Status (3)

Country Link
US (2) US6476676B1 (ja)
JP (1) JP3887171B2 (ja)
WO (1) WO2000044090A1 (ja)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000044090A1 (fr) * 1999-01-19 2000-07-27 Hitachi, Ltd. Circuit integre a semiconducteur
JP4574813B2 (ja) * 2000-08-09 2010-11-04 旭化成エレクトロニクス株式会社 増幅回路
JP4867066B2 (ja) * 2000-11-28 2012-02-01 日本テキサス・インスツルメンツ株式会社 増幅回路
JP2003110373A (ja) * 2001-09-28 2003-04-11 Seiko Instruments Inc 増幅回路
JP2006333515A (ja) * 2001-10-30 2006-12-07 Toshiba Corp 電圧電流変換回路及びこれを用いた平衡型増幅器
JP2004297631A (ja) * 2003-03-28 2004-10-21 Nec Electronics Corp コモンモード電圧制御回路及びコモンモード電圧制御方法
US7180369B1 (en) 2003-05-15 2007-02-20 Marvell International Ltd. Baseband filter start-up circuit
EP1667082A1 (en) * 2003-09-11 2006-06-07 Mitsubishi Materials Corporation Radio module, radio temperature sensor, radio interface device, and radio sensor system
US7098718B2 (en) * 2003-12-11 2006-08-29 The Trustees Of Boston University Tunable current-mode integrator for low-frequency filters
US7266360B2 (en) * 2004-04-07 2007-09-04 Neoreach, Inc. Low noise amplifier for wireless communications
US7263342B2 (en) * 2004-08-30 2007-08-28 Wilinx, Inc. High frequency wireless receiver circuits and methods
JP4730568B2 (ja) * 2006-07-19 2011-07-20 日本電気株式会社 差動電流出力型回路の出力コンダクタンス自動調整回路およびフィルタ回路
US7504879B2 (en) * 2006-08-24 2009-03-17 Itt Manufacturing Enterprises, Inc. Transconductor and filter circuit
KR100921515B1 (ko) * 2006-12-05 2009-10-15 한국전자통신연구원 간략화된 nauta 연산 상호 컨덕턴스 증폭기
KR100921517B1 (ko) * 2006-12-05 2009-10-15 한국전자통신연구원 Nauta 연산 상호 컨덕턴스 증폭기
DE102007011715B4 (de) 2007-03-09 2012-08-30 Austriamicrosystems Ag Verstärkeranordnung zum Verstärken eines Signals
JP4412508B2 (ja) * 2007-10-04 2010-02-10 Necエレクトロニクス株式会社 半導体回路
EP2341616B1 (en) * 2009-12-23 2013-04-24 STMicroelectronics Design and Application S.R.O. Capacitive load driving amplifier
JP5715531B2 (ja) 2010-09-10 2015-05-07 旭化成エレクトロニクス株式会社 シングル差動変換回路
JPWO2013008925A1 (ja) * 2011-07-13 2015-04-27 国立大学法人北海道大学 アクティブコモンモードフィルタ
US8698554B2 (en) * 2011-12-15 2014-04-15 Lsi Corporation Second order active high-pass filter with cross-coupled feedback for Q enhancement
KR101579517B1 (ko) * 2014-05-13 2015-12-22 (주) 로임시스템 생체신호 계측장치
CN114448384B (zh) * 2022-02-09 2023-07-21 深圳市九天睿芯科技有限公司 一种滤波电路

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07283690A (ja) * 1994-04-09 1995-10-27 Kenwood Corp 差動ローパスフィルタ
JPH08139534A (ja) * 1994-11-09 1996-05-31 Kazuhide Asaishi 複合差動増幅回路
JPH098570A (ja) * 1995-06-15 1997-01-10 New Japan Radio Co Ltd Cmos演算増幅器
JPH1041782A (ja) * 1996-07-25 1998-02-13 Sharp Corp フィルタ回路
JPH10322143A (ja) * 1997-05-21 1998-12-04 Toshiba Corp Ac結合回路
JPH10323439A (ja) * 1997-05-23 1998-12-08 Toyomaru Sangyo Kk 遊技機
JPH1117466A (ja) * 1997-04-28 1999-01-22 Toshiba Corp 平衡型増幅器

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1204617A (en) * 1968-04-10 1970-09-09 Cossor Ltd A C Circuit providing a floating output
US4088961A (en) * 1977-07-01 1978-05-09 Gte Sylvania Incorporated Operational amplifier driver circuit
JPH1032439A (ja) * 1996-07-17 1998-02-03 Nippon Columbia Co Ltd 平衡増幅回路
US5990743A (en) * 1997-12-11 1999-11-23 Lucent Technologies Inc. Amplifier having improved common mode voltage range
US6160446A (en) * 1998-06-05 2000-12-12 Lucent Technologies Inc. Balanced differential amplifier without common-mode feedback circuit
WO2000044090A1 (fr) * 1999-01-19 2000-07-27 Hitachi, Ltd. Circuit integre a semiconducteur
US6150885A (en) * 1999-06-24 2000-11-21 Lucent Technologies Inc. Transconductance amplifier with wideband noise filtering

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07283690A (ja) * 1994-04-09 1995-10-27 Kenwood Corp 差動ローパスフィルタ
JPH08139534A (ja) * 1994-11-09 1996-05-31 Kazuhide Asaishi 複合差動増幅回路
JPH098570A (ja) * 1995-06-15 1997-01-10 New Japan Radio Co Ltd Cmos演算増幅器
JPH1041782A (ja) * 1996-07-25 1998-02-13 Sharp Corp フィルタ回路
JPH1117466A (ja) * 1997-04-28 1999-01-22 Toshiba Corp 平衡型増幅器
JPH10322143A (ja) * 1997-05-21 1998-12-04 Toshiba Corp Ac結合回路
JPH10323439A (ja) * 1997-05-23 1998-12-08 Toyomaru Sangyo Kk 遊技機

Also Published As

Publication number Publication date
WO2000044090A1 (fr) 2000-07-27
US6476676B1 (en) 2002-11-05
US6664854B2 (en) 2003-12-16
US20030052738A1 (en) 2003-03-20

Similar Documents

Publication Publication Date Title
JP3887171B2 (ja) 半導体集積回路
Koton et al. KHN-equivalent voltage-mode filters using universal voltage conveyors
Psychalinos et al. Multiple-input single-output universal biquad filter using single output operational transconductance amplifiers
EP2874313B1 (en) Analog active low-pass filters
JPH10173482A (ja) フィルタ回路
EP2612438A2 (en) Low distortion filters
Koton et al. Pseudo-differential second-order band-reject filter using current conveyors
Yesil et al. Band-pass filter with high quality factor based on current differencing transconductance amplifier and current amplifier
US7548136B1 (en) Distortion reduction for variable capacitance devices
Tajalli et al. Low-power and widely tunable linearized biquadratic low-pass transconductor-C filter
Lewinski et al. A high-frequency transconductor using a robust nonlinearity cancellation
Güneş et al. Design of a high performance mutually coupled circuit
Chiang et al. A CMOS fully-balanced continuous-time IFLF filter design for read/write channels
JP3720333B2 (ja) スイッチトキャパシタ・フィルタおよびディジタル無線受信機
Sagbas et al. Current and voltage transfer function filters using a single active device
Wyszynski et al. Avoiding common-mode feedback in continuous-time g/sub m/-C filters by use of lossy integrators
JP2008270924A (ja) 周波数変換回路および受信装置
US8150352B1 (en) Feedback LNA with image filtering
Kumngern et al. Sub-volt bulk-driven transconductance amplifier and filter application
Damera et al. Design of minimally invasive all-pole analog lowpass filters
Algueta‐Miguel et al. Balanced Gm‐C filters with improved linearity and power efficiency
Sladok et al. Systematic design of pseudo-differential frequency filter
JP2002305428A (ja) 差動アクティブフィルタ
JP4227320B2 (ja) 複素バンドパスフィルタ
EP1176711A2 (en) Apparatus and method for electrical signal amplification

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040301

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040301

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061121

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061124

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101201

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101201

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101201

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101201

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111201

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121201

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121201

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131201

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees