JP3828507B2 - 燃料電池用電極 - Google Patents

燃料電池用電極 Download PDF

Info

Publication number
JP3828507B2
JP3828507B2 JP2003142651A JP2003142651A JP3828507B2 JP 3828507 B2 JP3828507 B2 JP 3828507B2 JP 2003142651 A JP2003142651 A JP 2003142651A JP 2003142651 A JP2003142651 A JP 2003142651A JP 3828507 B2 JP3828507 B2 JP 3828507B2
Authority
JP
Japan
Prior art keywords
layer
ion exchange
exchange membrane
electrode
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003142651A
Other languages
English (en)
Other versions
JP2004047454A (ja
Inventor
修 角谷
玄 沖山
孝 鈴木
知子 伊達
芳樹 平野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2003142651A priority Critical patent/JP3828507B2/ja
Publication of JP2004047454A publication Critical patent/JP2004047454A/ja
Application granted granted Critical
Publication of JP3828507B2 publication Critical patent/JP3828507B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、正・負極間にイオン交換膜を配置し、負極の触媒に水素を接触させるとともに正極の触媒に酸素を接触させることにより発電する燃料電池用電極に関する。
【0002】
【従来の技術】
図10は従来の燃料電池を説明する説明図である。燃料電池100は、負極層(水素極)101と正極層(酸素極)102との間にイオン交換膜103を配置し、負極層101に含む触媒に水素分子(H)を接触させるとともに、正極層102に含む触媒に酸素分子(O)を接触させることにより、電子eを矢印の如く流すことにより、電流を発生させるものである。電流を発生させる際に、水素分子(H)と酸素分子(O)とから生成水(HO)を得る。
この燃料電池10の負極層101、正極層102、イオン交換膜103を主要構成部材とする燃料電池用電極を次図で詳しく説明する。
【0003】
図11は従来の燃料電池を構成する燃料電池用電極を示す説明図である。
燃料電池用電極は、一対の拡散層104,105の内側にそれぞれバインダー層106及びバインダー層107を備え、これらバインダー層106及びバインダー層107の内側にそれぞれ負極層101及び正極層102を備え、これら負極層101及び正極層102の間にイオン交換膜103を備える。
【0004】
この燃料電池用電極を製造する際には、先ず拡散層104にバインダー層106用の溶液を塗布するとともに、拡散層105にバインダー層107用の溶液を塗布し、塗布したバインダー層106,107を焼成することによりバインダー層106,107を固化する。
【0005】
次に、固化したバインダー層106に負極層101の溶液を塗布するとともに、固化したバインダー層107に正極層102の溶液を塗布し、塗布した負・正極層101,102を乾燥することにより負・正極層101,102を固化する。
次いで、固化した負極層101にシート状のイオン交換膜103を載せ、続いてイオン交換膜103に正極層102が固化された拡散層105を載せて7層の多層構造を形成する。
次に、この多層構造を矢印の如く加熱圧着することにより電極構造を形成する。
【0006】
【発明が解決しようとする課題】
上述したように、燃料電池用電極はイオン交換膜103としてシートを使用しており、加えてバインダー層106、負極層101、正極層102、バインダー層107のそれぞれの層を固化した状態で加熱圧着するので、それぞれの層の境界に密着不良部分が発生する虞がある。
燃料電池用電極の各層に密着不良部分が発生すると、電流を効率よく発生することが難しくなり、製造ラインの検査の段階において、これらの燃料電池用電極が廃棄処分や修復処分になり、そのことが生産性を高める妨げになっている。
【0007】
さらに、燃料電池用電極のイオン交換膜103としてシートを使用しているので、燃料電池用電極を加熱圧着の際に、イオン交換膜103を加熱状態で加圧することになり、イオン交換膜103の性能が低下する虞がある。これにより、検査の段階で廃棄処分や修復処分の対象となる部品が一層多くなり、そのことが生産性を高める妨げになっている。
【0008】
加えて、イオン交換膜103としてシートを使用しているので、イオン交換膜103の取扱い性を考慮するとイオン交換膜103をある程度厚くする必要がある。このため、燃料電池用電極を薄くすることが難しく、そのことが燃料電池用電極の小型化を図る妨げになる。
【0009】
そこで、本発明の目的は、それぞれの層の境界に密着不良部分が発生することを防ぐことができ、さらにイオン交換膜の性能低下を防ぐことができ、加えてイオン交換膜を薄くすることができる燃料電池用電極を提供することにある。
【0010】
【課題を解決するための手段】
本発明者らは、それぞれの層間に密着不良部分が発生するのは、先の塗膜が固化した後に、次の溶液を塗布して、この溶液が先の塗膜に滲み込まず、結果として密着不良が発生することが、その原因であることを突き止めた。
そこで、先の塗膜が乾かないうちに、次の溶液を重ねたところ、溶液が先の塗膜に滲み込み、密着性が著しく高まることが分かった。
同様に、シート状のイオン交換膜に溶液を塗布した場合にも、溶液がシート状のイオン交換膜に滲み込まず、結果として密着不良が発生することが、その原因であることを突き止めた。
【0011】
そこで、請求項1は、燃料電池を構成する正・負いずれか一方の電極用の溶液に、白金又は白金−ルテニウムを担持させた炭素を含有させたものを塗布して一方の電極層を形成し、一方の電極層が未乾燥のうちに、この電極層上にイオン交換膜用の溶液を塗布してイオン交換膜を形成し、イオン交換膜が未乾燥のうちに、このイオン交換膜上に正・負いずれか他方の電極用の溶液を塗布して他方の電極層を形成し、一対の電極層及びイオン交換膜を乾燥することにより固化した燃料電池用電極において、前記一方の電極層を、前記イオン交換膜から離れた面側の第1層と、イオン交換膜に接触する面側の第2層との二層に分け、且つ、気孔率を下記の▲1▼式で定義するときに、第2層を塗布する際の噴霧圧を第1層を塗布する際の噴霧圧より高くし、または第2層の炭素の粒径を第層の炭素の粒径より小さくすることで、前記第2層を第1層より小さな気孔率に設定したことを特徴とする。
【0012】
【数2】
Figure 0003828507
【0013】
イオン交換膜に溶液を採用し、電極用の溶液及びイオン交換膜用の溶液をそれぞれ未乾燥の状態で塗布すれば、境界で混合が発生する。
これにより、一対の電極及びイオン交換膜の各層の境界に密着不良部分が発生することを防ぐことができるので、イオン交換膜における反応効率を良好に保つことができる。
【0014】
ここで、イオン交換膜にシートを使用した場合、シート状イオン交換膜の取扱い性を好適に保つためにはイオン交換膜をある程度厚くする必要がある。このため、燃料電池用電極を薄くすることが難しく、そのことが燃料電池用電極の小型化を図る妨げになる。
【0015】
そこで、請求項1においてイオン交換膜を溶液とし、イオン交換膜を溶液の状態で取り扱うことができるようにした。イオン交換膜を溶液とすることで、取扱いの際にイオン交換膜の厚さを規制する必要はない。
このため、イオン交換膜を薄くすることが可能になり、燃料電池用電極を薄くすることができる。
【0016】
ところで、燃料電池を使用して電流を発生させる際に、水素分子(H)と酸素分子(O)とが反応して燃料電池内に生成水(HO)を生成する。この生成水は側拡散層(カーボンペーパー)を透過させて燃料電池の外部に排出する。しかし、未乾燥の電極層上にイオン交換膜用の溶液を塗布すると、イオン交換膜用の溶液が電極層に浸透して、浸透した溶液で電極層の空隙が減少してしまう虞がある。
【0017】
このため、燃料電池用電極を製造する際に、電極層をイオン交換膜の下方に配置すると、イオン交換膜用の溶液で電極層の空隙が減少してしまい、発電により生成した生成水を、拡散層から燃料電池の外部に効率よく排出できないことが懸念される。
【0018】
生成水を効率よく排出することができないと、水素や酸素の反応ガスを好適に供給することが妨げられるので、濃度過電圧が高くなり、燃料電池の発電性能を良好に保つことが難しくなる。
なお、「濃度過電圧」とは、電極における反応物質及び反応生成物の補給及び除去の速度が遅く、電極の反応が妨害されるときに現れる電圧低下をいう。すなわち、濃度過電圧が高くなるということは電圧低下量が増すということである。
【0019】
そこで、請求項1において、一方の電極層を、イオン交換膜から離れた面側の第1層と、イオン交換膜に接触する面側の第2層との二層に分け、第2層の気孔率を第1層より小さく設定した。第2層の気孔率を小さくすることで、第2層にイオン交換膜の溶液が浸透することを抑えることができるので、イオン交換膜用の溶液が電極層に浸透することを抑制できる。
このように、イオン交換膜用の溶液が電極層に浸透することを抑制することにより、イオン交換膜用の溶液で電極層の空隙が減少することを防止できる。
【0020】
また、請求項において、前記一対の電極層及び前記イオン交換膜を乾燥する際に、一対の電極層及びイオン交換膜に荷重をかけない状態を保ち、前記第2層の気孔率70〜75%とし、前記第1層の気孔率を76〜85%としたことを特徴とする。
第2層の気孔率を70〜75%とした理由は以下の通りである。
第2層の気孔率を70%未満とすると、気孔率が小さくなりすぎて、イオン交換膜の溶液を第2層に適正量浸透させることができない虞がある。よって、イオン交換膜と第2層との密着性を良好に保つことが難しく、反応の有効面積を確保することができない虞がある。このため、活性化過電圧が高くなり、電流を効率よく発生することができない虞がある。
【0021】
そこで、第2層の気孔率を70%以上に設定して、イオン交換膜と第2層との密着性を良好に保つようにした。
なお、「活性化過電圧」とは、電極における反応が活性化エネルギーを必要とするために、この活性化エネルギーを補うために現れる電圧低下をいう。すなわち、活性化過電圧が高くなるということは電圧低下量が増すということである。
【0022】
一方、第2層の気孔率が75%を超えると、気孔率が大きくなりすぎて、イオン交換膜の溶液を第2に過大に浸透してしまう虞がある。よって、一方の電極層の気孔がイオン交換膜の溶液で減少してしまい、発電により生成した生成水を、一方の電極層の気孔を通して好適に排出することができない。このため、水素や酸素の反応ガスを好適に供給することが妨げられて、濃度過電圧が高くなり、燃料電池の発電性能を良好に保つことが難しくなる。
そこで、第2層の気孔率を75%以下に設定して、生成水を好適に排水することができるようにした。
【0023】
さらに、第1層の気孔率76〜85%とした理由は以下の通りである。
第1層の気孔率を76%未満とすると、気孔率が小さすぎて生成水を効率よく排水することが難しい。このため、水素や酸素の反応ガスを好適に供給することが妨げられて、濃度過電圧が高くなり、燃料電池の発電性能を良好に保つことが難しくなる。
そこで、第1層の気孔率を76%以上に設定して、生成水を好適に排水することができるようにした。
【0024】
一方、第1層の気孔率が85%を超えると、気孔率が大きくなりすぎて生成水の保水性が低下し、第1層が乾燥してしまい、イオンの伝導を阻害する虞がある。このため、抵抗過電圧が高くなり電流を効率よく発生することができない虞がある。
そこで、第1層の気孔率を85%以下に設定して、抵抗過電圧を抑えて電流を効率よく発生することができるようにした。
なお、「抵抗過電圧」とは、電極内の電気抵抗に比例して生じる電圧低下をいう。すなわち、抵抗過電圧が高くなるということは電圧低下量が増すということである。
また、請求項2は、前記一方の電極用の溶液を拡散層上に塗布することにより、この拡散層上に、前記一方の電極用の溶液、前記イオン交換膜用の溶液、及び前記他方の電極用の溶液を順次塗布するようにしたことを特徴とする。
【0025】
【発明の実施の形態】
本発明の実施の形態を添付図に基づいて以下に説明する。
図1は本発明に係る燃料電池用電極(第1実施形態)を備えた燃料電池を示す分解斜視図である。
燃料電池ユニット10は複数(2個)の燃料電池11,11で構成したものである。燃料電池11は、燃料電池用電極12を構成するシート状の負極側拡散層13の外側に負極側流路基板31を配置し、燃料電池用電極12を構成するシート状の正極側拡散層14の外側に正極側流路基板34を配置したものである。
【0026】
負極側拡散層13に負極側流路基板31を積層することで、負極側流路基板31の流路溝31aを負極側拡散層13で覆うことにより、水素ガス流路32を形成する。また、正極側拡散層14に正極側流路基板34を積層することで、正極側流路基板34の流路溝34aを正極側拡散層14で覆うことにより、酸素ガス流路35を形成する。
【0027】
燃料電池用電極12は、正極側拡散層14及び負極側拡散層13の内側にそれぞれバインダーを介して一方の電極層としての正極層18及び他方の電極層としての負極層17を備え、これら正極層18及び負極層17の間にイオン交換膜19を備える。
このように、構成した燃料電池11をセパレータ36を介して複数個(図1では2個のみを示す)備えることで、燃料電池ユニット10を構成する。
なお、燃料電池用電極12については図2で詳しく説明する。
【0028】
燃料電池ユニット10によれば、水素ガス流路32に水素ガスを供給することで、負極層17に含む触媒に水素分子(H)を吸着させるとともに、酸素ガス流路35に酸素ガスを供給することで、正極層18に含む触媒に酸素分子(O)を吸着させる。これにより、電子(e)を矢印の如く流して電流を発生させることができる。
なお、電流を発生させる際には、水素分子(H)と酸素分子(O)とから生成水(HO)が発生する。
【0029】
図2は本発明に係る燃料電池用電極(第1実施形態)を示す説明図である。
燃料電池用電極12は、負極側拡散層13及び正極側拡散層14の内側にそれぞれ負極層17及び正極層18を備え、これら負極層17及び正極層18の間にイオン交換膜19を備える。
負極側拡散層13は、負極側のカーボンペーパー13a及び負極側のバインダー層15aからなるシート材(シート)である。
また、正極側拡散層14は、正極側のカーボンペーパー14a及び正極側のバインダー層16aからなるシート材(シート)である。
【0030】
負極側のバインダー層15aを構成するバインダーは、カーボンフッ素樹脂である。また、正極側のバインダー層16aを構成するバインダーは、撥水性を備えたカーボンポリマーであり、カーボンポリマーはポリテトラフルオロエチレンの骨格にスルホン酸を導入したものが該当する。
【0031】
負極層17は、負極用の溶液に触媒21を混合し、溶液を塗布後に乾燥することで固化したものである。負極層17の触媒21は、炭素22の表面に触媒として白金−ルテニウム23を担持したものであり、白金−ルテニウム23に水素分子(H)を吸着させるものである。
【0032】
正極層18は、イオン交換膜19から離れた面側(すなわち、正極側拡散層14に接触する面側)の第1層18aと、イオン交換膜19に接触する面側の第2層18bとの二層に分け、且つ、気孔率が下記の▲1▼式で定義されるときに、第2層18bは、第1層18aより小さな気孔率にしたものである。
【0033】
【数3】
Figure 0003828507
【0034】
但し、真比重とは、内部に空隙や気孔を持たない状態の材料の比重をいう。また、嵩比重とは、空隙や気孔を包含する材料について一様な密度分布をなすものとみなした場合の比重をいう。
【0035】
第1層18aは、第1層18a用の溶液に触媒24を混合し、溶液を塗布後に乾燥することで固化したものである。第1層18aの触媒24は、炭素25の表面に触媒として白金26を担持したものであり、白金26に酸素分子(O)を吸着させるものである。
【0036】
また、第2層18bは、第1層18aと同様に、第2層18b用の溶液に触媒24を混合し、溶液を塗布後に乾燥することで固化したものである。第2層18bの触媒24は、炭素25の表面に触媒として白金26を担持したものであり、白金26に酸素分子(O)を吸着させるものである。
【0037】
この第2層18bは、第1層18aの触媒24と比較して、触媒24・・・を、密に配置することで、第2層18bの気孔率を第1層18aより小さくしたものである。具体的には、第2層18bの気孔率を70〜75%とし、第1層18aの気孔率を76〜85%とした。
【0038】
ここで、第2層18bの気孔率を70〜75%と設定した理由について説明する。
第2層18bの気孔率を70%未満とすると、気孔率が小さくなりすぎて、イオン交換膜19の溶液を第2層18bに適正量浸透させることができない虞がある。よって、イオン交換膜19と第2層18bとの密着性を良好に保つことが難しい。
そこで、第2層18bの気孔率を70%以上に設定して、イオン交換膜19と第2層18bとの密着性を良好に保つようにした。
【0039】
一方、第2層18bの気孔率が75%を超えると、気孔率が大きくなりすぎて、イオン交換膜19の溶液を第2層18bに過大に浸透してしまう虞がある。よって、正極層18の気孔(空隙部)がイオン交換膜19の溶液で減少してしまい、発電により生成した生成水を、正極層18の気孔(空隙部)を通して好適に排出することができない。
そこで、第2層18bの気孔率を75%以下に設定して、生成水を好適に排水できるようにした。
【0040】
次に、第1層18aの気孔率を76〜85%と設定した理由について説明する。
第1層18aの気孔率を76%未満とすると、気孔率(空隙部)が小さすぎて生成水を効率よく排水することが難しい。
そこで、第1層18aの気孔率を76%以上に設定して、生成水を好適に排水することができるようにした。
【0041】
一方、第1層18aの気孔率が85%を超えると、気孔率が大きくなりすぎて生成水の保水性が低下し、第1層18aが乾燥してしまい、イオンの伝導を阻害する虞がある。このため、抵抗過電圧が高くなり電流を効率よく発生することができない虞がある。
そこで、第1層18aの気孔率を85%以下に設定して、抵抗過電圧を抑え電流を効率よく発生するようにした。
【0042】
イオン交換膜19は、正極層18(詳しくは、第2層18b)及び負極層17間に溶液の状態で塗布した後、負極層17及び正極層18とともに一緒に乾燥することにより負極層17及び正極層18と一体に固化したものである。
【0043】
次に、燃料電池用電極12の製造方法を図3〜図5に基づいて説明する。
図3(a)〜(c)は本発明に係る燃料電池用電極(第1実施形態)の製造方法を示す第1工程説明図である。
(a)において、シート状の正極側拡散層14を配置する。すなわち、正極側拡散層14のカーボンペーパー14aをセットした後、このカーボンペーパー14a上にバインダー層16a用の溶液を塗布する。
【0044】
(b)において、バインダー層16aが未乾燥のうちに、バインダー層16aの上方でスプレー51を矢印▲1▼の如く移動して、バインダー層16a上に正極層18のうちの第1層18a用の溶液を噴射口52から塗布する。これにより、バインダー層16aに第1層18aを形成する。
ここで、気孔率を下記の▲1▼式で定義するときに、第1層18aの気孔率を76〜85%とした。
【0045】
【数4】
Figure 0003828507
【0046】
第1層18aが未乾燥のうちに、第1層18aの上方でスプレー51を継続的に矢印▲1▼の如く移動して、第1層18a上に正極層18のうちの第2層18b用の溶液を噴射口52から塗布する。これにより、第1層18aに第2層18bを形成する。
第2層18bの溶液として第1層18aの溶液と同じものを使用し、第2層18b用の溶液の噴霧圧を、第1層18a用の溶液の噴霧圧より高く設定した。
具体的には、気孔率を下記の▲1▼式で定義するときに、第2層18bの気孔率を70〜75%とした。
【0047】
【数5】
Figure 0003828507
【0048】
なお、第1実施形態では、第1層18aの溶液及び第2層18bの溶液をそれぞれ同じスプレー51で噴霧状に塗布した例について説明したが、これに限らないで、第1層18aの溶液と第2層18bの溶液とをそれぞれ個別のスプレーを用いて塗布することも可能である。
【0049】
(c)において、第2層18b用の溶液の噴霧圧を、第1層18a用の溶液の噴霧圧より高く設定することで、第2層18bの触媒24を第1層18aの触媒24より密に配置することができる。
これにより、気孔率を下記の▲1▼式で定義するときに、第2層18bを第1層18aより小さな気孔率に形成することができる。
【0050】
【数6】
Figure 0003828507
【0051】
図4(a),(b)は本発明に係る燃料電池用電極(第1実施形態)の製造方法を示す第2工程説明図である。
(a)において、正極層18を構成する第2層18bが未乾燥のうちに、第2層18bの上方でコーター54を矢印▲2▼の如く移動して、第2層18b上にイオン交換膜19用の溶液を塗布してイオン交換膜19を形成する。
【0052】
ここで、正極層18を、イオン交換膜19から離れた面側の第1層18aと、イオン交換膜19に接触する面側の第2層18bとの二層に分け、第2層18bの気孔率を70〜75%とし、第1層18aの気孔率を76〜85%とし、第2層18bの気孔率を第1層18aより小さく設定した。
【0053】
第2層18bの気孔率を小さくすることで、第2層18bにイオン交換膜19の溶液が浸透することを抑えることができるので、イオン交換膜19用の溶液が第2層18bに浸透することを抑制できる。
これにより、イオン交換膜19用の溶液で正極層18の気孔(空隙部)が減少することを防止できる。
【0054】
ここで、第2層18bの気孔率を70%以上に設定して、イオン交換膜19と第2層18bとの密着性を良好に保つことができ、第2層18bの気孔率を75%以下に設定して、生成水を好適に排水できる気孔(空隙部)確保するようにした。
また、第1層18aの気孔率を76%以上に設定して、生成水を好適に排水する気孔(空隙部)を確保するようにし、第1層18aの気孔率を85%以下に設定して、抵抗過電圧を抑え電流を効率よく発生できるようにした。
【0055】
(b)において、イオン交換膜19が未乾燥のうちに、イオン交換膜19の上方でスプレー56を矢印▲3▼の如く移動して、イオン交換膜19上に負極層17用の溶液を噴射口57から塗布する。これにより、イオン交換膜19に負極層17を形成する。
【0056】
図5(a)〜(c)は本発明に係る燃料電池用電極(第1実施形態)の製造方法を示す第3工程説明図である。
(a)において、負極層17が未乾燥のうちに、負極層17上に、負極側拡散層13(図2参照)を構成するバインダー層15aの溶液を塗布する。
(b)において、バインダー層15aに負極側のカーボンペーパー13aを載せることにより、バインダー層15a及びカーボンペーパー13aでシート状の負極側拡散層13を形成する。
【0057】
次に、バインダー層16a、正極層18、イオン交換膜19、負極層17、バインダー層15aが未乾燥のうちに、バインダー層16a、正極層18、イオン交換膜19、負極層17、バインダー層15aに荷重をかけないで、バインダー層16a、正極層18、イオン交換膜19、負極層17、バインダー層15aを一緒に乾燥する。
【0058】
(c)において、バインダー層16a、正極層18、イオン交換膜19、負極層17、バインダー層15aを固化することで、バインダー層16a、正極層18、イオン交換膜19、負極層17、バインダー層15aを固化した状態で一体に積層する。
これにより、燃料電池用電極12の製造工程が完了する。
【0059】
このように、燃料電池用電極12の製造方法によれば、バインダー層16a、正極層18、イオン交換膜19、負極層17、バインダー層15aが未乾燥の状態で、それぞれの上面に溶液を塗布することで、それぞれの境界において隣接する溶液同士を好適に混合させることができる。
【0060】
よって、バインダー層16aと正極層18(第1層18a、第2層18b)との間の境界に密着不良部分が発生することを防ぐことができる。また、正極層18とイオン交換膜19との間の境界に密着不良部分が発生することを防ぐことができる。さらに、イオン交換膜19と負極層17との間の境界に密着不良部分が発生することを防ぐことができる。
加えて、負極層17とバインダー層15aとの間の境界に密着不良部分が発生することを防ぐことができる。
これにより、燃料電池用電極12における反応効率を良好に保つことができる。
【0061】
加えて、イオン交換膜19を溶液とすることで、イオン交換膜19を溶液の状態で取り扱うことができるので、取扱い性の観点からイオン交換膜19の厚さを規制する必要はない。このため、イオン交換膜19を薄くすることが可能になり、燃料電池用電極12を薄くすることができる。
【0062】
次に、燃料電池用電極の第2実施形態を図6〜図9に基づいて説明する。なお、第2実施形態の燃料電池用電極において、第1実施形態と同一部材については同一符号を付して説明を省略する。
【0063】
図6は本発明に係る燃料電池用電極(第2実施形態)を示す説明図である。
燃料電池用電極62は、負極側拡散層13及び正極側拡散層14の内側にそれぞれ負極層17(他方の電極層)及び正極層68(一方の電極層)を備え、これら負極層17及び正極層68の間にイオン交換膜19を備える。
すなわち、第2実施形態の燃料電池用電極62は、第1実施形態の燃料電池用電極12と比較して正極層68が異なるだけでその他の構成は第1実施形態と同様である。以下、正極層68について詳しく説明する。
【0064】
正極層68は、イオン交換膜19から離れた面側(すなわち、正極側拡散層14に接触する面側)の第1層68aと、イオン交換膜19に接触する面側の第2層68bとの二層に分け、且つ、気孔率が下記の▲1▼式で定義されるときに、第2層68bは、第1層68aより小さな気孔率にしたものである。
【0065】
【数7】
Figure 0003828507
【0066】
第1層68aは、第1実施形態の第1層18aと同様に、第1層68a用の溶液に触媒24を混合し、溶液を塗布後に乾燥することで固化したものである。第1層68aの触媒24は、炭素25の表面に触媒として白金26を担持したものであり、白金26に酸素分子(O)を吸着させるものである。この炭素25の粒径はD1である。
【0067】
また、第2層68bは、第2層68b用の溶液に触媒64を混合し、溶液を塗布後に乾燥することで固化したものである。第2層68bの触媒64は、炭素64の表面に触媒として白金65を担持したものであり、白金65に酸素分子(O)を吸着させるものである。
この炭素64の粒径はD2であり、炭素64の粒径D2は、第1層68aを構成する炭素25の粒径D1と比較して小径に形成されている。
【0068】
この第2層68bを構成する炭素64の粒径D2を、第1層68aを構成する炭素25の粒径D1より小さく設定することにより、第1層68aを構成する炭素25と比較して、第2層68bを構成する炭素64を密に配置することができる。
【0069】
これにより、第2層68bの気孔率を第1層68aより小さくすることができる。具体的には、第2層68bの気孔率を70〜75%とし、第1層68aの気孔率を76〜85%とした。
なお、第2層68bの気孔率を70〜75%とし、第1層68aの気孔率を76〜85%とした理由は、第1実施形態で第2層18bの気孔率を70〜75%とし、第1層18aの気孔率を76〜85%とした理由と同じであり、その説明を省略する。
【0070】
次に、燃料電池用電極62の製造方法を図7〜図9に基づいて説明する。
図7(a)〜(c)は本発明に係る燃料電池用電極(第2実施形態)の製造方法を示す第1工程説明図である。
(a)において、シート状の正極側拡散層14を配置する。すなわち、正極側拡散層14のカーボンペーパー14aをセットした後、このカーボンペーパー14a上にバインダー層16a用の溶液を塗布する。
【0071】
(b)において、バインダー層16aが未乾燥のうちに、バインダー層16aの上方でスプレー71を矢印▲4▼の如く移動して、バインダー層16a上に正極層68のうちの第1層68a用の溶液を噴射口72から塗布する。これにより、バインダー層16aに第1層68aを形成する。
ここで、気孔率を下記の▲1▼式で定義するときに、第1層68aの気孔率を76〜85%とした。
【0072】
【数8】
Figure 0003828507
【0073】
(c)において、第1層68aが未乾燥のうちに、第1層68aの上方でスプレー73を継続的に矢印▲5▼の如く移動して、第1層68a上に正極層68のうちの第2層68b用の溶液を噴射口74から塗布する。これにより、第1層68aに第2層68bを形成する。
ここで、第2層68bの溶液は、炭素64の粒径D2を、第1層68aの炭素25の粒径D1より小さく設定することで、第1層68aの溶液を構成する炭素25と比較して、第2層68bを構成する炭素64を密に配置することができる。
【0074】
これにより、第2層68bの気孔率を第1層68aより小さくすることができる。具体的には、気孔率を下記の▲1▼式で定義するときに、第2層68bの気孔率を70〜75%とした。
【0075】
【数9】
Figure 0003828507
【0076】
図8(a),(b)は本発明に係る燃料電池用電極(第2実施形態)の製造方法を示す第2工程説明図である。
(a)において、図7で説明したように第2層68bの溶液を、炭素64の粒径D2が、第1層68aの炭素25の粒径D1より小さし、第1層68aの溶液中の炭素25と比較して、第2層68bの溶液中の炭素64を密に配置することで、第2層68bの触媒63を第1層68aの触媒24より密に配置することができる。
これにより、気孔率を下記の▲1▼式で定義するときに、第2層68bを第1層68aより小さな気孔率に形成することができる。
【0077】
【数10】
Figure 0003828507
【0078】
(b)において、正極層68を構成する第2層68bが未乾燥のうちに、第2層68bの上方でコーター76を矢印▲6▼の如く移動して、第2層68b上にイオン交換膜19用の溶液を塗布してイオン交換膜19を形成する。
【0079】
ここで、正極層68を、イオン交換膜19から離れた面側の第1層68aと、イオン交換膜19に接触する面側の第2層68bとの二層に分け、第2層68bの気孔率を70〜75%とし、第1層68aの気孔率を76〜85%とし、第2層18bの気孔率を第1層18aより小さく設定した。
【0080】
第2層68bの気孔率を小さくすることで、第2層68bにイオン交換膜19の溶液が浸透することを抑えることができるので、イオン交換膜19用の溶液が第2層68bに浸透することを抑制できる。
これにより、イオン交換膜19用の溶液で極層68の気孔(空隙部)が減少することを防止できる。
【0081】
ここで、第2層68bの気孔率を70%以上に設定して、イオン交換膜19と第2層68bとの密着性を良好に保つことができ、第2層68bの気孔率を75%以下に設定して、生成水を好適に排水できる気孔(空隙部)確保するようにした。
また、第1層68aの気孔率を76%以上に設定して、生成水を好適に排水する気孔(空隙部)を確保するようにし、第1層68aの気孔率を85%以下に設定して、抵抗過電圧を抑え電流を効率よく発生できるようにした。
【0082】
(c)において、イオン交換膜19が未乾燥のうちに、イオン交換膜19の上方でスプレー77を矢印▲7▼の如く移動して、イオン交換膜19上に負極層17用の溶液を噴射口78から塗布する。これにより、イオン交換膜19に負極層17を形成する。
【0083】
図9(a)〜(c)は本発明に係る燃料電池用電極(第2実施形態)の製造方法を示す第3工程説明図である。
(a)において、負極層17が未乾燥のうちに、負極層17上に、負極側拡散層13(図6参照)を構成するバインダー層15aの溶液を塗布する。
(b)において、バインダー層15aに負極側のカーボンペーパー13aを載せることにより、バインダー層15a及びカーボンペーパー13aでシート状の負極側拡散層13を形成する。
【0084】
次に、バインダー層16a、正極層68、イオン交換膜19、負極層17、バインダー層15aが未乾燥のうちに、バインダー層16a、正極層68、イオン交換膜19、負極層17、バインダー層15aに荷重をかけないで、バインダー層16a、正極層68、イオン交換膜19、負極層17、バインダー層15aを一緒に乾燥する。
【0085】
(c)において、バインダー層16a、正極層68、イオン交換膜19、負極層17、バインダー層15aを固化することで、バインダー層16a、正極層68、イオン交換膜19、負極層17、バインダー層15aを固化した状態で一体に積層する。
これにより、燃料電池用電極12の製造工程が完了する。
【0086】
このように、燃料電池用電極12の製造方法によれば、バインダー層16a、正極層68、イオン交換膜19、負極層17、バインダー層15aが未乾燥の状態で、それぞれの上面に溶液を塗布することで、それぞれの境界において隣接する溶液同士を好適に混合させることができる。
【0087】
よって、バインダー層16aと正極層68(第1層68a、第2層68b)との間の境界に密着不良部分が発生することを防ぐことができる。また、正極層68とイオン交換膜19との間の境界に密着不良部分が発生することを防ぐことができる。さらに、イオン交換膜19と負極層17との間の境界に密着不良部分が発生することを防ぐことができる。
加えて、負極層17とバインダー層15aとの間の境界に密着不良部分が発生することを防ぐことができる。
これにより、燃料電池用電極12における反応効率を良好に保つことができる。
【0088】
加えて、イオン交換膜19を溶液とすることで、イオン交換膜19を溶液の状態で取り扱うことができるので、取扱い性の観点からイオン交換膜19の厚さを規制する必要はない。このため、イオン交換膜19を薄くすることが可能になり、燃料電池用電極12を薄くすることができる。
【0089】
なお、前記第1実施形態及び第2実施形態では、正極層18,68を下方に配置するとともに負極層17を上方に配置した例について説明したが、負極層を前記実施形態の正極層18,68と同様に二層に分けて下方に配置することも可能である。
すなわち、負極層を前記実施形態の正極層18,68と同様に第1層および第2層の二層に分け、第2層を第1層より小さな気孔率に設定し、正極層を実施形態の負極層17と同様の層にし、負極層を下方に配置するとともに正極層を上方に配置しても同様の効果を得る。
【0090】
また、前記第1実施形態では、正極層18の第1、第2層18a,18bをスプレーで塗布し、前記第2実施形態では、正極層68の第1、第2層68a,68bをスプレーで塗布した例について説明したが、各層はスプレーに限らないで、インクジェット方式を採用して塗布することも可能である。要は、各層用の溶液を噴霧状に塗布できればよい。
【0091】
ここで、スプレー及びインクジェットは溶液を噴霧状に塗布する点で同じである。スプレーは噴霧範囲が比較的広く塗布時間を短くできるが、未塗布部分を確保するためにマスキング処理が必要になる。一般に、マスキング処理部に付着した溶液は回収が難しい。
【0092】
一方、インクジェットは塗布範囲を正確に絞り込むことができるので、未塗布部分にマスキング処理を施す必要がなく、溶液を有効に使用することができる。但し、インクジェットは、塗布範囲が狭いのでスプレーと比較して塗布スピードが劣る。
【0093】
【発明の効果】
本発明は上記構成により次の効果を発揮する。
請求項1は、イオン交換膜に溶液を採用し、電極用の溶液及びイオン交換膜用の溶液をそれぞれ未乾燥の状態で塗布すれば、境界で混合が発生する。これにより、一対の電極及びイオン交換膜の各層の境界に密着不良部分が発生することを防ぐことができるので、イオン交換膜における反応効率を良好に保つことができる。
この結果、燃料電池用電極の品質を安定させることができるので、生産性を高めることができる。
【0094】
加えて、イオン交換膜を溶液とすることで、イオン交換膜を溶液の状態で取り扱うことができるので、取扱い性の観点からイオン交換膜の厚さを規制する必要はない。このため、イオン交換膜を薄くすることが可能になり、燃料電池用電極を薄くすることができるので、燃料電池用電極の小型化を図ることができる。
【0095】
また、一方の電極層を、イオン交換膜から離れた面側の第1層と、イオン交換膜に接触する面側の第2層との二層に分け、第2層の気孔率を第1層より小さく設定した。第2層の気孔率を小さくすることで、第2層にイオン交換膜の溶液が浸透することを抑えることができるので、イオン交換膜用の溶液が電極層に浸透することを抑制できる。
【0096】
このように、イオン交換膜用の溶液が電極層に浸透することを抑制することにより、イオン交換膜用の溶液で電極層の空隙が減少することを防止できる。
従って、発電により生成した生成水を、電極層の空隙から拡散層まで導いて拡散層の空隙から好適に排出することができるので、燃料電池に生じる濃度過電圧を低く抑えることができる。
【0097】
また、請求項は、第2層の気孔率が70〜75%となるように設定した。第2層の気孔率を70%以上に設定することで、イオン交換膜と第2層との密着性を良好に保つことができる。
一方、第2層の気孔率を75%以下に設定することで、生成水を好適に排水することができる。
【0098】
さらに、請求項は、第1層の気孔率が76〜85%となるように設定した。第1層の気孔率を76%以上に設定することで生成水を好適に排水することができる。
一方、第1層の気孔率を85%以下に設定することで、抵抗過電圧を抑えて電流を効率よく発生することができる。
また、請求項2は、一方の電極用の溶液を拡散層上に塗布することにより、この拡散層上に、一方の電極用の溶液、イオン交換膜用の溶液、及び他方の電極用の溶液を順次塗布するようにしたものである。
【図面の簡単な説明】
【図1】本発明に係る燃料電池用電極(第1実施形態)を備えた燃料電池を示す分解斜視図
【図2】本発明に係る燃料電池用電極(第1実施形態)を示す説明図
【図3】本発明に係る燃料電池用電極(第1実施形態)の製造方法を示す第1工程説明図
【図4】本発明に係る燃料電池用電極(第1実施形態)の製造方法を示す第2工程説明図
【図5】本発明に係る燃料電池用電極(第1実施形態)の製造方法を示す第3工程説明図
【図6】本発明に係る燃料電池用電極(第2実施形態)を示す説明図
【図7】本発明に係る燃料電池用電極(第2実施形態)の製造方法を示す第1工程説明図
【図8】本発明に係る燃料電池用電極(第2実施形態)の製造方法を示す第2工程説明図
【図9】本発明に係る燃料電池用電極(第2実施形態)の製造方法を示す第3工程説明図
【図10】従来の燃料電池を説明する説明図
【図11】従来の燃料電池を構成する燃料電池用電極を示す説明図
【符号の説明】
11…燃料電池、12…燃料電池用電極、13…負極側拡散層(シート)、14…正極側拡散層、17…負極層(他方の電極層)、18,68…正極層(一方の電極層)、18a,68a…第1層、18b,68b…第2層、19…イオン交換膜。

Claims (2)

  1. 燃料電池を構成する正・負いずれか一方の電極用の溶液に、白金又は白金−ルテニウムを担持させた炭素を含有させたものを塗布して一方の電極層を形成し、一方の電極層が未乾燥のうちに、この電極層上にイオン交換膜用の溶液を塗布してイオン交換膜を形成し、イオン交換膜が未乾燥のうちに、このイオン交換膜上に正・負いずれか他方の電極用の溶液を塗布して他方の電極層を形成し、一対の電極層及びイオン交換膜を乾燥することにより固化した燃料電池用電極において、
    前記一方の電極層を、前記イオン交換膜から離れた面側の第1層と、イオン交換膜に接触する面側の第2層との二層に分け、且つ、気孔率を下記の▲1▼式で定義するときに、第2層を塗布する際の噴霧圧を第1層を塗布する際の噴霧圧より高くし、または第2層の炭素の粒径を第層の炭素の粒径より小さくすることで、前記第2層を第1層より小さな気孔率に設定した燃料電池用電極であって、
    前記一対の電極層及び前記イオン交換膜を乾燥する際に、一対の電極層及びイオン交換膜に荷重をかけない状態を保ち、
    前記第2層の気孔率を70〜75%とし、
    前記第1層の気孔率を76〜85%としたことを特徴とする燃料電池用電極。
    Figure 0003828507
  2. 前記一方の電極用の溶液を拡散層上に塗布することにより、この拡散層上に、前記一方の電極用の溶液、前記イオン交換膜用の溶液、及び前記他方の電極用の溶液を順次塗布するようにしたことを特徴とする請求項1記載の燃料電池用電極。
JP2003142651A 2002-05-22 2003-05-20 燃料電池用電極 Expired - Fee Related JP3828507B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003142651A JP3828507B2 (ja) 2002-05-22 2003-05-20 燃料電池用電極

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002148099 2002-05-22
JP2003142651A JP3828507B2 (ja) 2002-05-22 2003-05-20 燃料電池用電極

Publications (2)

Publication Number Publication Date
JP2004047454A JP2004047454A (ja) 2004-02-12
JP3828507B2 true JP3828507B2 (ja) 2006-10-04

Family

ID=31719644

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003142651A Expired - Fee Related JP3828507B2 (ja) 2002-05-22 2003-05-20 燃料電池用電極

Country Status (1)

Country Link
JP (1) JP3828507B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1705737B8 (en) 2004-01-26 2018-10-31 Panasonic Corporation Membrane catalyst layer assembly, membrane electrode assembly, and polymer electrolyte fuel cell
KR101040428B1 (ko) 2009-06-09 2011-06-09 주식회사 협진아이엔씨 고분자형 연료전지 막 전극 접합체의 이중 구조를 갖는 기체확산층 탄소기재와 그 제조방법
US9484583B2 (en) 2013-10-14 2016-11-01 Nissan North America, Inc. Fuel cell electrode catalyst having graduated layers

Also Published As

Publication number Publication date
JP2004047454A (ja) 2004-02-12

Similar Documents

Publication Publication Date Title
JP5002874B2 (ja) 燃料電池の電極触媒層形成方法
JP5044062B2 (ja) 膜−触媒層接合体の製造方法
JP3827653B2 (ja) 燃料電池用電極の製造方法
JP5594021B2 (ja) 膜電極接合体及びその製造方法
JP4810841B2 (ja) 固体高分子形燃料電池用電解質膜−触媒層接合体の製造方法および製造装置
JP2005174763A (ja) 燃料電池
JP2000299119A (ja) 触媒層の製造方法
WO2010047125A1 (ja) 燃料電池用電極層の形成材料、燃料電池用膜電極接合体、燃料電池、燃料電池用電極層の形成材料の製造方法、燃料電池用電極層の製造方法
JP2009289692A (ja) 燃料電池用電極層の製造方法
JP2009245797A (ja) 固体高分子型燃料電池用補強シート付き膜・電極接合体およびその製造方法
JP2009054292A (ja) 電解質膜−電極接合体および電解質膜の製造方法
JP3828507B2 (ja) 燃料電池用電極
JP3898569B2 (ja) 燃料電池の製造方法
JP7290682B2 (ja) 燃料電池の製造方法
JP3828455B2 (ja) 燃料電池の製造方法
JP3828453B2 (ja) 燃料電池の製造方法
JP2009032438A (ja) 燃料電池用膜−電極接合体の製造方法および膜−電極接合体
JP3961983B2 (ja) 燃料電池の製造方法
JP3863068B2 (ja) 燃料電池用電極の製造方法
JP3943442B2 (ja) 燃料電池用膜−電極構造体の製造方法
JP5619841B2 (ja) 固体高分子形燃料電池の製造方法
JP3428079B2 (ja) エネルギ変換装置および燃料電池並びに燃料電池の製造方法
JP5137008B2 (ja) 燃料電池用膜・電極接合体の製造方法
JP5804449B2 (ja) 膜電極接合体の製造方法
JP4133791B2 (ja) 燃料電池用電極−膜接合体の製造方法

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050729

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050830

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051027

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060420

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060516

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060516

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060704

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060706

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100714

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100714

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110714

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110714

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120714

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120714

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130714

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140714

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees