JP3869774B2 - 光通信システム - Google Patents

光通信システム Download PDF

Info

Publication number
JP3869774B2
JP3869774B2 JP2002241982A JP2002241982A JP3869774B2 JP 3869774 B2 JP3869774 B2 JP 3869774B2 JP 2002241982 A JP2002241982 A JP 2002241982A JP 2002241982 A JP2002241982 A JP 2002241982A JP 3869774 B2 JP3869774 B2 JP 3869774B2
Authority
JP
Japan
Prior art keywords
optical fiber
optical
face
diameter
spherical end
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002241982A
Other languages
English (en)
Other versions
JP2004078109A (ja
Inventor
頼成 石井
哲男 岩木
壽宏 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2002241982A priority Critical patent/JP3869774B2/ja
Priority to AU2003262261A priority patent/AU2003262261A1/en
Priority to PCT/JP2003/010543 priority patent/WO2004019099A1/ja
Priority to CNB038224941A priority patent/CN100462757C/zh
Priority to US10/525,437 priority patent/US7218813B2/en
Publication of JP2004078109A publication Critical patent/JP2004078109A/ja
Application granted granted Critical
Publication of JP3869774B2 publication Critical patent/JP3869774B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4202Packages, e.g. shape, construction, internal or external details for coupling an active element with fibres without intermediate optical elements, e.g. fibres with plane ends, fibres with shaped ends, bundles

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Couplings Of Light Guides (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、光ファイバを用いて光信号を送受信することのできる光通信システムに関し、より詳しくはプラスチック光ファイバを伝送媒体として、家庭内通信や電子機器間通信、LAN(ローカル・エリア・ネットワーク Local Area Network)等に適用することのできる光通信システムに関するものである。
【0002】
【従来の技術】
光ファイバを用いた光通信システムは、光ファイバによる信号伝送路の一端側に送信系を備え、また他端側に受信系を備えている。送信系は例えば発光ダイオードや半導体レーザなどの光源(発光素子)を備えており、この発光源を制御して発光させた信号光を光ファイバに入射させる。一方、受信系は、例えばフォトダイオード等の受光素子を備えており、光ファイバより出射した信号光をこの受光素子が受光して、電気信号に変換する。
【0003】
このような光通信システムの性能は信号光の伝送効率に大きく依存する。また、該伝送効率は光ファイバ自体の伝送効率、発光源から光ファイバへの結合効率、光ファイバから受光素子への結合効率により主に決定される。
【0004】
従来の光通信システムにおける受信系は、大別すると、光ファイバからの出射光を直接受光素子で受光するものと、光ファイバと受光素子の間に配置されたレンズ等の光学系を介して集光させて受光するものの二種類がある。
【0005】
このような光ファイバと受光素子との光学的結合方法は、コア径がマイクロメータオーダの太さの石英ファイバ用として、広く使用されている。しかしながら、コア径がミリメートルオーダのプラスチック光ファイバの場合には、問題が生ずる。プラスチック光ファイバは家庭内ネットワーク等で近年注目されている光ファイバであるが、プラスチック光ファイバはファイバ径が0.5〜2mmと大きく、接続しやすい反面、口径が大きいため受信器への結合効率が低下する問題がある。通常、光ファイバ通信に使用される受光素子の受光径は数百μm〜百μmであるため、コア径が小さい光ファイバであれば問題ないが、例えば口径1mmのプラスチック光ファイバの場合、レンズ等を使用しても光源のサイズより小さいサイズに集光することが困難だからである。特に伝送速度が高くなればなるほど、容量の関係から受光径を小さくする必要があるため、結合効率即ち受信効率の低下が発生する。
【0006】
そのような問題を解決するものとして、図25に示すような光ファイバと受光素子との結合構造を有する光通信システムが知られている。この光通信システムでは、高反射性の反射面103で囲まれた導光路102を有する同導光体101を光ファイバ104と受光素子105との間に介在させ、光ファイバ104から出射する信号光をこの導光体101にて受光素子105まで導光する。こうすることで、光ファイバ104と受光素子105との高効率の光学的結合をなし、プラスチック光ファイバ等のコア径の大きい光ファイバからの出射光であっても、口径の小さいフォトダイオードに効率良く集光できるようにしている(特許文献1参照。)。
【0007】
【特許文献1】
特開平10−221573号公報(段落番号0008等、図1、3)
【0008】
【発明が解決しようとする課題】
図25に示したような構造の場合、光ファイバから出射される光の開口数(NA)が変る、特に大きくなる場合、図26に示すように、光ファイバ104側に出射光106が戻りやすくなり、結合効率が逆に低下するという欠点がある。また、このよう構造は口径に対する穴の深さのアスペクト比が大きく、反射膜を均一に蒸着するのが難しい等の製造上の問題がある。
【0009】
そこで、本発明の目的は、プラスチック光ファイバのような口径の大きい光ファイバと口径の小さい受光素子の光学的な結合を簡素な構成で効率良く行える光通信システムを提供することにある。
【0010】
【課題を解決するための手段】
本発明の一側面に係る光通信システムは、少なくとも一端側に球状端面を有し、この球状端面から出射する放射光の開口数が0.35以下である光ファイバと、受光素子を有し、上記光ファイバの球状端面からの放射光を受信する光通信モジュールとを備える。そして、上記光ファイバの上記一端側が上記光通信モジュール内の所定箇所に挿入されたとき、上記受光素子の受光面は上記光ファイバの球状端面の頂点から距離dの位置にあり、光ファイバの直径をD、球状端面の曲率半径Rをr*D(ここで、rは、光ファイバの直径Dと球状端面の曲率半径Rとの比を表す係数で、1≦r≦2を満たす。)、光ファイバのコアの屈折率をn、上記光ファイバの球状端面と受光素子との間に存在する物質の屈折率をn1とすると、上記距離dは、
受光素子の直径がD以下のとき、0<d≦r*D/(n−n1)の範囲内にあり、
受光素子の直径がDより大きいとき、D≦d≦r*D/(n−n1)の範囲内にある。
【0011】
尚、「光ファイバの直径」とは、コア径である。但し,SI型のプラスチック光ファイバの場合には、クラッド部分が全直径の2%しかないため、光ファイバの直径はクラッド径と略等しくなる。
【0012】
光ファイバの端面を球状端面とし、距離dがこの範囲内にあるように受光素子を配置することにより、光ファイバの端面が平坦面である場合に比べて、受信結合効率を最高で2倍以上まで高めることができる。
【0013】
ファイバの端面を球状に加工するということは、平坦な端面にファイバからの光が出射する方向に凸面を持った平凸レンズを取付けたのと同一の構造と考えることができる。r*D/(n−n1)つまりR/(n−n1)で求められる値は、曲率半径がR、屈折率がnである平凸レンズの屈折率n1の物質が充填された空間における焦点距離fである。
【0014】
図3は、コアがPMMA製(屈折率≒1.5)のプラスチック光ファイバ1について空気中(n1=1)でシミュレーションを行ったときの光ファイバからの出射光Lの広がり(ファーフィールドパターン FFP)と光ファイバ端面を加工して設けた球状端面11の曲率半径R(=r*D)の関係を示す概略図である。
【0015】
マルチモード光ファイバ特にSI(ステップインデックス)型のマルチモード光ファイバをファイバの軸方向と垂直な面で切ると、そのニアフィールドパターンは均一強度の面光源と捕らえることができる。また、その均一強度の面光源を細分化した各点からの出射光の配向分布はガウス分布である。
【0016】
図3からわかるように、出射光が集光している位置はファイバーの球状端面の曲率半径により異なる。図3(A)は球状端面の曲率半径Rがファイバの直径Dの倍即ちR=2*Dの場合を表しており、集光位置は球状端面の頂点から4Dの位置にある。図3(B)は球状端面の曲率半径Rがファイバの直径Dの1.5倍即ちR=1.5*Dの場合を示しており、集光位置は球状端面の頂点から3Dの位置にある。そして、図3(C)は球状端面の曲率半径Rがファイバの直径Dと同じ即ちR=Dのときで、集光位置は球状端面の頂点から2Dの位置である。
【0017】
平凸レンズの空気中での焦点距離fは、上記より、f=R/(n−1)で表され、図3に示したシミュレーション結果は、平凸レンズの屈折率を1.5としたときの空気中での焦点距離fとほぼ一致する。
【0018】
つまり、本発明は、光ファイバからの出射光の開口数(NA)が0.35以下と小さい場合に、受光素子の受光面を上記焦点距離f内に置くようにしたものである。但し、受光素子の直径が光ファイバの直径Dよりも大きい場合には、発明者が種々行なった実験結果より、距離dがDを越えるまでは、端面が平坦な光ファイバと同等の結合効率しか得られないことが判明したため、距離dはDよりも大きくしている。したがって、光ファイバー端面から出射した放射光は平凸レンズ効果により集光されて再び広がる前に受光素子に入射するので、光ファイバの端面が平坦である場合に比べて、受光素子への結合効率が向上する。しかも、従来技術におけるような導光体を使用しないので、その分、光通信モジュールの製造が容易である。
【0019】
出射光のNAが0.35である光ファイバは主に伝送レートが200〜622Mbps程度の高速伝送で使用されるものである。通常、受光素子の径は伝送速度が高くなるほど、容量の関係から小さくする必要がある。また、伝送速度が高くなればなるほど使用する光ファイバの構造NAは小さくなる。それに伴い光ファイバから出射される光のNAも小さくなる。本発明は受光素子の径が小さく、光ファイバのNAが小さいプラスチック光ファイバを使用したとき、即ちプラスチック光ファイバを使用した数百Mbpsの高速伝送時に特に効果的である。
【0020】
本発明の上記光通信システムにおいて、上記通信モジュールは、受光素子に加えて、上記光ファイバの球状端面からの放射光を上記受光素子ヘ導く受信光学系を有していてもよい。この場合、受光素子の受光面ではなく、受信光学系の中心位置が、次の通り、受信光学系の大きさに応じて、上記光ファイバの球状端面から距離dの位置に配置されることになる。つまり、受信光学系は、上記光ファイバの球状端面から受信光学系の中心位置までの距離dが
受信光学系の大きさがD以下のとき、0<d≦r*D/(n−n1)、
受信光学系の大きさがDより大きいとき、D≦d≦r*D/(n−n1)
となるように配置される(ここで、1≦r≦2)
【0021】
受信光学系の一例としては、例えば空気と屈折率の異なる物質で形成されたプリズム及びレンズ等の光を屈折させる部材や、ミラー等、光を反射させる部材により形成された受信光学系がある。受光素子の上に空気と屈折率の異なる透明モールド部材等が形成されている場合も、そのモールド部材を本願では受信光学系として扱う。
【0022】
ここで、「受信光学系の中心位置」とは、光ファイバからの主光線の受信光学系への入射側主点を言う。
【0023】
また、「受信光学系の大きさ」とは、円形の場合(たとえば集光レンズ)は光学的に光を集光する部分の直径であり、円形でない場合(たとえばプリズム)は光学的に光を集光する部分の代表的な寸法とする。
【0024】
種々のシミュレーション結果より、上記距離dは、好ましくは、
受光素子の直径がD以下のとき、0<d≦2Dの範囲内にあるのがよく、
受光素子の直径がDより大きいとき、D≦d≦2Dの範囲内にあるのがよい。
また、本発明は、上記受光素子の直径(受信光学系が設けられている場合には、受信光学系の大きさ)は、光ファイバの直径D以下のとき、より効果的である。受光素子の直径(受信光学系が設けられている場合には、受信光学系の大きさ)が光ファイバの直径Dより大きい場合に比べて、端面が平坦面である光ファイバと比べての結合効率向上の効果が顕著だからである。
【0025】
また、本発明の別の側面による光通信システムは、少なくとも一端側に球状端面を有し、この球状端面から出射する放射光の開口数が0.4〜0.6である光ファイバと、受光素子を有し、上記光ファイバの球状端面からの放射光を受信する光通信モジュールとを備える。そして、上記光ファイバの上記一端側が上記光通信モジュール内の所定箇所に挿入されたとき、上記受光素子は上記光ファイバの球状端面の頂点から距離dの位置にあり、光ファイバの直径をDとすると、上記距離dは、
受光素子の直径がD以下のとき、0<d<2Dの範囲内にあり、
受光素子の直径がDより大きいとき、0.5D<d<2Dの範囲内にある。
【0026】
0.4〜0.6までの範囲の出射光の開口数、特に0.5の開口数は伝送レートが20〜100Mbps程度の中速伝送に使用されるものである。
この光通信システムにおいて、上記通信モジュールは、受光素子に加えて、上記光ファイバの球状端面からの放射光を上記受光素子ヘ導く受信光学系を有していてもよい。この場合、受光素子の受光面ではなく、受信光学系の中心位置が、次の通り、受信光学系の大きさに応じて、上記光ファイバの球状端面から距離dの位置に配置されることになる。つまり、受信光学系は、上記光ファイバの球状端面から受信光学系の中心位置までの距離dが
受信光学系の大きさがD以下のとき、0<d<2Dの範囲内にあり、
受信光学系の大きさがDより大きいとき、0.5D<d<2Dの範囲内にあるように配置される。
【0027】
光ファイバの端面を球状端面とし、距離dがこの範囲内にあるように受信光学系を配置することにより、光ファイバの端面が平坦面である場合に比べて、受信結合効率を最高で1.7倍程度まで高めることができる。
【0028】
ここで、「受信光学系の中心位置」および「受信光学系の大きさ」の定義は、上述した通りである。
【0029】
好ましくは、上記距離dは、本発明者の行なった種々のシミュレーション結果から、
受光素子の直径がD以下のとき、0<d≦1.5Dの範囲内にあるのがよく、
受光素子の直径がDより大きいとき、D≦d<1.5Dの範囲内にあるのがよい。
また、好ましくは、開口数が0.35以下の場合と同様に、上記受光素子の直径(受信光学系が設けられている場合には、受信光学系の大きさ)は、光ファイバの直径D以下であるのがよい。受光素子の直径(受信光学系が設けられている場合には、受信光学系の大きさ)が光ファイバの直径Dより大きい場合に比べて、端面が平坦面である光ファイバと比べての結合効率向上の効果が顕著だからである。したがって、本発明を利用すれば小さい受光素子に光を集光しやすい小型の受信光学系を配置できる。この場合、本発明は一芯双方向通信において、より効果を発揮することができる。
【0030】
一実施形態では、上記した各光通信モジュールは、発光素子と発信光学系とのうち少なくとも発光素子をさらに有し、上記光ファイバを介して相手方の光通信モジュールと一芯双方向通信方式で信号光を送受信できるようになっている。受光素子や受信光学系を小さくすることができるので、送信系と並列して配置する観点から効果的である。
【0031】
前述したように、プラスチック光ファイバを使用した場合、一般的なファイバ径は0.5〜2mmであるが、使い易さ即ち接続のし易さと、モード分散を抑える観点から、1mmのファイバ径のものが一般によく使用されている。一方、一般的にプラスチック光ファイバで使用される高速通信の伝送レートは100Mbps〜622Mbpsで、その伝送レートに適したフォトダイオードの直径(以下、PD径とも言う。)は0.5mm以下、より詳しくは、0.3〜0.5mmである。
【0032】
一実施形態では、上記いずれかの通信システムにおいて、直径Dが1mmの光ファイバと、直径が0.5mm以下(例えば、0.3mm〜0.5mm)の高速対応の小型フォトダイオードを組み合わせて使用している。このような光ファイバと受光素子の寸法の組み合わせは、本発明を適用することにより、平端面ファイバに比べて受信効率を大幅に高くすることができるので、効果的である。
【0033】
また、受信光学系を設けている場合、直径Dが1mmの光ファイバを使用するときには、直前に述べたのと同じ理由により、受信光学系の大きさを0.5mm以下にするのが好ましい。
【0034】
【発明の実施の形態】
以下、本発明を図示の実施形態により詳細に説明する。
【0035】
(第1実施形態)
図1は本発明の光通信システムの一実施形態として一方向通信を行なう光通信システムの一例を概略的に示したものである。この光通信システムは、光ファイバ1と、この光ファイバ1を介して信号光の送受信を行なう1対の光通信モジュール2A、2Bとを備えている。光通信モジュール2Bは半導体レーザ装置(LD)または発光ダイオード(LED)からなる発光素子22を備えて送信モジュールとして機能する一方、光通信モジュール2Aはフォトダイオード(PD)からなる受光素子21を備えて受信モジュールとして機能する。図面を簡単にするため、受・発光素子の保持部分等、発明に直接関係しない部分は図1から省いている。
【0036】
光ファイバ1は、コアがPMMA製(屈折率:略1.5)のプラスチック光ファイバであり、両端面がそれぞれ曲率半径Rを有する球状端面11となっている。但し、受信側の端面のみを球状端面11としてもよい。また、光ファイバ1はPMMA以外のプラスチック材料からなるものであってもよい。光ファイバの球状端面11は溶融あるいは研磨によって作成できる。
【0037】
光ファイバ1の端部が光通信モジュール2A内に挿入されて所定箇所に設置されたとき、受光素子21の受光面は、光ファイバ1の球状端面11の頂点から距離dだけ離れた位置にある。この距離dは、光ファイバ1の球状端面11から出射する放射光の開口数(以下、「出射NA」とも言う。)と受光素子であるフォトダイオード21の直径(以下、「PD径」とも言う。)に応じて設定される値である。
【0038】
具体的に言うと、光ファイバ1の出射NAが高速伝送つまり200〜622Mbpsの伝送レートで使用される0.35以下の場合、距離dは
受光素子の直径がD以下のとき、
0<d≦r*D/(n−n1)...(1)
の範囲内にあり、
受光素子の直径がDより大きいとき、
D≦d≦r*D/(n−n1)...(2)
の範囲内にあるように設定されている。ここで、Dは光ファイバ1の直径(コア径)、r*Dは球状端面11の曲率半径RをDを用いて表したもの、nは光ファイバ1のコアの屈折率、そして、n1は光ファイバ1の球状端面11と受光素子21との間に存在する物質の屈折率である。本実施形態の場合、光ファイバ1の球状端面11と受光素子21との間に存在する物質は空気である。したがって、n1は1である。また、光ファイバ1のコア材料であるPMMA(ポリメチルメタクリレート)の屈折率は略1.5(ここでは、1.5として計算する)である。したがって、上記関係式(1)、(2)はそれぞれ、
0<d≦2r*D...(1’)
D≦d≦2r*D...(2’)
と書き表すことができる。
【0039】
式(1’)は、受光素子21の受光面が、光ファイバ1の球状端面11に接触しておらず、しかも、球状端面11の曲率半径の2倍に相当する距離を超えては光ファイバ1の球状端面11から離れていないことを示している。式(2’)は、受光素子21の受光面が、光ファイバ1の直径に相当する距離以上だけ光ファイバ1の球状端面11から離れているが、球状端面11の曲率半径の2倍に相当する距離を超えては光ファイバ1の球状端面11から離れていないことを示している。
【0040】
一方、光ファイバ1の出射NAが中速伝送つまり100〜200Mbps程度の伝送レートで使用される0.5付近(つまり0.4〜0.6)の場合には、距離dは
受光素子の直径がD以下のとき、
0<d<2D...(3)
の範囲内にあり、
受光素子の直径がDより大きいとき、
0.5D<d<2D...(4)
の範囲内にあるように設定されている。
【0041】
図4〜6は、図1の構成を有する光通信システムにおいて、光ファイバ1の出射NAが0.35の場合の受信結合効率の端面−受信器間距離依存性を平端面ファイバの場合と比較したグラフであり、各パラメータはファイバ径Dを用いて表されている。より詳しくは、グラフの縦軸に示された受信結合効率は、ファイバ出射端面が平坦面のとき1/e(≒0.135)の強度で規定された光ファイバからの出射光の開口数が0.35で、200〜500Mbpsの伝送レートで光源に半導体レーザ(LD)を使用し、伝送媒体に低NAの高速通信グレードのプラスチック光ファイバ(コアの屈折率n=1.5)を使用した場合の受信結合効率であり、ファイバ端面が平坦面であるときの結合効率との比の形であらわしている(つまり、結合効率1はファイバ端面が平坦面であるときの結合効率である。)。横軸は、端面−受信器間距離をファイバ径Dとの比の形で表したものである。また、パラメータである端面曲率半径RおよびPD径は、ファイバ径Dを用いて表されている。図4はPD径が0.5Dのとき、図5はPD径が1Dのとき、図6はPD径が1.5Dのときを示す。また、◆、■、▲はそれぞれ端面曲率半径Rが2D、1.5D、Dの場合を表している。なお、「受信器」とは、この場合には、フォトダイオード21のことを言う。
【0042】
また、図10−11は図4−6のグラフに示した受信結合効率に関しての効果を3段階に分類して表示したものである。○は受信結合効率が平端面ファイバに比べて1.01倍以上であることを示す。△は、受信結合効率が平端面ファイバに比べて0.99〜1.01倍であることを示す。×は受信結合効率が平端面ファイバに比べて0.99倍以下であることを示す。
これらの図面より、図3に示した球状端面の曲率半径R(=r*D)で決まる焦点位置(この場合には、n=1.5、n1=1であるため、f=r*D/0.5=2r*Dとなる。)に相当する位置までは、ファイバ端面が平坦面の場合に対し受信効率が向上しているのがわかる。ただしその効果はPD径がより小さい場合に対して効果的である。そして、PD径が0.5Dのとき、端面の曲率半径Rが小さいほど、受信効率を大きくできることもわかる。いずれにしても、PD径がファイバ径D以下の場合は、ほぼファイバ端面の位置から上記焦点位置に相当する位置まで受信効率向上の効果がある。
【0043】
一方、PD径がファイバ径Dより大きい場合は、ほぼファイバ端面から1Dだけ離れた位置から球状端面の曲率半径R(=r*D)で決まる焦点位置に相当する位置まで受信効率向上の効果があることがわかる。
【0044】
図7〜9は、ファイバ出射端面が平坦面のとき1/eの強度で規定されたファイバ出射NAが0.5に相当する場合の図4〜6と同様のグラフである。但し、この場合は、100〜200Mbpsの伝送レートで光源(発光素子)にLEDを使用し、伝送媒体にNA0.5付近の通信グレードのプラスチック光ファイバ(コアの屈折率n=1.5)を使用した。図7はPD径が0.5Dのとき、図8はPD径が1Dのとき、図9はPD径が1.5Dのときを示す。
【0045】
また、図13〜15は図7〜9のグラフに示した受信結合効率に関しての効果を3段階に分類して表示したものである。図10〜12と同様、○は受信結合効率が平端面ファイバに比べて1.01倍以上であることを示す。△は、受信結合効率が平端面ファイバに比べて0.99〜1.01倍であることを示す。×は受信結合効率が平端面ファイバに比べて0.99倍以下であることを示す。
図7〜9および図13〜15からわかるように、この場合の受信効率向上の効果は、1/eの強度で規定されたファイバからの出射光のNAが0.35の場合に比べて小さくなるが、PD径がファイバ径Dより小さいときは、ファイバ端面付近より2Dの位置まではファイバ端面が平坦面の場合に対し受信効率が向上しているのがわかる。そして、この場合も、PD径がファイバ径Dより小さいときは、端面の曲率半径Rが小さいほど、受信効率を大きくできることがわかる(但し、距離dが1Dまでのところにおいて)。また、PD径がファイバ径Dより大きくなった場合も、ファイバ端面D付近から2Dの位置までの範囲において、程度は小さくなるものの受信効率向上の効果があることがわかる。
【0046】
図16と図17は受光素子21の直径が0.5Dの場合で、ファイバ出射端面が平坦面のとき1/eの強度で規定されたファイバからの出射NAが0.35と0.5にそれぞれ相当するとき、ファイバ球状端面11の曲率半径Rを変えたときの受信結合効率の距離依存性をファイバ端面が平坦面であるときと比較したグラフである。これらのグラフから、ファイバ端面が球状端面である場合には、ファイバ端面が平坦面である場合に比べて、上記式(1)、(3)で定義された距離範囲内で受信効率(結合効率)を大きくできることがわかる。中でも、球状端面11の曲率半径RがDで、距離dが0.5D近傍にあるときに、光ファイバからの出射光のNAが0.35であっても0.5であっても、平端面ファイバに比べて大幅に結合効率が向上しているのがわかる。また、距離dが所定の範囲内にあるとき、同じ距離dに対しては、端面の曲率半径Rは小さいほど、つまり、曲率が大きいほど、結合効率は高くなると言える。
【0047】
図18は、ファイバ出射端面が平坦面のとき1/eの強度で規定されたファイバからの出射NAが0.35に相当する場合に、距離dをパラメータとして、受信効率の受光素子径(PD径)への依存性をプロットしたグラフである。図18から、PD径が小さいほど、特にPD径がファイバ径1Dより小さいときに効果的であることがわかる。そして、PD径がファイバ径1Dよりも小さい場合、特に、略0.9D以下の場合には、距離dは1.5Dよりも1Dの方が高い受信効率が得られることがわかる。PD径がファイバ径Dより小さいときには、距離dは1Dまでの値に設定した方が効果的であると言える。
【0048】
図19はファイバ出射端面が平坦面のとき1/eの強度で規定された光ファイバ1からの出射NAが0.35に相当、光ファイバ径1mm、ファイバ球状端面11の曲率半径が1.5mm、PD径1mmの場合に、計算値と実測結果とを比較したグラフである。両者はほぼ一致し同じ傾向を示している。横軸に示される端面−受信器間距離(つまり、距離d)が0〜3mmの範囲では30%を越える結合効率が得られ、距離dが短くなって受光素子21が光ファイバの端面11に近接するほど、結合効率が100%に近づくのが確かめられた。
前述したように、プラスチック光ファイバを使用した場合、一般的なファイバ径は0.5〜2mmであるが、使い易さ即ち接続のし易さと、モード分散を抑える観点から、一般に1mmのファイバ径のものが使用される。一方、一般的にプラスチック光ファイバで使用される高速通信の伝送レートは100Mbps〜622Mbpsで、その伝送レートに適したPD径は0.3〜0.5mmである。このファイバ径とPD径の組合せは、本発明の効果が最も引き出せる範囲とほぼ一致する。
【0049】
(第2実施形態)
図2は本発明の光通信システムの第2実施形態の概略図である。この第2実施形態は各通信モジュール2A,2Bに光学系を設けた点が第1実施形態と異なる。図2において、図1に示した構成部分と同様の構成部材には図1で使用したのと同じ参照番号を付している。図2中、参照番号25、26はそれぞれ受信光学系、送信光学系である。受信光学系25は、受光素子21と光ファイバ1の球状端面11との間に配置されて、球状端面11からの放射光を受光素子21ヘ導く働きをする。また、発信光学系26は、発光素子22から出射された光を光ファイバ1の端面へ導く働きをする。これら受信光学系25および発信光学系26には、例えば空気と屈折率の異なる物質で形成されたプリズム及びレンズ等の光を屈折させる部材や、ミラー等光を反射させる部材等が含まれる。なお、本願では、受光素子21の上に空気と屈折率の異なる透明モールド部材(図示せず)が形成されている場合、そのモールド部材も受信光学系25の構成要素とみなしている。このような受信・発信光学系は当業者には広く知られているものであるため具体的構成についてはここでは詳細には記述しない。受信光学系25として、透明モールド部材でレンズ部分を一体に形成してもよい。
【0050】
上記第1の実施形態において受光素子21と光ファイバ1の球状端面11との間に成立した関係式(1)〜(4)は、第2の実施形態では、受信光学系25と光ファイバ1の球状端面11との間に成立している。つまり、第1の実施形態においては、光ファイバ1の球状端面11の頂点から受光素子21の受光面までの距離をdとして式(1)〜(4)で規定したが、この第2の実施形態においては、光ファイバ1の球状端面11の頂点から受信光学系25の中心位置までの距離をdとして式(1)〜(4)で規定している。また、第1実施形態では、光ファイバ1の球状端面11から出射する放射光の開口数(NA)と、受光素子21の直径(PD径)とに応じて、式(1)〜(4)のいずれかを適用したが、この第2実施形態では、受光素子21の直径の代わりに受信光学系25の大きさに応じて式(1)〜(4)が適用される。
【0051】
なお、「受信光学系25の中心位置」とは、上述したように、光ファイバ1からの主光線の受信光学系25への入射側主点とする。また、「受信光学系の大きさ」とは、集光レンズのように円形の場合には、光学的に光を集光する部分の直径であり、円形でない場合には、光学的に光を集光する部分の代表的な寸法とする。たとえば、円形でない光学系としては、楕円ミラーがあり、この場合には、楕円ミラー入射側主点での光軸に垂直な断面の平均寸法をこの光学系の大きさとする。
【0052】
第2実施形態の場合にも、第1実施形態と同様の受信効率向上の効果が得られた。本発明を利用すれば小さい受光素子に光を集光しやすい小型の受信光学系を配置することができる。
【0053】
(第3実施形態)
図20は本発明の第3実施形態である一芯双方向光通信方式を採用した光通信システムの概略構成図であり、図21は図20の一部を拡大して示した図である。図20において、図1、2に示した構成部分と同様の構成部分には図1、2で使用したのと同じ参照番号を付して、詳細な説明は省略する。
【0054】
第1,2実施形態の光通信システムが一方向通信方式を採用していて、協働する2つの光通信モジュール2A,2Bが受光素子と発光素子の一方しか搭載していないのに対して、この第3実施形態の光通信システムをプラスチック光ファイバ1と共に構成する2つの光通信モジュール2A,2Bはいずれも、発光素子22と受光素子21の両方を備えて、送受信モジュールとして機能する。光通信モジュール2A,2Bは、さらに送信光学系26と受信光学系25をも備えている。受発光素子21,22および受送信光学系25,26は、光ファイバ端面11からの出射光のNAと受信光学系25の大きさとに応じて受信光学系25の中心位置が上述の式(1)〜(4)のいずれかを満たすように配置されている。
【0055】
光学系25、26を用いないで、受発光素子21、22を光ファイバ端面11に直接対向させてもよいが、受発光素子21、22自体の占有面積がその保持部分まで含めると光ファイバ端面11に対しかなり大きなものとなるため、送受信を分割する場合はそのような配置は、可能でなくはないが、余り現実的とは言えない。
【0056】
そこで、通常、一本の光ファイバで送受信を行う場合は、小さい光ファイバ端面部で効果的に送受信光を分割するために、光ファイバ端面と受発光素子間に受発光素子へ光路を変換するための光学系が設けられる。送受信光学系は小さい光ファイバ端面に対応して小型である必要がある。ただし、受信光学系があまりに小さすぎると、何の措置も取らない場合、受信光のロスが大きくなる。例えば図22に示すように、受信光15の半分は送信光学系26に蹴られてしまう。一方、図23のように受信光学系25を大きくすると、送信光16が光ファイバ端面11に結合しない場合がある。図24のように光ファイバ端面11から大きく距離をとって送受信光学系を配置した場合は、比較的大きな受信光学系25を使用しても送信光16のNAさえ小さくすれば1本の光ファイバを使用しての送受信は可能である。しかしながら、受信光15が広がってしまい、高速対応の小さいPD(受光素子)21への結合が困難になるという問題が生ずる。
【0057】
しかし、本実施形態では、受信光学系25を第2実施形態で説明したように、光ファイバ端面11からの出射光のNAと受信光学系25の大きさとに応じて、上記式(1)から(4)のいずれかを満たす位置に配置しているので、送信光学系26で蹴られる分はしかたないが、受信光学系25が小型であっても効率よく受光し、受光素子21であるフォトダイオードへ受信光15を導くことが出来る。
【0058】
以上、本発明を3つの実施形態を通じて説明したが、特許請求の範囲に記載した構成以外の構成は、材料も含めて、上記実施形態で述べたものに限定されることなく、適宜変更・追加できることは言うまでもない。
【0059】
【発明の効果】
以上から明らかなように、本発明によると、伝送媒体として口径の大きいプラスチック光ファイバを使用し、受光素子を高速通信対応の小型受光素子としても、簡単な構成で光学的に高い結合効率を得ることができる。特に、プラスチック光ファイバの直径が一般的によく使用される1mmで、受光素子が直径0.5mm以下の高速対応の小型フォトダイオードであるとき、受信効率を高くすることができ効果的である。
【0060】
また、本発明は、通信方式が一本の光ファイバを介して双方向通信を行う一芯双方向光通信方式であるとき、受光素子や受信光学系を小さくすることができるので、送信系と並列して配置する観点から効果的である。
【図面の簡単な説明】
【図1】 本発明の一実施形態である光通信システムの構成を概略的に示した図である。
【図2】 本発明の一実施形態である光通信システムの構成を概略的に示した図である。
【図3】 本発明の原理を説明する図である。
【図4】 本発明の効果を示すグラフで、受光素子の直径が0.5D、ファイバ出射NAが0.35であるとき、球状端面ファイバを用いた場合の受信結合効率を平端面ファイバを用いた場合と比較したグラフである。
【図5】 本発明の効果を示すグラフで、受光素子の直径がD、ファイバ出射NAが0.35であるとき、球状端面ファイバを用いた場合の受信結合効率を平端面ファイバを用いた場合と比較したグラフである。
【図6】 本発明の効果を示すグラフで、受光素子の直径が1.5D、ファイバ出射NAが0.35であるとき、球状端面ファイバを用いた場合の受信結合効率を平端面ファイバを用いた場合と比較したグラフである。
【図7】 本発明の効果を示すグラフで、受光素子の直径が0.5D、ファイバ出射NAが0.5であるとき、球状端面ファイバを用いた場合の受信結合効率を平端面ファイバを用いた場合と比較したグラフである。
【図8】 本発明の効果を示すグラフで、受光素子の直径がD、ファイバ出射NAが0.5であるとき、球状端面ファイバを用いた場合の受信結合効率を平端面ファイバを用いた場合と比較したグラフである。
【図9】 本発明の効果を示すグラフで、受光素子の直径が1.5D、ファイバ出射NAが0.5であるとき、球状端面ファイバを用いた場合の受信結合効率を平端面ファイバを用いた場合と比較したグラフである。
【図10】 光ファイバ(出射NA=0.35)が球状端面を有する場合と平端面を有する場合の図4のグラフに示された受信結合効率の比較結果を3段階に分類してまとめた表である。
【図11】 光ファイバ(出射NA=0.35)が球状端面を有する場合と平端面を有する場合の図5のグラフに示された受信結合効率の比較結果を3段階に分類してまとめた表である。
【図12】 光ファイバ(出射NA=0.35)が球状端面を有する場合と平端面を有する場合の図6のグラフに示された受信結合効率の比較結果を3段階に分類してまとめた表である。
【図13】 光ファイバ(出射NA=0.5)が球状端面を有する場合と平端面を有する場合の図7のグラフに示された受信結合効率の比較結果を3段階に分類してまとめた表である。
【図14】 光ファイバ(出射NA=0.5)が球状端面を有する場合と平端面を有する場合の図8のグラフに示された受信結合効率の比較結果を3段階に分類してまとめた表である。
【図15】 光ファイバ(出射NA=0.5)が球状端面を有する場合と平端面を有する場合の図9のグラフに示された受信結合効率の比較結果を3段階に分類してまとめた表である。
【図16】 本発明の効果を示すグラフで、受光素子の直径が0.5D、ファイバ出射NAが0.35であるとき、球状端面ファイバを用いた場合の受信結合効率を平端面ファイバを用いたときと比較したグラフである。
【図17】 本発明の効果を示すグラフで、受光素子の直径が0.5D、ファイバ出射NAが0.5である場合において、球状端面ファイバを用いたときの受信結合効率を平端面ファイバを用いたときと比較したグラフである。
【図18】 本発明の効果を示すグラフで、受信結合効率のPD径依存性を示すグラフである。
【図19】 本発明の効果を示すグラフで、受信結合効率の実測値とシミュレーションで求めた値との比較を示す。
【図20】 本発明の一実施形態である一芯双方向通信方式の光通信システムの構成を概略的に示した図である。
【図21】 図20の光通信システムの一部(光ファイバ端面付近)を拡大して示した概略図である。
【図22】 一芯双方向通信方式の光通信システムにおける光学系の寸法および位置と、送/受信光の光ファイバ端面/受信光学系との結合との関係を示す説明図である。
【図23】 一芯双方向通信方式の光通信システムにおける光学系の寸法および位置と、送/受信光の光ファイバ端面/受信光学系との結合との関係を示す説明図である。
【図24】 一芯双方向通信方式の光通信システムにおける光学系の寸法および位置と、送/受信光の光ファイバ端面/受信光学系との結合との関係を示す説明図である。
【図25】 従来の技術の説明図である。
【図26】 図25に示した従来の技術の問題点を説明する図である。
【符号の説明】
1 光ファイバ
2A、2B 光通信モジュール
11 光ファイバの球状端面
15 受信光
16 送信光
21 受光素子
22 発光素子
25 受信光学系
26 送信光学系
L 光

Claims (9)

  1. 少なくとも一端側に球状端面を有し、この球状端面から出射する放射光の開口数が0.35以下である光ファイバと、
    受光素子を有し、上記光ファイバの球状端面からの放射光を受信する光通信モジュールとを備え、
    上記光ファイバの上記一端側が上記光通信モジュール内の所定箇所に挿入されたとき、上記受光素子の受光面は上記光ファイバの球状端面の頂点から距離dの位置にあり、
    光ファイバの直径をD、球状端面の曲率半径Rをr*D(ここで、rは、光ファイバの直径Dと球状端面の曲率半径Rとの比を表す係数で、1≦r≦2を満たす。)、光ファイバのコアの屈折率をn、上記光ファイバの球状端面と受光素子との間に存在する物質の屈折率をn1とすると、上記距離dは、
    受光素子の直径がD以下のとき、0<d≦r*D/(n−n1)の範囲内にあり、
    受光素子の直径がDより大きいとき、D≦d≦r*D/(n−n1)の範囲内にあることを特徴とする光通信システム。
  2. 少なくとも一端側に球状端面を有し、この球状端面から出射する放射光の開口数が0.35以下である光ファイバと、
    受光素子と、上記光ファイバの球状端面からの放射光を上記受光素子ヘ導く受信光学系とを有して、上記光ファイバの球状端面からの放射光を受信する光通信モジュールとを備え、
    上記光ファイバの上記一端側が上記光通信モジュール内の所定箇所に挿入されたとき、上記受信光学系の中心位置は上記光ファイバの球状端面の頂点から距離dの位置にあり、
    光ファイバの直径をD、球状端面の曲率半径Rをr*D(ここで、rは、光ファイバの直径Dと球状端面の曲率半径Rとの比を表す係数で、1≦r≦2を満たす。)、光ファイバのコアの屈折率をn、上記光ファイバの球状端面と上記受信光学系との間に存在する物質の屈折率をn1とすると、上記距離dは、
    受信光学系の大きさがD以下のとき、0<d≦r*D/(n−n1)の範囲内にあり、
    受信光学系の直径がDより大きいとき、D≦d≦r*D/(n−n1)の範囲内にあることを特徴とする光通信システム。
  3. 少なくとも一端側に球状端面を有し、この球状端面から出射する放射光の開口数が0.4〜0.6である光ファイバと、
    受光素子を有し、上記光ファイバの球状端面からの放射光を受信する光通信モジュールとを備え、
    上記光ファイバの上記一端側が上記光通信モジュール内の所定箇所に挿入されたとき、上記受光素子の受光面は上記光ファイバの球状端面の頂点から距離dの位置にあり、
    光ファイバの直径をDとすると、上記距離dは、
    受光素子の直径がD以下のとき、0<d<2Dの範囲内にあり、
    受光素子の直径がDより大きいとき、0.5D<d<2Dの範囲内にあることを特徴とする光通信システム。
  4. 少なくとも一端側に球状端面を有し、この球状端面から出射する放射光の開口数が0.4〜0.6である光ファイバと、
    受光素子と、上記光ファイバの球状端面からの放射光を上記受光素子ヘ導く受信光学系とを有して、上記光ファイバの球状端面からの放射光を受信する光通信モジュールとを備え、
    上記光ファイバの上記一端側が上記光通信モジュール内の所定箇所に挿入されたとき、上記受信光学系の中心位置は上記光ファイバの球状端面の頂点から距離dの位置にあり、
    光ファイバの直径をDとすると、上記距離dは、
    受信光学系の大きさがD以下のとき、0<d<2Dの範囲内にあり、
    受信光学系の大きさがDより大きいとき、0.5D<d<2Dの範囲内にあることを特徴とする光通信システム。
  5. 請求項1乃至4のいずれか1つに記載の光通信システムにおいて、
    上記光ファイバはプラスチック光ファイバであることを特徴とする光通信システム。
  6. 請求項1または2に記載の光通信システムにおいて、
    上記物質は屈折率n1が1である空気であることを特徴とする光通信システム。
  7. 請求項1乃至4のいずれか1つに記載の光通信システムにおいて、
    上記光ファイバの直径Dは1mmで、上記受光素子は直径が0.5mm以下のフォトダイオードであることを特徴とする光通信システム。
  8. 請求項3または4に記載の光通信システムにおいて、
    上記光ファイバの直径Dは1mmで、上記受信光学系の大きさは0.5mm以下であることを特徴とする光通信システム。
  9. 請求項1乃至4のいずれか1つに記載の光通信システムにおいて、
    上記光通信モジュールは発光素子と発信光学系とのうち少なくとも発光素子をさらに有し、上記光ファイバを介して相手方の光通信モジュールと一芯双方向通信方式で信号光を送受信できるようになっていることを特徴とする光通信システム。
JP2002241982A 2002-08-22 2002-08-22 光通信システム Expired - Fee Related JP3869774B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2002241982A JP3869774B2 (ja) 2002-08-22 2002-08-22 光通信システム
AU2003262261A AU2003262261A1 (en) 2002-08-22 2003-08-21 Optical communication system
PCT/JP2003/010543 WO2004019099A1 (ja) 2002-08-22 2003-08-21 光通信システム
CNB038224941A CN100462757C (zh) 2002-08-22 2003-08-21 光通信系统
US10/525,437 US7218813B2 (en) 2002-08-22 2003-08-21 Optical communication system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002241982A JP3869774B2 (ja) 2002-08-22 2002-08-22 光通信システム

Publications (2)

Publication Number Publication Date
JP2004078109A JP2004078109A (ja) 2004-03-11
JP3869774B2 true JP3869774B2 (ja) 2007-01-17

Family

ID=31944006

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002241982A Expired - Fee Related JP3869774B2 (ja) 2002-08-22 2002-08-22 光通信システム

Country Status (5)

Country Link
US (1) US7218813B2 (ja)
JP (1) JP3869774B2 (ja)
CN (1) CN100462757C (ja)
AU (1) AU2003262261A1 (ja)
WO (1) WO2004019099A1 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3869774B2 (ja) * 2002-08-22 2007-01-17 シャープ株式会社 光通信システム
JP2006238097A (ja) * 2005-02-25 2006-09-07 Fuji Photo Film Co Ltd 光通信システム
US8965204B2 (en) 2011-05-10 2015-02-24 Invensys Systems, Inc. Multi-drop optical communication
TWI509300B (zh) * 2011-12-14 2015-11-21 Hon Hai Prec Ind Co Ltd 光耦合模組及其製作方法
CN104280829A (zh) * 2013-07-05 2015-01-14 深圳市中技源专利城有限公司 单芯双向塑料光纤系统及塑料光纤连接器
CN109407237A (zh) * 2018-12-29 2019-03-01 刘向宁 一种单芯光纤双向光耦合器
CN111580213B (zh) * 2020-06-18 2023-01-31 中国建筑材料科学研究总院有限公司 双直区弯曲形光学纤维锥及其应用

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4137060A (en) * 1977-07-18 1979-01-30 Robert Bosch Gmbh Method of forming a lens at the end of a light guide
JPH0326103A (ja) 1989-06-23 1991-02-04 Fujitsu Ten Ltd データ多重ラジオ放送の受信装置
JPH0326103U (ja) * 1989-07-21 1991-03-18
US5133709A (en) * 1990-02-23 1992-07-28 Prince Martin R Optical fiber with atraumatic rounded end for use in laser angioplasty
US5504828A (en) * 1994-06-29 1996-04-02 International Business Machines Corporation Apparatus for extending bandwidth of large core fiber optic transmission links
JPH10221573A (ja) 1997-02-10 1998-08-21 Yasuhiro Koike 光ファイバと受光素子との結合構造
JP3653402B2 (ja) * 1998-05-27 2005-05-25 シャープ株式会社 光送受信モジュール
JP3767842B2 (ja) * 1998-11-02 2006-04-19 ローム株式会社 双方向の光通信用モジュール
US6243508B1 (en) * 1999-06-01 2001-06-05 Picolight Incorporated Electro-opto-mechanical assembly for coupling a light source or receiver to an optical waveguide
JP2002031727A (ja) * 2000-07-14 2002-01-31 Sharp Corp 光ファイバケーブル及びその端面加工方法
JP2002221627A (ja) * 2001-01-24 2002-08-09 Yazaki Corp 光ファイバの製造方法
JP3869774B2 (ja) * 2002-08-22 2007-01-17 シャープ株式会社 光通信システム

Also Published As

Publication number Publication date
JP2004078109A (ja) 2004-03-11
AU2003262261A1 (en) 2004-03-11
US20050232537A1 (en) 2005-10-20
WO2004019099A1 (ja) 2004-03-04
CN1685260A (zh) 2005-10-19
US7218813B2 (en) 2007-05-15
CN100462757C (zh) 2009-02-18

Similar Documents

Publication Publication Date Title
JP3941873B2 (ja) 二方向性光学データ送信のための送受信配置
TWI612353B (zh) 光插座及具備它之光模組
JP3758526B2 (ja) 双方向光通信器および双方向光通信装置並びに双方向光通信器の組み立て方法
JP3850743B2 (ja) 光通信モジュール、および光ファイバと光通信モジュールとの光学的結合構造
US6776537B2 (en) Light source-optical fiber coupler
JP3699852B2 (ja) 双方向光通信器および双方向光通信装置
US6929405B2 (en) Optical communication module and single fiber bi-directional optical communication module
US7248801B2 (en) Bidirectional optical communications module
JP3869774B2 (ja) 光通信システム
KR100997611B1 (ko) 광 결합 시스템 및 도파관 장치
KR20050092126A (ko) 작은 형태 인자를 가진 렌즈형 광섬유 및 그 제조방법
KR19990013585A (ko) 광 통신 장치 및 방법
JP3950362B2 (ja) 光通信システム
JP3694432B2 (ja) 双方向光通信器及び双方向光通信装置
JP3625406B2 (ja) 双方向光通信器及び双方向光通信装置
JP2008197459A (ja) 光送受信モジュール
JP2005024617A (ja) 光送信器
JP3689644B2 (ja) 双方向光通信器および双方向光通信装置
JP2005010309A (ja) 光送受信装置および光ファイバ
JP3834178B2 (ja) 双方向光通信器および双方向光通信装置
US6161965A (en) Optical coupling circuit
JP2001228370A (ja) 光送受信装置
JP3741608B2 (ja) 双方向光通信器
JP3893339B2 (ja) 光通信モジュール
JP2024003344A (ja) 光送信器及び光伝送システム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060425

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060623

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061010

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061013

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091020

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101020

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111020

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees