JP3869831B2 - ガス分離方法及び装置 - Google Patents

ガス分離方法及び装置 Download PDF

Info

Publication number
JP3869831B2
JP3869831B2 JP2004056500A JP2004056500A JP3869831B2 JP 3869831 B2 JP3869831 B2 JP 3869831B2 JP 2004056500 A JP2004056500 A JP 2004056500A JP 2004056500 A JP2004056500 A JP 2004056500A JP 3869831 B2 JP3869831 B2 JP 3869831B2
Authority
JP
Japan
Prior art keywords
gas
adsorption
regeneration
cylinder
path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004056500A
Other languages
English (en)
Other versions
JP2005246137A (ja
Inventor
達司 浦上
英晴 長谷川
徹 長坂
良夫 石原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Nippon Sanso Corp
Original Assignee
Taiyo Nippon Sanso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Nippon Sanso Corp filed Critical Taiyo Nippon Sanso Corp
Priority to JP2004056500A priority Critical patent/JP3869831B2/ja
Publication of JP2005246137A publication Critical patent/JP2005246137A/ja
Application granted granted Critical
Publication of JP3869831B2 publication Critical patent/JP3869831B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/106Silica or silicates
    • B01D2253/108Zeolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2256/00Main component in the product gas stream after treatment
    • B01D2256/18Noble gases

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Separation Of Gases By Adsorption (AREA)

Description

本発明は、ガス分離方法及び装置に関し、詳しくは、クリプトン、キセノン及びネオンの少なくとも1種の高付加価値ガスを含む混合ガスを圧力変動吸着分離法で処理することによって前記不純物を除去し、さらに、前記高付加価値ガスを再利用可能な状態まで分離精製して採取するガス分離方法及び装置に関する。
半導体集積回路、液晶パネル、太陽電池及びそのパネル、磁気ディスク等の半導体製品を製造する工程では、不活性ガス雰囲気中でプラズマを発生させ、該プラズマによって半導体製品又は表示装置の各種処理を行う製造設備が広く用いられている。このような処理において、従来は、ヘリウムやアルゴンが不活性ガスとして用いられてきたが、近年は、より高度な処理を行うため、クリプトンやキセノン、ネオン等の高付加価値ガスを使用した処理が注目されている。
クリプトンやキセノンは、空気中の存在比及び分離工程の複雑さから極めて高価なガス(高付加価値ガス)であり、このような高付加価値ガスを使用するプロセスを経済的に成立させるためには、使用済みの排ガス中から高付加価値ガスを高回収率で分離精製し、循環再利用することが必須条件である。さらに、回収した高付加価値ガスの不純物濃度は、100ppm以下の高純度が望まれる。
ここで、分離精製の対象となる高付加価値ガスを含む排ガスは、雰囲気ガスである高付加価値ガスと半導体製造設備の真空排気手段に導入される窒素とが主要ガス成分となった混合ガスの状態となっている。排ガス中のその他の成分としては、半導体の製造目的に応じて添加されるガス成分が含まれる。例えば、プラズマ酸化であれば酸素が含まれ、プラズマ窒化であれば窒素、水素、アンモニア、酸化窒素化合物が含まれ、プラズマCVDであれば金属水素化物系ガスが含まれ、リアクティブイオンエッチングであればハロゲン化炭化水素系ガスが含まれるなどである。さらに、プラズマ処理の反応副生成物として、水、一酸化炭素、二酸化炭素、水素、炭化水素が含まれることになり、半導体の基体の冷却に用いられるヘリウム等も含まれることになる。
以下、半導体製造装置の工程と、各工程時に排出されるガス成分について、さらに詳細に説明する。まず、プラズマ処理の対象となる基体を挿入する前のチャンバ内は、窒素を通気しながら真空排気することで清浄な窒素雰囲気とされる。その後、基体が処理チャンバ内に挿入されるが、清浄窒素雰囲気を保持するために、窒素の通気と真空排気は継続される。
次いで、チャンバ内に流通しているガスが窒素から高付加価値ガスに切り替わり、処理チャンバ内が高付加価値ガス雰囲気になった後、プラズマ処理を開始させる。したがって、プラズマ処理中にチャンバから排気されるガスは、主に高付加価値ガスで占められることになるが、製造目的に応じて添加されたガス成分及び反応副生成物も含まれる。
プラズマ処理終了後、半導体製造装置では、高周波印加を停止してプラズマを停止させる。このとき、流通ガスが高付加価値ガスから窒素に切り替わり、その後基体が取り出される。したがって、この間に排気されるガスは、窒素が主要ガス成分となるが、系内に残存している高付加価値ガス及び基体の冷却に使用されるヘリウム等も含まれる。
また、処理チャンバと真空排気システムとの間では、真空排気システムからの不純物の逆拡散を防止するために、工程に関わらず窒素が通気される。この逆拡散防止用の窒素は、処理チャンバから排気されたガスと共に排気される。さらに、大気巻き込み防止用として真空ポンプの軸受け部にも窒素が通気される。この窒素の一部は、真空排気系内部に流入し、上述のガスと一緒に排気される。
混合ガスから目的とするガス成分を分離回収する方法として、圧力変動吸着分離(PSA)法が広く知られている。例えば、空気を原料として酸素を製品として得る場合には、ゼオライトを吸着剤として用い、加圧下で空気を流通させることで易吸着成分である窒素を吸着剤に吸着固定させ、難吸着成分である酸素を製品として採取する。次いで、吸着剤層を空気の流通工程より十分に低い圧力条件下におけば、吸着剤に吸着されていた窒素が脱着する。相対的に高い圧力での吸着操作と相対的に低い圧力での再生操作とを繰り返すPSA操作は、短時間での吸着−再生の切り替えが可能なため、吸着剤当たりの製品発生量を高めやすく、装置をコンパクトにし易いという利点を有している。
また、原料ガス中の微量不純物を除去する方法としては、温度変動吸着分離(TSA)法が広く知られている。例えば、深冷空気分離装置では、原料空気中の微量成分である水や二酸化炭素を除去するために、TSA法を用いた前処理装置が用いられている。この前処理装置では、活性アルミナやゼオライト等の吸着剤充填層に空気を通気させることで、易吸着成分である水や二酸化炭素等の不純物を吸着除去している。吸着飽和に達した吸着剤は、加温されたパージガスを流通させることで容易に再生できる。
半導体製造装置等で使用された高付加価値ガスを再利用するためには、回収した混合ガス中に含まれる微量の不純物、反応副生成物、パージガス等の不要なガス成分を取り除く必要がある。混合ガス中の不要ガス成分を除去するには、上述の従来技術の組み合わせでもある程度は達成できる。例えば、水、二酸化炭素、アンモニア等の微量なガス成分であれば、ゼオライト、活性アルミナ等の吸着剤を用いたTSA法によって吸着除去できる。また、窒素等が比較的多く含まれるガス成分であれば、吸着剤の平衡吸着量差あるいは吸着速度差を利用したPSA法によって選択除去できる(例えば、特許文献1参照。)。
特開2002−126435号公報
しかしながら、ヘリウム、水素の除去に関しては、従来技術の組み合わせでは困難である。すなわち、ヘリウム及び水素は、吸着剤にほとんど吸着されない性質を持つことから、易吸着成分を選択的に吸着除去するTSA法は適用できない。一方、PSA法を用いた場合には、難吸着成分であるヘリウムや水素を製品側に濃縮することができるが、高付加価値ガスを高回収率で回収するには、排ガス中の高付加価値ガスの濃度を十分低下させ、回収ガス中のヘリウム、水素を十分なガス濃度に高める必要がある。
装置コスト及び設置スペースを考慮した場合、混合ガス中に含まれる微量のヘリウム、水素を所定の濃度まで高めることは現実的ではない。また、水素除去に限定した方法として、触媒筒内で外部から注入し酸素と水素とを反応させて水に変化させた後、TSA法等で水を吸着除去する方法も考えられる。しかし、水素を処理するためにパラジウム触媒等を用いた触媒筒及びTSA法を利用した吸着筒を追加する必要があるだけでなく、装置系外から酸素を供給する必要があるなど、装置構成が複雑になるという問題があった。
また、その他の分離方法として、膜分離法を利用することも考えられるが、何れにしても、装置構成が複雑になり、装置コストの上昇、設置スペースの増大は避けられなかった。
そこで本発明は、クリプトン、キセノン等の高付加価値ガスを雰囲気ガスとして用いる半導体製品又は表示装置の製造設備から排出される排ガスから高付加価値ガスを分離精製して循環再利用するにあたり、排ガス中に含まれるヘリウム、水素等の微量ガス成分を効率良く除去することができ、さらに、高付加価値ガスを高回収率で連続的に分離精製して循環再利用することが可能なガス分離方法及び装置を提供することを目的としている。
上記目的を達成するため、本発明のガス分離方法は、第1の構成として、クリプトン、キセノン及びネオンの少なくとも1種の高付加価値ガスを含む混合ガス中の不純物成分を圧力変動吸着分離法により分離するガス分離方法であって、前記高付加価値ガスを易吸着成分とする吸着剤を充填した吸着筒の入口側から前記混合ガスを相対的に高い圧力で導入して前記吸着剤に前記高付加価値ガスを吸着させるとともに吸着剤に吸着しなかったガスを吸着筒の出口側から排出する吸着工程と、該吸着工程を終了した吸着筒を相対的に低い圧力に減圧して前記吸着剤から高付加価値ガスを脱着させるとともに、前記混合ガス中の高付加価値ガス及び不純物成分を除くガスからなるパージガスを系外から吸着筒の出口側に導入して筒内ガスを吸着筒の入口側に押し出して流出させる再生工程とを交互に繰り返して行い、該再生工程の前半で吸着筒の入口側から流出する再生排ガスを前記混合ガスに循環混合させ、該再生工程の後半で吸着筒の入口側から流出する再生排ガスを回収ガスとして回収することを特徴としている。さらに、本発明のガス分離方法は、前記第1の構成において、前記パージガスは、酸素、窒素及びアルゴンの少なくとも1種であることを特徴としている。
本発明のガス分離方法の第2の構成は、クリプトン、キセノン及びネオンの少なくとも1種の高付加価値ガスを含む混合ガス中の不純物成分を圧力変動吸着分離法により分離して前記高付加価値ガスを精製するガス分離方法であって、前記混合ガス中の高付加価値ガスを易吸着成分とする第1吸着剤を充填した第1吸着筒の入口側から相対的に高い圧力で前記混合ガスを導入して前記第1吸着剤に少なくとも高付加価値ガスを吸着させるとともに、該第1吸着剤に吸着せずに第1吸着筒の出口側から流出したガスを系外に排出する第1吸着工程と、該第1吸着工程を終了した第1吸着筒の筒内ガスを入口側から流出させ、筒内圧力を相対的に低い圧力に減圧して前記第1吸着剤に吸着したガスを脱着させるとともに、第1吸着筒の出口側から第1パージガスを導入して筒内ガスを第1吸着筒の入口側に押し出して流出させる第1再生工程とを、前記第1吸着筒で交互に繰り返して行い、前記第1再生工程の前半に第1吸着筒の入口側から流出する第1再生排ガスを前記混合ガスに循環混合し、第1再生工程の後半に第1吸着筒の入口側から流出する第1再生排ガスを回収する第1分離プロセスと、この第1分離プロセスで回収した回収ガスを前記高付加価値ガスを難吸着成分とし、該回収ガス中の高付加価値ガスを除くガスを易吸着成分とする第2吸着剤を充填した第2吸着筒の入口側から相対的に高い圧力で導入し、前記第2吸着剤に前記高付加価値ガスを除くガスを吸着させるとともに、該第2吸着剤に吸着せずに第2吸着筒の出口側から流出した高付加価値ガスを主成分とするガスを採取する第2吸着工程と、該第2吸着工程を終了した第2吸着筒の筒内ガスを入口側から流出させ、筒内圧力を相対的に低い圧力に減圧して前記第2吸着剤に吸着したガスを脱着させるとともに、第2吸着筒の出口側から前記第2吸着工程で採取した高付加価値ガスを主成分とするガスの一部からなる第2パージガスを導入して筒内ガスを第2吸着筒の入口側に押し出して流出させる第2再生工程とを、前記第2吸着筒で交互に繰り返して行い、前記第2再生工程で第2吸着筒の入口側から流出した第2再生排ガスを前記混合ガス又は前記回収ガスに循環混合する第2分離プロセスとを含み、前記第1パージガスは、前記混合ガス中の高付加価値ガス及び不純物成分を除くガスであって、かつ、前記第2吸着剤の易吸着成分であるガスを系外から導入することを特徴としている。
また、本発明のガス分離装置における第1の構成は、クリプトン、キセノン及びネオンの少なくとも1種の高付加価値ガスを含む混合ガス中の不純物成分を圧力変動吸着分離法により分離するガス分離装置であって、前記高付加価値ガスを易吸着成分とする吸着剤を充填した吸着筒と、吸着筒の入口側に入口弁を介して前記混合ガスを相対的に高い圧力で導入する混合ガス入口経路と、吸着筒の出口側から流出するガスを出口弁を介して排出する排ガス出口経路と、前記混合ガス中の高付加価値ガス及び不純物成分を除くガスからなるパージガスをパージ弁を介して吸着筒の出口側に導入するパージガス入口経路と、吸着筒の入口側から流出する再生排ガスを再生ガス出口弁を介して取り出す再生ガス出口径路と、該再生ガス出口径路に取り出した再生排ガスを前記混合ガス入口経路に循環弁を介して循環させる循環経路と、前記再生排ガスを回収弁を介して回収する回収経路とを備えていることを特徴としている。
さらに、本発明のガス分離装置における第2の構成は、クリプトン、キセノン及びネオンの少なくとも1種の高付加価値ガスを含む混合ガス中の不純物成分を圧力変動吸着分離法により分離して前記高付加価値ガスを精製するガス分離装置であって、前記混合ガス中の高付加価値ガスを易吸着成分とする第1吸着剤を充填した第1吸着筒と、第1吸着筒の入口側に第1入口弁を介して前記混合ガスを相対的に高い圧力で導入する混合ガス入口経路と、第1吸着筒の出口側から流出するガスを第1出口弁を介して排出する排ガス出口経路と、第1吸着筒の出口側に第1パージ弁を介して第1パージガスを導入する第1パージガス入口経路と、第1吸着筒の入口側から流出する第1再生排ガスを第1再生ガス出口弁を介して取り出す第1再生ガス出口径路と、該第1再生ガス出口径路に取り出した第1再生排ガスを前記混合ガス供給手段に第1循環弁を介して循環させる第1循環経路と、該第1再生ガス出口径路に取り出した第1再生排ガスを回収弁を介して回収する回収経路とを備えた第1分離部と、前記高付加価値ガスを難吸着成分とし、前記第1分離部の回収経路に回収した回収ガス中の高付加価値ガスを除くガスを易吸着成分とする第2吸着剤を充填した第2吸着筒と、前記回収ガスを第2吸着筒の入口側に第2入口弁を介して相対的に高い圧力で導入する回収ガス入口経路と、第2吸着筒の出口側から流出する高付加価値ガスを主成分とするガスを第2出口弁を介して採取する製品出口経路と、該製品出口経路に採取した高付加価値ガスを主成分とするガスの一部からなる第2パージガスを第2パージ弁を介して第2吸着筒の出口側に導入する第2パージガス入口経路と、第2吸着筒の入口側から流出する第2再生排ガスを第2再生ガス出口弁を介して取り出す第2再生ガス出口径路と、該第2再生ガス出口径路に取り出した第2再生排ガスを第2循環弁を介して前記混合ガス供給手段又は前記回収経路に循環させる第2循環経路とを備えた第2分離部とを含み、第1パージガス入口経路は、前記混合ガス中の高付加価値ガス及び不純物成分を除くガスであって、かつ、前記第2吸着剤の易吸着成分であるガスを系外から導入する経路であることを特徴としている。
本発明によれば、半導体製造装置等から排出された高付加価値ガスを含む排ガス(混合ガス)中のヘリウム、水素等の微量ガス成分を極めて簡単に除去することができる。さらに、混合ガス中の不要なガス成分は、高付加価値ガスを損なうことなく系外に排出できるため、高付加価値ガスを高回収率で連続的に回収することができる。
図1及び図2は本発明の第1形態例を示すものであって、図1は一方の吸着筒が吸着工程を行っており、他方の吸着筒が再生工程の前半を行っているときのガスの流れを太線で示す系統図、図2は一方の吸着筒が吸着工程を行っており、他方の吸着筒が再生工程の後半を行っているときのガスの流れを太線で示す系統図である。なお、図において、黒塗りの弁は閉じている状態、白抜きの弁は開いている状態を表している。
本形態例に示すガス分離装置は、クリプトン、キセノン及びネオンの少なくとも1種の高付加価値ガスを含む混合ガス、例えば、半導体製品製造設備から排出される排ガス中の不純物成分を、前記高付加価値ガスを易吸着成分とする吸着剤を充填した複数の吸着筒11A,11Bを使用し、この吸着筒11A,11Bを、吸着工程と再生工程とにそれぞれ交互に切り替えて行う圧力変動吸着分離法により分離するようにしている。
前記吸着筒11A,11Bには、吸着筒11A,11Bの入口側(図において下方側)に入口弁12A,12Bを介して前記混合ガスを導入する混合ガス入口経路13A,13Bと、吸着工程のときに吸着筒11A,11Bの出口側(図において上方側)から流出するガスを出口弁14A,14Bを介して排出する排ガス出口経路15A,15Bと、再生工程のときに吸着筒11A,11Bの出口側にパージ弁16A,16Bを介してパージガスを導入するパージガス入口経路17A,17Bと、再生工程のときに吸着筒11A,11Bの入口側から流出する再生排ガスを再生ガス出口弁18A,18Bを介して取り出す再生ガス出口径路19A,19Bとが設けられている。
混合ガス入口経路13A,13Bには、混合ガスを貯留する混合ガス貯留槽20と、混合ガス貯留槽20内の混合ガスを抜き出して所定圧力に圧縮する圧縮機21とを有する混合ガス導入経路22が設けられており、混合ガス貯留槽20には、半導体製品製造設備から排出される排ガスが流入する排ガス流入経路23が設けられている。
前記再生ガス出口径路19A,19Bは、一つの経路にまとまった後、循環弁24を有する循環経路25と、回収弁26を有する回収経路27とに分岐しており、循環経路25は前記混合ガス貯留槽20に接続し、回収経路27は高付加価値ガスが濃縮された再生排ガスを回収ガスとして貯留する回収ガス貯留槽28に接続している。また、前記排ガス出口経路15A,15Bは、排気調節弁29を備えたガス排気経路30にまとめられている。
前記パージガス入口経路17A,17Bは、パージガス導入弁31を有するパージガス導入経路32を介してパージガス供給源33に接続されている。パージガス供給源33は、前記混合ガス中の高付加価値ガス及び除去対象となっている微量不純物成分を除くガスを供給するものであって、供給するガスとしては、通常は、混合ガス中に比較的大量に存在するガス、すなわち、混合ガスの主成分に相当するガスが選択される。
具体的には、混合ガスが高付加価値ガスとアルゴンとの混合ガスで、その中に微量乃至少量の水素やヘリウム、その他の微量不純物成分を含むガスの場合は、前記パージガスとしてアルゴンを選定することが最適であり、混合ガスが高付加価値ガスと窒素と微量不純物成分との混合ガスの場合は、前記パージガスとして窒素を選定することが最適である。但し、このパージガスは、前記回収ガス貯留槽28に回収した高付加価値ガス濃縮ガスの後処理や、使用目的、使用先の条件等に応じて適宜なガスをパージガスとして用いることが可能である。
特に、回収ガス貯留槽28に回収した高付加価値ガス濃縮ガスの後処理を、高付加価値ガスを難吸着成分とし、その他のガス成分を易吸着成分とする吸着剤を使用した圧力変動吸着分離法により行い、高付加価値ガスを高純度に精製する場合には、この圧力変動吸着分離法で高付加価値ガスから分離可能なガスを前記パージガスとして用いる必要がある。
次に、本形態例示すガス分離装置を使用し、半導体製造装置の一つである窒化膜形成装置から排出される排ガスを対象として処理する例を説明する。窒化膜形成装置からの排ガスは、高付加価値ガスであるキセノンと、チャンバ内の通気や真空排気システム等に用いられた窒素とを主要成分とし、微量不純物として水素を含有する混合ガスとなっている。
まず、吸着筒11A,11Bに充填する吸着剤には、平衡分離型吸着剤である活性炭を使用することが好ましい。この活性炭は、平衡吸着量としてキセノンの吸着量が多く(易吸着性)、窒素の吸着量が少なく(難吸着性)、水素をほとんど吸着しないという特性を有しており、前記排ガス中の窒素及び水素を排出してキセノンを濃縮するのに最適である。また、パージガス供給源33には高純度窒素を使用している。
半導体製造装置から排出された排ガスは、排ガス流入経路23を通って混合ガス貯留槽20に流入し、この混合ガス貯留槽20で循環経路25から循環流入する再生排ガスと混合するとともに、半導体製造装置の運転状況の変化に伴う排ガス組成の変動が緩和される。混合ガス貯留槽20内の混合ガスは、圧縮機21で所定圧力に圧縮された後、入口弁12A、混合ガス入口経路13Aを通って吸着工程を行っている吸着筒11Aに導入される。
吸着筒11Aに流入した圧力が高い混合ガス中のキセノンは、筒内に充填された活性炭に吸着して筒内に保持され、活性炭に吸着しなかった窒素及び水素が吸着筒11Aを通過して排ガス出口経路15Aに流出し、出口弁14A、排気調節弁29を通ってガス排気経路30から系外に排出される。この吸着筒11Aの吸着工程は、キセノンが排ガス出口経路15Aに流出する前に打ち切られる。
吸着筒11Aが吸着工程を行っている間、他方の吸着筒11Bは再生工程を行っている。この再生工程は、吸着筒11Bの入口側に設けられている再生ガス出口弁18Bを開くとともに、吸着筒11Bの出口側に設けられているパージ弁16Bを開くことによって行われる。さらに、再生工程の前半では、図1に示すように、循環弁24を開くことにより、吸着筒11Bの入口側から流出した筒内のガス、すなわち、再生排ガスを循環経路25を通して混合ガス貯留槽20に循環させるようにしている。
この再生工程の前半では、再生ガス出口弁18B及び循環弁24が開くことにより、圧力の高い吸着筒11Bが圧力の低い混合ガス貯留槽20に連通し、吸着筒11B内のガスが再生ガス出口径路19Bから循環経路25を通って混合ガス貯留槽20に流出する。これにより、吸着筒11B内が減圧され、吸着工程で活性炭に吸着したキセノン及び窒素の一部が活性炭から脱着する。再生工程の前半で再生ガス出口径路19Bに流出する再生排ガスは、吸着工程の最終段階で吸着筒11Bに導入された混合ガス、すなわち、キセノン、窒素及び水素を含む混合ガスと、活性炭から脱着したキセノン及び窒素の一部と、パージ窒素の一部とが混合した状態となっており、キセノンはある程度濃縮されているが、微量不純物である水素が残留している状態のガスとなっている。
そして、パージガス供給源33からパージガス導入経路32、パージガス入口経路17Bを通して吸着筒11Bに導入される高純度窒素(以下、パージ窒素という)により、前記水素を含む混合ガスが吸着筒11B内から押し出されて十分にパージされた後、図2に示すように、循環弁24を閉じて回収弁26を開き、吸着筒11Bから再生ガス出口径路19Bに流出した再生排ガスを回収経路27を通して回収ガス貯留槽28に回収する。
この再生工程の後半で再生ガス出口径路19Bに流出する筒内のガスは、活性炭から脱着したキセノン及び窒素の一部にパージ窒素が混合した状態となっており、水素をほとんど含まない状態となっている。また、パージ窒素の導入により、活性炭に吸着したキセノンの脱着が促進され、回収ガス貯留槽28に回収される再生排ガスは、キセノンが濃縮された状態となっている。なお、パージ窒素は、高圧ボンベから供給するようにしてもよく、ガス分離装置の設置場所近傍に高純度窒素の発生源や使用設備がある場合は、これらから分岐した高純度窒素を供給することもできる。
再生工程の前半、後半の弁の開閉切り替えは、あらかじめ設定された時間で行われ、切り替え後の吸着筒11Bから回収ガス貯留槽28への再生排ガスの回収は、再生工程が終了して吸着工程に切り替えられるまで継続される。
所定の工程切替時間が経過すると、各弁の開閉操作によって吸着筒11Aが再生工程に切り替わり、吸着筒11Bが吸着工程に切り替わる。この吸着工程と再生工程との切り替えを両吸着筒11A,11Bで交互に行うことにより、水素の分離排出とキセノンの濃縮とを連続して行うことができる。
このように、窒素に比べてキセノンを吸着し易く、水素をほとんど吸着しない活性炭を使用して吸着工程を行うことにより、キセノンの全量を吸着させながら、混合ガス中の微量不純物である水素を排出除去するとともに、窒素の大部分も排出することができる。
一方、再生工程の前半では、水素が残留している再生排ガスを混合ガス入口経路13A,13B側に設けた混合ガス貯留槽20に循環させることにより、キセノンを系外に排出することなく再び吸着処理することができるので、キセノンの回収率を向上させることができる。そして、再生工程の後半で、水素をほとんど含まない状態になった再生排ガスを回収ガス貯留槽28に回収することにより、微量不純物である水素が除去されてキセノンが濃縮されたガスを得ることができる。
なお、本形態例においても、2筒式PSAで一般的に行われている均圧工程を採用することによって圧縮機21の運転コストを低減することができる。
図3及び図4は本発明の第2形態例を示すものであって、図3は、第1分離部10及び第2分離部50の二組の圧力変動吸着装置を使用することにより、高付加価値ガスを含む混合ガスから微量不純物を除去するとともに、高付加価値ガス以外のガス成分を分離して高付加価値ガスを高純度に精製するガス分離装置の一例を示す系統図である。
なお、前段の第1分離プロセスを行う第1分離部10は、前記第1形態例に示したガス分離装置と同じ構成のものを使用し、同じプロセスで運転することができるので、この第1分離部10における各構成要素には、前記第1形態例で示したガス分離装置の構成要素と同一符号を付して詳細な説明は省略する。さらに、第1分離部10と第2分離部50とで同じ名称の構成要素については、第1分離部10に含まれる構成要素には「第1」を、第2分離部50に含まれる構成要素には「第2」をそれぞれ付すことにする。
また、図4は、第2分離部50における一方の吸着筒が吸着工程を行っており、他方の吸着筒が再生工程を行っているときのガスの流れを太線で示す系統図である。
第2分離部50は、第1分離部10の回収経路27から回収ガス貯留槽28に回収したガス(回収ガス)中の前記高付加価値ガスを難吸着成分とし、高付加価値ガスを除くその他のガスを易吸着成分とする第2吸着剤を充填した複数の第2吸着筒51A,51Bを、吸着工程と再生工程とにそれぞれ交互に切り替えて運転することにより高付加価値ガスを分離精製するようにしている。
前記第2吸着筒51A,51Bには、第2吸着筒51A,51Bの入口側に第2入口弁52A,52Bを介して前記回収ガスを導入する回収ガス入口経路53A,53Bと、第2吸着筒51A,51Bの出口側から流出する高付加価値ガスを第2出口弁54A,54Bを介して採取する製品出口経路55A,55Bと、第2吸着筒51A,51Bの出口側に第2パージ弁56A,56Bを介して第2パージガスを導入する第2パージガス入口経路57A,57Bと、第2吸着筒51A,51Bの入口側から流出する再生排ガスを第2再生ガス出口弁58A,58Bを介して取り出す第2再生ガス出口径路59A,59Bとが設けられている。
回収ガス入口経路53A,53Bには、前記回収ガス貯留槽28内の回収ガスを抜き出して所定圧力に圧縮する第2圧縮機60を有する回収ガス導入経路61が設けられており、製品出口経路55A,55Bは、製品採取経路62を介して製品貯留槽63に接続されている。製品貯留槽63には、製品供給弁64を有する製品供給経路65が設けられるとともに、製品貯留槽63内の高付加価値ガスの一部を第2パージガスとして前記第2パージガス入口経路57A,57Bに供給するため、第2パージガス導入弁66を有する第2パージガス導入経路67が設けられている。
前記第2再生ガス出口径路59A,59Bは、第2循環弁68を備えた第2循環経路69に合流して前記混合ガス貯留槽20に接続している。この第2循環経路69は、図3に破線で示すように、第2回収弁70を介して回収ガス貯留槽28に接続させてもよく、混合ガス貯留槽20及び回収ガス貯留槽28のいずれかに選択して循環させるように形成することもできる。
次に、本形態例に示すガス分離装置を使用し、半導体製造装置から排出される排ガスの組成が、第1形態例と同様に、高付加価値ガスであるキセノンと、チャンバ内の通気や真空排気システム等に用いられた窒素とを主要成分とし、微量不純物として水素を含有する混合ガスを、第1分離部10での第1分離プロセスと、第2分離部50での第2分離プロセスとの組み合わせで処理してキセノンを分離精製する例を挙げて説明する。
第2吸着筒51A,51Bに充填する第2吸着剤には、速度分離型吸着剤であるゼオライト4A(Na−A型ゼオライト)を使用することが好ましい。このゼオライト4Aは、比較的分子径の大きいキセノンを吸着しにくく(難吸着性)、キセノンより分子径の小さい窒素を吸着しやすい(易吸着性)という特性を有している。この特性は、一般に速度分離型と呼ばれる分離特性であり、適当な吸着時間を選定すれば、窒素を選択的に吸着させながら、キセノンを吸着させない状態にすることが可能である。
図4に示すように、第1分離部10における第1分離プロセスで回収ガス貯留槽28に回収された回収ガスは、第2圧縮機60で所定圧力に圧縮された後、第2入口弁52A及び回収ガス入口経路53Aを通って吸着工程を行っている第2吸着筒51Aに導入される。第2吸着筒51Aに流入した圧力が高い回収ガス中の窒素は、筒内に充填されたゼオライト4Aに吸着して筒内に保持され、ゼオライト4Aに吸着しなかったキセノンが第2吸着筒51Aを通過して製品出口経路55Aに流出し、第2出口弁54A、製品採取経路62を通して製品貯留槽63に採取される。
製品貯留槽63に採取された高純度キセノンは、製品供給弁64、製品供給経路65を通って半導体製造装置等の使用先に供給される。この第2吸着筒51Aの吸着工程は、窒素が製品出口経路55Aに流出する前に打ち切られる。
第2吸着筒51Aが吸着工程を行っている間、他方の第2吸着筒51Bは再生工程を行っている。この再生工程は、第2吸着筒51Bの入口側に設けられている第2再生ガス出口弁58Bを開くとともに、第2吸着筒51Bの出口側に設けられている第2パージ弁56Bを開くことによって行われる。
この再生工程では、第2再生ガス出口弁58B及び第2循環弁68が開くことにより、圧力の高い第2吸着筒51Bが圧力の低い混合ガス貯留槽20に連通した状態になるので、第2吸着筒51B内のガスが第2再生ガス出口径路59Bから第2循環経路69を通って混合ガス貯留槽20に流出する。これにより、第2吸着筒51B内が減圧され、吸着工程でゼオライト4Aに吸着した窒素及びキセノンの一部がゼオライト4Aから脱着する。
また、製品貯留槽63から第2パージガス導入弁66、パージガス導入経路67、第2パージ弁56B、第2パージガス入口経路57Bを通して第2吸着筒51Bの出口側から導入される高付加価値ガスにより、ゼオライト4Aからの窒素の脱着が促進されるとともに、脱着した窒素を第2吸着筒51Bの入口側から第2再生ガス出口径路59Bに向けて押し出して筒内をパージする。
この第2分離部50の再生工程においても、再生工程前半に第2再生ガス出口径路59Bに流出する比較的窒素濃度が高い再生排ガスを混合ガス貯留槽20に循環させ、再生工程前半に第2再生ガス出口径路59Bに流出するキセノン濃度が高い再生排ガスを回収ガス貯留槽28に循環させるようなプロセスとしてもよい。また、第2分離部50でも、2筒式PSAで行われている均圧工程を採用することができる。
このように、第1分離部10の第1吸着筒11A,11Bに高付加価値ガス(キセノン)を易吸着成分とする第1吸着剤(活性炭)を充填し、該第1分離部10での第1分離プロセスにおける吸着工程で微量不純物(水素)を分離除去して排出するとともに、再生工程では、装置系外から第1パージガス(パージ窒素)を導入することにより、微量不純物を含まずに高付加価値ガス(キセノン)を濃縮したガスを回収し、次いで、第2分離部50の第2吸着筒51A,51Bに高付加価値ガス(キセノン)を難吸着成分とする第2吸着剤(ゼオライト4A)を充填し、該第2分離部50での第2分離プロセスにおける吸着工程で高付加価値ガス(キセノン)を高純度に分離精製して採取するとともに、再生工程で第2吸着筒から流出する再生排ガスを混合ガス又は回収ガスに循環させることにより、高付加価値ガス(キセノン)を損なうことなく、高収率かつ高純度で回収して再利用することができる。
すなわち、キセノン、窒素、水素の混合ガスからキセノンを高回収率で回収し、かつ、窒素、水素を含まない高純度キセノンを採取する場合、水素は、窒素、キセノン等のガス成分と比較して吸着剤にほとんど吸着されない性質を有している。このため、第1吸着筒11A,11Bに前記混合ガスを導入した場合、水素は吸着剤に吸着されることなく、吸着剤充填層を通過して第1吸着筒の出口側から排出される。
したがって、吸着工程において、第1吸着筒の出口側から一定量のガスを流出させた場合、流出ガス中に水素が多く含まれることになる。また、活性炭は、窒素に対して難吸着性であり、キセノンに対して易吸着性という特性を有している。このため、キセノンが活性炭に吸着保持されることから、第1吸着筒から流出するガスの主成分は窒素となる。これにより、前記第1分離部10の第1分離プロセスでは、キセノンを損失することなく、窒素と水素とを選択的に装置系外へ排出することが可能となる。
一般的な圧力変動吸着分離法では、再生工程において、吸着剤の再生を促進するために、製品ガスの一部をパージガスとして吸着筒出口側から導入する。本形態例では、第1吸着筒から流出した窒素を主成分とするガスの一部をパージガスとして用いることになり、再生工程にある第1吸着筒に窒素を主成分とするガスを流入させることでキセノンの脱着を促進することができる。
しかしながら、本形態例において、吸着工程にある第1吸着筒の出口側から流出するガスには、窒素のみならず水素も多く含まれることとなる。水素を含む窒素をパージガスとして用いることは、第1吸着剤の再生を促進する目的に対して特に支障を来たすものではないが、再生工程にある第1吸着筒の入口側から流出するガス中に必ず水素が混在することになる。
図5は、再生工程にある第1吸着筒の入口側から流出する再生排ガス中に含まれる水素濃度を連続的に測定した結果を示したものであり、Case1は、吸着工程にある第1吸着筒から流出したガスをパージガスに使用した場合の測定結果であり、Case2は、前述のように高純度窒素をパージガスとして使用した場合の測定結果である。
この図5から明らかなように、Case1では、再生工程にある第1吸着筒の入口側から流出する再生排ガス中に常に水素が検出されている。一方、Case2では、系外から十分に高純度の窒素をパージガスとして導入しており、パージガス中に水素が含まれないため、再生工程にある第1吸着筒の入口側から流出する再生排ガスには、吸着剤の空隙部分に残存した水素のみが含まれることになる。
第1吸着剤に多く吸着されている窒素、キセノンに対して、吸着剤の空隙部分に残存している水素は微量であることから、水素は、再生工程開始後の100秒までに集中して流出し、それ以降の再生排ガス中には含まれていない。すなわち、再生工程で第1吸着筒の入口側から流出する再生排ガスを、前半と後半とで導出先を分けることのみで、水素を含有せずにキセノンを濃縮した混合ガスを回収することができる。
本形態例では、水素が含まれる初期のガスを第1吸着筒の上流にある混合ガス貯留槽20に循環させ、水素が含まれない後半のガスを第1吸着筒の下流にある回収ガス貯留槽28に導出することで、水素が含まれない混合ガスを回収ガス貯留槽28に回収して貯留することができる。
系外から導入するパージガスの流量には最適範囲が存在する。すなわち、パージガスの流量が少なければ水素除去が不十分になり、パージガスの流量が多ければ排ガス流量を増加させることになり、キセノンの損失が大きくなる。好ましいパージガスの流量は、空間速度0.2〜2min−1であり、さらに好ましくは0.5〜1.2min−1の範囲である。
回収ガス貯留槽28に貯留したキセノンと窒素との混合ガスからなる回収ガスは、窒素に対して易吸着性であり、キセノンに対して難吸着性である第2吸着剤が充填された第2吸着筒51A,51Bに導入される。第2吸着筒の吸着工程で、混合ガス中の窒素が第2吸着剤に吸着保持されるため、製品貯留槽63には高純度のキセノンを採取することができる。製品貯留槽63に貯留されたキセノンは、製品として半導体製造装置等に供給される。
なお、半導体製造上の理由により、キセノンの不純物濃度をさらに減少させる必要がある場合には、本発明のガス分離装置の後段に精製装置を設けることもできる。この精製装置としては、チタン、バナジウム、ジルコニウム、鉄、ニッケル等の金属あるいは合金を用いたゲッター式精製器が好適である。
第2吸着剤の再生は、製品貯留槽63に貯留された製品ガス(キセノン)の一部を用いて行う。パージガスとして製品貯留槽63のキセノンを導入することにより、第2吸着剤に吸着された窒素の脱着を促進することができる。再生工程で第2吸着筒の入口側から流出したガスは、再び混合ガス貯留槽20又は回収ガス貯留槽28に戻される。流出ガスの適量を混合ガス貯留槽20に戻すことにより、回収ガス貯留槽28に貯留された回収ガスの過剰な窒素濃度の上昇を防ぐことができる。
このように、本形態例では、キセノンを含まない窒素に同伴させて水素を排気することができるため、キセノンの損失を最小限に抑えることができる。また、外部からパージ窒素を導入することによって水素が混入しないキセノンを製造することができる。
なお、本形態例では、ガス分離装置を窒化膜形成装置に適用したとして、キセノン、窒素、水素の混合ガスを回収する条件を例示したが、ここで説明した以外にも広く適用することができる。例えば、酸窒化膜形成装置の場合には、キセノン、窒素、水素に加え、酸素も混入することになる。この場合、第1吸着筒に流入した酸素は窒素と共に排出され、回収ガス中の酸素は第2吸着筒で窒素と同様に吸着除去することができる。
また、窒化膜、酸窒化膜形成装置にアンモニア、酸化窒素化合物が添加された場合には、ガス分離装置の前段に、TSA法等を利用した前処理装置を設置することで対応できる。酸化膜のエッチング装置に対しては、ガス分離装置の前段に、PFC、SIF等を除去する反応吸着装置を前処理装置として設置することで対応できる。さらに、高付加価値ガスとして、キセノン以外のクリプトンやネオンを含む場合でも同様にして不純物成分の分離や高付加価値ガスの分離精製を行うことができる。
前記形態例では、装置外部から導入する第1分離部10の第1パージガスに窒素を用いた例を示したが、特に窒素に限定されるものではなく、水素、ヘリウム等の除去したい不純物成分が含まれないガスであれば、前記同様の効果が期待できる。
例えば、前記形態例の第1パージガスに酸素を用いた場合においても、水素を除去したガスを回収ガス貯留槽28に回収することができる。この場合、回収ガス貯留槽28に酸素が混入することになるが、酸素は窒素と同様に第2分離部50で除去することができるため、キセノンの分離精製に支障を来たさない。
したがって、好ましくは、半導体製造装置等の真空排気手段に用いられるパージガスと同一ガス成分を選択することであるが、第1分離部10の第1パージガスとして選択するガスは、後段の第2分離部50で容易に除去可能なガスであれば、何れのガスを選択してもよい。
図3に示すキセノン循環供給装置を製作し、キセノンを含む混合ガスからキセノンを分離精製する実験を行った。混合ガスの流量は、2.5L/min(流量[L/min]は0℃、1気圧の換算値、以下同じ)であり、ガス組成は、キセノン34容量%、窒素64容量%、水素2容量%である。混合ガス貯留槽20の容積は100Lとし、第1吸着筒11A,11Bには、内径110.1mm、充填高さ600mmの円筒状の容器に活性炭2.5kg充填したものを使用した。
また、回収ガス貯留槽28の容積は50Lとし、第2吸着筒51A,51Bには、内径134.2mm、充填高さ600mmの円筒状の容器にゼオライト4Aを7.4kg充填したものを使用した。製品貯留槽63の容積は20Lとした。また、第1圧縮機21は約40L/min、第2圧縮機60は約20L/minの容量のものを使用した。
あらかじめ、窒素及びキセノンを封入することで、分離装置系内のガス濃度、圧力を安定化させた後、排ガス流入経路23から前記混合ガスを混合ガス貯留槽20に導入した。第1分離部10及び第2分離部50は、1サイクルの運転時間を500秒(吸着工程、再生工程共に250秒)とし、再生工程の前半、後半の切り替えは、再生工程開始から125秒後とした。
第1分離部10における吸着工程では、混合ガス貯留槽20の混合ガスを、第1圧縮機21により加圧して第1吸着筒11Aに導入した。第1吸着筒11Aに導入された混合ガスは、第1吸着剤(活性炭)にキセノンが吸着保持され、窒素及び水素が吸着筒出口側から排ガス出口経路15Aに流出した。排ガス出口経路15Aに流出するガスの流量は、流量調整機能を有する排気調節弁29で6.45L/minに制御した。なお、第1吸着筒の圧力は、大気圧〜500kPa(ゲージ圧)で操作した。
第1分離部10における再生工程では、装置外部のパージガス供給源33から高純度窒素4.8L/minを第1パージガスとして導入し、第1パージガス入口経路17Bを通して第1吸着筒15Bに流通させた。第1吸着筒15Bから第1再生ガス出口径路19Bに流出するガスは、循環弁24と回収弁26とを所定時間で切替開閉することにより、混合ガス貯留槽20又は回収ガス貯留槽28に導出される。
ここでは、まず、循環弁24を開状態、回収弁26を閉状態とすることで、第1再生ガス出口径路19Bに流出したガスを混合ガス貯留槽20に循環返送した。125秒経過後、循環弁24を閉状態、回収弁26を開状態とすることで、流出ガスの導出先を混合ガス貯留槽20から回収ガス貯留槽28に切り替えた。この流出ガスの回収ガス貯留槽28への返送は、再生工程終了まで継続した。
一方、第2分離部50における吸着工程では、回収ガス貯留槽28からの回収ガスを第2圧縮機5により加圧して第2吸着筒51Aに導入した。第2吸着筒51Aに導入された回収ガスは、第2吸着剤(ゼオライト4A)に窒素が吸着保持され、キセノンが製品出口経路55A、製品採取経路62を通して製品貯留槽63に採取される。
製品貯留槽63に貯留されたキセノンは、流量制御機能を有する製品供給弁64で0.85L/minに流量制御し、製品供給経路65を通して使用先に供給した。なお、第2吸着筒の圧力は大気圧〜400kPaで操作した。
第2分離部50における再生工程では、製品貯留槽63に貯留されたキセノンを第2パージガスとしてパージガス導入経路67、第2パージガス入口経路57Bを通して第2吸着筒51Bに流通させた。第2吸着筒51Bから第2再生ガス出口径路59Bに流出したガスは、第2循環経路69を通して混合ガス貯留槽20及び回収ガス貯留槽28に分けて循環返送した。ここでは、再生工程開始後、最初に混合ガス貯留槽20に循環させ、10秒経過後に回収ガス貯留槽28に循環させるようにした。回収ガス貯留槽28への循環は再生工程まで継続した。
第1吸着筒11A,11B及び第2吸着筒51A,51Bを吸着工程と再生工程とに交互に切り替えながらガス分離装置を上記プロセスで連続運転したところ、第1圧縮機21から吐出される混合ガスのキセノン濃度は58〜62容量%で循環定常状態に落ち着くことが確認された。このとき、ガス排気経路30から排出された窒素に含まれる不純物濃度は、キセノン濃度が約90ppm、水素濃度が約8000ppmであり、製品供給経路65から得られるキセノンに含まれる不純物濃度は、窒素濃度が約50ppm、水素濃度が4ppmであった。
以上のように、微量の水素を含むキセノン、窒素の混合ガスから、高付加価値ガスであるキセノンを分離精製できることを確認した。半導体製造等に求められる不純物濃度が厳しい場合には、前記ガス分離装置の後段にゲッター精製装置を取り付けることで、上記不純物濃度を0.1ppm未満まで減少させることができる。また、本実施例におけるキセノンの実効損失量は、90ppm×6.45L/min=0.58cc/minであり、キセノン回収率は99.93%であった。
本発明の第1形態例を示すもので、一方の吸着筒が吸着工程を行っており、他方の吸着筒が再生工程の前半を行っているときのガスの流れを太線で示す系統図である。 同じく一方の吸着筒が吸着工程を行っており、他方の吸着筒が再生工程の後半を行っているときのガスの流れを太線で示す系統図である。 本発明の第2形態例を示すもので、第1分離部及び第2分離部の二組の圧力変動吸着装置を組み合わせたガス分離装置の一例を示す系統図である。 第2分離部における一方の吸着筒が吸着工程を行っており、他方の吸着筒が再生工程を行っているときのガスの流れを太線で示す系統図である。 再生工程にある第1吸着筒の入口側から流出するガス中に含まれる水素濃度を連続的に測定した結果を示す図である。
符号の説明
10…第1分離部、11A,11B…(第1)吸着筒、12A,12B…(第1)入口弁、13A,13B…混合ガス入口経路、14A,14B…(第1)出口弁、15A,15B…排ガス出口経路、16A,16B…(第1)パージ弁、17A,17B…(第1)パージガス入口経路、18A,18B…(第1)再生ガス出口弁、19A,19B…(第1)再生ガス出口径路、20…混合ガス貯留槽、21…(第1)圧縮機、22…混合ガス導入経路、23…排ガス流入経路、24…循環弁、25…循環経路、26…回収弁、27…回収経路、28…回収ガス貯留槽、29…排気調節弁、30…ガス排気経路、31…(第1)パージガス導入弁、32…(第1)パージガス導入経路、33…パージガス供給源、50…第2分離部、51A,51B…第2吸着筒、52A,52B…第2入口弁、53A,53B…回収ガス入口経路、54A,54B…第2出口弁、55A,55B…製品出口経路、56A,56B…第2パージ弁、57A,57B…第2パージガス入口経路、58A,58B…第2再生ガス出口弁、59A,59B…第2再生ガス出口径路、60…第2圧縮機、61…回収ガス導入経路、62…製品採取経路、63…製品貯留槽、64…製品供給弁、65…製品供給経路、66…第2パージガス導入弁、67…第2パージガス導入経路、68…第2循環弁、69…第2循環経路、70…第2回収弁

Claims (5)

  1. クリプトン、キセノン及びネオンの少なくとも1種の高付加価値ガスを含む混合ガス中の不純物成分を圧力変動吸着分離法により分離するガス分離方法であって、前記高付加価値ガスを易吸着成分とする吸着剤を充填した吸着筒の入口側から前記混合ガスを相対的に高い圧力で導入して前記吸着剤に前記高付加価値ガスを吸着させるとともに吸着剤に吸着しなかったガスを吸着筒の出口側から排出する吸着工程と、該吸着工程を終了した吸着筒を相対的に低い圧力に減圧して前記吸着剤から高付加価値ガスを脱着させるとともに、前記混合ガス中の高付加価値ガス及び不純物成分を除くガスからなるパージガスを系外から吸着筒の出口側に導入して筒内ガスを吸着筒の入口側に押し出して流出させる再生工程とを交互に繰り返して行い、該再生工程の前半で吸着筒の入口側から流出する再生排ガスを前記混合ガスに循環混合させ、該再生工程の後半で吸着筒の入口側から流出する再生排ガスを回収ガスとして回収することを特徴とするガス分離方法。
  2. 前記パージガスは、酸素、窒素及びアルゴンの少なくとも1種であることを特徴とする請求項1記載のガス分離方法。
  3. クリプトン、キセノン及びネオンの少なくとも1種の高付加価値ガスを含む混合ガス中の不純物成分を圧力変動吸着分離法により分離して前記高付加価値ガスを精製するガス分離方法であって、前記混合ガス中の高付加価値ガスを易吸着成分とする第1吸着剤を充填した第1吸着筒の入口側から相対的に高い圧力で前記混合ガスを導入して前記第1吸着剤に少なくとも高付加価値ガスを吸着させるとともに、該第1吸着剤に吸着せずに第1吸着筒の出口側から流出したガスを系外に排出する第1吸着工程と、該第1吸着工程を終了した第1吸着筒の筒内ガスを入口側から流出させ、筒内圧力を相対的に低い圧力に減圧して前記第1吸着剤に吸着したガスを脱着させるとともに、第1吸着筒の出口側から第1パージガスを導入して筒内ガスを第1吸着筒の入口側に押し出して流出させる第1再生工程とを、前記第1吸着筒で交互に繰り返して行い、前記第1再生工程の前半に第1吸着筒の入口側から流出する第1再生排ガスを前記混合ガスに循環混合し、第1再生工程の後半に第1吸着筒の入口側から流出する第1再生排ガスを回収する第1分離プロセスと、この第1分離プロセスで回収した回収ガスを前記高付加価値ガスを難吸着成分とし、該回収ガス中の高付加価値ガスを除くガスを易吸着成分とする第2吸着剤を充填した第2吸着筒の入口側から相対的に高い圧力で導入し、前記第2吸着剤に前記高付加価値ガスを除くガスを吸着させるとともに、該第2吸着剤に吸着せずに第2吸着筒の出口側から流出した高付加価値ガスを主成分とするガスを採取する第2吸着工程と、該第2吸着工程を終了した第2吸着筒の筒内ガスを入口側から流出させ、筒内圧力を相対的に低い圧力に減圧して前記第2吸着剤に吸着したガスを脱着させるとともに、第2吸着筒の出口側から前記第2吸着工程で採取した高付加価値ガスを主成分とするガスの一部からなる第2パージガスを導入して筒内ガスを第2吸着筒の入口側に押し出して流出させる第2再生工程とを、前記第2吸着筒で交互に繰り返して行い、前記第2再生工程で第2吸着筒の入口側から流出した第2再生排ガスを前記混合ガス又は前記回収ガスに循環混合する第2分離プロセスとを含み、前記第1パージガスは、前記混合ガス中の高付加価値ガス及び不純物成分を除くガスであって、かつ、前記第2吸着剤の易吸着成分であるガスを系外から導入することを特徴とするガス分離方法。
  4. クリプトン、キセノン及びネオンの少なくとも1種の高付加価値ガスを含む混合ガス中の不純物成分を圧力変動吸着分離法により分離するガス分離装置であって、前記高付加価値ガスを易吸着成分とする吸着剤を充填した吸着筒と、吸着筒の入口側に入口弁を介して前記混合ガスを相対的に高い圧力で導入する混合ガス入口経路と、吸着筒の出口側から流出するガスを出口弁を介して排出する排ガス出口経路と、前記混合ガス中の高付加価値ガス及び不純物成分を除くガスからなるパージガスをパージ弁を介して吸着筒の出口側に導入するパージガス入口経路と、吸着筒の入口側から流出する再生排ガスを再生ガス出口弁を介して取り出す再生ガス出口径路と、該再生ガス出口径路に取り出した再生排ガスを前記混合ガス入口経路に循環弁を介して循環させる循環経路と、前記再生排ガスを回収弁を介して回収する回収経路とを備えていることを特徴とするガス分離装置。
  5. クリプトン、キセノン及びネオンの少なくとも1種の高付加価値ガスを含む混合ガス中の不純物成分を圧力変動吸着分離法により分離して前記高付加価値ガスを精製するガス分離装置であって、前記混合ガス中の高付加価値ガスを易吸着成分とする第1吸着剤を充填した第1吸着筒と、第1吸着筒の入口側に第1入口弁を介して前記混合ガスを相対的に高い圧力で導入する混合ガス入口経路と、第1吸着筒の出口側から流出するガスを第1出口弁を介して排出する排ガス出口経路と、第1吸着筒の出口側に第1パージ弁を介して第1パージガスを導入する第1パージガス入口経路と、第1吸着筒の入口側から流出する第1再生排ガスを第1再生ガス出口弁を介して取り出す第1再生ガス出口径路と、該第1再生ガス出口径路に取り出した第1再生排ガスを前記混合ガス供給手段に第1循環弁を介して循環させる第1循環経路と、該第1再生ガス出口径路に取り出した第1再生排ガスを回収弁を介して回収する回収経路とを備えた第1分離部と、前記高付加価値ガスを難吸着成分とし、前記第1分離部の回収経路に回収した回収ガス中の高付加価値ガスを除くガスを易吸着成分とする第2吸着剤を充填した第2吸着筒と、前記回収ガスを第2吸着筒の入口側に第2入口弁を介して相対的に高い圧力で導入する回収ガス入口経路と、第2吸着筒の出口側から流出する高付加価値ガスを主成分とするガスを第2出口弁を介して採取する製品出口経路と、該製品出口経路に採取した高付加価値ガスを主成分とするガスの一部からなる第2パージガスを第2パージ弁を介して第2吸着筒の出口側に導入する第2パージガス入口経路と、第2吸着筒の入口側から流出する第2再生排ガスを第2再生ガス出口弁を介して取り出す第2再生ガス出口径路と、該第2再生ガス出口径路に取り出した第2再生排ガスを第2循環弁を介して前記混合ガス供給手段又は前記回収経路に循環させる第2循環経路とを備えた第2分離部とを含み、第1パージガス入口経路は、前記混合ガス中の高付加価値ガス及び不純物成分を除くガスであって、かつ、前記第2吸着剤の易吸着成分であるガスを系外から導入する経路であることを特徴とするガス分離装置。
JP2004056500A 2004-03-01 2004-03-01 ガス分離方法及び装置 Expired - Fee Related JP3869831B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004056500A JP3869831B2 (ja) 2004-03-01 2004-03-01 ガス分離方法及び装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004056500A JP3869831B2 (ja) 2004-03-01 2004-03-01 ガス分離方法及び装置

Publications (2)

Publication Number Publication Date
JP2005246137A JP2005246137A (ja) 2005-09-15
JP3869831B2 true JP3869831B2 (ja) 2007-01-17

Family

ID=35027140

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004056500A Expired - Fee Related JP3869831B2 (ja) 2004-03-01 2004-03-01 ガス分離方法及び装置

Country Status (1)

Country Link
JP (1) JP3869831B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112557157A (zh) * 2021-02-28 2021-03-26 中国工程物理研究院核物理与化学研究所 一种基于特定装置的空气样品中氙的分离纯化收集方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4898194B2 (ja) 2005-11-14 2012-03-14 大陽日酸株式会社 圧力変動吸着式ガス分離方法及び分離装置
JP5202836B2 (ja) * 2006-12-01 2013-06-05 日本エア・リキード株式会社 キセノンの回収システムおよび回収装置
US8679239B2 (en) 2009-09-09 2014-03-25 Panasonic Corporation Adsorbent material and xenon adsorption device using same
JP2011057491A (ja) 2009-09-09 2011-03-24 Panasonic Corp ガス回収方法
US8591634B2 (en) 2010-01-28 2013-11-26 Air Products And Chemicals, Inc. Method and equipment for selectively collecting process effluent
US8404024B2 (en) * 2010-04-15 2013-03-26 Air Products And Chemicals, Inc. Recovery of NF3 from adsorption operation
JP2019074486A (ja) * 2017-10-19 2019-05-16 大陽日酸株式会社 二酸化炭素ガス中の窒素ガス分析方法及び装置
CN110433606B (zh) * 2019-09-05 2024-04-02 珠海格力智能装备有限公司 气体提纯装置及具有其的气体回收系统

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112557157A (zh) * 2021-02-28 2021-03-26 中国工程物理研究院核物理与化学研究所 一种基于特定装置的空气样品中氙的分离纯化收集方法

Also Published As

Publication number Publication date
JP2005246137A (ja) 2005-09-15

Similar Documents

Publication Publication Date Title
JP3891773B2 (ja) ガスの分離精製方法及びその装置
JP4898194B2 (ja) 圧力変動吸着式ガス分離方法及び分離装置
JP5202836B2 (ja) キセノンの回収システムおよび回収装置
EP1175934A2 (en) Improved oxygen production
WO2010021127A1 (ja) キセノン吸着剤、キセノン濃縮方法、キセノン濃縮装置および空気液化分離装置
JP5222327B2 (ja) ガスの分離方法及び装置
JP5498661B2 (ja) 高炉ガスの分離方法
KR100974521B1 (ko) 가스 정제 방법 및 장치
JP3869831B2 (ja) ガス分離方法及び装置
JP4481112B2 (ja) 圧力変動吸着式ガス分離方法及び装置
JP2010285317A (ja) アルゴン精製方法、アルゴン精製装置、目的ガス精製方法、および目的ガス精製装置
TW200948458A (en) Method for separating blast furnace gas
JP5584887B2 (ja) オゾンガス濃縮方法及びその装置
JP4430913B2 (ja) ガス供給方法及び装置
JP4580694B2 (ja) ガスの分離方法及び装置
JPH0733404A (ja) 高濃度酸素の製造方法
JP4322171B2 (ja) ガス処理方法及び装置
JPH07267612A (ja) 圧力変動吸着式酸素製造方法及び装置
JP2004161503A (ja) ガス精製方法
JP2004284834A (ja) 六フッ化硫黄の精製方法及び装置
JP2012082080A (ja) アルゴン精製方法、およびアルゴン精製装置
JP7319830B2 (ja) 窒素製造方法及び装置
JPH0112529B2 (ja)
JPS6097022A (ja) 吸着法を使用して一酸化炭素ガスを含む混合ガス中の一酸化炭素を濃縮分離する方法
JP2022144912A (ja) 精製装置及び精製方法

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060912

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060919

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061013

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091020

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091020

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101020

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101020

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111020

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111020

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121020

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121020

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121020

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131020

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees