JP3882628B2 - メモリ制御装置及びシリアルメモリ - Google Patents

メモリ制御装置及びシリアルメモリ Download PDF

Info

Publication number
JP3882628B2
JP3882628B2 JP2002021971A JP2002021971A JP3882628B2 JP 3882628 B2 JP3882628 B2 JP 3882628B2 JP 2002021971 A JP2002021971 A JP 2002021971A JP 2002021971 A JP2002021971 A JP 2002021971A JP 3882628 B2 JP3882628 B2 JP 3882628B2
Authority
JP
Japan
Prior art keywords
signal
bit
serial data
memory
shift register
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002021971A
Other languages
English (en)
Other versions
JP2003223372A (ja
Inventor
章雅 丹羽
孝之 青野
卓哉 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2002021971A priority Critical patent/JP3882628B2/ja
Priority to US10/351,311 priority patent/US6798708B2/en
Publication of JP2003223372A publication Critical patent/JP2003223372A/ja
Application granted granted Critical
Publication of JP3882628B2 publication Critical patent/JP3882628B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F13/00Interconnection of, or transfer of information or other signals between, memories, input/output devices or central processing units
    • G06F13/14Handling requests for interconnection or transfer
    • G06F13/16Handling requests for interconnection or transfer for access to memory bus
    • G06F13/1668Details of memory controller
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/06Auxiliary circuits, e.g. for writing into memory
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C7/00Arrangements for writing information into, or reading information out from, a digital store
    • G11C7/10Input/output [I/O] data interface arrangements, e.g. I/O data control circuits, I/O data buffers
    • G11C7/1006Data managing, e.g. manipulating data before writing or reading out, data bus switches or control circuits therefor

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Techniques For Improving Reliability Of Storages (AREA)
  • Dram (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、シリアルデータを用いてメモリ制御を行うメモリ制御装置に関する。
【0002】
【従来の技術】
従来より、電気的にデータを書換可能な不揮発性メモリであるEEPROM(Erasable Programmable Read Only Memory)が知られている。このEEPROMは、小型でデータの書換も容易であることから、マイクロコンピュータを応用したシステム等において、モード設定,IDコード記憶,ディップスイッチの代替など幅広く利用されている。
【0003】
そして、特に、EEPROMのデータ量が少ない場合には、EEPROMへのアクセスにシリアルインターフェイスを用いることが行われている。この場合、シリアル入力されたシリアルデータ中のコマンド部分をデコードしたり、同じくシリアルデータ中のアドレス部分やデータ部分をパラレルデータに変換してEEPROMに供給したり、またEEPROMから読み出したパラレルデータをシリアル変換して出力したりするためのメモリ制御装置が必要となる。
【0004】
このメモリ制御装置は、通常、シリアルデータの他、クロック信号、チップイネーブル信号、リセット信号等を入力信号とし、チップイネーブル信号が入力されているアクティブ期間中に供給されるシリアルデータを、クロックに従って取り込み、そのアクティブ期間の終了後に、取り込んだシリアルデータの内容に従って、EEPROMへのアクセスを実行するように構成されている。
【0005】
【発明が解決しようとする課題】
しかし、このようなメモリ制御装置を用いた場合、電源の異常、静電気等により入力信号にノイズが重畳されると、EEPROMに対して意図しないアクセス(関係ないアドレスへの書込,消去命令など)が実行され、重要なデータが破壊されてしまう危険性があり、その結果、プログラムの暴走やシステムの復旧不能という重大な事態に繋がる可能性があるという問題があった。
【0006】
例えば、書込命令を表すコマンドを‘110’ とし、アドレス‘0011’番地へのデータ‘01100010’を書き込む際に入力されるシリアルデータ‘110001101100010’ について考える。
図9(a)に示すように、4番目のクロックに対応する期間(以下「スロット」という)S4でチップイネーブル信号CEにノイズが乗った場合、それ以前に取り込んだスロットS1〜S3のデータ列がキャンセルされる。しかし、ノイズの影響がなくなった後も、チップイネーブル信号CEは入力され続けているため、再びデータの取り込みを開始する。その結果、スロットS6のデータがシリアルデータの先頭として誤認識されることにより、アドレス‘1100’番地へのデータ‘010XXXXX’の書込命令であるものとして、使用者の意図とは異なるメモリアクセスが実行されてしまうのである。
【0007】
また、図9(b)に示すように、リセット信号RSTにノイズが乗った場合にも、上述の場合と全く同様に命令を誤認識してしまう可能性があった。即ち、リセット信号RSTに乗ったノイズによって装置内部がリセットされることにより、それ以前に取り込んだスロットS1〜S3のデータ列がキャンセルされ、そのノイズによるリセットが解消された後も、チップイネーブル信号CEが入力され続けていれば、上述の場合と同様に、再びデータの取り込みを開始してしまうからである。
【0008】
そこで、本発明は、ノイズ等の影響により使用者の意図とは異なるメモリアクセスが実行されることを防止できるメモリ制御装置及びシリアルメモリを提供することを目的とする。
【0009】
【課題を解決するための手段】
上記目的を達成するための発明である請求項1記載のメモリ制御装置では、インタフェース手段を介して、少なくとも、先頭にスタートビットが付加された命令ビット列からなるシリアルデータ、このシリアルデータに同期したクロック信号、当該装置を指定するチップイネーブル信号、当該装置をリセットするリセット信号が入力される。
【0010】
そして、チップイネーブル信号が入力されているアクティブ期間の間、シリアルデータ格納手段が、クロック信号に従ってシリアルデータを格納し、許可信号生成手段が、アクティブ期間の終了タイミングに基づいて許可信号を生成する。すると、アクセス制御手段が、シリアルデータ格納手段に格納された命令ビット列の内容に従ってメモリアクセスを行う。
【0011】
但し、アクティブ期間中に当該装置がリセットされた場合には、第1の禁止手段が、そのアクティブ期間の終了タイミングに基づく許可信号の生成を禁止する。
つまり、本発明のメモリ制御装置では、アクティブ期間中に、リセット信号にノイズが乗るなどして当該装置がリセットされ、そのリセット状態が解消された後も、先のアクティブ期間が継続していることにより、シリアルデータを途中から取り込んでしまったとしても、その取り込んだシリアルデータの内容に基づいて、使用者の意図とは異なるメモリアクセスが実行されることがない。
【0012】
従って、本発明のメモリ制御装置によれば、リセット信号に乗ったノイズによる誤動作に基づいて、メモリの記憶内容が使用者の意図しないものに書き替えられてしまうことを確実に防止できる。
なお、請求項2記載のように、許可信号生成手段と第1の禁止手段とは、例えば、アクティブ期間の終了タイミングで前記許可信号を生成する第1のフリップフロップ回路と、当該装置がリセットされてからアクティブ期間の開始タイミングまでの間、第1のフリップフロップ回路をリセット状態に保持するための保持信号を生成する第2のフリップフロップ回路という簡易な構成により実現することができる。
【0013】
次に、請求項3記載のメモリ制御装置では、アクティブ期間中にシリアルデータ格納手段に格納されたデータが予め指定されたビット長に達していない場合、第2の禁止手段が、許可信号生成手段による許可信号の生成を禁止する。
つまり、本発明のメモリ制御装置では、アクティブ期間中に、チップイネーブル信号やクロック信号にノイズが乗るなどして、アクティブ期間が分割されたり、クロック数が不足することにより、取り込んだシリアルデータの一部が欠けていたとしても、その取り込んだシリアルデータの内容に基づいて、使用者の意図とは異なるメモリアクセスが実行されることがない。
【0014】
従って、本発明のメモリ制御装置によれば、チップイネーブル信号やクロック信号に乗ったノイズによる誤動作に基づいて、メモリの記憶内容が使用者の意図しないものに書き替えられてしまうことを確実に防止できる。
なお、第2の禁止手段は、必ずしも第1の禁止手段と組み合わせて用いる必要はなく、請求項4記載のように、第2の禁止手段を単独で用いてもよい。
【0015】
次に、請求項5記載のメモリ制御装置では、命令ビット列が、それぞれが固定のビット長Mi (i=1〜x)を有する複数の部分ビット列P1 〜Px からなるシリアルデータを扱う。そして、シリアルデータ格納手段では、部分ビット列P1 〜Px のそれぞれに対応してシフトレジスタSF1 〜SFx が設けられている。
【0016】
なお、各シフトレジスタSFiは、それぞれが格納すべき部分ビット列Pi より1ビット長いMi +1ビットのシリアルデータをクロック信号に従って格納するように構成され、シリアルデータの格納を開始する前に、スタートビットの信号レベルを反転させた信号レベルに初期化される。
【0017】
そして、開始信号生成手段が、スタートビットを検出して1段目のシフトレジスタSF1 に対する開始信号を生成すると、クロック供給制御手段は、シフトレジスタSF1 の最上位ビットであるM1 +1ビット目の信号レベルが変化するまでの間、即ち、スタートビットと部分ビット列P1 の全てとがシフトレジスタSF1 に格納され、スタートビットがシフトレジスタSF1 の最上位ビットに到達するまでの間、シフトレジスタSF1 にクロック信号を供給する。
【0018】
また、開始信号生成手段は、シフトレジスタSFj (j=1〜x−1)のMj ビット目の信号レベルが変化すると、次段のシフトレジスタSFj+1 に対する開始信号を生成する。そして、シフトレジスタSFj のMj +1ビット目の信号レベルが変化する時、即ちシフトレジスタSFj+1 への部分ビット列Pj+1 の供給が開始される直前に、疑似スタートビット供給手段は、スタートビットと同じ信号レベルを有する疑似スタートビットを、シリアルデータの代わりに次段のシフトレジスタSFj+1 に供給する。
【0019】
そして、クロック供給制御手段は、シフトレジスタSFj+1 の最上位ビットの信号レベルが変化するまでの間、シフトレジスタSFj+1 にクロック信号を供給し、以下同様に動作する。
その結果、シリアルデータの取り込みが正常に終了した時に、各シフトレジスタレジスタSF1 〜SFx には、それぞれ対応する部分ビット列P1 〜Px が格納されるだけでなく、その最上位ビットには、いずれもスタートビット或いは疑似スタートビットが格納された状態となる。このため、第2の禁止手段は、これら各シフトレジスタSF1 〜SFx の最上位ビットの信号レベルに基づいて、シリアルデータ格納手段(シフトレジスタSF1 〜SFx )に格納されたデータが予め指定されたビット長に達しているか否かを判断することが可能となる。
【0020】
このように、本発明のメモリ制御装置によれば、取り込んだデータが予め指定されたビット長に達しているか否かの判断を、回路規模の大きいカウンタを用いることなく可能としているため、装置規模を小さくすることができる。
なお、請求項1ないし請求項5いずれか記載のメモリ制御装置は、請求項6記載のように、そのメモリ制御装置によって制御されるメモリと共に、1チップの半導体集積回路からなるシリアルメモリとして構成してもよい。
【0021】
この場合、メモリは、例えば請求項7記載のように、電気的にデータを書換可能な不揮発性メモリを用いることができる。
【0022】
【発明の実施の形態】
以下に本発明の実施形態を図面と共に説明する。
[第1実施形態]
図1(a)は、マイクロコンピュータ(以下「マイコン」という)2からのシリアルデータを入力し、複数ビット単位でデータが入出力されるメモリ(ここではEEPROM)6に対するアクセス制御等を行う本実施形態のメモリ制御装置4の構成を表すブロック図、図1(b)は、マイコン2からメモリ制御装置4に入力されるシリアルデータのフレーム構成を表す説明図である。
【0023】
図1(a)に示すように、本実施形態のメモリ制御装置4は、マイコン2との間でシリアルデータDIOを入出力すると共に、マイコン2からシリアルデータDIOに同期したクロック信号CLK、当該装置4を指定するチップイネーブル信号CE、当該装置4をリセットするための外部リセット信号RSTを入力するためのインターフェイス手段としてのインターフェイス部10を備えている。
【0024】
なお、ここでは、チップイネーブル信号CEの論理はハイアクティブであり、そのハイレベルが保持されている期間を、以下ではアクティブ期間とよぶ。また、外部リセット信号RSTの論理もハイアクティブである。
また、シリアルデータDIOは、図1(b)に示すように、メモリ6に対する制御の内容を表す命令ビット列の先頭に、1ビットのスタートビットSを付加したフレーム構成を有している。そして、命令ビット列は、書込命令や読込命令などのコマンドを表すmビットの第1部分ビット列P1、メモリ6の格納位置を指定するアドレスを表すnビットの第2部分ビット列P2、メモリ6との間で入出力されるデータを表すpビットの第3部分ビット列P3からなる。また、無通信時における信号線の信号レベルはロウレベル、スタートビットSの信号レベルはハイレベルに設定されているものとする。
【0025】
図1(a)に戻り、メモリ制御装置4は、インターフェイス部10を介して入力されるシリアルデータDIを、同様に入力されるクロック信号CLKに基づいて取り込み、パラレルデータに変換して出力するシリアルデータ格納手段としてのレジスタ部11と、レジスタ部11から出力されるパラレルデータのうち、第1部分ビット列P1(即ちコマンド)に対応するパラレルデータCMDの内容をデコードし、デコード結果に応じた指令を各部に出力するデコード部12と、インターフェイス部10からの外部リセット信号RST及びデコード部12からの指令に基づいて、当該装置の各部をリセットするための内部リセット信号CR(但し外部リセット信号RSTとは反対のロウアクティブ)を生成するリセット制御部13と、インターフェイス部10からのチップイネーブル信号CE及びリセット制御部13からの内部リセット信号CRに基づいて、メモリアクセスの可否を表す許可信号ENを生成する有効性判定部14と、許可信号ENによってメモリアクセスが許可されている場合に、デコード部12からの指令に基づき、メモリ6へのアクセスのために必要な制御信号CTRを生成し、メモリアクセスを実行するアクセス制御手段としてのメモリ制御部15とを備えている。
【0026】
なお、レジスタ部11は、第2部分ビット列P2(即ちアドレス)に対応するパラレルデータADR、及び第3部分ビット列P3(即ちデータ)に対応するパラレルデータDATについては、メモリ6に直接供給するように構成されている。
【0027】
また、デコード部12は、メモリ制御部15によるメモリアクセスが正常に終了した場合、及びデコードの際にエラーを検出した場合に、リセット制御部13に対してリセットを要求する指令を出力するように構成されている。
ここで図2は、(a)が有効性判定部14の構成を示す回路図、(b)がその動作を説明するためのタイミング図である。
【0028】
図2(a)に示すように、有効性判定部14は、データ入力がハイレベルに固定され、チップイネーブル信号CEをクロック入力とするフリップフロップ(FF)回路21と、チップイネーブル信号CEを反転させる反転(INV)回路24と、データ入力がハイレベルに固定され、FF回路21の正出力をリセット入力、INV回路24の出力をクロック入力とするFF回路22と、FF回路21の正出力をデータ入力、FF回路22の正出力をクロック入力、内部リセット信号CRをリセット入力とするFF回路23と、FF回路22の反転出力及び内部リセット信号CRを入力とし、出力がFF回路21のリセット入力となる論理積(AND)回路25とからなる。
【0029】
なお、以下では、FF回路21の正出力を立上り検出信号FE、FF回路22の正出力を立下り検出信号RE、FF回路23の正出力を許可信号ENとよぶ。また、FF回路22,23、INV回路24が許可信号生成手段に相当し、FF回路21、AND回路25が第1の禁止手段に相当する。
【0030】
このように構成された有効性判定部14では、図2(b)に示すように、立上り検出信号FEは、チップイネーブル信号CEの立上りエッジ、即ちアクティブ期間の開始タイミングが検出されるとハイレベルとなる(t11,t14)。
また、立下り検出信号REは、立上り検出信号FEがハイレベルにある時に、チップイネーブル信号CEの立下りエッジ、即ちアクティブ期間の終了タイミングが検出されるとハイレベルとなり、これと同時に、許可信号ENがハイレベルにセットされる(t15)。またこの時、FF回路22の反転出力がロウレベルとなるため、FF回路21がリセットされることにより、立上り検出信号FEがロウレベルに変化し、その結果、FF回路22もリセットされることにより、立下り検出信号REもロウレベルに変化する。つまり、立下り検出信号REは、パルス状の信号となる。
【0031】
このようにして、アクティブ期間の終了タイミングで許可信号ENがセットされた場合には、アクティブ期間中にレジスタ部11が取り込んだシリアルデータに基づくメモリアクセスを、メモリ制御部15が実行することになる。なお、許可信号ENは、メモリアクセスの終了時にデコード部12が出す指令に基づく内部リセット信号CRにより、ロウレベルにリセットされる。
【0032】
また、立上り検出信号FEがハイレベルにある時に、外部リセット信号RSTにノイズが乗る等して、内部リセット信号CRがロウレベル(アクティブ)になると、FF回路21がリセットされることにより、立上り検出信号FEはロウレベルに変化する(t12)。この場合、その後にチップイネーブル信号CEの立下りエッジが検出されても、FF回路22はリセットされたままであるため、立下り検出信号REはロウレベルのまま保持される(t13)。従って、許可信号ENもセットされることなくロウレベルのまま保持される。
【0033】
つまり、アクティブ期間中に何らかの原因でリセットが発生した場合、そのリセットの解消後もアクティブ期間が継続していると、レジスタ部11がシリアルデータを取り込んでしまうが、そのアクティブ期間の終了タイミングでは許可信号ENがセットされないため、メモリ制御部15によるメモリアクセスは実行されることがない。
【0034】
以上説明したように、本実施形態のメモリ制御装置4によれば、外部リセット信号RSTに乗ったノイズにより、レジスタ部11に誤ったデータが書き込まれてしまったとしても、その誤ったデータに基づいてメモリアクセスが実行されることがないようにされているため、メモリ6の記憶内容が、使用者の意図しないものに書き替えられてしまうことを確実に防止できる。
[第2実施形態]
次に第2実施形態について説明する。
【0035】
図2は、本実施形態のメモリ制御装置4aの構成を表すブロック図である。
なお、本実施形態のメモリ制御装置4aは、第1実施形態のものとはレジスタ部11a,デコード部12a,有効性判定部14aの構成が異なるだけであるため、同じ構成については同一の符号を付して説明を省略し、構成の相違する部分を中心に説明する。
【0036】
即ち、本実施形態のメモリ制御装置において、レジスタ部11aは、レジスタ部11が出力するパラレルデータCMD,ADR,DAT以外に、後述する格納完了信号CC,CA,CDを出力し、デコード部12aは、デコード部12が出力する指令以外に、コマンドの内容から特定されるフレーム長に応じて生成される切替信号Xを出力し、有効性判定部14aは、チップイネーブル信号CE及び内部リセット信号CRに加えて、レジスタ部11aからの格納完了信号CC,CA,CD、デコード部12からの切替信号Xに基づいて、許可信号ENを生成するように構成されている。
【0037】
なお、切替信号Xは、命令ビット列を構成する部分ビット列P1〜P3のうち、部分ビット列P1のみを有効とするか、部分ビット列P1,P2を有効とするか、全ての部分ビット列P1〜P3を有効とするかを切り替えるためのものである。例えば、シリアルデータDIOのコマンドの内容が書込命令である場合には、全ての部分ビット列P1〜P3が有効であり、コマンドの内容が読込命令である場合には、部分ビット列P1,P2のみが有効であることを示す切替信号Xが生成される。
【0038】
ここで図4は、レジスタ部11aの構成を示す回路図である。
図4に示すように、レジスタ部11aは、スタートビットSを検出するとハイレベルになるスタートビット検出信号STBを生成するスタートビット検出手段としてのスタートビット検出回路30と、クロック信号CLKに従ってシリアルデータDIOを順次格納し、格納したデータをそれぞれパラレルデータCMD,ADR,DATに変換して出力する制御ブロックB1〜B3とからなる。
【0039】
なお、スタートビット検出回路30は、スタートビット検出信号STBが一度ハイレベルになると、以後、内部リセット信号CRによってリセットされるまでの間、その状態を保持するように構成されている。
そして、制御ブロックB1は、部分ビット列P1のビット長より1ビット大きいm+1ビット(Q0〜Qm)のデータを格納するシフトレジスタSF1と、クロック信号CLK,スタートビット検出信号STB,シフトレジスタSF1の最上位ビットQmに基づいてシフトレジスタSF1を動作させる動作クロック信号CK1の供給を制御するクロック供給制御回路32とを備えており、シフトレジスタSF1の最上位ビットQmが格納完了信号CC、それ以外のmビットQ0〜Qm-1 がパラレルデータCMDとなる。
【0040】
なお、クロック供給制御回路32は、クロック信号CLK及びスタートビット検出信号STBを入力とする論理積(AND)回路32bと、AND回路32bの出力及びシフトレジスタSF1の最上位ビットQmを入力として動作クロック信号CK1を生成するOR回路32aとからなる。つまり、AND回路32bは、スタートビット検出信号STBがロウレベルの間、クロック信号CLKをマスクすることにより、シフトレジスタSF1に動作クロック信号CK1が供給されることを阻止し、一方、OR回路32aは、シフトレジスタSF1の最上位ビットQmがハイレベルになると、AND回路32bの出力をマスクして、シフトレジスタSF1への動作クロック信号CK1の供給を遮断する。
【0041】
このように構成された制御ブロックB1では、内部リセット信号CRによりシフトレジスタSF1の出力がロウレベルにリセットされ、その後、図5に示すように、スタートビットSの検出(スタートビット検出信号STBがハイレベル)によって、動作クロック信号CK1の供給が開始されると、この動作クロック信号CK1に従って、シリアルデータDIOはシフトレジスタSF1に順次格納される。そして、スタートビットSが最上位ビットQm(図ではm=3)に到達することにより、最上位ビットQmの信号レベルがハイレベルに変化すると、動作クロック信号CK1が遮断され、シフトレジスタSF1の動作が停止する。これにより、スタートビットSに続くmビットの第1部分ビット列P1が、スタートビットと共にシフトレジスタSF1に保持されることになる。
【0042】
なお、図5において斜線は、スタートビットS(制御ブロックB1の場合)、及び後述する疑似スタートビットG(制御ブロックB2,B3の場合)の位置を示す。
次に制御ブロックB2は、部分ビット列P2のビット長より1ビット大きいn+1ビット(Q0〜Qn)のデータを格納するシフトレジスタSF2と、クロック信号CLK、シフトレジスタSF1の上位2ビットQm,Qm-1 、シフトレジスタSF2の最上位ビットQnに基づいてシフトレジスタSF2を動作させる動作クロック信号CK2の供給を制御するクロック供給制御回路33と、シリアルデータDIO及びシフトレジスタSF1の出力Qm-1 に基づいて、シフトレジスタSF2へのシリアルデータの供給を制御するデータ供給制御回路34とを備えており、シフトレジスタSF2の最上位ビットQn(図ではn=4)が格納完了信号CA、それ以外のmビットQ0〜Qn-1 がパラレルデータADRとなる。
【0043】
なお、クロック供給制御回路33は、シフトレジスタSF1の出力Qm,Qm-1 を入力とする論理和(OR)回路33cと、クロック信号CLK及びOR回路33cの出力を入力とするAND回路33bと、AND回路33bの出力及びシフトレジスタSF2の最上位ビットQnを入力として動作クロック信号CK2を生成するOR回路33aとからなる。
【0044】
つまり、クロック供給制御回路33は、スタートビット検出信号STBの代わりにOR回路33cの出力が用いられている以外は、クロック供給制御回路32と同様に動作し、第2部分ビット列P2の供給が開始される1ビット前から、シフトレジスタSF2に対して動作クロック信号CK2の供給を開始する。
【0045】
一方、データ供給制御回路34は、シフトレジスタSF1の出力Qm-1 を反転させる反転(INV)回路34bと、シフトレジスタSF1の出力Qm及びシリアルデータSIOを入力とするAND回路34c、INV回路34bの出力がロウレベルの時にAND回路34cの出力をシフトレジスタSF2に供給するOR回路34aとからなる。
【0046】
つまり、データ供給制御回路34は、シフトレジスタSF2に対して、クロック供給制御回路33によって最初の動作クロック信号CK2が供給される時に、ハイレベルの疑似スタートビットGを供給し、以後、シリアルデータDIOを供給するように構成されている。
【0047】
このように構成された制御ブロックB2では、内部リセット信号CRによりシフトレジスタSF2の出力がロウレベルにリセットされ、その後、図5に示すように、動作クロック信号CK2の供給が開始されると、この動作クロック信号CK2に従って、最初に疑似スタートビットG、続けてシリアルデータDIOがシフトレジスタSF2に順次格納される。そして、疑似スタートビットGが最上位ビットQnに到達することにより、最上位ビットQnの信号レベルがハイレベルに変化すると、動作クロック信号CK2が遮断され、シフトレジスタSF2の動作が停止する。これにより、第1部分ビット列P1に続くnビットの第2部分ビット列P2が疑似スタートビットGと共にシフトレジスタSF2に保持されることになる。
【0048】
なお、制御ブロックB3は、シフトレジスタSF2の代わりに、部分ビット列P3のビット長より1ビット大きいp+1ビット(Q0〜Qp)のデータを格納するシフトレジスタSF3が設けられ、シフトレジスタSF1の上位2ビットQm,Qm-1 の代わりにシフトレジスタSF2の上位2ビットQn,Qn-1 が入力され、シフトレジスタSF3の最上位ビットQpが格納完了信号CD、それ以外のpビットQ0〜Qp-1 がパラレルデータDATとなる以外は、制御ブロックB2と同様に構成されている。
【0049】
従って、制御ブロックB3では、第2部分ビット列P2に続くp(図ではp=8)ビットの第3部分ビット列P3が疑似スタートビットGと共にシフトレジスタSF3に保持されることになる。
そして、各シフトレジスタSF1〜SF3へのデータの格納が正常に行われた時には、格納完了信号CC,CA,CDは、いずれもハイレベルとなる。
【0050】
次に有効性判定部14aは、第1実施形態における有効性判定部14に、一部構成を追加しただけであるため、その追加された構成を中心に説明する。
即ち、有効性判定部14aは、図6(a)に示すように、有効性判定部14にAND回路26及びゲート回路27が追加された構成を有している。このうち、ゲート回路27は、デコード部12aからの切替信号Xに従って、レジスタ部11aからの格納完了信号CC,CA,CDの有効,無効を切り替えるものであり、有効である場合には、そのまま信号を通過させ、無効である場合にはロウレベルの信号を出力する。具体的には、切替信号Xが、部分ビット列P1〜P3が全て有効であることを示している時は、全ての格納完了信号CC,CA,CDを有効とし、部分ビット列P1,P2のみが有効であることを示している時は、格納完了信号CC,CAのみを有効とし、部分ビット列P1のみが有効であることを示している時は、格納完了信号CCのみを有効とする。
【0051】
そして、AND回路26は、このゲート回路27の各出力がいずれもハイレベルの時に、立下り検出信号REをFF回路23に供給するように構成されている。なお、AND回路26,ゲート回路27が第2の禁止手段に相当する。
このように構成された有効性判定部14aでは、例えば、切替信号Xによって格納完了信号CDが無効とされている場合、図6(b)に示すように、格納完了信号CC,CAがハイレベル、即ち、第1部分ビット列P1と第2部分ビット列P2がシフトレジスタSF1,SF2にそれぞれ完全に格納されている場合には、許可信号ENがセットされ、メモリ制御部15によるメモリアクセスが実行される(t21)。
【0052】
一方、何らかの理由でレジスタ部11aへのシリアルデータSIOの取り込みが不完全である場合には、これに対応する格納完了信号(図中ではCA)がローレベルのままとなることにより、立下り検出信号REが生成されても、許可信号ENはセットされないため、メモリ制御部15によるメモリアクセスは実行されることがない。(t22)。
【0053】
以上説明したように、本実施形態のメモリ制御装置4aによれば、第1実施形態と同様の作用効果が得られるのに加えて、チップイネーブル信号CEやクロック信号CLKに乗ったノイズ等により、レジスタ部11aに不完全なデータが書き込まれてしまったとしても、その不完全なデータに基づいてメモりアクセスが実行されることがないため、メモリ6の記憶内容が、使用者の意図しないものに書き替えられてしまうことをより確実に防止できる。
[第3実施形態]
次に第3実施形態について説明する。
【0054】
本実施形態のメモリ制御装置4bは、第2実施形態のものとはレジスタ部11b及び有効性判定部14bの構成が一部異なるだけであるため、この構成の相違する部分を中心に説明する。
なお、図7は、レジスタ部11bの構成を示すブロック図、図8は、有効性判定部14bの構成の一部を表す回路図である。
【0055】
図7に示すように、レジスタ部11bは、第2実施形態におけるレジスタ部11aの構成に加えて、各制御ブロック毎B1〜B3毎に、それぞれ超過クロック検出回路41,42,43が設けられている。
この超過クロック検出回路41では、シフトレジスタSF1の最上位ビットQmとクロック信号CLKとに基づき、最上位ビットQmがハイレベルになった後に、クロック信号CLKの入力が継続している場合に、ハイレベルとなる超過クロック検出信号OC1を生成する。
【0056】
同様に、超過クロック検出回路42(43)では、それぞれシフトレジスタSF2(SF3)の最上位ビットQn(Qp)とクロック信号CLKとに基づき、最上位ビットQn(Qp)がハイレベルになった後に、クロック信号CLKの入力が継続している場合に、ハイレベルとなる超過クロック検出信号OC2(OC3)を生成する。
【0057】
一方、有効性判定部14bは、図7に示すように、第2実施形態における有効性判定部14aの構成に加えて、切替信号Xに従って、レジスタ部11bからの超過クロック検出信号OC1〜OC3のうち、いずれか一つを選択し、これを反転させて出力するセレクタ28を備えている。そして、AND回路26の代わりに、ゲート回路27の各出力、及びセレクタ28の出力がいずれもハイレベルの時に、立下り検出信号REをFF回路23に供給するAND回路26aが設けられている。
【0058】
なお、セレクタ28は、切替信号Xが、部分ビット列P1〜P3が全て有効であることを示している時には、超過クロック検出信号OC3を選択し、部分ビット列P1,P2のみが有効であることを示している時には、超過クロック検出信号OC2を選択し、部分ビット列P1のみが有効であることを示している時には、超過クロック検出信号OC1を選択するように構成されている。
【0059】
このように構成された有効性判定部14bでは、レジスタ部11bにシリアルデータSIOを格納する際に、必要以上のクロック信号CLKが供給された時には、許可信号ENがセットされないため、メモリ制御部15によるメモリアクセスが実行されることがない。
【0060】
以上説明したように、本実施形態のメモリ制御装置4bによれば、第2実施形態と同様の作用効果が得られるのに加えて、何らかの理由で必要以上のクロック信号CLKが供給されたこと、つまり誤動作を起こしている可能性がある事態を検出した時には、メモリアクセスを実行しないようにされているため、メモリ6の記憶内容が使用者の意図しないものに書き替えられてしまうことをより一層確実に防止できる。
【0061】
以上本発明のいくつかの実施形態について説明したが、本発明は上記実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲において、様々な態様にて実施することが可能である。
例えば、上記実施形態では、メモリ制御装置4,4a,4bとメモリ6とがべ別体に構成されているが、これらを1チップの半導体集積回路にて形成することにより、シリアルメモリとして構成してもよい。
【0062】
また、上記実施形態では、メモリ6としてEEPROMを用いているが、ROM,RAMに拘わらず、複数ビット単位でデータが入出力されるのもであれば、どのようなメモリであってもよい。
【図面の簡単な説明】
【図1】 (a)は第1実施形態のメモリ制御装置4の構成を示すブロック図、(b)はシリアルデータSIOのフレーム構成を示す説明図である。
【図2】 (a)は有効性判定部14の構成を示す回路図、(b)はその動作を説明するためのタイミング図である。
【図3】 第2実施形態のメモリ制御装置4aの構成を示すブロック図である。
【図4】 レジスタ部11aの構成を示す回路図である。
【図5】 レジスタ部11aの動作を説明するためのタイミング図である。
【図6】 (a)有効性判定部14aの一部を抽出した回路図、(b)はその動作を説明するためのタイミング図である。
【図7】 第3実施形態のメモリ制御装置4bにおけるレジスタ部11bの構成を示すブロック図である。
【図8】 有効性判定部14bの一部を抽出した回路図である。
【図9】 従来の問題点を説明するためのタイミング図である。
【符号の説明】
2…マイクロコンピュータ、4,4a,4b…メモリ制御装置、6…メモリ、10…インターフェイス部、11,11a,11b…レジスタ部、12,12a…デコード部、13…リセット制御部、14,14a,14b…有効性判定部、15…メモリ制御部、21〜23…フリップフロップ(FF)回路、24…反転(INV)回路、25,26,26a…論理積(AND)回路、27…ゲート回路、28…セレクタ、30…スタートビット検出回路、32,33…クロック供給制御回路、34…データ供給制御回路、41〜43…超過クロック検出回路、B1〜B3…制御ブロック、SF1〜SF3…シフトレジスタ。

Claims (7)

  1. 少なくとも、先頭にスタートビットが付加された命令ビット列からなるシリアルデータ、該シリアルデータに同期したクロック信号、当該装置を指定するチップイネーブル信号、当該装置をリセットするリセット信号を入力するためのインターフェイス手段と、
    前記チップイネーブル信号が入力されているアクティブ期間の間、前記クロック信号に従って前記シリアルデータを格納するシリアルデータ格納手段と、
    該シリアルデータ格納手段に格納された命令ビット列の内容に従ってメモリアクセスを行うアクセス制御手段と、
    前記アクティブ期間の終了タイミングに基づいて、前記アクセス制御手段の動作を許可する許可信号を生成する許可信号生成手段と、
    を備え、シリアルデータを用いてメモリを制御するメモリ制御装置において、前記アクティブ期間中に当該装置がリセットされた場合、そのアクティブ期間の終了タイミングに基づく許可信号の生成を禁止する第1の禁止手段を設けたことを特徴とするメモリ制御装置。
  2. 前記許可信号生成手段は、前記アクティブ期間の終了タイミングで前記許可信号を生成する第1のフリップフロップ回路からなり、
    前記第1の禁止手段は、当該装置がリセットされてから前記アクティブ期間の開始タイミングまでの間、前記第1のフリップフロップ回路をリセット状態に保持するための保持信号を生成する第2のフリップフロップ回路からなる
    ことを特徴とする請求項1記載のメモリ制御装置。
  3. 前記アクティブ期間中に前記シリアルデータ格納手段に格納されたデータが予め指定されたビット長に達していない場合、前記許可信号の生成を禁止する第2の禁止手段を備えることを特徴とする請求項1又は請求項2記載のメモリ制御装置。
  4. 少なくとも、先頭にスタートビットが付加された命令ビット列からなるシリアルデータ、該シリアルデータに同期したクロック信号、当該装置を指定するチップイネーブル信号を入力するためのインターフェイス手段と、
    前記チップイネーブル信号が入力されているアクティブ期間の間、前記クロック信号に従って前記シリアルデータを格納するシリアルデータ格納手段と、
    該シリアルデータ格納手段に格納された命令ビット列の内容に従ってメモリアクセスを行うアクセス制御手段と、
    前記アクティブ期間の終了タイミングに基づいて、前記アクセス制御手段の動作を許可する許可信号を生成する許可信号生成手段と、
    を備え、シリアルデータを用いてメモリを制御するメモリ制御装置において、
    前記アクティブ期間中に前記シリアルデータ格納手段に格納されるデータが予め指定されたビット長に達していない場合、前記許可信号の生成を禁止する第2の禁止手段を備えることを特徴とするメモリ制御装置。
  5. 前記命令ビット列は、それぞれが固定のビット長Mi (i=1〜x)を有する複数の部分ビット列P1 〜Px からなり、
    前記シリアルデータ格納手段は、
    前記部分ビット列P1 〜Px のそれぞれに対応して設けられ、格納すべき部分ビット列Pi より1ビット長いMi +1ビットのシリアルデータを、前記クロック信号に従って格納し、且つ該シリアルデータの格納を開始する前には、前記スタートビットの信号レベルを反転させた信号レベルに初期化されるシフトレジスタSF1 〜SFx と、
    前記シフトレジスタSFi に対応する所定の開始信号が入力されると、該シフトレジスタSFi の最上位ビットであるMi +1ビット目の信号レベルが変化するまでの間、該シフトレジスタSFi に前記クロック信号を供給するクロック供給制御手段と、
    前記スタートビットを検出すると、1段目のシフトレジスタSF1 に対する開始信号を生成すると共に、前記シフトレジスタSFj (j=1〜x−1)のMj ビット目の信号レベルが変化すると、次段のシフトレジスタSFj+1 に対する開始信号を生成する開始信号生成手段と、
    前記シフトレジスタSFj のMj +1ビット目の信号レベルが変化する時に、前記スタートビットと同じ信号レベルを有する疑似スタートビットを、前記シリアルデータの代わりに次段のシフトレジスタSFj+1 に供給する疑似スタートビット供給手段と、
    を備え
    前記第2の禁止手段は、前記シフトレジスタSF1〜SFxの最上位ビットの信号レベルに基づいて、前記シリアルデータ格納手段に格納されたデータが予め指定されたビット長に達しているか否かを判断することを特徴とする請求項3又は請求項4記載のメモリ制御装置。
  6. 請求項1ないし請求項5いずれか記載のメモリ制御装置、及び該メモリ制御装置によって制御されるメモリを、1チップの半導体集積回路として構成したことを特徴とするシリアルメモリ。
  7. 前記メモリは電気的にデータを書換可能な不揮発性メモリであることを特徴とする請求項6記載のシリアルメモリ。
JP2002021971A 2002-01-30 2002-01-30 メモリ制御装置及びシリアルメモリ Expired - Fee Related JP3882628B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2002021971A JP3882628B2 (ja) 2002-01-30 2002-01-30 メモリ制御装置及びシリアルメモリ
US10/351,311 US6798708B2 (en) 2002-01-30 2003-01-27 Memory controller and serial memory

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002021971A JP3882628B2 (ja) 2002-01-30 2002-01-30 メモリ制御装置及びシリアルメモリ

Publications (2)

Publication Number Publication Date
JP2003223372A JP2003223372A (ja) 2003-08-08
JP3882628B2 true JP3882628B2 (ja) 2007-02-21

Family

ID=27606334

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002021971A Expired - Fee Related JP3882628B2 (ja) 2002-01-30 2002-01-30 メモリ制御装置及びシリアルメモリ

Country Status (2)

Country Link
US (1) US6798708B2 (ja)
JP (1) JP3882628B2 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7519789B1 (en) * 2005-01-20 2009-04-14 National Semiconductor Corporation Method and system for dynamically selecting a clock edge for read data recovery
JP2012008630A (ja) * 2010-06-22 2012-01-12 Nec Access Technica Ltd シリアルメモリ・コントロールシステム、方法およびプログラム
US10157167B2 (en) 2014-12-19 2018-12-18 Schlumberger Technology Corporation Method for determining triaxial conductivity with arbitrary orientation using multiaxial electromagnetic measurements
TWI606341B (zh) * 2016-03-23 2017-11-21 慧榮科技股份有限公司 記憶裝置及其重置方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS615498A (ja) * 1984-06-19 1986-01-11 Toshiba Corp 半導体メモリの誤消去防止回路
JPS6275852A (ja) * 1985-09-30 1987-04-07 Toshiba Corp 半導体記憶装置
JPH04114289A (ja) * 1990-09-04 1992-04-15 Mitsubishi Electric Corp マイクロコンピュータ集積回路装置のデータ書換え回路
US5663901A (en) * 1991-04-11 1997-09-02 Sandisk Corporation Computer memory cards using flash EEPROM integrated circuit chips and memory-controller systems
US5253214A (en) * 1991-09-27 1993-10-12 Eastman Kodak Company High-performance memory controller with application-programmable optimization
JPH05120144A (ja) * 1991-10-29 1993-05-18 Fanuc Ltd データ書き込み制御回路
JPH08203290A (ja) * 1995-01-31 1996-08-09 Gastar Corp Eeprom破壊防止装置

Also Published As

Publication number Publication date
JP2003223372A (ja) 2003-08-08
US6798708B2 (en) 2004-09-28
US20030142570A1 (en) 2003-07-31

Similar Documents

Publication Publication Date Title
JP4063615B2 (ja) 不揮発性メモリおよびその書き込み処理方法
KR100658135B1 (ko) 프로그래밍할 수 있는 비휘발성 메모리를 내장한 마이크로컴퓨터
US5881002A (en) Nonvolatile memory control circuit
JPH1050078A (ja) 電気的に消去およびプログラムが可能なリード・オンリ・メモリの消去およびプログラミング保護方法および装置
JPS63221446A (ja) 不揮発性メモリ保護装置及び方法
KR920005739B1 (ko) 기억부(memoryunit)에 사용되는 부분기입 제어회로.
JP3882628B2 (ja) メモリ制御装置及びシリアルメモリ
JPWO2006040798A1 (ja) 半導体集積回路装置および電子システム
JP2008310896A (ja) 不揮発性記憶装置、不揮発性記憶システムおよび不揮発性記憶装置の制御方法
JP3153155B2 (ja) 半導体メモリ
JP5176646B2 (ja) 誤り訂正機能確認回路及び誤り訂正機能確認方法とそのコンピュータプログラム、並びに記憶装置
JP3197865B2 (ja) マイクロコンピュータ
JP4236539B2 (ja) 不揮発性メモリ装置
JP2005531842A (ja) 不揮発性メモリへの書き込み方法およびこの方法を実現するシステム
JPH08235073A (ja) マイクロコンピュータ
JP3821911B2 (ja) メモリ初期化制御方式
JP2003203012A (ja) マイクロコンピュータ装置
JP4829598B2 (ja) 多ビット記憶装置及び多ビット記憶方法
JP2008197810A (ja) 情報処理装置およびicカード装置
KR100905640B1 (ko) 플래쉬 메모리의 데이터 보호 회로
JP2007064762A (ja) 半導体装置、テストモード制御回路
JP2005085398A (ja) 不揮発性メモリ
JP4848126B2 (ja) マイクロコンピュータ、マイクロコンピュータにおける不揮発性メモリのデータ保護方法
JP4102735B2 (ja) 誤設定機能を有するcpu装置
JP2005166184A (ja) 半導体記憶装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040514

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061019

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061024

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061106

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees