JP3841165B2 - 水素選択透過膜 - Google Patents

水素選択透過膜 Download PDF

Info

Publication number
JP3841165B2
JP3841165B2 JP2002066813A JP2002066813A JP3841165B2 JP 3841165 B2 JP3841165 B2 JP 3841165B2 JP 2002066813 A JP2002066813 A JP 2002066813A JP 2002066813 A JP2002066813 A JP 2002066813A JP 3841165 B2 JP3841165 B2 JP 3841165B2
Authority
JP
Japan
Prior art keywords
membrane
hydrogen
film
hollow fiber
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002066813A
Other languages
English (en)
Other versions
JP2003260339A (ja
Inventor
竹巳 難波
直次 伊藤
修一 丹羽
富士夫 水上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nok Corp
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Nok Corp
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nok Corp, National Institute of Advanced Industrial Science and Technology AIST filed Critical Nok Corp
Priority to JP2002066813A priority Critical patent/JP3841165B2/ja
Publication of JP2003260339A publication Critical patent/JP2003260339A/ja
Application granted granted Critical
Publication of JP3841165B2 publication Critical patent/JP3841165B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、水素選択透過膜に関する。更に詳しくは、膜支持体上に金属膜を形成させた水素選択透過膜に関する。
【0002】
【従来の技術】
水素選択透過膜としては、ポリスルホン、ポリイミド、ポリアミド、ポリカーボネート、酢酸セルロース等の高分子膜とパラジウムまたはその合金によって代表される金属膜とがある。高分子膜は、材料コストが廉価で製膜性にすぐれているという特徴を有しており、一方金属膜は、耐熱性および分離性能にすぐれているという特徴を有している。
【0003】
このように、金属膜は分離性能にすぐれているものの、その水素透過機構から、水素透過速度は膜厚に反比例する。そこで、セラミックス多孔質支持体上に化学メッキする方法(J. Mem. Sci. 第56巻第303〜315頁、1991年)や金属有機物化学的気相成長法(MOCVD法;特開平11-300182号公報)により、金属薄膜を形成させる方法が提案されている。
【0004】
しかしながら、薄膜であるが故に製膜段階で欠陥が生じ易く、また取扱時や触媒と組合されて使用される場合に、他の部材や触媒との接触や摺動によって欠陥を生じ易い。特に、触媒充填型膜型反応器に水素分離用金属膜を用いる場合には、透過上流側表面は触媒との接触や摺動等により欠陥を生じ易く、このようにして生じた欠陥を修復することは大変困難である。
【0005】
さらに、例えばPd膜では、低温での水素脆化(温度および水素圧力に関係し、例えば大気圧の水素が存在すると約150℃以下で起こり、300℃以上では全く起きない)により、著しく分離性能が低下するという問題がみられる。また、Pd膜では、COやCO2の存在により、水素透過速度が低下するという問題もみられる。
【0006】
【発明が解決しようとする課題】
本発明の目的は、高い分離性能を有し、物理的な接触等による欠陥の発生が少なく、しかも低温での水素脆化による分離性能の低下が抑制され、また共存ガスによる水素透過速度の低下が抑制された水素選択透過性金属膜を用いた水素選択透過膜を提供することにある。
【0007】
【課題を解決するための手段】
かかる本発明の目的は、膜支持体上に水素選択透過性金属膜を形成させ、該金属膜の透過上流側表面が水素選択透過性高分子物質である弾力性ゴム状ポリシロキサン系高分子物質で被覆されている水素選択透過膜によって達成される。
【0008】
【発明の実施の形態】
本発明に係る水素選択透過膜の一実施態様を、図1の触媒充填式膜型反応器について説明する。触媒充填式膜型反応器1内には、水素選択透過性中空糸膜2が貫通しており、この中空糸膜2の周囲には触媒層3が充填されている。ここで、水素選択透過性中空糸膜2は、膜支持体4上に形成させた金属膜5を有しており、触媒層3から中空糸膜2内へ水素が透過する場合、金属膜5の透過上流側表面となる金属膜上に水素選択透過性高分子物質6が被覆されている。
【0009】
この反応器1には、反応原料供給口7および生成物取出口8が設けられており、中空糸膜の一端側Aからスイープガスを送り込むことによって、中空糸膜の他端側Bからスイープガスに同伴された水素が取り出される。ここで、反応原料としては、例えばメタノールまたはエチルベンゼン等が用いられ、これらに対応する生成物としてはそれぞれギ酸メチルまたはスチレン等が取り出される。
【0010】
これら以外にも、水素製造(輸送・回収)の例として
シクロヘキサン→ベンゼン+水素
メチルシクロヘキサン→トルエン+水素
デカリン→ナフタレン+水素
メチルデカリン→メチルナフタレン+水素
アンモニア→窒素+水素
が挙げられ、また水蒸気改質反応(水素製造)にも利用でき、
メタノール+水→二酸化炭素+水素
ジメチルエーテル+水→二酸化炭素+水素
などが例示される。
【0011】
水素選択透過性高分子物質としてポリスルホン、ポリイミド、ポリアミド、ポリカーボネート、酢酸セルロース等を用いた場合、これらはいずれもガラス転移温度の高いガラス状高分子物質であり、これらをPd系によって代表されるような金属膜の被覆に用いた場合、昇降温時に両者の熱膨張率の違いによって剥離が懸念される。従って、この種の用途には、ガラス転移温度が常温より低く、常温以上で弾力性を有するゴム状水素選択透過性高分子物質が好ましく、またその高分子物質の耐熱性は、水素分離膜の最高使用温度に合わせて選択される。
【0012】
かかる見地から、金属膜の被覆にはポリシロキサン系、ポリブタジエン系、ブチルゴム、ポリクロロプレン、ポリフッ化ビニリデン、ポリエチレン、ポリプロピレン等の高分子物質が適用可能であるが、気体透過性と耐熱性の面からみて、弾力性ゴム状ポリシロキサン系高分子物質が用いられる。ポリシロキサン系高分子物質の金属膜への被覆法としては、任意の膜厚で金属膜を被覆できる方法であれば特に制限はなく、例えばディップコーティング法、スプレーコーティング法、スピンコート法など用いられ、一般に約1〜50μm程度に設定される膜厚を制御するために、溶媒で希釈して溶液として用いる方法が好ましい。
【0013】
水素選択透過性高分子物質膜である弾力性ゴム状ポリシロキサン系高分子物質が被覆される金属膜としては、水素選択透過性を有する金属膜であれば特に制限がなく、例えばAg、Pd、Au、Pt、Rh、Ru、Ir、Ta、Nb、V、Niまたはこれらの合金等が用いられる。
【0014】
膜支持体上へのこれらの金属膜の形成は、従来法に従って行われる。図2に示される方法は、特開平11-300182号公報に記載された方法であり、反応管の内部に設置したPd源物質から多孔質セラミックス中空糸(膜支持体)の製膜範囲に向って流れるキャリヤーガスによって、昇華させたPd源物質を製膜範囲に供給することにより、多孔質セラミックス中空糸の一定の製膜範囲にPd膜を形成させる。
【0015】
反応器としての反応管11の内部には、多孔質セラミックス中空糸12がOリング等で気密固定されており、この中空糸12の内部を真空ポンプ13で連続的に排気する。ここで、多孔質セラミックス中空糸12の製膜範囲14以外の部分は、例えばNa2O-B2O3-SiO2系ガラス等のガラスで気密封止されている。また、反応管11の内部も真空ポンプ13′で排気され、中空糸12の内部圧力は真空計15によって、また反応器11の内部圧力は真空計15′によってそれぞれ測定され、それぞれの内部圧力は圧力調整弁16,16′によって制御される。
【0016】
ここでは、膜支持体としてアルミナ、シリカ、ジルコニア等の少くとも1種からなる多孔質中空糸が用いられているが、この他多孔質ガラス、多孔質金属等の耐熱性支持体を用いることもできる。
【0017】
反応器11の内部には、ガス供給器17からのキャリヤーガスが流量制御器18を通して供給される。反応器11および多孔質セラミックス中空糸12の内部圧力は、このキャリヤーガスの流量や真空ポンプ13,13′の排気量などによって異なるため、一概には特定することができないが、一般的には反応管11の内部圧力は約20〜2000Pa、また多孔質セラミックス中空糸12の内部圧力は約1〜500Paに保持される。キャリヤーガスは、図2においてPd源物質19から多孔質セラミックス中空糸12の製膜範囲14へと向う流れを形成している。
【0018】
反応管11は、Pd源物質設置部の加熱器20および支持体製膜部の加熱器21よりなる少くとも2つ以上に分割された加熱器により加熱され、温度制御器22,22′によって温度制御される。
【0019】
多孔質セラミックス中空糸12の製膜範囲14は、加熱器の支持体製膜部21に配置され、Pd源物質19の熱分解温度以下に保たれた反応管11内に置かれたPd源物質19は、加熱器のPd源物質設置部20によって昇華温度迄加熱される。Pd源物質19の昇華に伴って、反応管11内の圧力が増加したら、加熱器の支持体製膜部21の温度を約200〜500℃の製膜温度迄急速に昇温させ、反応管11の内部を製膜温度とする。
【0020】
昇華したPd源物質19は、キャリヤーガスの流れによって製膜範囲14へと強制的に供給され、この製膜温度に約1〜3時間程度保持すると、熱分解で生じたPdは多孔質セラミックス中空糸12の外表面およびその近傍の細孔内に担持され、そこにPd薄膜を形成させる。
【0021】
金属膜の形成方法としては、こうした蒸着法以外に、前記した如き従来から用いられている金属薄膜形成法や無電解メッキ法などの金属メッキ法を用いることもでき、金属メッキ法が用いられる場合には金属膜が形成される膜支持体表面を予め活性化処理しておくことが好ましい。
【0022】
【発明の効果】
本発明に係る水素選択透過膜は、膜支持体上に水素選択透過性金属膜を形成させ、この金属膜の透過上流側表面が水素選択透過性高分子物質である弾力性ゴム状ポリシロキサン系高分子物質で被覆されているため、次のような効果を奏する。
(1)分離係数が大きく向上し、後記実施例1では6倍以上、また実施例2では15倍以上に迄達している。
(2)後記参考例3に示されるように、Pd膜は水素脆化により著しく分離性能を低下させるが、本発明に係る水素選択透過膜は、水素脆化は起るものの依然として高い分離性能を有し、脆化の程度はPd単独膜よりも格段に小さい。
(3)図3のグラフに示されるように、Pd膜はCOやCO2の共存によって水素透過速度を著しく低下させるのに対し、本発明に係る水素選択透過膜は、共存ガスの存在により水素透過速度の低下はみられるものの、その低下の程度はPd単独膜の約1/5程度にすぎない。
(4)金属膜を高分子物質、特にガラス転移温度が常温以下である弾力性ゴム状ポリシロキサン系高分子物質で被覆しているため、モジュール化する際の他の部材との接触や摺動に対してあるいは触媒充填式膜型反応器として使用する際の触媒との接触や摺動に対して、金属薄膜を保護し、金属薄膜に欠陥が生ずるのを効果的に防止している。
【0023】
【実施例】
次に、実施例について本発明を説明する。
【0024】
参考例1
特開平11-300182号公報記載の方法に従って、図2に示す装置を用いてPd膜形成多孔質セラミックス中空糸よりなる水素選択透過膜を製造した。
【0025】
膜支持体としては、外径2.0mm、内径1.7mm、長さ350mm、平均細孔径150nm、気孔率43%の多孔質アルミナ中空糸を用い、製膜範囲をその中央部の100mmとし、それ以外の部分をガラス(Na2O-B2O3-SiO2系ガラス)で気密封止し、反応器内の中央に1本設置した。また、Pd源物質としては、酢酸パラジウムを約0.75g用いた。反応器としては、内径85mm、長さ400mmのSUS製管を使用し、加熱器は長さ350mmの抵抗加熱式電気炉を用い、Pd源物質設置部と支持体製膜部の2つに分割し、それぞれ独立に温度制御を行った。
【0026】
製膜に際しては、まず反応器を排気しながらキャリアガスとしてのアルゴンガスを100cm3/分の流量で流し、支持体内も同時に排気することにより、反応器内の圧力を約300〜500Paに、また支持体内の圧力を約10〜200Paにそれぞれ制御した。Pd源物質設置部の温度を200℃迄、また支持体製膜部の温度を205℃迄ゆっくりと昇温させてその温度に保持しておき、反応器内の圧力増加が観察され始めたら、支持体製膜部の製膜温度を300℃迄10℃/分以上の昇温速度で急速に昇温し、そのままの温度で2時間保持した。
【0027】
得られたPd膜形成多孔質アルミナ中空糸について、Pd膜(膜厚約0.8μm)の300℃におけるH2およびN2の透過量を、Pd膜の外径側を透過上流側とし、ガスクロマトグラフィーにより定量してガス透過性を評価すると共に、H2およびN2の透過速度の比を分離係数α(H2/N2)として算出した。
【0028】
実施例1
ゴム状ポリシロキサン(信越シリコーン製品KE3417;硬化後のJIS A硬度約30)5gをトルエン100ml中に溶解した溶液中に、一端をシリコーン栓で封止した参考例1のPd膜形成多孔質アルミナ中空糸を封止端側からディッピングし、Pd膜の外表面側にポリシロキサンを塗布した後、これを室温下で十分に乾燥させた。封止端を取り除いた後、さらに120℃で2時間真空乾燥を行った。このようにして得られたポリシロキサン被覆Pd形成多孔質アルミナ中空糸膜について、ポリシロキサン被覆Pd膜の300℃におけるガス透過性を参考例1と同様にして測定した。
【0029】
参考例2
参考例1において、Pd膜の形成が活性化処理とPd無電解メッキ法によって行われた。
【0030】
活性化処理は、まずSnCl2を主成分とする市販の活性化処理液(高純度化学製品S-1)中に膜支持体としての多孔質アルミナ中空糸を浸せきし、そのまま3分間保持した後、純水で洗浄した。次いで、PdCl2を主成分とする市販の活性化処理液(同社製品P-1)に支持体を浸せきし、そのまま1分間保持した後、純水で洗浄した。このような一連の活性化処理を4回くり返した。
【0031】
次いで、パラジウム無電解メッキ用B液(エヌ・イーケムキャット製品;Pdイオン2g/Lを含む溶液)とパラジウム無電解メッキ用A液(同社製品;還元剤を含む溶液)とを均一に混合した無電解メッキ液に、上記活性化処理を施した支持体を40℃で12時間浸せきさせて無電解メッキを行った。
【0032】
得られたPd膜形成多孔質アルミナ中空糸について、Pd膜(膜厚約2.0μm)の300℃におけるガス透過性を参考例1と同様にして測定した。
【0033】
実施例2
実施例1において、Pd膜形成多孔質アルミナ中空糸として参考例2で得られたPd膜形成多孔質アルミナ中空糸が用いられた。このポリシロキサン被覆Pd膜について、300℃におけるガス透過性を参考例1と同様にして測定した。
【0034】
以上の各参考例および実施例における測定結果は、次の表1に示される。
Figure 0003841165
【0035】
参考例3
参考例2と同様の方法で得られたPd膜形成多孔質アルミナ中空糸について、300℃におけるH2およびN2の透過速度の比を試験前の分離係数α(H2/N2)として算出した。次いで、透過上流側を0.2MPaG、下流側を大気圧として水素を通過させながら、100℃に12時間保持して水素脆化を起こさせ、その後再び300℃におけるH2およびN2の透過速度の比を試験後の分離係数αとして算出した。
【0036】
実施例3
実施例2で得られたポリシロキサン被覆Pd膜について、水素脆化試験前後の300℃におけるガス透過性を参考例3と同様にして測定した。
【0037】
以上の参考例3および実施例3における測定結果は、次の表2に示される。なお、表中には、脆化試験前の分離係数α1を100とした場合の脆化試験後の分離係数α2の比α21の値も併記されている。
Figure 0003841165
【0038】
参考例4
参考例1と同様の方法で得られたPd膜形成多孔質アルミナ中空糸について、Pd膜の外径側を透過上流側とし、純H2ガスおよび2.04%CO-24.6%CO2-73.36H2混合ガスを供給した場合の300℃における水素透過量を石けん膜流量計で定量して、水素透過速度を評価した。
【0039】
このとき、▲1▼純H2ガス流通(30分間単位)と▲2▼混合ガス流通(30分間単位)とをくり返し、▲1▼―▲2▼―▲1▼―▲2▼―▲1▼―▲2▼―▲1▼の計210分間とした。測定結果は、図3のグラフの●印で示されており、純H2ガス流通から混合ガス流通へと切り換えた途端に、水素透過速度は大きく減少し、純H2ガス流通の場合の約7〜9%となった。
【0040】
実施例4
実施例1と同様の方法で得られたPd膜形成多孔質アルミナ中空糸が用いられ、このポリシロキサン被覆Pd膜について、参考例4と同様の測定を行った。
【0041】
測定結果は、図3のグラフの▲印で示されており、純H2ガス流通から混合ガス流通へ切り換えると、水素透過速度は減少するものの減少率は小さく、純H2ガス流通の場合の39〜41%であった。
【図面の簡単な説明】
【図1】 本発明に係る水素選択透過膜を用いた触媒充填式膜型反応器の概要図である。
【図2】 多孔質セラミックス中空糸膜支持体上に金属膜を形成させる装置の概要図である。
【図3】 COおよびCO2共存下における水素透過係数の経時的変化を示すグラフである。
【符号の説明】
1 触媒充填式膜型反応器
2 水素選択透過性中空糸膜
3 触媒層
4 膜支持体
5 金属膜
6 水素選択透過性高分子物質膜
11 反応管
12 多孔質セラミックス中空糸
14 製膜範囲
17 キャリヤーガス供給器
19 Pd源物質
20 加熱器のPd源物質設置部
21 加熱器の支持体製膜部

Claims (2)

  1. 膜支持体上に水素選択透過性金属膜を形成させ、該金属膜の透過上流側表面が水素選択透過性高分子物質である弾力性ゴム状ポリシロキサン系高分子物質で被覆されていることを特徴とする水素選択透過膜。
  2. 膜型反応器に用いられる請求項1記載の水素選択透過膜。
JP2002066813A 2002-03-12 2002-03-12 水素選択透過膜 Expired - Fee Related JP3841165B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002066813A JP3841165B2 (ja) 2002-03-12 2002-03-12 水素選択透過膜

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002066813A JP3841165B2 (ja) 2002-03-12 2002-03-12 水素選択透過膜

Publications (2)

Publication Number Publication Date
JP2003260339A JP2003260339A (ja) 2003-09-16
JP3841165B2 true JP3841165B2 (ja) 2006-11-01

Family

ID=28671517

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002066813A Expired - Fee Related JP3841165B2 (ja) 2002-03-12 2002-03-12 水素選択透過膜

Country Status (1)

Country Link
JP (1) JP3841165B2 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005085127A1 (ja) * 2004-03-09 2005-09-15 Nippon Oil Corporation 水素の製造方法およびそのためのシステム
JP4909600B2 (ja) * 2005-03-14 2012-04-04 日本碍子株式会社 水素分離体及びその製造方法
JP5260899B2 (ja) * 2007-06-28 2013-08-14 日本碍子株式会社 水素分離体
JP2013095618A (ja) * 2011-10-28 2013-05-20 Jfe Steel Corp 水素の製造方法及び製造装置
WO2017098930A1 (ja) * 2015-12-11 2017-06-15 日東電工株式会社 水素排出膜
KR102377403B1 (ko) * 2020-03-20 2022-03-22 주식회사 하이젠에너지 중공사막 및 이의 제조방법

Also Published As

Publication number Publication date
JP2003260339A (ja) 2003-09-16

Similar Documents

Publication Publication Date Title
US5652020A (en) Hydrogen-selective membrane
Li et al. Characterisation and permeation of palladium/stainless steel composite membranes
Itoh et al. Preparation of thin palladium composite membrane tube by a CVD technique and its hydrogen permselectivity
US5980989A (en) Gas separator and method for preparing it
Li et al. Fabrication of dense palladium composite membranes for hydrogen separation
US5827569A (en) Hydrogen separation membrane and process for producing the same
Zhao et al. Preparation and characterization of palladium-based composite membranes by electroless plating and magnetron sputtering
Keuler et al. Developing a heating procedure to optimise hydrogen permeance through Pd–Ag membranes of thickness less than 2.2 μm
Höllein et al. Preparation and characterization of palladium composite membranes for hydrogen removal in hydrocarbon dehydrogenation membrane reactors
Pan et al. Pd/ceramic hollow fibers for H2 separation
Uemiya et al. Composite membranes of group VIII metal supported on porous alumina
Gil et al. A highly permeable hollow fibre substrate for Pd/Al2O3 composite membranes in hydrogen permeation
Wang et al. Fabrication of novel Pd–Ag–Ru/Al2O3 ternary alloy composite membrane with remarkably enhanced H2 permeability
JP4572385B2 (ja) 水素精製分離方法
Terra et al. Graphite coating on alumina substrate for the fabrication of hydrogen selective membranes
Guo et al. Preparation of palladium membrane on Pd/silicalite-1 zeolite particles modified macroporous alumina substrate for hydrogen separation
JP3841165B2 (ja) 水素選択透過膜
CN107376661B (zh) 一种钯基复合膜的制备方法
US20200391154A1 (en) Advanced double skin membranes for membrane reactors
Li et al. Repair of a Pd/α-Al2O3 composite membrane containing defects
Zeng et al. Defect sealing in Pd membranes via point plating
JP4112856B2 (ja) ガス分離体の製造方法
JP3567253B2 (ja) パラジウムまたはパラジウム合金被覆多孔質体の製造方法
Li et al. Improved photocatalytic deposition of palladium membranes
JP5049498B2 (ja) ガス分離用のセラミック膜の製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040827

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060315

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060322

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060509

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060519

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20060711

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060801

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060801

R150 Certificate of patent or registration of utility model

Ref document number: 3841165

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100818

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100818

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110818

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120818

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120818

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130818

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees