WO2010021127A1 - キセノン吸着剤、キセノン濃縮方法、キセノン濃縮装置および空気液化分離装置 - Google Patents

キセノン吸着剤、キセノン濃縮方法、キセノン濃縮装置および空気液化分離装置 Download PDF

Info

Publication number
WO2010021127A1
WO2010021127A1 PCT/JP2009/003933 JP2009003933W WO2010021127A1 WO 2010021127 A1 WO2010021127 A1 WO 2010021127A1 JP 2009003933 W JP2009003933 W JP 2009003933W WO 2010021127 A1 WO2010021127 A1 WO 2010021127A1
Authority
WO
WIPO (PCT)
Prior art keywords
xenon
gas
adsorption
oxygen
adsorption cylinder
Prior art date
Application number
PCT/JP2009/003933
Other languages
English (en)
French (fr)
Inventor
藤江和彦
中村章寛
飛弾野龍也
黒田泰重
森俊謙
鳥越裕恵
Original Assignee
国立大学法人岡山大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人岡山大学 filed Critical 国立大学法人岡山大学
Publication of WO2010021127A1 publication Critical patent/WO2010021127A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/34Regenerating or reactivating
    • B01J20/3483Regenerating or reactivating by thermal treatment not covered by groups B01J20/3441 - B01J20/3475, e.g. by heating or cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/16Alumino-silicates
    • B01J20/18Synthetic zeolitic molecular sieves
    • B01J20/186Chemical treatments in view of modifying the properties of the sieve, e.g. increasing the stability or the activity, also decreasing the activity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/34Regenerating or reactivating
    • B01J20/3408Regenerating or reactivating of aluminosilicate molecular sieves
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B23/00Noble gases; Compounds thereof
    • C01B23/001Purification or separation processes of noble gases
    • C01B23/0036Physical processing only
    • C01B23/0052Physical processing only by adsorption in solids
    • C01B23/0057Physical processing only by adsorption in solids characterised by the adsorbent
    • C01B23/0068Zeolites
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04642Recovering noble gases from air
    • F25J3/04745Krypton and/or Xenon
    • F25J3/04751Producing pure krypton and/or xenon recovered from a crude krypton/xenon mixture
    • F25J3/04757Producing pure krypton and/or xenon recovered from a crude krypton/xenon mixture using a hybrid system, e.g. using adsorption, permeation or catalytic reaction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/106Silica or silicates
    • B01D2253/108Zeolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2256/00Main component in the product gas stream after treatment
    • B01D2256/18Noble gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/10Single element gases other than halogens
    • B01D2257/11Noble gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/30Sulfur compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/504Carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/80Water
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/40011Methods relating to the process cycle in pressure or temperature swing adsorption
    • B01D2259/40043Purging
    • B01D2259/4005Nature of purge gas
    • B01D2259/40056Gases other than recycled product or process gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/402Further details for adsorption processes and devices using two beds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/0462Temperature swing adsorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/047Pressure swing adsorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/50Aspects relating to the use of sorbent or filter aid materials
    • B01J2220/56Use in the form of a bed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/50Aspects relating to the use of sorbent or filter aid materials
    • B01J2220/58Use in a single column
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2210/00Purification or separation of specific gases
    • C01B2210/0029Obtaining noble gases
    • C01B2210/0037Xenon
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/60Processes or apparatus using other separation and/or other processing means using adsorption on solid adsorbents, e.g. by temperature-swing adsorption [TSA] at the hot or cold end
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/82Processes or apparatus using other separation and/or other processing means using a reactor with combustion or catalytic reaction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2215/00Processes characterised by the type or other details of the product stream
    • F25J2215/36Xenon
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/151Reduction of greenhouse gas [GHG] emissions, e.g. CO2

Definitions

  • the present invention concentrates xenon adsorbent suitably used for concentration of xenon, and xenon contained in liquid oxygen derived from the lower pressure column lower part of the double rectifying column of the air liquefaction separation apparatus using this xenon adsorbent.
  • the present invention relates to a xenon concentrating method and a xenon concentrating device.
  • Xenon is a rare and expensive gas because it contains only 0.086 ppm in the atmosphere. Xenon has been applied to liquid crystal backlights, X-ray CT contrast agents, anesthesia and the like in addition to the conventional bulb-filled gas, and a reduction in production cost is desired.
  • the liquid oxygen contains hydrocarbons mainly composed of krypton, argon, methane, and fluorides such as CF 4 and SF 6 .
  • a method for concentrating and purifying only xenon and krypton or xenon there are a distillation method, an adsorption method, a recovery method by solidification on a cooling surface, and the like.
  • Examples of the method for purifying xenon by the adsorption method include methods disclosed in Patent Document 1 and Patent Document 2.
  • gasified liquid oxygen as a raw material is introduced into an adsorption cylinder at a low temperature that does not liquefy xenon, and the xenon is adsorbed and concentrated on an adsorbent that selectively adsorbs xenon such as silica gel.
  • an adsorbent that selectively adsorbs xenon such as silica gel.
  • hydrocarbons are concentrated, these are burned and removed in the catalyst tower, and the generated water and carbon dioxide are adsorbed and removed, and then concentrated to high purity by the same operation again.
  • Adsorbents that selectively adsorb xenon used here include activated carbon or zeolite in addition to silica gel, but all of them are physical adsorption, and the temperature should be as low as about 100K in order to obtain a sufficient amount of adsorption. Was necessary.
  • Patent Document 3 As another example of the adsorption method, there is a method disclosed in Patent Document 3.
  • liquid oxygen is gasified, introduced into an adsorption cylinder at a low temperature (90 to 100 K) that does not liquefy xenon, and LiX zeolite is subjected to Ag ion exchange.
  • the temperature of the adsorption cylinder After adsorbing xenon and krypton with AgLiX, the temperature of the adsorption cylinder is gradually raised and desorbed, and each component is recovered using the difference in desorption temperature. Since these adsorbents strongly adsorb N 2 O and olefins, it is necessary to perform low-temperature adsorption removal with a guard adsorber before introducing the raw material gas into the adsorption cylinder.
  • a low temperature of about 100K is necessary for adsorption, and it is necessary to raise the temperature to at least about 270K at the time of desorption, so that the energy cost is high.
  • a heat medium line such as a winding tube in the adsorption cylinder. It was.
  • JP 62-297206 A JP-A-1-51311 Japanese Patent Laid-Open No. 2003-221212
  • the present invention has been made in view of the above circumstances, and an object thereof is to provide a xenon adsorbent, a xenon concentration method, and a concentration apparatus that can reduce initial cost and operation cost.
  • a first aspect of the present invention is an adsorbent that adsorbs xenon from a normal temperature source gas that contains xenon and does not contain carbon monoxide, and is a xenon adsorbent made of silver ion-exchanged ZSM5 zeolite.
  • the second aspect of the present invention is an adsorption step in which a normal temperature source gas containing xenon and not containing carbon monoxide is circulated through an adsorption cylinder filled with silver ion-exchanged ZSM5 zeolite, and xenon by depressurization and / or heating.
  • This is a method for concentrating xenon, which has a desorption step of desorbing and alternately repeating these two steps.
  • the source gas preferably contains one or more selected from the group consisting of oxygen, nitrogen, helium, neon, argon, and krypton.
  • the source gas is an oxygen gas obtained by vaporizing liquid oxygen containing krypton derived from the lower part of the low pressure column of the double rectification column of the air liquefaction separation apparatus.
  • the raw material gas is vaporized liquid oxygen containing krypton derived from the lower pressure column lower part of the double rectification column of the air liquefaction separation device, the obtained oxygen gas is heated and introduced into the catalyst reaction cylinder, It is preferable that the gas is obtained by burning off the hydrocarbons that have been used and then adsorbing and removing water and carbon dioxide in the oxygen gas derived from the catalytic reaction cylinder.
  • a third aspect of the present invention is a xenon concentrator that includes an adsorption cylinder filled with silver ion-exchanged ZSM5 zeolite and that concentrates xenon from a raw material gas by a pressure-temperature swing adsorption method.
  • a heater for heating the adsorption cylinder, a raw material gas pipe for feeding a raw material gas containing xenon and oxygen into the adsorption cylinder, and a product for deriving xenon gas desorbed from the adsorption cylinder It is preferable to further include a xenon pipe, a discharge pipe for discharging the residual gas after adsorbing xenon from the adsorption cylinder, and a purge gas pipe for feeding a purge gas into the adsorption cylinder.
  • the fourth aspect of the present invention is a double rectification column, a pipe for deriving liquid oxygen containing xenon and no carbon monoxide from the lower portion of the low pressure column of the double rectification tower, and the pipe.
  • a vaporizer for vaporizing liquid oxygen to obtain oxygen gas a heater for heating to a temperature at which the oxygen gas from the vaporizer undergoes a catalytic reaction, and hydrocarbons in the oxygen gas from the heater are watered
  • a catalytic reactor for decomposition into carbon dioxide, a heat exchanger that lowers the temperature of the oxygen gas from the catalytic reactor to room temperature, and water and carbon dioxide in the oxygen gas cooled by the heat exchanger are removed.
  • This xenon concentrator is the xenon concentrator of the third aspect of the present invention, and is an air liquefaction separator in which the raw material gas pipe of the xenon concentrator is connected to the water / carbon dioxide removing device.
  • the “source gas not containing carbon monoxide” or “liquid oxygen not containing carbon monoxide” means that the concentration of carbon monoxide in the source gas or liquid oxygen affects the effect of the present invention. It means that it is reduced to a certain extent and does not exclude raw material gas or liquid oxygen containing a very small amount of carbon monoxide.
  • room temperature refers to a range of ⁇ 5 to 40 ° C.
  • the xenon adsorbing ability can be expressed at a temperature equivalent to normal regeneration without performing special initial activation at a high temperature. Further, since it has a property of selectively adsorbing xenon at normal temperature, it is not necessary to perform the adsorption operation at a low temperature, and a xenon concentrating device that can be operated at normal temperature can be configured. For this reason, the equipment cost and operating cost of the apparatus can be reduced.
  • xenon can be concentrated from a normal temperature source gas by a pressure-temperature swing adsorption method.
  • xenon in liquid oxygen can be concentrated using liquid oxygen from the lower part of the low pressure column of the double rectifying column of the air liquefaction separation apparatus as a raw material. Also in this case, since it can be operated at room temperature, the equipment cost and operating cost of the apparatus can be reduced.
  • the xenon adsorbent of the present invention is made of silver ion exchanged ZSM5 zeolite and is activated as described later.
  • Silver ion-exchanged ZSM5 zeolite is obtained by exchanging hydrogen ions of cation-exchangeable H-type ZSM5 (H-ZSM5) zeolite with silver ions.
  • This silver ion-exchanged ZSM5 zeolite preferably has a silica to alumina ratio of 5 to 50 and a silver ion exchange amount of 30% or more.
  • Zeolite having a silica to alumina ratio of less than 5 is difficult to produce, and if it exceeds 50, the silver ion exchange capacity decreases. When the silver ion exchange amount is less than 30%, the xenon adsorption ability is not exhibited.
  • This xenon adsorbent can be produced, for example, as follows. An H-ZSM5 zeolite compact with a silica / alumina ratio of 5 to 50 is immersed in an aqueous silver nitrate solution (0.02 to 0.2 mol / L), stirred in a dark room at room temperature for 12 to 36 hours, and then subjected to suction filtration and the like. This ion exchange operation is repeated several times, and further dried at 120 to 150 ° C. and then activated at 200 to 600 ° C. to express xenon adsorption ability. The temperature rising rate at this time is 30 to 80 ° C./h.
  • xenon adsorbed from the xenon adsorbent In order to desorb the xenon adsorbed from the xenon adsorbent, it can be heated by heating, and the heating temperature is 50 to 200 ° C., preferably 100 to 150 ° C. Further, xenon adsorption can be performed at 200 kPa to 400 kPa, and desorption can be performed at 5 kPa to 20 kPa.
  • the H-ZSM5 zeolite used is not particularly limited, but it is better that the amount of ion exchange is larger. Since the number of ion exchange sites of zeolite is proportional to the amount of alumina contained, it is desirable that the amount of alumina be as large as possible in order to increase the amount of ion exchange. Therefore, the silica / alumina ratio is desirably a relatively small value, specifically, 5 to 50 is desirable.
  • the silver ion exchange rate is preferably 30 to 80%.
  • a material having an ion exchange rate of 100% may be used.
  • the theoretical upper limit of the silver ion exchange rate is 100%.
  • Such a xenon adsorbent selectively and efficiently adsorbs xenon at room temperature. For this reason, the energy cost is greatly reduced as compared with the conventional xenon adsorbent which must be cooled to about 100K in actual use. Also, the activation temperature may be relatively low. Furthermore, even if adsorption regeneration is repeated, there is a feature that the decrease in xenon adsorption amount is small, resulting in a long life.
  • the xenon concentration method of the present invention is a xenon concentration method by a pressure or temperature swing adsorption method (PTSA), and includes a normal temperature source gas containing xenon and not carbon monoxide.
  • the adsorbent made of the silver-exchanged ZSM5 zeolite has a property of adsorbing carbon monoxide, which hinders the adsorption of xenon.
  • FIG. 1 shows an example of the xenon concentrating device of the present invention.
  • the concentrating device in this example is a temperature swing adsorption device, and is provided with two adsorption cylinders 1a and 1b. These adsorption cylinders 1a and 1b are filled with the activated silver exchanged ZSM5 zeolite described above.
  • the adsorption cylinders 1a and 1b are respectively provided with heaters 2a and 2b for desorbing xenon adsorbed by heating the adsorbent and regenerating the adsorbent.
  • a raw material gas having a temperature of ⁇ 5 to 40 ° C. is sent from the pipe 3 to one adsorption cylinder 1a, xenon in the raw material gas is selectively adsorbed by the adsorbent, and the remaining gas is discharged from the pipe 4 as exhaust gas.
  • the raw material gas is fed into the other adsorption cylinder 1b.
  • Nitrogen or oxygen as a purge gas is sent from the pipe 5 to the adsorption cylinder 1a after the adsorption process is completed, and gases other than xenon remaining in the adsorption cylinder 1a, such as krypton, CF 4 , SF 6 and other impurity gases. After purging, these impurity gases are discharged from the pipe 6.
  • xenon remaining in the voids in the adsorption cylinder 1a also flows out together with the impurity gas, so that the impurity gas can be introduced into the regenerated adsorption cylinder 1b for a certain period of time in order to recover it.
  • the heater 2a is operated to heat the adsorbent in the adsorption cylinder 1a to 50 to 200 ° C.
  • xenon is desorbed from the adsorbent, and this xenon passes through the tube 7 and is solidified and recovered by a xenon collector (not shown) cooled with liquid nitrogen.
  • the purge gas may remain in the adsorption cylinder 1a and may be mixed into the recovered xenon. Therefore, after removing the purge gas by reducing the pressure in the adsorption cylinder 1a, the adsorption cylinder The adsorbent in 1a can also be heated. The adsorbent is regenerated by desorption of xenon, and then nitrogen or oxygen is sent as a cooling gas from the pipe 5 to the adsorption cylinder 1a to cool the adsorption cylinder 1a. After the adsorption cylinder 1a is cooled to room temperature, the pressure is increased and a standby state is entered.
  • the same operation is performed on the other adsorption cylinder 1b, and xenon can be continuously concentrated from the source gas by repeating these operations alternately.
  • the source gas may contain oxygen, nitrogen, helium, neon, argon, and krypton, and even if these are contained, xenon adsorption of the adsorbent is not inhibited. However, it is necessary that carbon monoxide is hardly contained from the viewpoint of securing the adsorbent xenon adsorption amount.
  • a method for setting the flow path for the source gas and the flow path for the purge gas, and the method for switching the flow path of each gas in the two adsorption cylinders 1a and 1b a method conventionally used in the temperature swing adsorption method. Can be used and is not particularly limited in the present invention.
  • xenon can be concentrated by the pressure swing adsorption method as in the case of the temperature swing adsorption method.
  • the heaters 2a and 2b in FIG. 1 are not necessary, and a vacuum pump for desorbing xenon under reduced pressure may be provided to reduce the pressure in the adsorption cylinders 1a and 1b.
  • the pressure during the adsorption of the raw material gas is 200 kPa to 400 kpa (absolute pressure), and the pressure during the desorption of xenon is 5 kPa to 20 kP (absolute pressure).
  • FIG. 2 shows an example of the air liquefaction separation apparatus of the present invention, which is a combination of a conventional air liquefaction separation apparatus and the xenon concentration apparatus of the present invention.
  • Liquid oxygen containing carbon monoxide of less than 1 ppb, 100 to 1000 ppm of krypton, and 10 to 100 ppm of xenon is taken out from the lower pressure column lower part 11 a of the double rectifying column 11 through the pipe 11 b and gasified by the vaporizer 12. To do.
  • the gasified oxygen is heated to about 300 ° C. by the heat exchanger 13 and the heater 14, and the hydrocarbon of impurities is combusted in the catalytic reactor 15 to form water and carbon dioxide.
  • water and carbon dioxide gas are removed by the adsorber 16 and used as a raw material gas for the next stage xenon concentrator 17.
  • This source gas is introduced into the adsorption cylinder 17a of the xenon concentrator 17 at a temperature of -5 to 40 ° C.
  • oxygen gas containing fluoride such as krypton, CF 4 , and SF 6 is discharged as exhaust gas from the upper part of the cylinder.
  • nitrogen or oxygen is introduced as a purge gas from the pipe 19 to purge the adsorption cylinder 17a, thereby discharging impurity gases such as Kr, CF 4 and SF 6 remaining in the adsorption cylinder 17a.
  • a purge gas may be introduced into the regenerated adsorption cylinder 17b for a certain period of time to collect xenon.
  • the adsorbed xenon is desorbed by heating the internal adsorbent to 50 to 200 ° C. with a heater (not shown).
  • the desorbed xenon flows out from the adsorption cylinder 17a, and is solidified and collected by the xenon collector cooled with liquid nitrogen through the pipe 18.
  • the concentration of xenon in the gas obtained at this stage is not particularly limited, but is, for example, about 99.99% or more.
  • the introduction direction of the source gas and the lead-out direction of xenon are opposite to those in the example shown in FIG.
  • the introduction direction of the raw material gas and the lead-out direction of xenon are not limited.
  • the xenon concentrator combined with the double rectification column 11 may be based on pressure swing adsorption.
  • Concentrated xenon can be further purified and concentrated by another method. For example, it is possible to introduce the obtained xenon into a high purity purifier such as a getter to obtain extremely high purity xenon. Depending on the scale of the air liquefaction separation apparatus, it may not be economically preferable to provide a high-purity purifier. Therefore, it is also conceivable to carry concentrated xenon from several air liquefaction separators installed in remote areas to a xenon refinery and process them together.
  • Example 1 H-ZSM5 zeolite having a silica / alumina ratio of 11.9 was immersed in an aqueous silver nitrate solution (0.02 mol / L), and stirred in a dark room at room temperature for 24 hours. After suction filtration, the same ion exchange operation was performed once. After drying at 150 ° C., the measurement cell was filled and activated by vacuum heating at 200, 400, and 600 ° C. The heating rate during heating was 50 ° C./h. The xenon adsorption amount at 25 ° C. was measured using a constant volume adsorption amount measuring apparatus.
  • the silver ion exchange rate was about 75%.
  • the xenon adsorption isotherm of each sample is shown in FIG. It can be seen that the silver ion-exchanged ZSM5 zeolite exhibits a large xenon adsorption amount even at a regeneration temperature (ie, activation temperature) of 200 ° C.
  • Example 2 H-ZSM5 zeolite having a silica / alumina ratio of 11.9 was immersed in an aqueous silver nitrate solution (0.02 mol / L) and stirred in a dark room at room temperature for 6 hours and 12 hours. After suction filtration, the same ion exchange operation was performed once. Each was dried at 150 ° C., filled in a measurement cell, and heated by vacuum heating at 600 ° C. for activation. The xenon adsorption amount was measured in the same manner as in Example 1. The result of the 600 ° C. reproduction sample of Example 1 is also shown in FIG. The silver ion exchange rates were 45% and 65%, respectively. FIG. 4 shows that the xenon adsorption amount is expressed at an ion exchange rate of 30% or more.
  • Example 3 For activated samples at 400 ° C.
  • Example 1 was measured carbon monoxide at 25 ° C., oxygen, nitrogen, xenon, krypton, an adsorption amount of CF 4, SF 6. Each adsorption isotherm is shown in FIG. It can be seen that the silver exchanged ZSM5 zeolite adsorbs carbon monoxide and xenon well, but adsorbs oxygen, nitrogen, krypton, CF 4 and SF 6 only slightly. When carbon monoxide is adsorbed, xenon is not adsorbed. Therefore, in the case of gas purification using the silver-exchanged ZSM5 zeolite according to the present invention, it is necessary that the raw material gas does not contain carbon monoxide.
  • Example 4 In Example 4, adsorption of xenon in oxygen gas was performed using the xenon concentrator of the present invention.
  • An unactivated sample of silver-exchanged ZSM5 zeolite was packed in a single tower type adsorption tower, heated at 100 ° C./h in a nitrogen stream, and then activated by heat treatment at 300 ° C. for 2 hours.
  • An oxygen gas containing 50 ppm of xenon and 500 ppm of krypton was circulated under the conditions of 200 kPa and 25 ° C., and the xenon concentration and krypton concentration in the outlet gas were measured using a thermal conductivity detector-gas chromatography (TCD-GC). Measured. The results are shown in FIG. It was found that krypton breaks through without being adsorbed, whereas xenon is adsorbed within 130 min from the start of the oxygen gas flow.
  • TCD-GC thermal conductivity detector-gas chromatography
  • an ordinary temperature adsorption device can be used in the process of concentrating xenon, it is possible to reduce the initial cost and operating cost of the device, and it is possible to produce inexpensive xenon. It becomes.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Separation By Low-Temperature Treatments (AREA)
  • Separation Of Gases By Adsorption (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

 本発明のキセノン吸着剤は、キセノンを含み、一酸化炭素を含まない常温の原料ガスからキセノンを吸着する吸着剤であって、銀イオン交換ZSM5ゼオライトからなる。また、本発明のキセノンの濃縮方法は、キセノンを含み、一酸化炭素を含まない常温の原料ガスを、銀イオン交換ZSM5ゼオライトが充填された吸着筒に流通させる吸着工程と、減圧および/または加熱によりキセノンを脱着する脱着工程を有し、これら2つの工程を交互に繰り返す。

Description

キセノン吸着剤、キセノン濃縮方法、キセノン濃縮装置および空気液化分離装置
 本発明は、キセノンの濃縮に好適に用いられるキセノン吸着剤、ならびにこのキセノン吸着剤を用いて空気液化分離装置の複式精留塔の低圧塔下部から導出された液体酸素中に含まれるキセノンを濃縮するためのキセノン濃縮方法及びキセノン濃縮装置に関する。
 本願は、2008年8月18日に、日本に出願された特願2008-209906号に基づき優先権を主張し、その内容をここに援用する。
 キセノンは大気中に0.086ppmしか含まれていないことから、希少で高価なガスである。キセノンには、従来の電球封入ガスの他に、液晶バックライト用、X線CTの造影剤、麻酔などへの応用が具体化してきており、生産コストの低減が望まれている。
 空気中のキセノンは、空気液化分離装置の複式精留塔低圧塔下部の液体酸素中に濃縮されるため、工業的にはこの液体酸素を原料として濃縮精製されて生産される。
 この液体酸素中にはキセノンの他にクリプトン、アルゴン、メタンを主とする炭化水素類およびCFやSFなどのフッ化物が含まれる。キセノンとクリプトンあるいはキセノンのみを濃縮・精製する方法としては、蒸留法、吸着法、冷却面への固化による回収法などがある。
 吸着法によりキセノンを精製する方法の例として、特許文献1、特許文献2に開示された方法がある。これらの方法は、原料となるガス化した液体酸素を、キセノンが液化しない程度の低い温度の吸着筒へ導入し、シリカゲル等のキセノンを選択的に吸着する吸着剤にキセノンを吸着させて濃縮する方法である。同時に炭化水素類が濃縮されるので、これらを触媒塔で燃焼除去し、生成した水分および二酸化炭素を吸着除去後、再度同様の操作により、高純度に濃縮する。
 ここで使用されるキセノンを選択的に吸着する吸着剤は、シリカゲルの他に活性炭あるいはゼオライトなどがあるが、いずれも物理吸着であり、十分な吸着量を得るために100K程度の低温にすることが必要であった。
 吸着法による別の例として特許文献3に開示された方法がある。この例でも特許文献1、2に開示された方法と同様に、液体酸素をガス化し、キセノンが液化しない程度の低い温度(90~100K)の吸着筒に導入し、LiXゼオライトをAgイオン交換したAgLiXでキセノンおよびクリプトンを吸着後、徐々に吸着筒の温度を上昇して脱着させ、脱着温度の差を利用してそれぞれの成分を回収する。これらの吸着剤はNOやオレフィンを強く吸着するため、原料ガスを吸着筒に導入する前にガード吸着器による低温吸着除去を行う必要があるとされる。
 以上のように、従来の吸着法によるキセノン濃縮にあっては、吸着時には100K程度の低温が必要であり、脱着時には少なくとも270K程度まで昇温することが必要とされるため、エネルギーコストが大きかった。また、また吸着剤を均一に冷却、昇温するためには吸着筒内に巻き管などの熱媒体ラインを配置する必要があるなど、吸着筒構造が複雑であるため、コストアップの原因となっていた。
特開昭62-297206号公報 特開平1-51311号公報 特開2003-221212号公報
 本発明は、上記事情を考慮してなされたものであり、イニシャルコストおよび運転コストを低減することができるキセノン吸着剤、キセノンの濃縮方法及び濃縮装置を提供することを目的とする。
 かかる課題を解決するため、
 本発明の第1の態様は、キセノンを含み、一酸化炭素を含まない常温の原料ガスからキセノンを吸着する吸着剤であって、銀イオン交換ZSM5ゼオライトからなる(made of)キセノン吸着剤である。
 本発明の第1の態様においては、前記銀イオン交換ZSM5ゼオライトのシリカ対アルミナ比が5~50であり、銀イオン交換量が30%以上である請求項1記載のキセノン吸着剤であることが好ましい。
 本発明の第2の態様は、キセノンを含み、一酸化炭素を含まない常温の原料ガスを、銀イオン交換ZSM5ゼオライトが充填された吸着筒に流通させる吸着工程と、減圧および/または加熱によりキセノンを脱着する脱着工程を有し、これら2つの工程を交互に繰り返すキセノンの濃縮方法である。
 本発明の第2の態様においては、前記原料ガスが、酸素、窒素、ヘリウム、ネオン、アルゴン、クリプトンからなる群から選ばれる1つ以上を含むことが好ましい。
 また、前記原料ガスが、空気液化分離装置の複式精留塔の低圧塔下部から導出されたクリプトンを含む液体酸素を気化した酸素ガスであることが好ましい。
 また、前記原料ガスが、空気液化分離装置の複式精留塔の低圧塔下部から導出されたクリプトンを含む液体酸素を気化し、得られた酸素ガスを加熱して触媒反応筒へ導入し、含有されている炭化水素類を燃焼させ、ついで前記触媒反応筒から導出した酸素ガス中の水と二酸化炭素とを吸着除去して得られたガスであることが好ましい。
 本発明の第3の態様は、銀イオン交換ZSM5ゼオライトが充填された吸着筒を備え、圧力温度スイング吸着法によって原料ガスからキセノンを濃縮するキセノン濃縮装置である。
 本発明の第3の態様においては、前記吸着筒を加熱するヒータと、前記吸着筒にキセノンと酸素を含む原料ガスを送り込む原料ガス管路と、前記吸着筒から脱着したキセノンガスを導出する製品キセノン管路と、前記吸着筒からキセノンを吸着した後の残余のガスを排出する排出管路と、吸着筒にパージ用ガスを送り込むパージガス管路とをさらに備えることが好ましい。
 本発明の第4の態様は、複式精留塔と、この複式精留塔の低圧塔下部から、キセノンを含み一酸化炭素を含まない液体酸素を導出するための配管と、この配管により導出した液体酸素を気化して酸素ガスを得るための気化器と、この気化器からの酸素ガスを触媒反応させる温度まで加熱するための加熱器と、この加熱器からの酸素ガス中の炭化水素を水と二酸化炭素に分解するための触媒反応筒と、この触媒反応筒からの酸素ガスの温度を常温まで下げる熱交換器と、この熱交換器によって冷却された酸素ガス中の水と二酸化炭素を除去する水・二酸化炭素除去装置と、この水・二酸化炭素除去装置からの酸素ガス中のキセノンを濃縮するためのキセノン濃縮装置とを有し、
 このキセノン濃縮装置が、本発明の第3の態様のキセノン濃縮装置であって、このキセノン濃縮装置の原料ガス管路が前記水・二酸化炭素除去装置に接続されている空気液化分離装置である。
 なお、本発明において、「一酸化炭素を含まない原料ガス」又は「一酸化炭素を含まない液体酸素」とは、原料ガス又は液体酸素中の一酸化炭素濃度が本発明の効果に影響を与えない程度まで低減されていることを意味し、極少量の一酸化炭素を含む原料ガス又は液体酸素を除外するものではない。
 また、本発明における「常温」とは、-5~40℃の範囲を言うものとする。
 本発明のキセノン吸着剤にあっては、高温での特別な初期活性化を行わずとも、通常の再生と同等の温度でキセノン吸着能力を発現することができる。
 また、常温でキセノンを選択的に吸着する性質を有しているので、吸着操作を低温下で行わなくともよく、常温で運転できるキセノン濃縮装置を構成することができる。このため、装置の設備コスト、運転コストを低減することができる。
 さらに、本発明のキセノン濃縮方法および濃縮装置によれば、常温の原料ガスから、圧力温度スイング吸着法によってキセノンを濃縮することができる。
 また、空気液化分離装置の複式精留塔の低圧塔下部からの液体酸素を原料として用い、液体酸素中のキセノンを濃縮することができる。この場合も、常温で運転できるので装置の設備コスト、運転コストを低減することができる。
本発明のキセノン濃縮装置の一例を示す図である。 本発明のキセノン濃縮装置を備えた空気液化分離装置の一例を示す図である。 銀イオン交換ZSM5ゼオライトの活性化温度とキセノン吸着量の関係を示す図である。 銀イオン交換ZSM5ゼオライトの銀イオン交換量とキセノン吸着量の関係を示す図である。 銀イオン交換ZSM5ゼオライトのキセノン、酸素、窒素、クリプトン、CF4、SF6の吸着等温線である。 銀イオン交換ZSM5ゼオライトを充填した吸着筒を用いた酸素中のキセノン、クリプトンの破過曲線である。
[キセノン吸着剤]
 はじめに、本発明のキセノン吸着剤について説明する。
 本発明のキセノン吸着剤は、銀イオン交換ZSM5ゼオライトからなるものであり、後述するように活性化されたものを言う。銀イオン交換ZSM5ゼオライトとは、陽イオン交換性のH型ZSM5(H-ZSM5)ゼオライトの水素イオンを銀イオンに交換したものである。この銀イオン交換ZSM5ゼオライトはそのシリカ対アルミナ比が5~50であることが好ましく、また銀イオン交換量が30%以上であることが好ましい。シリカ対アルミナ比が5未満のゼオライトは製造が困難であり、50を越えると銀イオン交換容量が少なくなる。銀イオン交換量が30%未満ではキセノン吸着能力が発揮されない。
 このキセノン吸着剤は、例えば、以下のようにして製造することができる。
 シリカ/アルミナ比が5~50のH-ZSM5ゼオライト成形体を硝酸銀水溶液(0.02~0.2mol/L)に浸し、暗室、室温下で12~36時間攪拌し、ついで吸引濾過後、同様のイオン交換操作を数回繰り返して実施し、さらに120~150℃で乾燥後、200~600℃で活性化することによりキセノン吸着能が発現する。このときの昇温速度は30~80℃/hとする。
 このキセノン吸着剤から吸着されているキセノンを脱着するためには、これを加熱することで可能であり、その加熱温度は50~200℃、好ましくは100~150℃とされる。また、キセノンの吸着を200kPa~400kPaで行い、脱着を5kPa~20kPaで行うこともできる。
 なお、使用されるH-ZSM5ゼオライトは、特に限定されないが、イオン交換量が多い方が良い。ゼオライトのイオン交換サイトの数は含まれるアルミナの量に比例するため、イオン交換量を増やすにはできるだけアルミナ量が多いことが望ましい。
 したがって、シリカ/アルミナ比は比較的小さい値であることが望ましく、具体的には、5~50であることが望ましい。
 一般的にゼオライトのイオン交換において、高いイオン交換率を得るためには、イオン交換を繰り返し行うことが必要になるため、製造コストと吸着性能の兼ね合いにより、適正な交換率が決まってくる。工業的な生産における経済性を考慮すれば、銀イオン交換率が30~80%であることが好ましい。しかし、本発明の吸着剤は、銀イオン交換率が高い方が望ましいので、イオン交換率が100%のものを用いても良い。ここで、上記銀イオン交換率の理論上限値は、100%である。
 このようなキセノン吸着剤にあっては、常温においてキセノンを選択的にかつ効率よく吸着する。このため、実使用に際して、100K程度にまで冷却しなければならない従来のキセノン吸着剤に比較して、エネルギーコストが大幅に軽減される。また、活性化温度が比較的低くてすむ。さらに、吸着再生を繰り返してもキセノン吸着量の低下が少ないという特長があり、長寿命となる。
[キセノン濃縮方法および濃縮装置]
 本発明のキセノンの濃縮方法は、圧力温度スイング吸着法(Pressure or Temperature Swing Adsorption method: PTSA)によるキセノンの濃縮方法であって、キセノンを含み、一酸化炭素を含まない常温の原料ガスを、活性化した銀交換ZSM5ゼオライトが充填された吸着筒に流通させる吸着工程と、減圧および/または加熱によりキセノンを脱着する脱着工程とを有し、これら2つの工程を交互に繰り返すことによってキセノンを濃縮する方法である。
 原料ガスに一酸化炭素が含まれていると、前記銀交換ZSM5ゼオライトからなる吸着剤が一酸化炭素を吸着する性質を有していることから、キセノンの吸着に支障を来す。
 図1は、本発明のキセノン濃縮装置の一例を示すものである。この例の濃縮装置は、温度スイング吸着装置であって、2基の吸着筒1a、1bが設けられている。これらの吸着筒1a、1bには上述の活性化された銀交換ZSM5ゼオライトが充填されている。吸着筒1a、1bには吸着剤を加熱して吸着されているキセノンを脱着し、吸着剤を再生するためのヒータ2a、2bがそれぞれ設けられている。
 温度-5~40℃の原料ガスが管3から一方の吸着筒1aに送り込まれ、原料ガス中のキセノンが選択的に吸着剤に吸着され、残余のガスが排ガスとして管4から排出される。吸着筒1aでの吸着工程が終了すると、原料ガスは他方の吸着筒1bに送り込まれる。
 吸着工程が終了した吸着筒1aには、管5からパージ用ガスとしての窒素または酸素が送り込まれ、吸着筒1a内に残存するキセノン以外のガス、クリプトン、CF、SFなどの不純物ガスがパージされ、これら不純物ガスは管6から排出される。
 このパージ工程の際、吸着筒1a内の空隙に残存するキセノンも不純物ガスとともに流出するので、これを回収するため、前記不純物ガスを再生済みの吸着筒1bに一定時間導入することができる。
 パージ工程が終了した後、ヒータ2aを作動し、吸着筒1a内の吸着剤を50~200℃に加熱する。これにより吸着剤からキセノンが脱着し、このキセノンは管7を通り、液体窒素で冷却されたキセノン捕集器(図示せず)により固化、回収される。
 あるいは、パージ工程が終了した後、吸着筒1a内にパージ用ガスが残り、これが回収したキセノンに混入する恐れがあるので、吸着筒1a内を減圧としてパージ用ガスを除去したのちに、吸着筒1a内の吸着剤を加熱することもできる。
 吸着剤は、キセノンの脱着により再生され、ついで管5から冷却用ガスとして窒素または酸素を吸着筒1aに送り込み吸着筒1aを冷却する。吸着筒1aを常温にまで冷却後、昇圧を行い待機状態となる。
 他方の吸着筒1bについても同様の操作が行われ、これら操作を交互に繰り返すことで、原料ガスから連続的にキセノンを濃縮することができる。
 原料ガスには、酸素、窒素、ヘリウム、ネオン、アルゴン、クリプトンが含まれていても良く、これらが含まれていても吸着剤のキセノン吸着が阻害されることはない。しかし、一酸化炭素は、吸着剤のキセノン吸着量の確保の観点から、ほとんど含まれていないことが必要である。
 なお、原料ガスの流通経路及びパージ用ガスの流通経路の設定方法、並びに2つの吸着筒1a、1bにおける各ガスの流通経路の切り替え方法としては、温度スイング吸着法において従来から使用されている手法が使用可能であり、本発明では特に限定されない。
 また、圧力スイング吸着法によっても、上記温度スイング吸着法の例と同様にキセノンを濃縮することができる。この場合、図1におけるヒータ2a、2bが不要となり、キセノンの脱着を減圧下で行うための真空ポンプを設けて吸着筒1a、1b内を減圧とすればよい。原料ガスの吸着時の圧力は200kPa~400kpa(絶対圧)とし、キセノンの脱着時の圧力は5kPa~20kP(絶対圧)とする。
 図2は、本発明の空気液化分離装置の例を示すもので、従来の空気液化分離装置と本発明のキセノン濃縮装置を組み合わせたものである。複式精留塔を有する空気液化分離装置と本発明のキセノン濃縮装置を結合させることで、空気液化分離装置からの液体酸素中から、効率よくキセノンを濃縮することが可能となる。
 複式精留塔11の低圧塔下部11aから、一酸化炭素が1ppb未満であって、クリプトンが100~1000ppm、キセノンが10~100ppm含まれる液体酸素を、配管11bを通して取り出し、気化器12によりガス化する。ガス化した酸素は熱交換器13、加熱器14で約300℃に加熱し、触媒反応器15で不純物の炭化水素を燃焼し、水と炭酸ガスにする。次に、このガスを熱交換器13で冷却した後、吸着器16で水と炭酸ガスを除去して、次段のキセノン濃縮装置17の原料ガスとする。
 この原料ガスを、温度-5~40℃でキセノン濃縮装置17の吸着筒17aへ導入する。吸着筒17aでは、常温でキセノンのみが吸着され、筒上部からはクリプトンやCF、SFといったフッ化物を含む酸素ガスが排ガスとして排出される。
 キセノンの吸着工程が終了後、管19よりパージ用ガスとして窒素または酸素を導入して吸着筒17aをパージすることにより、吸着筒17aに残存するKr,CF,SFなどの不純物ガスを排出する。
 このとき、吸着筒17a内部の空隙に残存するキセノンを回収するため、再生済みの吸着筒17bに一定時間パージガスを導入し、キセノンを回収しても良い。パージが完了したら、ヒーター(図示略)により内部の吸着剤を50~200℃に加熱することにより、吸着されたキセノンが脱着される。脱着されたキセノンは吸着筒17aから流出し、管18を通って液体窒素で冷却されたキセノン捕集器により固化・回収される。
 この段階で得られるガス中のキセノン濃度は、特に限定されないが、例えば約99.99%以上である。
 吸着筒17aにおけるキセノンの脱着が終了した後、窒素ガスまたは酸素ガスを管19から冷却用ガスとして導入し、吸着筒17aの冷却を行う。冷却工程で吸着筒17aを常温にまで冷却後、昇圧を行い待機状態となる。
 なお、図2に示した例においては、原料ガスの導入方向とキセノンの導出方向が、図1に示した例と逆となっている。このように、本発明のキセノン濃縮装置においては、原料ガスの導入方向とキセノンの導出方向は限定されない。
 また、複式精留塔11と組み合わせるキセノン濃縮装置は、圧力スイング吸着によるものであってもよい。
 濃縮されたキセノンは、更に別の方法で精製・濃縮することができる。例えば、得られたキセノンをゲッターなどの高純度精製器に導入し、極めて高純度のキセノンを得ることも可能である。空気液化分離装置の規模によっては、高純度精製器を設けるのは、経済的に好ましくない場合もある。したがって、離れた地域に設置された、いくつかの空気液化分離装置から、濃縮されたキセノンをキセノン精製工場に運び、まとめて処理することも考えられる。
 以下、具体例を示す。
(実施例1)
 シリカ/アルミナ比が11.9のH-ZSM5ゼオライトを硝酸銀水溶液(0.02mol/L)に浸し、暗室、室温下24時間攪拌した。吸引濾過後、同様のイオン交換操作を1回実施した。150℃で乾燥後、測定セルに充填し、200、400、600℃で真空加熱を行い、活性化した。加熱時の昇温速度は50℃/hとした。
 定容式吸着量測定装置を用いて、25℃におけるキセノン吸着量を測定した。キレート滴定法により、Agイオンの含有量を求めたところ、銀イオン交換率は約75%であった。
 それぞれの試料のキセノン吸着等温線を図3に示す。銀イオン交換ZSM5ゼオライトは再生温度(すなわち、活性化温度)200℃においても、大きなキセノン吸着量を示すことが分かる。
(実施例2)
 シリカ/アルミナ比が11.9のH-ZSM5ゼオライトを硝酸銀水溶液(0.02mol/L)に浸し、暗室、室温下6時間および12時間攪拌した。吸引濾過後、同様のイオン交換操作を1回実施した。それぞれ150℃で乾燥後、測定セルに充填し、600℃で真空加熱を行い、活性化を行った。
 実施例1と同様にキセノン吸着量を測定した。実施例1の600℃再生試料の結果も合わせ図4に示す。銀イオン交換率は、それぞれ45%、65%であった。図4より、イオン交換率30%以上でキセノン吸着量が発現していることが分かる。
(実施例3)
 実施例1の400℃で活性化した試料について、25℃における一酸化炭素、酸素、窒素、キセノン、クリプトン、CF、SFの吸着量を測定した。それぞれの吸着等温線を図5に示す。
 銀交換ZSM5ゼオライトは、一酸化炭素およびキセノンをよく吸着するが、酸素、窒素、クリプトン、CF、SFをわずかしか吸着しないことが分かる。
 一酸化炭素が吸着するとキセノンが吸着されないので、本発明による銀交換ZSM5ゼオライトによるガス精製の場合、原料ガス中には一酸化炭素が含まれていないことが必要である。
(実施例4)
 実施例4では、本発明のキセノン濃縮装置を用いて、酸素ガス中のキセノンの吸着を行った。
 銀交換ZSM5ゼオライトの未活性化試料を、単塔式の吸着塔に充填し、窒素気流下100℃/hで昇温後、300℃で2時間の加熱処理を行って活性化した。
 キセノンを50ppm、クリプトンを500ppm含む酸素ガスを200kPa、25℃の条件下で流通させ、出口ガス中のキセノン濃度およびクリプトン濃度を、熱伝道度型検出器-ガスクロマトグラフィー(TCD-GC)を用いて測定した。結果を図6に示す。クリプトンは全く吸着せずに破過してくるのに対して、キセノンは酸素ガスの流通の開始から130min以内の間吸着されることが明らかになった。
 以上のように、本発明によれば、キセノンを濃縮する工程において常温の吸着装置を用いることができるため、装置のイニシャルコストおよび運転コストを低減することが可能となり、安価なキセノンの製造が可能となる。
 1a、1b・・・吸着筒、2a、2b・・・ヒータ、3、4、5、6、7・・・管、11・・・複式精留塔、11a・・・低圧塔下部、12・・・気化器、13・・・熱交換器、14・・・加熱器、15・・・触媒反応器、16・・・吸着器、17・・・キセノン濃縮装置、17a、17b・・・吸着筒、18、19・・・管

Claims (9)

  1.  キセノンを含み、一酸化炭素を含まない常温の原料ガスからキセノンを吸着する吸着剤であって、銀イオン交換ZSM5ゼオライトからなるキセノン吸着剤。
  2.  前記銀イオン交換ZSM5ゼオライトのシリカ対アルミナ比が5~50であり、銀イオン交換量が30%以上である請求項1記載のキセノン吸着剤。
  3.  キセノンを含み、一酸化炭素を含まない常温の原料ガスを、銀イオン交換ZSM5ゼオライトが充填された吸着筒に流通させる吸着工程と、減圧および/または加熱によりキセノンを脱着する脱着工程を有し、これら2つの工程を交互に繰り返すキセノンの濃縮方法。
  4.  前記原料ガスが、酸素、窒素、ヘリウム、ネオン、アルゴン、クリプトンからなる群から選ばれる1つ以上を含む請求項3記載のキセノンの濃縮方法。
  5.  前記原料ガスが、空気液化分離装置の複式精留塔の低圧塔下部から導出されたクリプトンを含む液体酸素を気化した酸素ガスである請求項3記載のキセノンの濃縮方法。
  6.  前記原料ガスが、空気液化分離装置の複式精留塔の低圧塔下部から導出されたクリプトンを含む液体酸素を気化し、得られた酸素ガスを加熱して触媒反応筒へ導入し、含有されている炭化水素類を燃焼させ、ついで前記触媒反応筒から導出した酸素ガス中の水と二酸化炭素とを吸着除去して得られたガスである請求項5記載のキセノンの濃縮方法。
  7.  銀イオン交換ZSM5ゼオライトが充填された吸着筒を備え、圧力温度スイング吸着法によって原料ガスからキセノンを濃縮するキセノン濃縮装置。
  8.  前記吸着筒を加熱するヒータと、
     前記吸着筒にキセノンと酸素を含む原料ガスを送り込む原料ガス管路と、
     前記吸着筒から脱着したキセノンガスを導出する製品キセノン管路と、
     前記吸着筒からキセノンを吸着した後の残余のガスを排出する排出管路と、
     吸着筒にパージ用ガスを送り込むパージガス管路とをさらに備えた請求項7に記載のキセノン濃縮装置。
  9.  複式精留塔と、
     この複式精留塔の低圧塔下部から、キセノンを含み一酸化炭素を含まない液体酸素を導出するための配管と、
     この配管により導出した液体酸素を気化して酸素ガスを得るための気化器と、
     この気化器からの酸素ガスを触媒反応させる温度まで加熱するための加熱器と、
     この加熱器からの酸素ガス中の炭化水素を水と二酸化炭素に分解するための触媒反応筒と、
     この触媒反応筒からの酸素ガスの温度を常温まで下げる熱交換器と、
     この熱交換器によって冷却された酸素ガス中の水と二酸化炭素を除去する水・二酸化炭素除去装置と、
     この水・二酸化炭素除去装置からの酸素ガス中のキセノンを濃縮するためのキセノン濃縮装置とを有し、
     このキセノン濃縮装置が、請求項8記載のキセノン濃縮装置であって、このキセノン濃縮装置の原料ガス管路が前記水・二酸化炭素除去装置に接続されている空気液化分離装置。
PCT/JP2009/003933 2008-08-18 2009-08-18 キセノン吸着剤、キセノン濃縮方法、キセノン濃縮装置および空気液化分離装置 WO2010021127A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-209906 2008-08-18
JP2008209906A JP5392745B2 (ja) 2008-08-18 2008-08-18 キセノンの濃縮方法、キセノン濃縮装置、及び空気液化分離装置

Publications (1)

Publication Number Publication Date
WO2010021127A1 true WO2010021127A1 (ja) 2010-02-25

Family

ID=41707018

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/003933 WO2010021127A1 (ja) 2008-08-18 2009-08-18 キセノン吸着剤、キセノン濃縮方法、キセノン濃縮装置および空気液化分離装置

Country Status (2)

Country Link
JP (1) JP5392745B2 (ja)
WO (1) WO2010021127A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011030514A1 (ja) * 2009-09-09 2011-03-17 パナソニック株式会社 キセノン回収方法
WO2011030513A1 (ja) * 2009-09-09 2011-03-17 パナソニック株式会社 吸着材およびそれを用いたキセノン吸着デバイス
US11065597B2 (en) 2017-01-06 2021-07-20 Tosoh Corporation Xenon adsorbent
JP2022009520A (ja) * 2018-03-30 2022-01-14 パナソニックIpマネジメント株式会社 ゲッタ材、ゲッタ材の製造方法、及びゲッタ材含有組成物の製造方法
CN114777414A (zh) * 2022-04-08 2022-07-22 杭州制氧机集团股份有限公司 一种工业尾气联产氢气、液氢和液化天然气的装置及方法
CN115265092A (zh) * 2022-07-27 2022-11-01 安徽马钢气体科技有限公司 一种低温液体吸附器冷却工艺及装置
CN115979779A (zh) * 2023-01-10 2023-04-18 浙江恒达仪器仪表股份有限公司 一种氙本底的多模式富集分析装置的控制方法
US11679979B2 (en) 2018-05-08 2023-06-20 Curium Us Llc Systems and methods for production of Xenon-133

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6549969B2 (ja) * 2015-10-27 2019-07-24 大陽日酸株式会社 空気精製装置および空気精製方法
JP7317555B2 (ja) * 2019-04-12 2023-07-31 オルガノ株式会社 ガス分離装置及びガス分離方法
CN109939538B (zh) * 2019-04-12 2020-07-28 中国原子能科学研究院 复杂裂变产物中Kr和Xe的快速分离系统及方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4019880A (en) * 1975-09-26 1977-04-26 Union Carbide Corporation Adsorption of carbon monoxide using silver zeolites
US4369048A (en) * 1980-01-28 1983-01-18 Dallas T. Pence Method for treating gaseous effluents emitted from a nuclear reactor
JPH01148341A (ja) * 1987-12-02 1989-06-09 Shikoku Chem Corp エチレン吸着剤
JPH04151488A (ja) * 1990-10-13 1992-05-25 Kyodo Sanso Kk キセノン濃度調整方法
JP2001270708A (ja) * 2000-03-29 2001-10-02 Air Water Inc 希ガスの回収方法
JP2003221212A (ja) * 2001-11-19 2003-08-05 Air Products & Chemicals Inc キセノン及び/又はクリプトンの回収方法並びに吸着装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0834733B2 (ja) * 1991-03-20 1996-03-29 大陽東洋酸素株式会社 不活性ガス中の微量水素の除去方法および除去装置
JPH08229387A (ja) * 1995-02-24 1996-09-10 Babcock Hitachi Kk 炭化水素の燃焼触媒機能一体化吸着剤および内燃機関排ガス中炭化水素の浄化法
DE10361503A1 (de) * 2003-12-23 2005-07-28 Basf Ag Verfahren zur Herstellung eines Ethylamins

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4019880A (en) * 1975-09-26 1977-04-26 Union Carbide Corporation Adsorption of carbon monoxide using silver zeolites
US4369048A (en) * 1980-01-28 1983-01-18 Dallas T. Pence Method for treating gaseous effluents emitted from a nuclear reactor
JPH01148341A (ja) * 1987-12-02 1989-06-09 Shikoku Chem Corp エチレン吸着剤
JPH04151488A (ja) * 1990-10-13 1992-05-25 Kyodo Sanso Kk キセノン濃度調整方法
JP2001270708A (ja) * 2000-03-29 2001-10-02 Air Water Inc 希ガスの回収方法
JP2003221212A (ja) * 2001-11-19 2003-08-05 Air Products & Chemicals Inc キセノン及び/又はクリプトンの回収方法並びに吸着装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
TIMONEN, J.T. ET AL.: "129Xe NMR Study of ZSM-5 Type Zeolites Effect of Cationic Sites", MICROPOROUS MATERIALS, vol. 8, no. 1/2, January 1997 (1997-01-01), pages 57 - 62 *
WATERMANN, J ET AL.: "Isosteric Heats of Adsorption of Xenon in Silver- exchanged Y Zeolites", ZEOLITES, vol. 13, no. 6, July 1993 (1993-07-01), pages 427 - 429 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011030514A1 (ja) * 2009-09-09 2011-03-17 パナソニック株式会社 キセノン回収方法
WO2011030513A1 (ja) * 2009-09-09 2011-03-17 パナソニック株式会社 吸着材およびそれを用いたキセノン吸着デバイス
US8679239B2 (en) 2009-09-09 2014-03-25 Panasonic Corporation Adsorbent material and xenon adsorption device using same
US8679229B2 (en) 2009-09-09 2014-03-25 Panasonic Corporation Method for recovering xenon
US11065597B2 (en) 2017-01-06 2021-07-20 Tosoh Corporation Xenon adsorbent
JP2022009520A (ja) * 2018-03-30 2022-01-14 パナソニックIpマネジメント株式会社 ゲッタ材、ゲッタ材の製造方法、及びゲッタ材含有組成物の製造方法
JP7325051B2 (ja) 2018-03-30 2023-08-14 パナソニックIpマネジメント株式会社 ゲッタ材、ゲッタ材の製造方法、及びゲッタ材含有組成物の製造方法
US11679979B2 (en) 2018-05-08 2023-06-20 Curium Us Llc Systems and methods for production of Xenon-133
CN114777414A (zh) * 2022-04-08 2022-07-22 杭州制氧机集团股份有限公司 一种工业尾气联产氢气、液氢和液化天然气的装置及方法
CN114777414B (zh) * 2022-04-08 2023-08-18 杭氧集团股份有限公司 一种工业尾气联产氢气、液氢和液化天然气的装置及方法
CN115265092A (zh) * 2022-07-27 2022-11-01 安徽马钢气体科技有限公司 一种低温液体吸附器冷却工艺及装置
CN115979779A (zh) * 2023-01-10 2023-04-18 浙江恒达仪器仪表股份有限公司 一种氙本底的多模式富集分析装置的控制方法
CN115979779B (zh) * 2023-01-10 2023-07-28 浙江恒达仪器仪表股份有限公司 一种氙本底的多模式富集分析装置的控制方法

Also Published As

Publication number Publication date
JP2010042381A (ja) 2010-02-25
JP5392745B2 (ja) 2014-01-22

Similar Documents

Publication Publication Date Title
JP5392745B2 (ja) キセノンの濃縮方法、キセノン濃縮装置、及び空気液化分離装置
US7309378B2 (en) Syngas purification process
US6048509A (en) Gas purifying process and gas purifying apparatus
CN1091628C (zh) 气流中二氧化碳的去除
CN102083512A (zh) 二氧化碳回收
JP2010533063A5 (ja)
JP5743215B2 (ja) ヘリウムガスの精製方法および精製装置
JP5248478B2 (ja) キセノンの濃縮方法および濃縮装置
WO2019139712A1 (en) Adsorptive xenon recovery process from a gas or liquid stream at cryogenic temperature
JP5896467B2 (ja) アルゴンガスの精製方法および精製装置
US20100115994A1 (en) Adsorbent for carbon monoxide, gas purification method, and gas purification apparatus
JP5791113B2 (ja) アルゴンガスの精製方法および精製装置
WO2006132040A1 (ja) 高純度水素製造方法
JP2017202961A (ja) 水素ガス製造方法
JP5729765B2 (ja) ヘリウムガスの精製方法および精製装置
KR101909291B1 (ko) 아르곤 가스의 정제 방법 및 정제 장치
JP5684898B2 (ja) ガス精製方法
JP2012106904A (ja) アルゴンガスの精製方法および精製装置
JP7319830B2 (ja) 窒素製造方法及び装置
JPH04310509A (ja) 窒素中の不純酸素の除去方法
TWI504559B (zh) 氬氣之純化方法及純化裝置
KR101824771B1 (ko) 표면개질된 활성탄을 이용한 이산화탄소 흡착분리 방법
JPS6139090B2 (ja)
JPS6097020A (ja) 吸着法を使用して一酸化炭素、二酸化炭素及び窒素ガスを含む混合ガス中の一酸化炭素を精製する方法
KR20020051314A (ko) 활성탄을 이용한 고순도 아르곤가스 정제방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09808063

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09808063

Country of ref document: EP

Kind code of ref document: A1