JP3849473B2 - ガスタービンの高温部冷却方法 - Google Patents
ガスタービンの高温部冷却方法 Download PDFInfo
- Publication number
- JP3849473B2 JP3849473B2 JP2001259125A JP2001259125A JP3849473B2 JP 3849473 B2 JP3849473 B2 JP 3849473B2 JP 2001259125 A JP2001259125 A JP 2001259125A JP 2001259125 A JP2001259125 A JP 2001259125A JP 3849473 B2 JP3849473 B2 JP 3849473B2
- Authority
- JP
- Japan
- Prior art keywords
- air
- temperature
- cooling
- turbine
- compressor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02C—GAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
- F02C7/00—Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
- F02C7/12—Cooling of plants
- F02C7/16—Cooling of plants characterised by cooling medium
- F02C7/18—Cooling of plants characterised by cooling medium the medium being gaseous, e.g. air
- F02C7/185—Cooling means for reducing the temperature of the cooling air or gas
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D25/00—Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
- F01D25/08—Cooling; Heating; Heat-insulation
- F01D25/10—Heating, e.g. warming-up before starting
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Engine Equipment That Uses Special Cycles (AREA)
- Control Of Turbines (AREA)
- Turbine Rotor Nozzle Sealing (AREA)
Description
【発明の属する技術分野】
本発明は、ガスタービンの高温部冷却方法に関する。
【0002】
【従来の技術】
近年の電力需要の増大,地球温暖化対策としてガスタービン発電設備の大容量化・高効率化が求められている。特に圧縮機により圧縮された空気を燃焼器へと導き燃料を供給して燃焼させ、その燃焼ガスによりガスタービンを駆動するガスタービン発電設備においては、燃焼温度をより高温化することにより大容量・高効率が実現できる。しかしながら、より高温の燃焼ガスにさらされる燃焼ガスの持つエネルギーを回収するガスタービンは、冷却無しでは損傷を招き重大事故へと発展する可能性がある。この為、燃焼ガス温度の高いガスタービン発電設備においては圧縮空気や蒸気を用いてガスタービン高温部の冷却を行っている。
【0003】
タービンの高温部冷却に用いられる冷却空気は冷却空気の流路での圧力損失を考慮して高圧の空気が使用される。
【0004】
冷却空気をタービンのガスパス中に放出するオープン冷却のガスタービンでは温度の低い圧縮機の抽気空気をそのまま冷却空気として使用する。あるいは圧縮機吐出空気を冷却器にて冷却した後に高温部冷却に用いる。
【0005】
一方、タービンの高温部冷却に使用する冷却空気を燃焼器に回収し燃焼空気として使用するクローズド冷却のガスタービンではタービン高温部の冷却空気流路の圧力損失がある為、燃焼器に冷却空気を回収する為には圧縮機吐出空気をブースト圧縮機にて昇圧する必要がある。ブースト圧縮機にて昇圧すると冷却空気温度が上昇する為、冷却空気温度を適切な温度とする為の冷却器が設置される。
【0006】
圧縮機から吐出された空気を熱交換器にて冷却し、タービン高温部を冷却する系統構成については例えば特開平10−196316号に記載されている。
【0007】
【発明が解決しようとする課題】
冷却空気を冷却する熱交換器で使用する冷却水の温度がタービン起動の際には低く、熱交換器出口の冷却空気温度が低くなりすぎ、熱交換器より下流の冷却空気内部にミストが発生する可能性がある。冷却空気内にミストが発生すると冷却空気中に含まれるダストを冷却流路の壁面に付着させる恐れがある。また、複数のダストを結合させより大きなダストを形成するなどタービン高温部に形成される複雑で精密に作られている冷却流路を閉塞させる恐れがある。また、冷却空気系統を構成する補機の破損を引起す恐れがある。特に系統を構成するブースト圧縮機は高速回転体である為、空気中のミストが高速の空気流とともにブースト圧縮機に供給されると高速でインペラに衝突するので圧縮機の破損を招く恐れがある。ブースト圧縮機が破損するとタービン高温部への冷却空気の供給停止,異物の飛散によるタービン高温部冷却流路の閉塞,破損を引起す恐れがある。
【0008】
さらに、冷却空気系統を形成する機器に付着する事で機器内部に錆を発生させる可能性もある。ここで発生する錆は冷却空気系統内に新たに発生するダストとなるため冷却空気流路を閉塞させる新たな要因となる。以上のような事が冷却空気系統に発生すると、冷却空気系統を構成する機器により微細なダスト分離が可能な高性能のフィルタを備えていても冷却空気の清浄度を保つ事は出来ずタービン高温部を冷却する冷却空気系統として望ましくない。
【0009】
本発明の目的は、ガスタービンの冷却空気系統での起動時のミスト発生を抑制することにある。
【0010】
【課題を解決するための手段】
本発明は、空気を圧縮する圧縮機と、該圧縮機で圧縮された空気と燃料とを混合して燃焼する燃焼器と、該燃焼器で燃焼された燃焼ガスにより駆動するタービンと、前記圧縮機で圧縮された空気の一部をタービン高温部に供給し、該タービン高温部冷却後の空気を燃焼器に供給する冷却空気系統とを備え、該冷却空気系統に、前記圧縮機で圧縮された空気の一部を冷却する熱交換器と、前記熱交換器の下流に空気を圧縮するブースト圧縮機とを設けたガスタービンの高温部冷却方法において、
前記タービンの起動期間の所望の期間に、前記熱交換器をバイパスするバイパス系統に少なくとも空気の一部を送り、前記熱交換器の下流側かつ前記ブースト圧縮機の上流側の空気を冷却しすぎずミスト発生を抑制するよう該空気温度を調整することを特徴とする。
【0011】
【発明の実施の形態】
(第一の実施の形態)
以下、本発明を、図1を用いて詳細に説明する。図1は、タービン高温部冷却系統を有するガスタービンの構成を示す。
【0012】
図1に示すように、このガスタービンは、空気を圧縮する圧縮機1と、圧縮機1で圧縮された空気と燃料とを混合して燃焼する燃焼器2と、燃焼器2で燃焼された燃焼ガスにより駆動するタービン3とを備えている。また、圧縮機1で圧縮された空気の一部をタービン3の高温部に供給する冷却空気系統を備えている。
【0013】
冷却空気系統は、本実施の形態では、圧縮機1から送られる空気を熱交換する熱交換器4,熱交換された空気中に含まれる粉塵などを除去する粉塵除去手段であるフィルタ5,フィルタ5で清浄化された空気を圧縮するブースト圧縮機6,ブースト圧縮機6で圧縮された空気中に含まれる粉塵などを除去する粉塵除去手段であるフィルタ7とを備えている。
【0014】
ここで、冷却空気系統で、圧縮機1側を上流側と称し、タービン高温部側を下流側と称する。
【0015】
圧縮機1出口から分岐した圧縮空気は、熱交換器4にて熱交換される。ここでは、下流側のブースト圧縮機6の出口空気温度がタービン高温部の冷却に適切な温度となる様な所望の温度に熱交換される。例えば、約500℃の空気をこの熱交換器4にて約100℃にまで冷却する。つまり、ブースト圧縮機6での空気温度上昇を考慮した適切な空気温度まで冷却される。
【0016】
冷却用空気は、熱交換器4からフィルタ5に導かれる。このフィルタ5によって空気中に含まれるミスト及びダスト等の異物を除去することができる。
【0017】
その後、冷却用空気は、ブースト圧縮機6により昇圧する。つまり、ブースト圧縮機6は、燃料油噴霧空気・タービン高温部冷却用空気として最適な圧力まで昇圧することができる。この際、空気温度は、例えば、約100℃から約240℃に上昇する。
【0018】
本実施の形態では、ブースト圧縮機6の下流側にもフィルタ7又はストレーナを設置している。タービン3の高温部へ供給する冷却空気や燃焼器2へ供給する燃料油噴霧空気を考慮して空気を清浄化している。
【0019】
このような清浄化された約240℃の冷却用空気は、タービン高温部に送られ、タービン高温部を冷却し、約500℃程度の温度となり、燃焼器2に供給される。
【0020】
付属する起動装置によるタービンの始動・着火・昇速過程のようなタービン起動期間では、圧縮機1の吐出空気温度は、圧縮機1の吸込み空気温度に対してあまり上昇しない。その空気温度は、定格負荷時の圧縮機1の吐出空気温度と比較して低い。従って、熱交換器4の入口空気温度が低くなる為、熱交換器出口の空気温度も低くなってしまう。
【0021】
このようなタービン起動期間では、熱交換器4の下流の冷却空気中にミストが発生する可能性がある。冷却空気内に、ミストが発生すると冷却空気中に含まれるダストをタービン高温部に設けられた冷却空気流路の壁面に付着させる恐れがある。また、冷却空気中に含まれる複数の微細なダストを結合させて、より大きなダストを形成する可能性がある。この様な事が起きるとタービン高温部に形成される複雑で精密に作られている冷却流路を閉塞させる恐れがある。そして、冷却空気流路の閉塞はタービン高温部に供給される冷却空気の不足により冷却不足を招きタービン高温部の破損を引起す原因となる。また、冷却空気系統を構成する補機の破損も引起す恐れがある。特に系統を構成するブースト圧縮機6は高速回転体である為、空気中のミストが高速の空気流とともにブースト圧縮機に供給されると高速でブースト圧縮機6のインペラに衝突するのでブースト圧縮機6にダメージを与える恐れがある。
【0022】
ブースト圧縮機6がダメージを受けるとタービン高温部への冷却空気の供給が不足し、タービン高温部の破損を引起す。さらに、ブースト圧縮機6がダメージを受ける事により冷却空気中に異物が飛散し、タービン高温部冷却流路の閉塞を引起す。また、ブースト圧縮機6がダメージを受ける事により異物が飛散した事が直接タービンそのものの破損を引起す恐れがある。
【0023】
さらに、冷却空気系統を形成する機器にミストが付着する事で機器内部に錆を発生させる可能性もある。ここで発生する錆は冷却空気内に新たに発生するダストとなるためタービン高温部の冷却空気流路を閉塞させる新たな要因となる。
【0024】
以上のような事が冷却空気系統に発生すると、冷却空気系統を構成する機器により微細なダスト分離が可能な高性能のフィルタを備えていても、冷却空気の清浄度を保つ事は出来ず、タービン高温部を冷却する冷却空気系統として望ましくない。
【0025】
ここで、タービンは種々の運転時期が存在する。図9に、時間経過に対する回転速度変化及び負荷変化を示す。
【0026】
回転速度は、タービンの始動から昇速期間を経て定格回転にいたる。昇速期間中に着火が行われる。その後、負荷は、併入時から徐々に上昇して定格負荷にいたる。圧縮機1からの圧縮空気温度は、種々の条件にて変動するが、例えば、図9に示すように、T1からT2に上昇する。本実施の形態では、起動期間を、タービンの始動から定格負荷までの期間と称する。この起動期間の所望の時期に、ミスト発生の抑制のための空気温度調整を実施することが望ましい。
【0027】
そして、冷却空気温度が低くなりすぎないように、タービンの運転時期に応じて熱交換器4の下流側の空気温度を調整する系統を設ける。
【0028】
熱交換器4の下流側の空気温度を調整する系統として、例えば、間接式の熱交換器4で使用する冷却水を加熱する手段を設ける。間接式の熱交換器4で使用する冷却水を加熱器8等で加熱し、熱交換器4の出口空気温度が低くなり過ぎて空気中にミストが発生しないように適当な冷却空気温度に調整することができる。熱交換器4に供給する冷却水の温度は熱交換器4の出口付近や下流側の空気温度により制御する事で、適切な冷却空気温度に管理する事が可能となる。また、圧縮機1の吐出空気温度でも適切な冷却空気温度に管理する事も可能である。
【0029】
但し、タービンに付属する起動装置にて、タービンを始動・着火して昇速すると、圧縮機1の出口(下流側)空気温度は十分に上昇するので、圧縮機1より分岐してタービン高温部を冷却する冷却空気を熱交換する熱交換器4に供給する冷却水を加熱しなくても熱交換器4の出口空気は空気中にミストを発生しない冷却空気として適当な温度に調整する事が出来る。この為、熱交換器4の下流側の空気温度を監視する事によって、熱交換器4に供給する冷却水の加熱の要否を判定し適切な冷却空気温度に調整することができる。あるいは、圧縮機1の下流側空気温度を監視して同様に冷却水の加熱要否を判定し適切な時期のみ冷却水の温度管理を行う事も可能である。例えば、冷却空気系統の空気温度を測定する温度測定装置を設け、監視することが望ましい。
【0030】
タービンの着火・昇速後、圧縮機1の出口空気温度が上昇すると、熱交換器4の過冷却による冷却空気中のミスト発生を抑える事が出来るようになる。よって、圧縮機1の出口空気温度が上昇した後は冷却水の加熱は行わず、冷却水をそのまま熱交換器4へ供給してタービンを運転する。
【0031】
以上のように、本実施の形態では、冷却空気系統のミスト発生を抑制することができる。
【0032】
ここで、このようなミスト発生抑制に関しては、冷却空気系統がクローズドタイプの際に顕著な効果が期待できる。つまり、タービン高温部を冷却する冷却空気を圧縮機1出口すなわち燃焼器室から抽気して、冷却後の空気を元の燃焼器2に供給回収するクローズド冷却空気系統では、冷却空気抽気位置と回収位置の圧力が同レベルにあるため、タービン高温部での冷却空気流路・配管・付属機器での圧力損失分だけタービン圧縮機1出口から抽気した空気をブースト圧縮機にて昇圧する必要が有る。ブースト圧縮機にて昇圧した空気は同時に昇温されることになる。また、回収経路を構成するタービン部品、特にロータ部品の耐熱信頼性を考慮すると回収空気温度は、タービン圧縮機の出口空気温度と同程度が望ましい。冷却空気抽気温度と回収空気温度を同レベルにするためには、タービン高温部を冷却する事による冷却空気温度の上昇を考慮して、タービン圧縮機1出口から抽気した冷却空気を熱交換器にて冷却する必要が有る。
【0033】
このように、クローズド空気冷却システムでは、ブースト圧縮機での昇温とタービン高温部を冷却することによる昇温の両者を考慮して、定格負荷運転時でも問題無く空気を適切な温度まで冷却出来るよう熱交換器の冷却能力を決める事となる。故に、冷却後の空気を直接主流ガスに放出する従来の冷却方法で用いられている熱交換器よりも交換熱量の大きいものとなる。タービン起動時には、タービン圧縮機1の出口空気温度は定格負荷運転時に比べて低く、クローズド空気冷却系統に用いる熱交換器の交換熱量は前記のように従来の冷却方法で用いられる熱交換器よりも大きく、必要以上に熱交換器出口にて冷却空気温度が下がり、空気中にミストが発生する要因となる。また、クローズド空気冷却ガスタービンでは、冷却空気を主流空気に放出することによる主流空気の温度低下が抑制され、ガスタービン排ガス温度が高くなる傾向にあるので、ガスタービン単体効率向上及び排気ガスダクトの耐熱を考慮してガスタービン圧力比を上げて排ガス温度を従来のガスタービンと同等にすることが望ましい。ガスタービン圧力比を上げると冷却空気の圧力も上昇し、冷却空気に含まれる水蒸気の分圧も上昇することから、ミストの発生が助長されることになる。このようなクローズドタイプに本発明を適用することで顕著なミスト発生抑制効果が期待できる。
【0034】
なお、間接式の熱交換器4で使用する冷却水の温度調整を行っているので、冷却系統を直接制御せずに、間接的に制御しており、冷却空気系統の信頼性が高い。つまり、仮に、この熱交換器4の冷却水の温度調整機構が故障したとしても、冷却空気系統自体に重大な被害を与えない。
【0035】
(第二の実施の形態)
図2に示すように熱交換器4をバイパスする系統9を設置する例を説明する。バイパス系統9を利用して熱交換器4を介さない温度の高い冷却空気と熱交換器出口の温度の低い冷却空気を混合する事で、タービン高温部に供給する冷却空気温度を調整する。これにより、タービン起動時における熱交換器出口の冷却空気温度が低くなりすぎるのを防止する。
【0036】
熱交換器4の出口温度はバイパス系統9を通過する高温の空気流量をバイパス系統に設置する弁9aの開度を調整する事で、適当な冷却空気温度になるように調整する。
【0037】
圧縮機1の出口温度が上昇すればバイパス系統9は使用しなくても、冷却空気を全量熱交換器4に供給しても熱交換器4に供給する冷却水の流量を制御する事で、適当な冷却空気温度に調整する事が出来る。よって、バイパス系統の弁9aは全閉とする。
【0038】
本実施の形態によると、タービン起動期間のミスト発生を抑制することができる。
【0039】
なお、バイパス系統構造としているので、簡易な構造とすることができ、温度調整範囲を広くとることができる。
【0040】
(第三の実施の形態)
第三の実施の形態として、図3に示すようにタービン起動時に熱交換器4に供給する冷却水を加熱する為の補助ボイラー10を設置する。起動時には補助ボイラー10からの蒸気を冷却水系統に設置した熱交換器11に供給する事で冷却水を加熱する。冷却水の温度を圧縮機吐出温度により制御する事でより適切な温度管理も可能である。この冷却水の温度を調整するには補助ボイラーからの蒸気流量を弁11aにより調整する。
【0041】
これによりタービン起動時にタービン高温部へ供給する冷却空気温度が低くなり過ぎるのを防止する。
【0042】
タービン起動・着火後、圧縮機1の出口空気温度が上昇すれば冷却水加熱は不要となる為、補助ボイラー10は停止して熱交換器4へ冷却水を直接供給し、熱交換器4へ供給する冷却水の流量を調整する事で冷却空気の温度調整を行う。
【0043】
(第四の実施の形態)
第四の実施の形態として、図4に示すようにタービン起動時に熱交換器に供給する冷却水を加熱する為のヒータ12を設置する。
【0044】
冷却水系統に圧縮機吐出空気温度が低い時のみに使用する貯水槽13を設置し、貯水槽13にヒータを設置する事で冷却水の温度を上昇させる。貯水槽13の冷却水は送水ポンプ14により圧縮機1からの冷却空気を冷却するための熱交換器4に供給される。冷却水の温度は圧縮機吐出温度により制御する事でより適切な温度管理も可能である。
【0045】
これによりタービン起動時の冷却空気温度が低くなり過ぎるのを防止する。
【0046】
タービン起動・着火後は冷却水系統に設置しているヒータ12による加熱を止め、弁14a,14bを全閉とし、タービン設備に設置される他の冷却水を使用する機器と共有の冷却水系統からの給排水系統に接続する弁14c,14dを全開として、冷却水を熱交換器4へ直接供給する。
【0047】
(第五の実施の形態)
第五の実施の形態として、図5に示すように圧縮機吐出空気の冷却に蒸発器15を使用する。この場合、タービン起動時のみに使用する補助ボイラー16を設置する。
【0048】
これにより、タービン起動時には補助ボイラー16からの蒸気を蒸発器15内部に通気する事で蒸発器内部の冷却水温度を上昇させる。
【0049】
また、給水系統17からの給水は蒸発器15にて冷却空気と熱交換する事で蒸気となり蒸気タービン等他の機器18へ供給する事で熱回収を行いプラントとしての効率を向上させる。
【0050】
補助ボイラー16からの蒸気流量を弁16aにより調整する事で蒸発器内部の冷却水温度を調整する。冷却水の温度は圧縮機吐出温度により制御する事でより適切な温度管理も可能である。タービン起動・着火後、圧縮機1の出口空気温度が上昇すれば補助ボイラー16からの蒸気の通気を停止し、蒸発器内部の冷却水加熱を止め、蒸発器15の出口空気をタービン高温部の冷却空気として使用する。
【0051】
圧縮機1の出口空気温度が上昇すれば、蒸発機15の出口空気温度は蒸発器内部の冷却水の水位を制御する事で温度調節を行う。
【0052】
これにより、蒸発器出口での冷却空気温度が低くなりすぎるのを防止する。
【0053】
(第六の実施の形態)
第六の実施の形態として、図6に示すようにタービン起動時の蒸発器15内の冷却水温度を上昇させる為にヒータ19を設置する。ヒータ19による加熱を行う為の貯水タンク20と冷却水を循環する為のポンプ21,22を設置する。冷却水の温度は貯水タンクを循環する冷却水の流量を調整し、圧縮機吐出温度により制御する事でより適切な温度管理も可能である。
【0054】
これにより、蒸発器15の出口での冷却空気温度が低くなりすぎるのを防止する。
【0055】
タービン起動・着火後、圧縮機1の出口空気温度が上昇すれば冷却水系統に設置したヒータ19による加熱を止めて貯水タンクへの循環を止める為、循環ポンプ21,22を停止し弁22a,22b、を全閉として冷却水の給水系統17から直接冷却水を熱交換器4へ供給する。
【0056】
圧縮機1の出口空気温度が上昇すれば、蒸発機15の出口空気温度は蒸発器内部の冷却水の水位を制御する事で温度調節を行う。
【0057】
(第七の実施の形態)
第七の実施の形態として、図7に示すようにタービン起動時に蒸発器15内部の冷却水の給水流量を変え、水位を蒸発器が許容する最低給水流量を上回る範囲で下げる事で蒸発器15出口の冷却空気温度が低くなりすぎるのを防止する。
【0058】
タービン起動後は圧縮機1の出口空気温度上昇に合わせて蒸発器15内の冷却水の水位を上昇させ、空気温度を制御する。この場合、起動時に蒸発器出口空気温度が低くなりすぎるのを防ぐと共に、運転状態によらず圧縮機出口空気温度または、熱交換器4の出口空気温度,ブースト圧縮機出口空気温度を監視する事で水位を調整することにより適切な空気温度に調整出来る。
【0059】
(第八の実施の形態)
第八の実施の形態として、図8に示すようにタービン起動時に蒸発器15をバイパスする系統23を設置する。バイパス系統23を利用して蒸発器を介さない温度の高い冷却空気と蒸発器出口の温度の低い冷却空気を混合する事で、タービン高温部に供給する冷却空気温度を調整する。
【0060】
以上によれば、タービン起動時において冷却空気温度が低くなりすぎるのを防止する事が出来る。
【0061】
タービンの起動・着火後に圧縮機出口空気温度が上昇すれば、バイパス系統23に設置する弁23aを全閉とする事で、バイパス系統は使用せずに冷却空気を全量蒸発器へ供給する。
【0062】
以上示してきたようにタービン起動時の冷却空気温度が低くなりすぎるのを防止する事で、冷却空気内部にミストが発生する事を防止する。ミストの発生を抑制する事により冷却空気流路へのダストの付着を防止し冷却空気流路が閉塞するのを防止するとともに、系統に設置される補機類が破損するのを防止する事が出来る。
【0063】
【発明の効果】
本発明によると、ガスタービンの冷却空気系統での起動時のミスト発生を抑制することができるという効果を奏する。
【図面の簡単な説明】
【図1】本発明の第一の実施例、ガスタービンの高温部冷却系統を示す。
【図2】本発明の他の実施例、ガスタービンの高温部系統図を示す。
【図3】本発明の他の実施例、ガスタービンの高温部系統図を示す。
【図4】本発明の他の実施例、ガスタービンの高温部系統図を示す。
【図5】本発明の他の実施例、ガスタービンの高温部系統図を示す。
【図6】本発明の他の実施例、ガスタービンの高温部系統図を示す。
【図7】本発明の他の実施例、ガスタービンの高温部系統図を示す。
【図8】本発明の他の実施例、ガスタービンの高温部系統図を示す。
【図9】本発明の実施例、ガスタービン起動時の運転状況を示す図である。
【符号の説明】
1…圧縮機、2…燃焼器、3…ガスタービン、4,11…熱交換器、5,7…フィルタ、6…ブースト圧縮機、8…加熱器、9,23…バイパス系統、10,16…補助ボイラー、12,19…ヒータ、13…貯水槽、14…送水ポンプ、15…蒸発器、17…給水系統、18…機器、20…貯水タンク、21,22…循環ポンプ。
Claims (1)
- 空気を圧縮する圧縮機と、該圧縮機で圧縮された空気と燃料とを混合して燃焼する燃焼器と、該燃焼器で燃焼された燃焼ガスにより駆動するタービンと、前記圧縮機で圧縮された空気の一部をタービン高温部に供給し、該タービン高温部冷却後の空気を燃焼器に供給する冷却空気系統とを備え、該冷却空気系統に、前記圧縮機で圧縮された空気の一部を冷却する熱交換器と、前記熱交換器の下流に空気を圧縮するブースト圧縮機とを設けたガスタービンの高温部冷却方法において、
前記タービンの起動期間の所望の期間に、前記熱交換器をバイパスするバイパス系統に少なくとも空気の一部を送り、前記熱交換器の下流側かつ前記ブースト圧縮機の上流側の空気を冷却しすぎずミスト発生を抑制するよう該空気温度を調整することを特徴とするガスタービンの高温部冷却方法。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001259125A JP3849473B2 (ja) | 2001-08-29 | 2001-08-29 | ガスタービンの高温部冷却方法 |
US10/082,060 US6644035B1 (en) | 2001-08-29 | 2002-02-26 | Gas turbine and gas turbine high temperature section cooling method |
US10/659,375 US6990815B2 (en) | 2001-08-29 | 2003-09-11 | Gas turbine and gas turbine high temperature section cooling method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001259125A JP3849473B2 (ja) | 2001-08-29 | 2001-08-29 | ガスタービンの高温部冷却方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2003065072A JP2003065072A (ja) | 2003-03-05 |
JP3849473B2 true JP3849473B2 (ja) | 2006-11-22 |
Family
ID=19086547
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001259125A Expired - Lifetime JP3849473B2 (ja) | 2001-08-29 | 2001-08-29 | ガスタービンの高温部冷却方法 |
Country Status (2)
Country | Link |
---|---|
US (2) | US6644035B1 (ja) |
JP (1) | JP3849473B2 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015064428A1 (ja) * | 2013-10-29 | 2015-05-07 | 三菱日立パワーシステムズ株式会社 | 温度制御装置、ガスタービン、温度制御方法およびプログラム |
Families Citing this family (48)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10392154T5 (de) * | 2002-03-04 | 2004-08-19 | Mitsubishi Heavy Industries, Ltd. | Turbinenanlage und Kombikraftwerk sowie Turbinenbetriebsverfahren |
US6968696B2 (en) * | 2003-09-04 | 2005-11-29 | Siemens Westinghouse Power Corporation | Part load blade tip clearance control |
JP4100316B2 (ja) | 2003-09-30 | 2008-06-11 | 株式会社日立製作所 | ガスタービン設備 |
US7744827B2 (en) | 2004-02-13 | 2010-06-29 | United Technologies Corporation | Catalytic treatment of fuel to impart coking resistance |
US20100064845A1 (en) * | 2005-07-19 | 2010-03-18 | Bear Corporation | Bicycle Crank Assembly |
GB2449095B (en) * | 2007-05-10 | 2009-05-27 | Rolls Royce Plc | Re-Pressurisation device |
US7762789B2 (en) * | 2007-11-12 | 2010-07-27 | Ingersoll-Rand Company | Compressor with flow control sensor |
US20090293496A1 (en) * | 2008-06-02 | 2009-12-03 | Norris James W | Gas turbine engines generating electricity by cooling cooling air |
JP5297114B2 (ja) * | 2008-08-06 | 2013-09-25 | 三菱重工業株式会社 | ガスタービン |
WO2010041552A1 (ja) * | 2008-10-08 | 2010-04-15 | 三菱重工業株式会社 | ガスタービン及びその運転方法 |
US8707709B2 (en) * | 2009-03-31 | 2014-04-29 | General Electric Company | Systems and methods for controlling compressor extraction cooling |
US8267639B2 (en) * | 2009-03-31 | 2012-09-18 | General Electric Company | Systems and methods for providing compressor extraction cooling |
US8572985B2 (en) * | 2009-06-26 | 2013-11-05 | Pratt & Whitney Canada Corp. | Air filtration system for gas turbine engine pneumatic system |
CN102839998A (zh) * | 2011-06-22 | 2012-12-26 | 镇江市科能电力设备有限公司 | 汽轮机快速冷却装置 |
JP2013057278A (ja) * | 2011-09-07 | 2013-03-28 | Mitsubishi Heavy Ind Ltd | ガスタービン |
US9239005B2 (en) * | 2011-11-25 | 2016-01-19 | Pratt & Whitney Canada Corp. | Cooling system for engine and aircraft air |
US9169782B2 (en) * | 2012-01-04 | 2015-10-27 | General Electric Company | Turbine to operate at part-load |
US20150184593A1 (en) * | 2012-01-30 | 2015-07-02 | Robert J. Kraft | Gas Turbine Energy Storage and Energy Supplementing Systems And Methods of Making and Using the Same |
US9404395B2 (en) * | 2013-11-22 | 2016-08-02 | Siemens Aktiengesellschaft | Selective pressure kettle boiler for rotor air cooling applications |
JP6389613B2 (ja) * | 2014-01-27 | 2018-09-12 | 三菱日立パワーシステムズ株式会社 | ガスタービン発電設備およびガスタービン冷却空気系統乾燥方法 |
JP6284376B2 (ja) * | 2014-01-27 | 2018-02-28 | 三菱日立パワーシステムズ株式会社 | ガスタービンの運転方法および運転制御装置 |
JP6296286B2 (ja) | 2014-03-24 | 2018-03-20 | 三菱日立パワーシステムズ株式会社 | 排熱回収システム、これを備えているガスタービンプラント、排熱回収方法、及び排熱回収システムの追設方法 |
US10731560B2 (en) | 2015-02-12 | 2020-08-04 | Raytheon Technologies Corporation | Intercooled cooling air |
US11808210B2 (en) | 2015-02-12 | 2023-11-07 | Rtx Corporation | Intercooled cooling air with heat exchanger packaging |
US10371055B2 (en) | 2015-02-12 | 2019-08-06 | United Technologies Corporation | Intercooled cooling air using cooling compressor as starter |
JP5897180B2 (ja) * | 2015-04-03 | 2016-03-30 | 三菱日立パワーシステムズ株式会社 | ガスタービン |
US10830148B2 (en) | 2015-04-24 | 2020-11-10 | Raytheon Technologies Corporation | Intercooled cooling air with dual pass heat exchanger |
US10480419B2 (en) | 2015-04-24 | 2019-11-19 | United Technologies Corporation | Intercooled cooling air with plural heat exchangers |
US10221862B2 (en) | 2015-04-24 | 2019-03-05 | United Technologies Corporation | Intercooled cooling air tapped from plural locations |
US10100739B2 (en) | 2015-05-18 | 2018-10-16 | United Technologies Corporation | Cooled cooling air system for a gas turbine engine |
US10794288B2 (en) | 2015-07-07 | 2020-10-06 | Raytheon Technologies Corporation | Cooled cooling air system for a turbofan engine |
US10443508B2 (en) | 2015-12-14 | 2019-10-15 | United Technologies Corporation | Intercooled cooling air with auxiliary compressor control |
US10125687B2 (en) | 2016-02-29 | 2018-11-13 | General Electric Company | System and method for cooling a turbine engine assembly |
US10669940B2 (en) | 2016-09-19 | 2020-06-02 | Raytheon Technologies Corporation | Gas turbine engine with intercooled cooling air and turbine drive |
US10677067B2 (en) | 2016-09-29 | 2020-06-09 | General Electric Company | Airfoil and method of assembling same |
US10550768B2 (en) | 2016-11-08 | 2020-02-04 | United Technologies Corporation | Intercooled cooled cooling integrated air cycle machine |
US10794290B2 (en) | 2016-11-08 | 2020-10-06 | Raytheon Technologies Corporation | Intercooled cooled cooling integrated air cycle machine |
JP2018096300A (ja) * | 2016-12-14 | 2018-06-21 | 川崎重工業株式会社 | 冷却系統を備えるガスタービンシステム |
US10961911B2 (en) | 2017-01-17 | 2021-03-30 | Raytheon Technologies Corporation | Injection cooled cooling air system for a gas turbine engine |
US10995673B2 (en) | 2017-01-19 | 2021-05-04 | Raytheon Technologies Corporation | Gas turbine engine with intercooled cooling air and dual towershaft accessory gearbox |
US10577964B2 (en) | 2017-03-31 | 2020-03-03 | United Technologies Corporation | Cooled cooling air for blade air seal through outer chamber |
US10711640B2 (en) | 2017-04-11 | 2020-07-14 | Raytheon Technologies Corporation | Cooled cooling air to blade outer air seal passing through a static vane |
US10738703B2 (en) | 2018-03-22 | 2020-08-11 | Raytheon Technologies Corporation | Intercooled cooling air with combined features |
US10808619B2 (en) | 2018-04-19 | 2020-10-20 | Raytheon Technologies Corporation | Intercooled cooling air with advanced cooling system |
US10830145B2 (en) | 2018-04-19 | 2020-11-10 | Raytheon Technologies Corporation | Intercooled cooling air fleet management system |
US10718233B2 (en) | 2018-06-19 | 2020-07-21 | Raytheon Technologies Corporation | Intercooled cooling air with low temperature bearing compartment air |
US11255268B2 (en) | 2018-07-31 | 2022-02-22 | Raytheon Technologies Corporation | Intercooled cooling air with selective pressure dump |
US11702981B1 (en) * | 2022-04-20 | 2023-07-18 | Raytheon Technologies Corporation | Turbine engine bleed waste heat recovery |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CH398180A (de) * | 1962-12-06 | 1965-08-31 | Escher Wyss Ag | Wärmekraftanlage, in welcher ein gasförmiges Arbeitsmittel im oberen Leistungsbereich einen Kreislauf unter Überdruck gegen die Atmosphäre beschreibt |
JP3431435B2 (ja) | 1997-01-06 | 2003-07-28 | 株式会社日立製作所 | コンバインド発電プラントおよびクローズド空気冷却ガスタービンシステム |
JP3977909B2 (ja) * | 1997-11-26 | 2007-09-19 | 三菱重工業株式会社 | 回収式蒸気冷却ガスタービン |
-
2001
- 2001-08-29 JP JP2001259125A patent/JP3849473B2/ja not_active Expired - Lifetime
-
2002
- 2002-02-26 US US10/082,060 patent/US6644035B1/en not_active Expired - Lifetime
-
2003
- 2003-09-11 US US10/659,375 patent/US6990815B2/en not_active Expired - Lifetime
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015064428A1 (ja) * | 2013-10-29 | 2015-05-07 | 三菱日立パワーシステムズ株式会社 | 温度制御装置、ガスタービン、温度制御方法およびプログラム |
JP6072286B2 (ja) * | 2013-10-29 | 2017-02-01 | 三菱日立パワーシステムズ株式会社 | 温度制御装置、ガスタービン、温度制御方法およびプログラム |
US10465608B2 (en) | 2013-10-29 | 2019-11-05 | Mitsubishi Hitachi Power Systems, Ltd. | Temperature control device, gas turbine, temperature control method, and program |
Also Published As
Publication number | Publication date |
---|---|
US20050172612A1 (en) | 2005-08-11 |
US6644035B1 (en) | 2003-11-11 |
JP2003065072A (ja) | 2003-03-05 |
US6990815B2 (en) | 2006-01-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3849473B2 (ja) | ガスタービンの高温部冷却方法 | |
JP3593488B2 (ja) | ガスタービン | |
EP2708720B1 (en) | Gas turbine and operating method thereof | |
JP3690972B2 (ja) | 蒸気冷却ガスタービン | |
US7500349B2 (en) | Power plant and operating method | |
JP4395254B2 (ja) | コンバインドサイクルガスタービン | |
EP2208862B1 (en) | Compressor clearance control system and method for providing clearance control | |
JP3068925B2 (ja) | コンバインドサイクル発電プラント | |
JP2015511684A (ja) | 制御可能な冷却空気系統を備えたガスタービン | |
JP3977909B2 (ja) | 回収式蒸気冷却ガスタービン | |
JP3713173B2 (ja) | ガスタービンの氷結防止運転方法 | |
CN111255536A (zh) | 一种燃气-蒸汽机组电厂的fcb运行方法 | |
JPH09112215A (ja) | ガスタービンプラントおよびその運転方法 | |
JP4373420B2 (ja) | コンバインド発電プラントおよびクローズド空気冷却ガスタービンシステム | |
JP6284376B2 (ja) | ガスタービンの運転方法および運転制御装置 | |
JP2006112282A (ja) | ガスタービン及びその冷媒供給方法 | |
US8534038B2 (en) | Combined power plant | |
JPH1193693A (ja) | コンバインドサイクル発電プラントの運転方法およびコンバインドサイクル発電プラント | |
JP3842653B2 (ja) | ガスタービン及びその運転方法 | |
JP4473464B2 (ja) | コンバインドサイクル発電プラントの運転方法 | |
JP3872407B2 (ja) | コンバインド発電プラントおよびクローズド空気冷却ガスタービンシステム | |
JP3159641B2 (ja) | コンバインドサイクル発電プラント及びそのプラント内高温部材の冷却方法 | |
JPH08210601A (ja) | 加圧流動床ボイラを備える発電プラントの制御装置 | |
CN118442140A (zh) | 一种新型汽轮机快速冷却方法及系统 | |
Radin | Mastering the pilot domestic binary combined-cycle plants |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20050216 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050301 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050425 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20051206 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060206 |
|
RD01 | Notification of change of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7421 Effective date: 20060418 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20060808 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20060821 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 3849473 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090908 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100908 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100908 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110908 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120908 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120908 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130908 Year of fee payment: 7 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |