JP3832138B2 - 液晶表示装置の駆動装置、液晶表示装置および電子機器 - Google Patents

液晶表示装置の駆動装置、液晶表示装置および電子機器 Download PDF

Info

Publication number
JP3832138B2
JP3832138B2 JP10973299A JP10973299A JP3832138B2 JP 3832138 B2 JP3832138 B2 JP 3832138B2 JP 10973299 A JP10973299 A JP 10973299A JP 10973299 A JP10973299 A JP 10973299A JP 3832138 B2 JP3832138 B2 JP 3832138B2
Authority
JP
Japan
Prior art keywords
liquid crystal
signal
voltage
crystal display
line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP10973299A
Other languages
English (en)
Other versions
JP2000002866A (ja
Inventor
士良 高橋
久徳 川上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP10973299A priority Critical patent/JP3832138B2/ja
Publication of JP2000002866A publication Critical patent/JP2000002866A/ja
Application granted granted Critical
Publication of JP3832138B2 publication Critical patent/JP3832138B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Liquid Crystal (AREA)
  • Liquid Crystal Display Device Control (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、例えば、電源オフ後、各液晶層に蓄積された電荷を迅速にクリアして、液晶の劣化を防止した晶表示装置の駆動装置、液晶表示装置、および、その液晶表示装置を用いた電子機器に関する。
【0002】
【従来の技術】
一般に、アクティブ・マトリクス方式の液晶表示装置は、主に、マトリクス状に配列された画素電極の各々にスイッチング素子が設けられた素子アレイ基板と、カラーフィルタなどが形成された対向基板と、両基板の間に充填された液晶とから構成される。そして、画素電極と対向基板とその間に充填された液晶とにより液晶層が構成される。
【0003】
このような構成において、スイッチング素子にオン(選択状態)の信号を印加すると、当該スイッチング素子が導通状態となる。このため、当該スイッチング素子に接続された液晶層に所定の電荷が蓄積される。そして、電荷蓄積後、オフ(非選択状態)の信号を印加してスイッチング素子をオフ状態としても、液晶層の抵抗が十分に高ければ、当該液晶層における電荷の蓄積が維持される。このように、各スイッチング素子を駆動して、蓄積させる電荷の量を制御すると、画素毎に液晶の配向状態が変化して、所定の情報を表示することが可能となる。この際、各液晶層毎に電荷を蓄積させるのは、一部の期間で良いため、各走査線を時分割に選択することにより、走査線およびデータ線を複数の画素について共通化したマルチプレックス駆動が可能となっている。
【0004】
なお、スイッチング素子としては、主に、薄膜トランジスタ(TFT:Thin Film Transistor)やMOS型トランジスタなどの3端子型スイッチング素子と、電流−電圧特性が非線形特性を有する薄膜ダイオード(TFD:Thin Film Diode)などの2端子型スイッチング素子とに大別される。これらの3端子型や2端子型のスイッチング素子は、電流―電圧特性が非線形であるために、非線形素子とも呼ばれる。
【0005】
ところで、液晶表示装置を電源オフする場合、電源オフと同時に駆動信号の供給を停止する構成では、駆動信号の停止した時に液晶層に印加されていた電界がそのまま残り、液晶層に直流電圧が印加された状態となる。ここで、液晶層に直流電圧が印加され続けると、液晶の材料物性が変化し抵抗率が下がるなどの劣化現象が現れて、液晶表示装置としての寿命が短くなる。そこで、液晶表示装置を電源オフする場合、液晶層に蓄積された電荷がゼロになるまで、駆動信号の供給を継続する構成が望ましい。
【0006】
【発明が解決しようとする課題】
しかしながら、蓄積された電荷の放電時定数は、画素電極の抵抗・サイズや、液晶の材質、基板間隔などの様々な要因によって定まるため、液晶層に蓄積された電荷がゼロになるまでの時間は、画素毎に、さらには、液晶表示装置毎に異なってしまう、という問題があった。この問題は、電源オフ後に駆動信号を供給しなければならない時間が定まらないことを意味し、駆動信号を供給する回路の設計が困難となる、という二次的な問題も発生させた。
【0007】
本発明は、このような事情に鑑みてなされたものであり、その目的とするとことは、液晶層に蓄積された電荷を、個々の装置に依存することなく、迅速にクリアして、液晶の劣化を防止することが可能な晶表示装置の駆動装置、液晶表示装置、および、その液晶表示装置を用いた電子機器を提供することにある。
【0008】
【課題を解決するための手段】
上記目的を達成するため、本発明の液晶表示装置の制御方法にあっては、液晶層に蓄積される電荷量を制御することによって所望の表示を行う液晶表示装置の制御方法であって、電源オフを検出する過程と、前記電源オフが検出されると、前記液晶層を固定電位に電気的に接続する過程とを備えることを特徴としている。
【0009】
この制御方法によれば、電源オフが検出されると、液晶層が例えば接地電位等の固定電位に接続される。この固定電位を供給する電源は、定電流源ともなる。このため、液晶層に蓄積された電荷が急速かつ一定の速度でクリアにされるので、液晶に直流電圧が長期間印加されることがなくなり、液晶の劣化を防止できる。また、液晶層に蓄積された電荷がゼロになるまでの時間について、液晶表示パネルの電極の抵抗・サイズや、液晶の材質、基板間隔などの要因に依存することなく、設定することが可能となる。
【0010】
さらに、上記の液晶表示装置の制御方法においては、前記電源オフが検出されると、前記液晶層に電圧印加する信号線を前記固定電位に電気的に接続することが望ましい。信号線を固定電位に接続するような簡単な制御によって、間接的に液晶層から電荷を抜くことができる。
【0011】
さらに、上記の液晶表示装置の制御方法においては、前記電源オフが供給されると、前記液晶層に電気的に接続される信号線を、特定の電圧供給ラインに電気的に接続し、前記特定の電圧供給ラインを前記固定電位に接続することが望ましい。液晶層に電圧供給する信号線を特定の電圧供給ラインに接続した上で、その特定の電圧供給ラインに対して固定電位に接続するためのスイッチを設ければよく、簡単な構成及び制御によって、間接的に液晶層から電荷を抜くことができる。
【0012】
さらに、上記の液晶表示装置の制御方法においては、前記特定の電圧供給ラインは、前記固定電位に対して正極性の電圧を供給する第1の電圧供給ラインと負極性の電圧を供給する第2の電圧供給ラインとからなり、前記電源オフが検出されると、前記信号線は、前記第1の電圧供給ラインと前記第2の電圧供給ラインに交互に接続されることが望ましい。固定電位に対して正負の電圧の供給ラインとし、この2つの供給ラインを信号線に交互に接続すると共にこの2つの供給ラインを固定電位に接続するため、供給ラインが正負の電位から固定電位の電位に収束するにつれて液晶層から電荷を引き抜くことができるので、液晶層が正負のいずれの電荷の蓄積状態にあっても、容易に電荷を引き抜くことができる。
【0013】
さらに、上記の液晶表示装置の制御方法においては、前記信号線は、1/2水平走査期間よりも短い周期のクロック信号に応じて、前記第1の電圧供給ラインと前記第2の電圧供給ラインに交互に接続されることが望ましい。高周波クロックに応じて、供給ラインと信号線との接続を切替えるので、液晶層の蓄積電荷レベル係らず、急速にその電荷を放電させることができる。
【0014】
また、本発明の液晶表示装置の駆動装置にあっては、液晶層に蓄積される電荷量を制御することによって所望の表示を行う液晶表示装置であって、電源オフを検出する検出手段と、前記検出手段により電源オフが検出されると、前記液晶層を固定電位に接続する接続手段とを具備することを特徴としている。
【0015】
この駆動装置によれば、先に述べた発明と同様に、電源オフが検出されると、液晶層が固定電位に接続されて、液晶層に蓄積された電荷が急速かつ一定の速度でクリアにされる。このため、液晶層に蓄積された電荷がゼロになるまでの時間について、液晶表示パネルの電極の抵抗・サイズや、液晶の材質、基板間隔などの要因に依存することなく、設定することが可能となる。
【0016】
この駆動装置においては、さらに、前記接続手段は、前記検出手段により電源オフが検出されると、前記液晶層を特定のラインに接続する第1の接続手段と、前記特定のラインを固定電位に接続する第2の接続手段とを備えることが望ましい。これは、複数のラインを切り換えて所定の走査信号を供給する従来の構成に対して、付加する要素が少なくて済むからである。
【0017】
また、駆動装置においては、前記検出手段は、電源電圧がしきい値以下となった場合を電源オフと検出する構成が望ましい。これは、電源オフを検出するには、電源電圧を監視する構成が最も確実だからである。
【0018】
さらに、上記の液晶表示装置の駆動装置においては、前記接続手段は、前記検出手段により電源オフが検出されると、前記液晶層と接地線とを接続するスイッチング手段である構成が望ましい。この構成が最もシンプルだからである。
【0019】
さらに、上記の液晶表示装置の駆動装置においては、前記接続手段は、前記液晶層に電圧印加する信号線を前記固定電位に電気的に接続することが望ましい。信号線を固定電位に接続するような簡単な制御によって、間接的に液晶層から電荷を抜くことができる。
【0020】
さらに、上記の液晶表示装置の駆動装置においては、前記接続手段は、前記液晶層に電気的に接続される信号線を、特定のラインに電気的に接続し、前記特定のラインを前記固定電位に接続することが望ましい。液晶層に電圧供給する信号線を特定の電圧供給ラインに接続した上で、その特定の電圧供給ラインに対して固定電位に接続するためのスイッチを設ければよく、簡単な構成及び制御によって、間接的に液晶層から電荷を抜くことができる。
【0021】
さらに、上記の液晶表示装置の駆動装置においては、前記特定のラインは、前記固定電位に対して正極性の電圧を供給する第1の供給ラインと負極性の電圧を供給する第2の供給ラインとからなり、前記電源オフが検出されると、前記接続手段は、前記信号線を、前記第1の供給ラインと前記第2の供給ラインに交互に接続することが望ましい。固定電位に対して正負の電圧の供給ラインとし、この2つの供給ラインを信号線に交互に接続すると共にこの2つの供給ラインを固定電位に接続するため、供給ラインが正負の電位から固定電位に収束するにつれて液晶層から電荷を引き抜くことができるので、液晶層が正負のいずれの電荷の蓄積状態にあっても、容易に電荷を引き抜くことができる。
【0022】
さらに、上記の液晶表示装置の駆動装置においては、前記信号線は、1/2水平走査期間よりも短い周期のクロック信号に応じて、前記第1の供給ラインと前記第2の供給ラインに交互に接続されることが望ましい。高周波クロックに応じて、供給ラインと信号線との接続を切替えるので、液晶層の蓄積電荷レベル係らず、急速にその電荷を放電させることができる。
【0023】
次に、本発明の液晶表示装置にあっては、液晶層に蓄積される電荷量を走査信号およびデータ信号で制御することにより所望の表示を行う液晶表示装置であって、電源オフを検出する検出手段と、前記検出手段により電源オフが検出されると、特定のラインへの接続を指示する制御手段と、前記指示により、前記走査信号が供給される走査線あるいは前記データ信号が供給されるデータ線のいずれか、または、その双方を前記特定のラインへ接続する第1の接続手段と、前記検出手段により電源オフが検出されると、前記特定ラインを固定電位に接続する第2の接続手段とを具備することを特徴としている。
【0024】
この液晶表示装置によれば、先に述べた発明と同様に、電源オフが検出されると、液晶層が固定電位に接続されて、液晶層に蓄積された電荷が急速かつ一定の速度でクリアにされる。このため、液晶層に蓄積された電荷がゼロになるまでの時間について、液晶表示パネルの電極の抵抗・サイズや、液晶の材質、基板間隔などの要因に依存することなく、設定することが可能となる。
【0025】
また、本発明の液晶表示装置にあっては、データ線が設けられた一方の基板と、走査線が設けられた他方の基板とを備え、前記データ線および前記走査線の間に非線形素子および液晶層が直列に接続された画素を有する液晶表示パネルと、電源オフを検出する検出回路と、前記検出回路により電源オフが検出されると、前記走査線に印加する選択電圧の供給ラインを接地線に接続するスイッチ回路とを具備することを特徴としている。
【0026】
この液晶表示装置によれば、電源オフが検出されると、画素にデータ信号を書き込む際に走査線に印加される選択電圧の供給ラインが接地線に接続されるため、液晶層に蓄積された電荷が急速かつ一定の速度でクリアにされる。特に、選択電圧は2端子型非線形素子をオンさせる電圧であるため、電源オフの検出直後では選択電圧が降下することなく、非線形素子をオンさせて液晶層から電荷を引き抜くことができる。このため、液晶層に蓄積された電荷がゼロになるまでの時間について、画素電極の抵抗・サイズや、液晶の材質、基板間隔などの要因に依存することなく、設定することが可能となる。
【0027】
さらに、上記の液晶表示装置においては、前記スイッチ回路は、前記電源オフが検出されると、前記非線形素子をオンする電圧を供給する供給ラインに前記走査線を接続し、前記供給ラインを接地線に接続することが望ましい。液晶層に選択電圧を供給する走査線を、選択電圧供給ラインのみに接続した上で、その供給ラインに対して接地電位に接続するためのスイッチを設ければよく、簡単な構成及び制御によって、間接的に液晶層から電荷を抜くことができる。
【0028】
さらに、上記の液晶表示装置においては、前記供給ラインは、接地電位に対して正極性の選択電圧を供給する第1の供給ラインと負極性の選択電圧を供給する第2の供給ラインとからなり、前記走査線を前記第1の供給ラインと前記第2の供給ラインに交互に接続することが望ましい。接地電位に対して正負の電圧の供給ラインとし、この2つの供給ラインを信号線に交互に接続すると共にこの2つの供給ラインを接地電位に接続するため、供給ラインが正負の電位から接地電位に収束するにつれて液晶層から電荷を引き抜くことができるので、液晶層が正負のいずれの電荷の蓄積状態にあっても、容易に電荷を引き抜くことができる。
【0029】
さらに、上記の液晶表示装置においては、非線形素子は、2端子型非線形素子であることが望ましい。さらに、この2端子型非線形素子は、第1金属−絶縁体−第2金属からなる薄膜ダイオード(TFD:Thin Film Diode)素子であることが望ましい。
【0030】
これは、TFD素子のような2端子型非線形素子では、配線の交差部分がないために配線間の短絡不良が原理的に発生しない点、さらに、成膜行程およびフォトリソグラフィ行程を短縮できる点において有利だからである。
【0031】
また、本発明の液晶表示装置にあっては、データ線が設けられた一方の基板と、走査線が設けられた他方の基板との間に液晶層が挟持された液晶表示パネルと、電源オフを検出する検出回路と、前記検出回路により電源オフが検出されると、前記走査線あるいは前記データ線に印加する電圧の供給ラインを所定の定電位に接続するスイッチ回路とを具備することを特徴とする。
【0032】
このような画素に非線形素子を有さずに、液晶層を挟んで対向する一対の電極のみで液晶層への電界を制御する単純型の液晶表示装置において、電源オフが検出されると、走査線あるいはデータ線に電圧供給していた供給ラインが所定の定電位に接続されることにより、走査線あるいはデータ線を介して直接的に、液晶層に蓄積された電荷が急速かつ一定の速度でクリアにされる。このため、液晶層に蓄積された電荷がゼロになるまでの時間について、電極の抵抗・サイズや、液晶の材質、基板間隔などの要因に依存することなく、設定することが可能となる。
【0033】
さらに、上記の液晶表示装置においては、前記電源オフが検出されると、前記走査線あるいは前記データ線が、前記所定の定電位に対して正極性電圧を供給する第1の供給ラインと負極性電圧を供給する第2の供給ラインに交互に接続され、前記スイッチ回路は、前記第1の供給ラインと前記第2の供給ラインとを前記所定の定電位に接続することが望ましい。所定の定電位に対して正負の電圧の供給ラインとし、この2つの供給ラインを信号線に交互に接続すると共にこの2つの供給ラインを定電位に接続するため、供給ラインが正負の電位から定電位の電位に収束するにつれて液晶層から電荷を引き抜くことができるので、液晶層が正負のいずれの電荷の蓄積状態にあっても、容易に電荷を引き抜くことができる。
【0034】
なお、このような液晶表示装置を適用した電子機器としては、例えば、カーナビゲーションシステム、携帯情報端末機器、その他各種の電子機器が考えられる。
【0035】
【発明の実施の形態】
以下、本発明の実施の形態について図面を参照して説明する。
【0036】
〔第1実施形態の液晶表示装置〕
<TFD素子の実施形態>
まず、本実施形態にかかる液晶表示装置のうち、各液晶画素を駆動する非線形素子(スイッチング素子)を、TFD素子等の2端子型非線形素子とした例に基づいて簡単に説明する。なお、本発明の非線形素子をTFD素子に限るものでなく、TFT素子やMOS型トランジスタ等の3端子型スイッチング素子であっても良いのはもちろんである。
【0037】
図1(a)は、TFD素子を適用した液晶パネル基板における1画素分のレイアウトを示す平面図であり、図1(b)は、そのTFD素子の構造を図1(a)におけるA−A線に沿って示す断面図である。
【0038】
これらの図に示すように、TFD素子20は、基板30上に形成された絶縁膜31を下地として、その上面に形成されたものであり、絶縁膜31の側から順番に第1金属膜22、絶縁体たる酸化膜24、および、第2金属膜26から構成されて、金属−絶縁体−金属のサンドイッチ構造を採る。そして、かかる構造によりTFD素子20は、正負双方向のダイオードスイッチング特性を有することになる。
【0039】
また、TFD素子20を構成する第1金属膜22は、そのまま一方の端子として走査線12となる一方、第2金属膜26は、他方の端子として画素電極34に接続される。なお、配線12は走査線ではなく、データ線として用いてもよく、データ線12、TFD素子20を介して画素電極34にデータ信号を印加するように構成してもよい。
【0040】
基板30は、絶縁性および透明性を有するものであり、例えば、ガラス、プラスチックなどから構成される。ここで、絶縁膜31が設けられる理由は、第2金属膜26の堆積後における熱処理により、第1金属膜22が下地から剥離しないようにするため、および、第1金属膜22に不純物が拡散しないようにするためである。したがって、これが問題とならない場合には、絶縁膜31は省略可能である。
【0041】
さて、第1金属膜22は、導電性の金属薄膜であり、例えば、タンタル単体あるいはタンタル合金からなる。
【0042】
酸化膜24は、例えば、第1金属膜22の表面を、化成液中において陽極酸化することによって形成される絶縁膜である。
【0043】
第2金属膜26は、導電性の金属薄膜であり、例えば、クロム単体あるいはクロム合金からなる。
【0044】
また、画素電極34は、透過型の液晶表示パネルに利用する場合にはITO(Indium Tin Oxide)などの透明導電膜から構成され、反射型の液晶表示パネルに適用する場合にはアルミニウムや銀などの光反射率の大きな金属膜から構成される。
【0045】
<TFD素子における他の例>
次に、TFD素子における他の例について説明する。
【0046】
(第2金属膜と画素電極との共通化)
図1(a)および(b)に示したTFD素子20にあっては、第2金属膜26および画素電極34を異なる金属膜により構成したが、図2の断面図に示すように、第2金属膜および画素電極を、同一のITO膜等からなる透明導電膜36から構成しても良い。このような構成を有するTFD素子20は、第2金属膜26および画素電極34を同一の工程により形成できる利点がある。なお、図2において図1と同様の構成要素には同一参照符号を付し、その説明を省略するものとする。
【0047】
(バック・トゥ・バック構造)
次に、TFD素子の他の例として、バック・トゥ・バック(back-to-back)構構造のTFD素子について説明する。図3(a)は、このTFD素子を適用した液晶パネル基板における1画素分のレイアウトを示す平面図であり、図3(b)は、そのTFD素子の構造をB−B線に沿って示す断面図である。なお、図3において図1と同様の構成要素には同一参照符号を付し、その説明を省略するものとする。
【0048】
バック・トゥ・バック構造とは、非線形特性を正負双方向にわたって対称化するため、2つのダイオードを逆向きに直列接続した構造をいう。このため、TFD素子40は、同図に示すように、第1のTFD素子40aと第2のTFD40bとが極性を互いに反対にして直列接続した構造となっている。具体的には、基板30と、この表面に形成された絶縁膜31と、第1金属膜42と、この表面に陽極酸化によって形成された酸化膜44と、この表面に形成されて相互に離間した第2金属膜46a、46bとから構成されている。
【0049】
そして、第1のTFD素子40aにおける第2金属膜46aはそのまま走査線48となる一方、第2のTFD素子40bにおける第2金属膜46bは画素電極45に接続されている。なお、酸化膜44は、図1(b)に示したTFD素子20における酸化膜24に比べて膜厚が小さく設定され、例えば、約半分程度に形成される。また、第1金属膜42や、酸化膜44、第2金属膜46a、46bなどの各構成要素の具体的な構成などは、前述したTFD素子20と同様であるので、その説明を省略することとする。
【0050】
なお、このほかにも、2つのダイオードを逆向きに並列接続したリング状素子によっても非線形特性の対称性を確保することが可能である。
【0051】
<液晶表示装置の実施形態>
次に、上述したTFD素子20を2端子型非線形素子として適用した実施形態にかかる液晶表示装置について説明する。図4は、第1実施形態にかかる液晶表示装置の要部概略構成を示すブロック図である。
【0052】
同図に示すように、液晶表示パネル10では、i本のデータ線X1〜Xiとj本の走査線Y1〜Yjとの各交点に対応して画素16が形成されており、各画素16は、液晶表示要素(液晶層)18と2端子型非線形素子20とが直列に接続された構成となっている。ここで、図における走査線Y1〜Yjの1本は、図1(a)における走査線12と同一である。
【0053】
そして、各走査線Y1〜Yjは走査信号駆動回路100によって、また、各データ線X1〜Xiはデータ信号駆動回路110によって、それぞれ駆動される。さらに、走査信号駆動回路100およびデータ信号駆動回路110は、駆動制御回路120によって制御される。
【0054】
なお、図では、TFD素子20が走査線の側に接続され、液晶層18がデータ線の側に接続されているが、これとは逆に、先に述べたように、TFD素子20をデータ線の側に配置してTFD素子をデータ線と接続し、TFD素子20と液晶層18を介在して対向する側に走査線を設ける構成でもよい。
【0055】
さて、DC−DCコンバータ130aは、電源電圧Vccを変換して、液晶表示装置に用いられる電圧V0〜V7などを生成して出力するものである。本実施形態のおいては、電源電圧Vccは例えば12Vの電圧となる。また、オフシーケンス回路140aは、液晶表示装置へ供給する電源がオフになるときの電源電圧Vccの電圧降下を検出する回路であり、電源電圧Vccがしきい値電圧Vth以下になると、信号PWR-および信号PWR+のレベルを遷移させる。一方、定電流回路150aは、DC−DCコンバータ130aからV0〜V7の電圧が供給される複数の電圧供給ラインのうち、電圧V1、V6の供給ラインを、信号PWR-あるいは信号PWR+のレベル遷移に応じて、接地線と接続するものである。接地線は、電源のオン/オフに係らず安定した電位の接地電位にあり、液晶層から電荷を抜く先の固定電位として最適である。接地電位を供給する定電流回路150aは、定電流を供給する定電流源とな
る。
【0056】
以下、図4における各部のうち、液晶表示パネル10、走査信号駆動回路100、データ信号駆動回路110、駆動制御回路120、オフシーケンス回路140aおよび定電流回路150aの詳細について順番に説明する。
【0057】
<液晶表示パネル>
まず、液晶表示パネル10の詳細について説明する。図5は、その一例を摸式的に示す部分破断斜視図である。
【0058】
この図に示すように、液晶表示パネル10は、素子アレイ基板30と、これに対向配置される対向基板32とを備えている。対向基板32は、例えば、ガラス基板からなる。
【0059】
素子アレイ基板30において、画素電極34は、それぞれマトリクス状に複数配列する。ここで、同一行に配列する画素電極34は、行方向に短冊状に延在する走査線Y1〜Yjの1本に、図1〜図3に示したような構造のTFD素子20を介して接続されている。なお、図5におけるTFD素子20の構造は図1に類似するが、第2金属膜が画素電極34上に重なる点で異なっている。
【0060】
一方、対向基板32において、i本のデータ線X1〜Xiは、それぞれ走査線Y1〜Yjの延在方向と直交する列方向へ短冊状に延在して、かつ、素子アレイ基板30の画素電極34と液晶層を挟んで交差するように形成されている。
【0061】
さて、このように構成された素子アレイ基板30と対向基板32とは、基板周辺に沿って塗布されるシール剤と、適切に散布されたスペーサとによって、一定のギャップ(間隙)を保っており、この閉空間に例えば、TN(Twisted Nematic)型の液晶が封入されて、これにより、図4における液晶層18が形成されている。
【0062】
ほかに、対向基板32には、液晶表示パネル10の用途に応じて、例えば、ストライプ状モザイク状や、トライアングル状等に配列されたカラーフィルタが設けられ、さらに、例えば、クロムやニッケルなどの金属材料や、カーボンやチタンなどをフォトレジストに分散した樹脂ブラックなどのブラックマトリクスが設けられる。くわえて、素子アレイ基板30および対向基板32の液晶層側の対向面には、それぞれ所定の方向にラビング処理された配向膜などが設けられる一方、各基板の背面(外側)には配向方向に応じた偏光板がそれぞれ設けられる(いずれも図示省略)。
【0063】
ただし、液晶表示パネル10においては、液晶を高分子中に微小粒として分散させた高分子分散型液晶を用いれば、前述の配向膜、偏光板等が不要となるため、光利用効率が高まり、このため液晶表示パネルの高輝度化や低消費電力化などの点において有利である。さらに、液晶表示パネル10を反射型とする場合、画素電極34をアルミニウムなどの反射率の高い金属膜から構成し、TN型液晶に代わって、電圧無印加状態で液晶分子がほぼ垂直配向されるSH(スーパーホメオトロピック)型液晶などを用いても良い。なお、画素電極34を反射型とする場合には、偏光板は対向基板32の外側だけに配置されればよい。
【0064】
また、先に述べたように、図5の素子アレイ基板30側の走査線と対向基板32側のデータ線を入れ替えて構成しても全く構わない。
【0065】
<走査信号駆動回路>
次に、液晶表示パネル10に走査信号を供給する走査信号駆動回路100の詳細について説明する。
【0066】
図6に示すように、走査信号駆動回路100は、主に、クロック・コントロール回路101、シフトレジスタ103、ラッチ104、デコーダ105、レベル・シフタ106およびLCDドライバ107から構成される。
【0067】
このうち、クロック・コントロール回路101は、駆動制御回路120から出力される走査側クロック信号YCLKに基づいて、図7に示すようなデータシフト用のシフトクロックYSCLを生成して、シフトレジスタ103に供給するものである。シフトクロックYSCLは、走査側クロック信号YCLKと同じ周期を有して位相をすらした信号である。
【0068】
シフトレジスタ103は、走査線Y1〜Yjの本数に対応して、jビットの並列出力を有するシフトレジスタを、入力データD0、D1、D2の各々に対応して3列独立して設けた構成となっている。このため、シフトレジスタ103からは各走査線Y1〜Yj毎に3ビットずつの出力が行われる。ここで、入力データD0、D1、D2は、各走査線Y1〜Yjの電圧を選択するためのデータであり、駆動制御回路120からそれぞれシリアルデータとして出力されたものである。また、シフトクロックYSCLは、シフトレジスタ103を構成する各シフトレジスタに供給されて、これらの各シフトレジスタが、図7に示すように、シフトクロックYSCLの立ち上がりタイミングと立ち下がりタイミングとにおいてそれぞれデータを取り込むとともに、取り込んだデータを順次シフトするようになっている。
【0069】
次に、ラッチ104は、jビット分のデータを取り込むラッチを3列並列に備えるものであり、シフトレジスタ103による3列×jビットの並列出力データを、ラッチストローブ信号LSの立ち上がりのタイミングにおいて、3列×jビット分のラッチにそのまま取り込むように構成されている。ここで、ラッチストローブ信号LSは、駆動制御回路120から供給される信号であって、シフトレジスタ103を構成する各シフトレジスタがjビット分のデータを取り込んだ後の所定のタイミングにおいて立ち上がる信号である。
【0070】
したがって、ラッチ104からは、ラッチストロープ信号LSの立ち上がりタイミングにおいて、駆動制御回路120から出力されたシリアルデータD0、D1、D2が、各走査線Y1〜Yj毎に、3ビットのパラレルデータに変換されて出力されることになる。
【0071】
次に、デコーダ105は、駆動制御回路120から供給される信号XSETが通常のHレベルである場合、3ビットのパラレルデータをデコードして、選択信号の電圧としてV0〜V7のいずれかを選択するための信号に変換するものである。ただし、デコーダ105は、信号XSETが液晶表示装置の電源オフに応じてLレベルに遷移すると、ラッチ104からのパラレルデータにかかわらず、駆動制御回路120から供給される信号MがHレベルであれば電圧V1を、また、信号MがLレベルであれば電圧V6を、それぞれ強制的に選択するための信号を出力するようになっている。ここで、信号Mは、充電モードあるいは放電モードでの液晶駆動極性を規定する信号である。
【0072】
また、レベル・シフタ106は、デコーダ105によりデコードされた信号を順次シフトするものである。
【0073】
LCDドライバ107は、図4におけるDC−DCコンバータ130aから供給される8種類の電圧V0〜V7のいずれかを、レベル・シフタ107によってシフトされた信号にしたがって、各走査信号Y1〜Yj毎に選択して出力するものである。これにより、各走査線Y1〜Yjには、1水平走査期間の1/2期間(1/2H)毎にデータD0〜D2に応じて選択された、8種類の電圧V0〜V7のいずれかが走査信号として供給されることとなる。
【0074】
ここで、ラッチ104から出力される3ビットのパラレルデータD0、D1、D2の値の組み合わせと選択信号の電圧V0〜V7との対応関係が図8に示される関係にある場合、第1に、3ビットのパラレルデータをデコーダ105により電圧V0〜V7のいずれかを選択する信号にデコードし、第2に、レベル・シフタ106を介してシフトすることにより、LCDドライバ107から、走査信号として図9に示すような大小関係を有する電圧を、各走査線Y1〜Yj毎に選択して出力することが可能になる。
【0075】
例えば、走査線Y1に対応するラッチ104の出力を、データD0、D1、D2に対応させてDL10、DL11、DL12と表し、同様に、走査線Y2に対応するラッチ104の出力を、データD0、D1、D2に対応させてDL20、DL21、DL22と表す場合にあって、図10に示すように、(DL10,DL11,DL12)および(DL20,DL21,DL22)の値が、ラッチストローブ信号LSの立ち上がりタイミングt1において、それぞれ(0,0,0)および(0,0,1)であったとすると、期間T1において、走査線Y1の電圧はV4となり、走査線Y2の電圧はV3となる。
【0076】
また、同様に、(DL10,DL11,DL12)および(DL20,DL21,DL22)の値が、ラッチストローブ信号LSの立ち上がりタイミングt2において、それぞれ(1,1,1)および(0,0,1)であったとすると、期間T2において、走査線Y1の電圧はV2となり、走査線Y2の電圧はV3のままとなる。なお、図10においては説明の関係上、充電モードおよび放電モードでの走査信号を一方の極性しか示していない。
【0077】
このような走査信号駆動回路100により、走査信号を充電モードと放電モードとの2つのモードで分けて駆動することが可能となり、さらに、両モードを正負の両極性でそれぞれ駆動することが可能となっている。
【0078】
<データ信号駆動回路>
次に、液晶表示パネル10にデータ信号を供給するデータ信号駆動回路110の詳細について説明する。
【0079】
図11に示すように、データ信号駆動回路110は、主に、シフトレジスタ111、ラッチ112、DAコンバータ113および出力回路114から構成される。
【0080】
このうち、シフトレジスタ111は、クロック信号XCLKに同期するラッチ信号であって、かつ、各データ信号出力端子X1〜Xiに対応するラッチ信号を、順次シフトして出力するものである。
【0081】
ラッチ112は、各データ信号出力端子X1〜Xiに対応するiビットのラッチ領域を備えるものである。各ラッチ領域は、データ線の順番でnビット毎に供給されるnビットのシリアル階調データGD0〜GDnを、シフトレジスタ111によるラッチ信号でそれぞれラッチして、水平同期信号に同期するラッチパルス信号LPの立ち上がりのタイミングで出力する。
【0082】
ここで、階調データGD0〜GDn、クロック信号XCLKおよびラッチパルス信号LPは、それぞれ駆動制御回路120によって互いに関連付けられて供給されるので、ラッチ112の各ラッチ領域は、シリアルで供給される階調データのうち、それぞれ対応するデータ線への階調データGD0〜GDnを取り込んで、ラッチパルス信号LPの立ち上がりのタイミングで各データ線に対応して出力するようになっている。
【0083】
DAコンバータ113は、各データ線に対応する各階調データをアナログ信号に変換して、出力回路114に供給するものである。
【0084】
出力回路114は、DAコンバータ113により変換されたアナログ信号を電流増幅するバッファであって、階調データの電圧変調出力を行なうものである。
【0085】
したがって、各データ信号出力端子X1〜Xiからは、それぞれ階調に応じて電圧変調されたデータ信号が出力されることになる。
【0086】
ここで、ラッチ112からの階調データは、水平同期信号に同期するラッチパルス信号LPの立ち上がりタイミングで行われるため、出力回路114によりデータ信号は、1水平走査期間毎にデータ線に出力されることになる。ただし、上述したように、充電モードと放電モードとの各々において、液晶の表示状態を決定する選択電圧(図10における電圧V1あるいはV2)は、1水平走査期間の1/2の期間において出力されるので、データ信号もこれに対応して1水平走査期間の1/2の期間に出力されるように設定されている。
【0087】
<駆動制御回路>
次に、駆動制御回路120の詳細について説明する。
【0088】
図12に示すように、駆動制御回路120は、主に、基本タイミング作成部121、ドライバコントロール部122、データ出力部123およびA/D変換部124から構成される。
【0089】
このうち、基本タイミング作成部121は、コンポジット信号等から分離された垂直同期信号や水平同期信号などの同期信号に基づいて、各回路に供給するクロック信号およびタイミング信号を生成し、ドライバコントロール部122、データ出力部123およびA/D変換部124に供給する。
【0090】
A/D変換部124は、コンポジット信号等から分離されたアナログ信号たる映像信号をデジタルデータに変換して、データ出力部123に供給する。
【0091】
データ出力部123は、デジタルデータをn+1ビットの階調データGD0〜GDnに変換するとともに、n+1ビットの階調データを、基本タイミング作成部121によるクロック信号に基づく所定のタイミングでそれぞれシリアルに、データ信号駆動回路110に供給する。
【0092】
また、ドライバコントロール部122は、基本タイミング作成部121から、上述したクロック信号YCLK、ラッチストローブ信号LSおよびデータD0〜D2や、液晶駆動極性信号Mを走査信号駆動回路100に供給させる一方、クロック信号XCLKおよびラッチパルス信号LPをデータ信号駆動回路110に供給する。
【0093】
さらに、ドライバコントロール部122は、後述するオフシーケンス回路140から出力される信号PWR+がHレベルになると、走査信号駆動回路100に供給する信号XSETをLレベルに遷移させるとともに、充電モードあるいは放電モードでの液晶駆動極性を規定する信号Mを、走査側クロック信号YCLKに同期させた信号とする。
【0094】
ドライバコントロール部122からの信号は、基本タイミング作成部121のクロック信号およびタイミング信号に基づいて生成され、さらに、基本タイミング作成部121は、垂直同期信号や水平同期信号などの同期信号に基づいて、クロック信号およびタイミング信号を生成するので、走査信号駆動回路100から出力される走査信号およびデータ信号駆動回路110から出力されるデータ信号についても、水平同期信号および垂直同期信号に同期したものとなる。
【0095】
<駆動動作>
さて、このように走査信号駆動回路100、データ信号駆動回路110および駆動制御回路120により、液晶表示装置において通常の表示を行う場合の動作を図13(a)〜(d)を参照して説明する。
【0096】
図13(a)は、あるデータ線Xn(X1≦Xn≦Xi)を介するデータ信号の一例を示すタイミングチャートである。図に示すように、データ信号は、1水平走査期間Hの後半の1/2の期間において供給される。
【0097】
同図(b)は、ある走査線Ym(Y1≦Ym<Yj)を介する走査信号を示すタイミングチャートであり、同図(c)は、次の走査線Ym+1を介する走査信号を示すタイミングチャートである。これらの図に示すように、走査線駆動回路100から出力される走査信号は、1水平走査期間H毎に充電モード波形と放電モード波形とを交互に出力するように設定されており、一つの走査線についても、1垂直走査期間TV毎に充電モード波形と放電モード波形とを交互に出力するように設定されている。
【0098】
そして、同図(d)は、データ線Xnと走査線Ym+1との交点に対応する位置の画素16に印加される電圧、すなわち、TFD素子20と液晶層18との両端に印加される電圧を示すタイミングチャートである。ここで、当該液晶層18に印加される電圧VLCを斜線で示す。
【0099】
この例では、放電モードでの過充電期間Tpreにおいて、(V7-V3)の電圧が印加されることにより、TFD素子20がオン状態となり、当該液晶層18は過充電される。
【0100】
次に、放電期間Tdcにおいて、(V2-V3)の電圧が印加されると、当該データ信号により放電量が抑えられるため、当該液晶層18の充電状態は維持される。したがって、液晶表示装置の設定がノーマリーホワイトモードの場合には黒が表示され、ノーマリーブラックモードの場合には白が表示されることになる。
【0101】
さらに、1垂直走査期間TV後、充電モードでの充電期間Tcにおいて、(V1-V4)の電圧が印加されると、TFD素子20がオン状態となり、当該液晶層18はデータ信号に応じて充電される。このため、ノーマリーホワイトモードの場合には継続的に黒が表示され、ノーマリーブラックモードの場合には継続的に白が表示されることになる。
【0102】
反対に、図示していないが、放電モードの放電期間Tdcにおいて、(V2-V4)の電圧が印加されると、過充電期間Tpreにおいて液晶層18に充電された電荷は、多数放電する。このため、ノーマリーホワイトモードの場合には白が表示され、ノーマリブラックモードの場合には黒が表示されることになる。
【0103】
さらに、図示していないが、1垂直走査期間TV後に、充電モードでの充電期間Tcにおいて、(V1-V3)の電圧が印加されると、液晶層18への充電量は少ないままであるので、ノーマリーホワイトモードの場合には継続的に白が表示され、ノーマリーブラックモードの場合には継続的に黒が表示されることになる。
【0104】
このように、充電モードにおいて、選択電圧V1を供給することで液晶層18をデータ信号に応じて充電する一方、放電モードにおいて、選択電圧V1とは逆極性のプリチャージ電圧V7を供給することで液晶層18をデータ信号にかかわりなく過充電し、その後、プリチャージ電圧V7とは逆極性の選択電圧V2を供給するとともに、液晶層18の放電量をデータ信号で制御することで、当該液晶画素の表示状態を制御することが可能となる。そして、このような充電モードと放電モードとは、逆極性についても同様に行われる。このため、表示状態を定める選択電圧は、放電モードにおいてはV1およびV6であり、充電モードにおいてはV2およびV5である。
【0105】
このような充電モードと放電モードによる駆動は、データ信号に基づきTFD素子20を介して液晶層に電圧印加する際に、液晶層への印加電圧の極性を反転しても、TFD素子20を流れる電流が一方向の状態を用いて電荷充電を制御するものであるため、TFD素子の極性ばらつき(印加電圧の極性による電流特性の非対称性)の影響を無くすことができる。
【0106】
そして、充電モードと放電モードとに分けて交互に駆動し、さらに、両モードを正負側の両極性で交互に駆動することにより、液晶層への充電がほぼ停止した時にTFD素子20に印加される電圧が、TFD素子の特性のバラツキにより変動しても、充電モードにて液晶印加電圧に発生する誤差電圧と、放電モードにて液晶印加電圧に発生する誤差電圧とが、実効電圧的に互いに相殺するので、表示ムラの発生等を有効に防止することが可能となっている。
【0107】
<オフシーケンス回路>
次に、オフシーケンス回路140の具体的構成の一例について図14を参照して説明する。
【0108】
図に示すように、電源電圧Vccは抵抗R1、R2で分圧されて、シュミット型のコンパレータ141の負入力端に供給される一方、この正入力端には、基準電圧Vrefが供給される。電源電圧Vccを抵抗R1、R2で分圧した電圧は、電源オン時は基準電圧Vrefより高いので、コンパレータ141の出力はLレベルである。そして、コンパレータ141の出力は、抵抗R3を介してトランジスタ142のベース(ゲート)に供給されるとともに、インバータ143を介してトランジスタ144のベース(ゲート)にも供給されている。
【0109】
ここで、トランジスタ142のエミッタ(ソース)は接地される一方、そのコレクタ(ドレイン)は抵抗R4を介して+5Vにプルアップされている。そして、トランジスタ142は通常時オフ状態にあるので、このプルアップ電位(Hレベル)が信号PWR-として取り出されている。また、トランジスタ144のエミッタ(ドレイン)は+5Vの電位となっている一方、そのコレクタ(ソース)は抵抗R5を介して接地レベルにプルダウンされている。そして、トランジスタ144は通常時オン状態であるので、このプルダウン電位(Lレベル)が信号PWR+として取り出されている。
【0110】
したがって、液晶表示装置に対する電源がオフされた結果、電源電圧Vccが徐々に降下して、電源電圧Vccを抵抗R1、R2で分圧した電圧がVref以下となると、コンパレータ141の出力は、LレベルからHレベルへと遷移する結果、トランジスタ142がオフ状態からオン状態となる一方、トランジスタ144がオフ状態からオン状態となる。このため、電源オフにより電源電圧Vccが徐々に降下すると、オフシーケンス回路140から出力される信号PWR-はHレベルからLレベルに遷移し、信号PWR+はLレベルからHレベルへと遷移することとなる。
【0111】
ここで、コンパレータ142の出力がLレベルからHレベルに遷移する電源電圧Vccの値がしきい値電圧Vth(コンパレータ141にオフセット電圧が無い場合はVth=Vref、オフセット電圧Voffがある場合はVth=Vref+Voff)であり、オフシーケンス回路140では電源電圧がしきい値を下回ると電源オフを検出し、これによって信号PWR+と信号PWR-のレベルを変化させて出力する。本実施形態においては、しきい値電圧Vthは例えば10V程度が設定されている。
【0112】
<定電流回路>
次に、定電流回路150aについて説明する。定電流回路150aは、電源オンから電源オフに切り替わって、信号PWR+と信号PWR-がレベル遷移すると、走査信号において画素の表示状態を定める選択電圧V1、V6の供給ラインを実質的に接地線に接続するスイッチ回路である。その具体的構成の一例について図15を参照して説明する。
【0113】
図に示すように、DC−DCコンバータ130aにより出力される液晶駆動電圧V0〜V7のうち、電圧V1の供給ラインは、トランジスタ151のドレインに接続されている。ここで、トランジスタ151のゲートには、上記オフシーケンス回路140による信号PWR+が供給される一方、そのソースは接地されている。すなわち、通常時は信号PWR+がLレベルなのでトランジスタ151はオフであるが、電源オフになって信号PWR+がHレベルとなると、トランジスタ151がオンするように構成されている。
【0114】
また、DC−DCコンバータ130aにより出力される電圧V0〜V7のうち、電圧V6の供給ラインは、トランジスタ152のソースに接続されている。ここで、トランジスタ152のゲートには、上記オフシーケンス回路140による信号PWR-が供給される一方、そのドレインは電源電圧Vccに接続されている。すなわち、通常時は信号PWR-がHレベルなのでトランジスタ152はオフであるが、電源オフとなって信号PWR-がLレベルとなると、トランジスタ152もオンするように構成されている。
【0115】
<電源オフ動作>
さて、このようなオフシーケンス回路140および定電流回路150aの構成による電源オフ時の動作について、図16を参照して説明する。
【0116】
まず、図16(a)に示すように、タイミングT10において電源オフされると、電源電圧Vccは徐々に接地レベルに降下する。ここで、タイミングT11において、電源電圧Vccがしきい値電圧Vth以下となると、上述したオフシーケンス回路140によって、信号PWR+は信号Hレベルに遷移する(同図(b)参照)一方、信号PWR-はLレベルに遷移する(同図(c)参照)。
【0117】
信号PWR+がHレベルに遷移すると、駆動制御回路120におけるドライバコントロール部122(図12参照)によって、信号XSETはLレベルに遷移する一方(同図(d)参照)、それまで、充電モードあるいは放電モードでの液晶駆動極性を規定していた信号Mは、走査側クロック信号YCLKに同期する(同図(e)参照)。この走査側クロック信号YCLKは、1/2Hの期間内に走査線分の電圧選択データD0〜D2を走査線駆動回路100に転送する高周波クロック信号であるので、電源オフの検出に応じて信号Mも高周波クロック信号に切り替わる。信号Mではなく、走査側クロック信号YCLKを用いてもよい。
【0118】
さらに、信号XSETがLレベルに遷移し、かつ、信号Mが走査側クロック信号YCLKに同期することにより、走査信号駆動回路100におけるデコーダ105からは、ラッチ104からのパラレルデータにかかわらず、電圧V1と電圧V6とを交互に強制的に選択するための信号が出力される。
【0119】
このため、すべての走査線Y1〜Yjは、LCDドライバ107によって、電圧V1の供給ラインと電圧V6の供給ラインに対し、走査側クロック信号YCLK又は信号Mに同期して交互に選択接続されることになる。
【0120】
一方、信号PWR-がLレベルに遷移すると、上述した定電流回路150aにより、電圧V1の供給ラインがトランジスタ151を介して接地線に接続される一方、電圧V6の供給ラインがトランジスタ152を介して電源電圧Vccの供給ラインに接続される。なお、電圧V6の供給ラインは、電源電圧Vccの供給ラインに接続される構成となっているが、電源電圧Vccは、図16(a)に示されるように、やがて接地レベルとなるので、このような構成は、電圧V6の供給ラインを接地線に接続する構成と実質的に同等である。したがって、定電流回路におけるトランジスタ151と152は、供給ラインを接地電位にするための電流を流す定電流源となる。
【0121】
よって、すべての液晶層18に蓄積された電荷は、電圧V1の供給ラインを介し、定電流回路150aにおけるトランジスタ151によって強制的に吐き出された後、電圧V6の供給ラインを介し、トランジスタ152によって強制的に吸い出されて、電荷の吸い出しと吐き出しとが信号YCLKや信号Mの短期間の切替に応じて交互に繰り返される。すなわち、トランジスタ151は、すべての液晶層18から電流を吸い込む一方、トランジスタ152は、すべての液晶層18に電流を吐き出す。特に、走査信号の選択電圧V1とV6の供給ラインを、液晶層18からの電荷引き抜きに用いたので、電源オフ検出の当初は、2つの供給ラインの電位は選択電圧近傍にあり、TFD素子20をオンすることができ、TFD素子20を介して液晶層18から蓄積電荷をV1側とV6側に交互に抜くことができる。電源オフ動作時は、正側と負側の電圧を液晶層18に交互に印加するので、電源オフのタイミングで画素に蓄積された電圧が正負の如何なる電圧レベルにあっても、その電荷を放電させることができる。
【0122】
このため、すべての液晶層18は一種の固定電位に接続されたことと同等になるため、そこに蓄積された電荷が急速かつ一定の速度でクリアにされることになる(図16(f)参照)。なお、本実施形態においては、信号YCLKや信号Mの周波数で、各データ線と電圧供給ラインV1又はV6との接続を切替えたが、1/2Hより高周波数のクロック信号であれば他の信号に同期させてもよい。
【0123】
したがって、本実施形態にかかる液晶表示装置によれば、画素電極の抵抗・サイズや、液晶の材質、基板間隔などの要因に依存することがないので、液晶層に蓄積された電荷がゼロになるまで時間を設定することが容易となるのである。
【0124】
〔第2実施形態の液晶表示装置〕
次に、本発明の第2実施形態にかかる液晶表示装置について説明する。
【0125】
上述した第1実施形態における定電流回路150a(図4参照)は、電圧V1およびV6の供給ラインと接地線との接続動作を、信号PWR+と信号PWR-のレベル遷移に基いて間接的に実行するものであったが、この第2実施形態における定電流回路150bは、電源電圧Vccの電圧降下によって直接的に実行するものである。
【0126】
このため、図17に示す第2実施形態の液晶表示装置は、第1実施形態と異なり、信号PWR+や信号PWR-が定電流回路150bには供給されない構成となっている。
【0127】
この定電流回路150bの詳細について図18を参照して説明する。この図に示すように、トランジスタ153のゲートには、電源電圧Vccが直接供給され、そのソースは接地され、また、そのドレインは、DC−DCコンバータ130aにより出力される電圧V0〜V7のうち、電圧V1に、抵抗R11を介してプルアップされている。プルアップされたトランジスタ153のドレインは、トランジスタ154のゲートに接続され、そのソースは接地され、また、そのドレインは電圧V1の供給ラインに接続されている。
【0128】
すなわち、電源電圧Vccが電源オン時の通常電圧である場合、トランジスタ153はオン状態であるが、電源電圧Vccが電圧Vth以下まで降下すると、トランジスタ153がオフ状態となって、トランジスタ154がプルアップされてオン状態となる。このため、電圧V1の供給ラインがトランジスタ154を介して接地線に接続される構成となっている。
【0129】
一方、トランジスタ155のゲートは接地され、そのドレインは電圧V0〜V7のうち、電圧V6に、抵抗R12を介してプルダウンされ、また、そのソースは、電源電圧Vccの供給ラインに接続されている。プルダウンされたトランジスタ155のソースは、トランジスタ156のゲートに接続され、そのソースは電圧V6の供給ラインに接続され、また、そのドレインは電源電圧Vccの供給ラインに接続されている。
【0130】
すなわち、電源電圧Vccが電源オン時の通常電圧である場合、トランジスタ155はオフ状態であるが、電源電圧Vccが電圧Vth以下まで降下すると、トランジスタ155がオン状態となって、トランジスタ156もオフ状態からオン状態となる。このため、電圧V6の供給ラインが電源電圧Vccの供給ラインに接続される構成となっている。なお、電源電圧Vccは、図16(a)に示されるように、やがて接地レベルとなるので、このような構成は、電圧V6の供給ラインをトランジスタ156を介して接地線に接続する構成と実質的に同等である。したがって、定電流回路におけるトランジスタ154と156は、供給ラインを接地電位にするための電流を流す定電流源となる。
【0131】
また、他の構成要素は、第1実施形態と同様である。すなわち、電源電圧Vccが降下すると、すべての走査線Y1〜Yjが電圧V1、V6の供給ラインに交互に且つ高周波数で切替えて接続される。そして、定電流回路150bにおけるトランジスタ154、156によって、電圧V1、V6の供給ラインが徐々に接地レベルとなるため、第1実施形態と同様に、すべての液晶層18に蓄積された電荷を急速かつ一定の速度でクリアにすることが可能となる。
【0132】
〔第3実施形態の液晶表示装置〕
次に、本発明の第3実施形態にかかる液晶表示装置について説明する。なお、説明しない箇所については、上記第1実施形態と同様な構成とする。
【0133】
上述した第1あるいは第2実施形態にあっては、定電流回路150aあるいは150bによって、電源電圧Vccの降下が検出されると、電圧V1、V6の供給ラインと接地線とを接続する構成であったが、この第3実施形態にあっては、DC−DCコンバータ130bが電圧V1、V6の供給ラインと接地線とを接続する構成である。
【0134】
このため、図19に示すように、第3実施形態の液晶表示装置は、定電流回路150aあるいは150bが存在しないかわりに、信号PWR+と信号PWR-がDC−DCコンバータ130bに供給される構成となっている。そして、DC−DCコンバータ130bにおいて、電圧V1、V6を出力する最終段のトランジスタが、それぞれ実質的に図15のトランジスタ151、152に示すように構成されている。
【0135】
すなわち、このDC−DCコンバータ130bにおいては、電圧V1の供給ラインからの吸い込み電流値と、電圧V6の供給ラインへの吐き出し電流値とが大きくなるように最終段トランジスタが構成されている。
【0136】
したがって、第3実施形態の液晶表示装置においても、第1および第2実施形態と同様に、すべての液晶層18に蓄積された電荷を急速かつ一定の速度でクリアにすることが可能となる。
【0137】
〔第4の実施形態の液晶表示装置〕
次に、本発明の第4実施形態にかかる液晶表示装置について説明する。なお、説明しない箇所については、上記第1実施形態と同様な構成とする。
【0138】
上述の第1〜第3の実施形態においては、液晶表示パネル10の走査線Y1〜Yjとデータ線X1〜Xiの交点に対応する位置の各画素16が、2端子型非線形素子20と液晶層18が電気的に直列接続されて構成されるものであった。本実施形態においては、ストライプ状に配列された走査線(走査電極)Y1〜Yjとストライプ状に配列されたデータ線(データ電極)X1〜Xiを交差してその交差部分の液晶層によって画素16を構成し、各画素16にはスイッチング素子を配置しない構成としている。すなわち、液晶表示パネル10は、走査線Y1〜Yjを内面に形成した第1基板とデータ線X1〜Xiを内面に形成した第2基板とを対向させ、この一対の基板間に液晶分子が180度以上のねじれ配向を有するSTN(スーパーツイステッドネマチック)型液晶18を挟持して構成される。図示されないが、一対の基板の外側の少なくとも一方には位相差板が配置され、一対の基板と位相差板を挟んで一対の偏光板が配置される。具体的には、図4、図17、図19などで、TFD素子20を除いて、各画素16の液晶層18に対して、走査線とデータ線の電圧差を直接的に印加する構成となる。
【0139】
図20は本実施形態の液晶表示装置の駆動波形を示す図である。図20に示す駆動方法は、4本の走査線(4ライン)ずつを同時に選択し、4ライン単位で走査線を順次選択する駆動方法(Multi-Line Selection)である。したがって、同時に選択する走査線には、正規直交行列に基づいて規定される信号極性の選択電圧V2又は-V2が印加される。この正規直交行列は、同時選択する走査線に対して、例えば1フレーム期間に印加する選択電圧の信号極性を規定したものである。例えば、4ライン同時選択で1フレームに4回選択するのであれば、4行4列の行列となる。
【0140】
図20においては、Y1〜Y8は走査信号駆動回路100から走査線Y1〜Y8に印加される走査信号波形であり、X1はデータ信号駆動回路110からデータ線X1に印加されるデータ信号波形である。例えば、同時選択する4ラインのうちの1ラインの選択電圧と他の3ラインの選択電圧の信号極性が逆となり、各ラインは1フレーム期間内に4回選択され、そのうち他のラインと逆の信号極性の選択電圧が1回印加される。図20では、各ラインは1フィールドf1〜f4毎に、1回(1H期間)選択される。なお、1フレーム期間(1F)内において時間軸上で分散して走査線を選択するのではなく、1フレーム期間内で各走査線の選択を連続して行ない、残りの期間を非選択期間として設定するパルス波形としても構わない。
【0141】
一方、データ線X1〜Xiに対しては、上記正規直交行列と、4本の走査線とデータ線の交点の画素の表示データ(オン又はオフ)との行列演算の結果に応じて、電圧V2、V1、Vc、-V1、-V2の中から選択される。したがって、図20に示したデータ線X1の最初の1Hにおいては、データ線X1と走査線Y1〜Y4の交点の4個の画素のオン/オフデータの行列と、上記正規直交行列との演算結果に応じて電圧-V1を選択し、データ線X1に印加している。
【0142】
このような単純マトリクス型液晶表示装置においては、駆動電圧としてVc、V1〜V3、-V1〜-V3の7レベルの電圧が、上述の実施形態と同様に、DC−DCコンバータ130aや130bで形成されている。中心電圧Vcは接地電圧とする。
【0143】
本実施形態の液晶表示装置においても、走査信号の電圧供給ラインV3、-V3に対して、図15に示すトランジスタ151及び152、または図18に示すトランジスタ154及び156を接続する構成を採用したり、あるいは図19に示すのと同様なDC−DCコンバータ130bの構成を採用したりすることにより、電源電圧Vccのオフや降下を検出して、電圧V3、−V3の供給ラインを接地線に接続することができる。さらに、走査信号駆動回路100において、上述の実施形態と同様に、全ての走査線Y1〜Yjを、1Hより遥かに高周波数のクロック信号に同期して、V3と-V3の電圧供給ラインに交互に接続することにより、すべての走査線Y1〜Yjを電圧V3、-V3の供給ラインに交互に且つ高周波数で切替えて接続することができる。そして、電圧V3、-V3の供給ラインが徐々に接地レベル(Vc)となるため、上述の実施形態と同様に、すべての液晶層18に蓄積された電荷を急速かつ一定の速度でクリアにすることが可能となる。特に、走査信号の方がデータ信号より振幅が大きいので、走査信号の正負の選択電圧を交互に液晶層に印加しながら、且つこの電圧を接地電位に収束させながら、液晶層の電荷を引き抜くと、液晶層の蓄積電圧よりも大きい電圧印加になるので、電荷が放電されやすくなる。
【0144】
なお、本実施形態の場合は、データ信号駆動回路110にデータ信号GD0〜GDnを高速転送する高周波クロックを、走査信号駆動回路100における走査線とV3、−V3の2つの電圧供給ラインと間の接続切替制御に用いることが好ましい。
【0145】
なお、走査線ではなく、データ線を介して液晶層18を固定電位に接続するようにしてもよい。すなわち、データ線X1〜Xiに供給する駆動電圧V1と-V1の組、あるいはV2と-V2の組の供給ラインに対して、図15に示すトランジスタ151及び152、または図18に示すトランジスタ154及び156を接続する構成を採用したり、あるいは図19に示すのと同様なDC−DCコンバータ130bの構成を採用したりすることにより、電源電圧Vccのオフや降下を検出して、供給ラインを接地線に接続することができる。さらに、データ信号駆動回路110において、上述の実施形態と同様に、すべてのデータ線X1〜Xiを、1Hより遥かに高周波数のクロック信号に同期して、V1と-V1の供給ラインの組同士の間で、あるいはV2と-V2の供給ラインの組同士の間で、交互に切替え接続することにより、電圧V1、-V1の供給ライン、あるいは電圧V2、-V2の供給ラインを介して、全ての信号線を接地線に接続することができる。そして、電圧供給ラインに接続されたトランジスタによって、電圧V1と-V1、あるいは電圧V2と−V2の供給ラインが徐々に接地レベル(Vc)となるため、上述の実施形態と同様に、すべての液晶層18に蓄積された電荷を急速かつ一定の速度でクリアにすることが可能となる。
【0146】
なお、上述のように走査線を接地線に接続することと、データ線を接地線に接続することの両方を、一緒に行なって、液晶層の電荷を急速に引き抜くようにしてもよい。
【0147】
〔変形例〕
なお、上述した第1〜第4実施形態にあっては、電源オフを、電源電圧Vccの降下によって間接的に検出する構成としたが、電源オフを直接的に検出して、信号PWR+及び信号PWR-を生成し、上述の実施形態のように、液晶層に蓄積された電荷をクリアする構成でも良いのはもちろんである。
【0148】
また、第1〜第4実施形態にあっては、電源電圧Vccの降下により電源オフが検出されると、走査線Y1〜Yjのすべてを、2つの電圧の供給ラインに交互に切替えて接続するとともに、これらの両ラインをトランジスタ151、152を介して接地線に接続する構成としたが、信号PWR+あるいは信号PWR-に応じてデータ線X1〜Xiのすべてを、一斉に接地線に接続する構成でも良い。すなわち、図11示すように、信号PWR+あるいは信号PWR-をデータ信号駆動回路110に供給するとともに、データ信号駆動回路110が信号PWR+あるいは信号PWR-のレベル遷移によってデータ線X1〜Xiのすべてを接地線に接続する構成でも良い。図11において、データ線Xiに例示したように、接地線とデータ線Xiの間にトランジスタ160を接続し、信号PWR+をトランジスタ160のゲートに入力し、電源オフになるとトランジスタ160をオンさせて、データ線Xiを接地線に接続するようにすればよい。なお、この場合、各データ線X1〜Xiに対してぞれぞれトランジスタ160が接地線との間に接続される。走査線については、上述の実施形態の方法で接地電位に接続し、データ線についても併せて接地電位に接続するようにしてもよい。
【0149】
さらに、第1〜第3実施形態にあっては、電源電圧Vccの降下により電源オフが検出されると、走査線Y1〜Yjのすべてを、充電モードにおいて画素の表示状態を定める走査信号の選択電圧V1、V6の供給ラインに交互に接続する構成としたが、放電モードにおいて画素の表示状態を定める走査信号の選択電圧V2、V5の供給ラインに交互に接続する構成としても良い。
【0150】
〔電子機器:その1〕
次に、上述した第1〜第4実施形態の液晶表示装置を電子機器に用いた例のいくつかについて説明する。
【0151】
まず、この液晶表示装置をライトバルブとして用いたビデオプロジェクタについて説明する。図21は、ビデオプロジェクタの構成例を示す平面図である。
【0152】
この図に示すように、ビデオプロジェクタ1100内部には、ハロゲンランプ等の白色光源からなるランプユニット1102が設けられている。このランプユニット1102から射出された投射光は、ライトガイド1104内に配置された複数のミラー1106、1106、……および2枚のダイクロイックミラー1108によってRGBの3原色に分離され、各原色に対応するライトバルブとしての液晶パネル1110R、1110Bおよび1110Gに入射される。
【0153】
液晶パネル1110R、1110Bおよび1110Gの構成は、上述した液晶表示パネル10であり、図示しない回路から供給されるR、G、Bの原色信号でそれぞれ駆動される。さて、これらの液晶パネルによって変調された光は、ダイクロイックプリズム1112に3方向から入射される。このダイクロイックプリズム1112においては、RおよびBの光が90度に屈折する一方、Gの光が直進する。したがって、各色の画像が合成される結果、投射レンズ1114を介して、スクリーン等にカラー画像が投写されることとなる。
【0154】
なお、液晶パネル1110R、1110Bおよび1110Gには、ダイクロイックミラー1108によって、R、G、Bの各原色に対応する光が入射するので、対向基板32にカラーフィルタを設ける必要はない。
【0155】
〔電子機器:その2〕
さらに、液晶表示装置をパーソナルコンピュータに適用した例について説明する。図22は、このパーソナルコンピュータの構成を示す正面図である。図において、パーソナルコンピュータ1200は、キーボード1202を備えた本体部1204と、液晶ディスプレイ1206とから構成されている。この液晶ディスプレイ1206は、先に述べた液晶表示パネル10にカラーフィルタとバックライトとを付加することにより構成される。
【0156】
〔電子機器:その3〕
次に、液晶表示パネルをページャに適用した例について説明する。図23は、このページャの構造を示す分解斜視図である。この図に示すように、ページャ1300は、金属フレーム1302において、液晶表示パネル10を、バックライト1306aを含むライトガイド1306、回路基板1308、第1、第2のシールド板1310、1312とともに収容する構成となっている。そして、液晶表示パネル10と回路基板10との導通は、対向基板32に対しては2つの弾性導電体1314、1316によって、素子アレイ基板30に対してはフィルムテープ1318によって、それぞれ図られている。
【0157】
なお、図21〜図23を参照して説明した電子機器の他にも、液晶テレビや、ビューファインダ型、モニタ直視型のビデオテープレコーダ、カーナビゲーション装置、電子手帳、電卓、ワードプロセッサ、ワークステーション、携帯電話、テレビ電話、POS端末、タッチパネルを備えた装置等などが電子機器の例として挙げられる。そして、これらの各種電子機器に適用可能なのは言うまでもない。
【0158】
【発明の効果】
以上説明したように、本発明によれば、液晶表示装置への電源オフが検出されると、液晶層を定電流源を介して固定電位に接続するので、当該液晶層に蓄積された電荷を、個々の装置に依存することなく、迅速にクリアする結果、液晶の劣化を防止することが可能となる。
【図面の簡単な説明】
【図1】 (a)は、TFD素子を適用した液晶パネル用基板の1画素分についてのレイアウトを示す平面図であり、(b)は、そのA−A線の断面図である。
【図2】 他のTFD素子の構造を示す断面図である。
【図3】 (a)は、他のTFD素子を適用した液晶パネル用基板の1画素分についてのレイアウトを示す平面図であり、(b)は、そのB−B線の断面図である。
【図4】 本発明の第1実施形態にかかる液晶表示装置の要部構成を示すブロック図である。
【図5】 液晶表示パネルの構成を示す部分破断斜視図である。
【図6】 走査信号駆動回路の詳細構成を示すブロック図である。
【図7】 同走査信号駆動回路におけるデータ取り込み動作を示すタイミングチャートである。
【図8】 同走査信号駆動回路に供給されるパラレルデータD0、D1、D2と出力電圧との関係を示す図である。
【図9】 各出力電圧の大小関係を示す図である。
【図10】 同走査信号駆動回路による走査信号の出力動作を示す電圧波形を示す図である。
【図11】 データ信号駆動回路の詳細構成を示すブロック図である。
【図12】 駆動制御回路の詳細構成を示すブロック図である。
【図13】 (a)〜(d)は、それぞれ液晶表示パネルの駆動例を示す駆動波形図である。
【図14】 オフシーケンス回路の構成を示す回路図である。
【図15】 第1実施形態における定電流回路の構成を示す回路図である。
【図16】 (a)〜(f)は、それぞれ電源オフ時の動作を示すタイミングチャートである。
【図17】 本発明の第2実施形態にかかる液晶表示装置の要部構成を示すブロック図である。
【図18】 第2実施形態における定電流回路の構成を示す回路図である。
【図19】 本発明の第3実施形態にかかる液晶表示装置の要部構成を示すブロック図である。
【図20】 本発明の第4実施形態にかかる液晶表示装置の動作を示す駆動波形を示す図である。
【図21】 液晶表示パネルを適用した電子機器の一例たる液晶プロジェクタの構成を示す断面図である。
【図22】 液晶表示パネルを適用した電子機器の一例たるパーソナルコンピュータの構成を示す正面図である。
【図23】 液晶表示パネルを適用した電子機器の一例たるページャの構成を示す分解斜視図である。
【符号の説明】
10……液晶表示パネル、
12、48、X1〜Xi……走査線、
14、Y1〜Yj……データ線、
16……画素領域(画素)
18……液晶層、
20、40……TFD素子、
22……第1金属膜(第1金属)、
24……酸化膜(絶縁体)、
26……第2金属膜(第2金属)、
30……素子アレイ基板、
32……対向基板、
36、45……画素電極、
100……走査信号駆動回路、
110……データ信号駆動回路、
120……駆動制御回路、
130a、130b……DC−DCコンバータ、
140……オフシーケンス回路(検出手段、検出回路)、
150a、150b……定電流回路(固定電位、スイッチ回路)、
151、152、154、155……トランジスタ(第1の接続手段)、
153、155……トランジスタ(検出手段)

Claims (5)

  1. 液晶層に蓄積される電荷量を制御することによって液晶表示パネルに所望の表示を行う液晶表示装置の駆動装置であって、
    電源オフを検出する検出手段と、
    前記検出手段により電源オフが検出されると、複数の電圧供給ラインのうちの第1、第2の供給ラインを接地線に接続する接続手段と、
    前記液晶表示パネルに走査信号を供給する走査信号駆動回路と、
    前記走査信号駆動回路を制御する駆動制御回路とを具備し、
    前記走査信号駆動回路は、
    液晶駆動極性を規定するための信号を受け、前段のラッチから入力されたパラレルデータをデコードして、選択信号の電圧として前記複数の電圧供給ラインの電圧のいずれかを選択するための信号に変換するデコーダを含み、
    前記検出手段により電源オフが検出された場合には、
    前記接続手段が、接地電位に対して正極性の電圧を供給する前記第1の供給ラインと負極性の電圧を供給する前記第2の供給ラインを、接地線に接続し、
    前記駆動制御回路が、液晶駆動極性を規定するための前記信号を、1/2水平走査期間よりも短い周期の高周波クロック信号に切り替え、
    前記デコーダが、前記ラッチからの前記パラレルデータにかかわらず前記第1、第2の供給ラインの電圧を強制的に選択するための信号を出力することで、前記走査線を、前記高周波クロック信号に同期して前記第1の供給ラインと前記第2の供給ラインに交互に接続することを特徴とする液晶表示装置の駆動装置。
  2. 請求項1に記載された駆動装置と、
    データ線が設けられた一方の基板と、走査線が設けられた他方の基板とを供え、前記データ線および前記走査線の間に非線形素子および液晶層が直列に接続された画素を有する前記液晶表示パネルとを備えたことを特徴とする液晶表示装置。
  3. 前記非線形素子は、2端子型非線形素子であることを特徴とする請求項2に記載の液晶表示装置。
  4. 前記2端子型非線形素子は、第1金属−絶縁体−第2金属からなる薄膜ダイオード素子であることを特徴とする請求項3に記載の液晶表示装置。
  5. 請求項2〜4のいずれかに記載の液晶表示装置を備えたことを特徴とする電子機器。
JP10973299A 1998-04-16 1999-04-16 液晶表示装置の駆動装置、液晶表示装置および電子機器 Expired - Lifetime JP3832138B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10973299A JP3832138B2 (ja) 1998-04-16 1999-04-16 液晶表示装置の駆動装置、液晶表示装置および電子機器

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP10678698 1998-04-16
JP10-106786 1998-04-16
JP10973299A JP3832138B2 (ja) 1998-04-16 1999-04-16 液晶表示装置の駆動装置、液晶表示装置および電子機器

Publications (2)

Publication Number Publication Date
JP2000002866A JP2000002866A (ja) 2000-01-07
JP3832138B2 true JP3832138B2 (ja) 2006-10-11

Family

ID=26446896

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10973299A Expired - Lifetime JP3832138B2 (ja) 1998-04-16 1999-04-16 液晶表示装置の駆動装置、液晶表示装置および電子機器

Country Status (1)

Country Link
JP (1) JP3832138B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101247502B1 (ko) * 2011-05-03 2013-03-26 주식회사 실리콘웍스 화상 안정화를 위한 액정패널 구동 회로

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4608864B2 (ja) * 2003-09-29 2011-01-12 セイコーエプソン株式会社 電気光学装置、その駆動回路および電子機器
KR100957580B1 (ko) * 2003-09-30 2010-05-12 삼성전자주식회사 구동장치, 이를 갖는 표시장치 및 이의 구동방법
KR100996813B1 (ko) * 2008-06-11 2010-11-25 매그나칩 반도체 유한회사 방전회로 및 이를 구비한 표시장치
TWI582743B (zh) 2011-05-03 2017-05-11 矽工廠股份有限公司 用於顯示穩定的液晶面板驅動電路
JP2014228561A (ja) * 2013-05-17 2014-12-08 シャープ株式会社 液晶表示装置、液晶表示装置の制御方法、液晶表示装置の制御プログラムおよびその記録媒体

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101247502B1 (ko) * 2011-05-03 2013-03-26 주식회사 실리콘웍스 화상 안정화를 위한 액정패널 구동 회로

Also Published As

Publication number Publication date
JP2000002866A (ja) 2000-01-07

Similar Documents

Publication Publication Date Title
US7034816B2 (en) System and method for driving a display device
JP3648999B2 (ja) 液晶表示装置、電子機器および液晶層の電圧検出方法
JP3925016B2 (ja) 表示装置の駆動方法、その駆動回路、表示装置、および、電子機器
US6639590B2 (en) Method for controlling liquid crystal display device, device for driving liquid crystal display device, liquid crystal display device, and electronic apparatus
JP4196999B2 (ja) 液晶表示装置の駆動回路、液晶表示装置、液晶表示装置の駆動方法、および電子機器
JP2001147671A (ja) 表示装置の駆動方法、その駆動回路、表示装置、および、電子機器
JP2000147455A (ja) 液晶パネルの駆動装置及び液晶装置
JP2007128033A (ja) 電気光学装置、電気光学装置の駆動方法および電子機器
US20030011583A1 (en) Display device, drive circuit thereof, driving method therefor, and electronic equipment
JP2001188519A (ja) 電気光学装置、電気光学装置の駆動回路および駆動方法、電子機器
JP2002244623A (ja) 液晶表示装置の駆動方式および駆動回路
JP2001296840A (ja) 電気光学パネルの駆動方法、そのデータ線駆動回路、電気光学装置、及び電子機器
JP3832138B2 (ja) 液晶表示装置の駆動装置、液晶表示装置および電子機器
US6940484B2 (en) Systems and methods for driving a display device
JPH09243995A (ja) アクティブマトリックスアレイと液晶表示装置及びその駆動方法
KR100631228B1 (ko) 전기 광학 장치, 그 구동 회로 및 구동 방법, 및 전자기기
JP2001100707A (ja) 電気光学装置の駆動方法、駆動回路および電気光学装置ならびに電子機器
JPH1062741A (ja) 表示装置
JP2003044015A (ja) 電気光学装置および電子機器
JP2007047350A (ja) 電気光学装置、駆動方法および電子機器
JP2002358053A (ja) 電気光学パネル、その駆動方法、走査線駆動回路および電子機器
JP2000111947A (ja) 液晶表示パネル、液晶表示装置の温度補償方法、液晶表示装置、および電子機器
JP3677998B2 (ja) 液晶表示装置の表示調整方法、液晶表示装置および電子機器
JP2000172233A (ja) 液晶表示装置、液晶表示装置の駆動方法および液晶表示装置を備えた電子機器
JP3767127B2 (ja) 液晶表示パネルの駆動装置、液晶表示装置及び電子機器

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040322

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060308

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060404

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060531

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060531

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20060531

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060627

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060710

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100728

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110728

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110728

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120728

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120728

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130728

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term