JP3826687B2 - 全方向移動台車 - Google Patents
全方向移動台車 Download PDFInfo
- Publication number
- JP3826687B2 JP3826687B2 JP2000222617A JP2000222617A JP3826687B2 JP 3826687 B2 JP3826687 B2 JP 3826687B2 JP 2000222617 A JP2000222617 A JP 2000222617A JP 2000222617 A JP2000222617 A JP 2000222617A JP 3826687 B2 JP3826687 B2 JP 3826687B2
- Authority
- JP
- Japan
- Prior art keywords
- vehicle body
- force
- driving
- vehicle
- drive
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Steering-Linkage Mechanisms And Four-Wheel Steering (AREA)
- Handcart (AREA)
Description
【発明の属する技術分野】
本発明は、全方向移動台車に関するものである。
【0002】
【従来の技術】
従来、人誘導型台車としては、特開平8−282498号公報記載のパワーアシスト付運搬車が提案されている。このパワーアシスト付運搬車では車体に備えられた操作部に加えた外力に応じたアシスト力が走行兼操舵用駆動車輪に加えられる。しかしながら、この公報の実施例中のパワーアシスト付運搬車の走行兼操舵用駆動車輪にあっては、左右1対に線対称に配置した2つの駆動車輪の回転数差を制御することによって走行兼操舵用駆動車輪を実現しているに過ぎないため、横ずさり移動や斜め移動ができず、台車の駆動方向性のフレキシビリティが極めて乏しい。また、これに伴って操作部に加えた外力を検出するための構成も、走行のための前後の推進方向と操舵のための回転方向(正確には左右方向)の外力を検出するだけとなっている。
【0003】
【発明が解決しようとする課題】
本発明は上記の点に鑑みて為されたものであり、従来の人誘導型台車としては実現されなかった、全方向に移動可能な駆動方向性に極めてフレキシビリティのある全方向移動台車を提供することを目的としている。
【0004】
【課題を解決するための手段】
本発明に係る全方向移動台車は、全方向移動可能な駆動車輪1と、駆動車輪1を駆動する駆動部2と、操作者が操作力を加える操作部3を備えた車体4と、前記操作部3に加えられた操作力Hを検出する操作力検出手段5とを有し、上記全方向移動可能な駆動車輪1が、ボールホイールやユニバーサルホイール等の全方向駆動車輪であって、該全方向駆動車輪を少なくとも3個備え、車体4に搭載した制御手段6によって、車体4を前後方向に駆動させる駆動要素D1と車体を左右方向に駆動させる駆動要素D2と車体を旋回させる駆動要素D3から規定される駆動系の駆動要素値Dを操作力検出手段5で検出された操作力Hに応じて最適化し、得られた駆動系の駆動要素値Dに応じて各駆動車輪1を駆動するものであり、且つ全方向移動台車の使用時の重心位置Gに作用する、車体4を前後方向に駆動させる駆動要素D 1(G) と車体を左右方向に駆動させる駆動要素D 2(G) と車体を旋回させる駆動要素D 3(G) を駆動系の駆動要素値Dとして用いるものであることを特徴とする。
【0005】
また、前記制御手段6への入力手段を前記操作力検出手段5とは別に設けてもよい。
【0006】
また、車体4に搭載した制御手段6によって、車体4を前後方向に駆動させる駆動要素D1と車体4を左右方向に駆動させる駆動要素D2と車体4を旋回させる駆動要素D3から規定される駆動系の駆動要素値を操作力検出手段5で検出された操作力Hに応じて最適化するにあたり、前後方向の駆動要素値は検出された前後方向の力fhxに対して第1のゲインKxを掛けたものから最適化し、左右方向の駆動要素値は検出された左右方向の力fhyに対して第2のゲインKyを掛けたものから最適化し、さらに旋回方向の駆動要素値は検出された旋回方向の力fhψに対して第3のゲインKψを掛けたものと左右方向の力fhyに第4のゲインKyψを掛けたものとの和から最適化するようにしてもよい。
【0007】
また、全方向移動台車の駆動方向の自由度を前後、左右、旋回の3自由度と、前後、旋回の2自由度とに切り替えられるようにしたり、全方向移動台車の駆動方向の自由度を前後、左右の2自由度と、前後、旋回の2自由度とに切り替えられるようにしたり、全方向移動台車の駆動方向の自由度を前後、旋回の2自由度と、左右の1自由度とに切り替えられるようにしてもよい。
【0008】
この場合、全方向移動台車の駆動方向の自由度切替が切替スイッチ8によって行われるか、操作部3を複数個設けて、操作者がいずれの操作部3で操作するかによって駆動方向の自由度が切り替わるようにすればよい。
【0009】
また、車体4に搭載した制御手段6は、左右方向の移動時のみ、車体4の左右方向の障害物を検知する障害物検知手段60の出力を受けて警報の出力もしくは停止を行うものであってもよい。
【0010】
また、操作力検出手段5は、1つの操作部3に加えられた操作力Hの車体前後方向の分力H1と車体左右方向の分力H2と車体旋回方向モーメントHMとを検出するものを好適に用いることができる。
【0011】
この時、操作部3と操作部ベース9とを操作力Hに応じて車体前後方向に相対的変位d1(l),d1(r)が生じる機構10l,10rにより左右2ヵ所で接続し、前記操作部ベース9に操作力Hに応じて車体4に対して車体左右方向に相対的変位d2が生じる機構11を設けると共に前記各相対的変位d1(l),d1(r),d2を検出する変位検出手段12a,12b,12cを設け、検出した各相対的変位d1(l),d1(r),d2から操作力Hの車体前後方向の分力H1と車体左右方向の分力H2と車体旋回方向モーメントHMとを検出すればよい。
【0012】
また、操作部3の把持部13が操作力Hに応じて操作部3に対して車体左右方向に相対的変位d2を生じる機構14を設けると共に前記相対的変位d2を検出する変位検出手段16aを設け、操作部3と車体4とを操作力Hに応じて車体前後方向に相対的変位d1(l),d1(r)が生じる機構15l,15rにより左右2ヵ所で接続すると共に前記左右2ヵ所で生じる各相対的変位d1(l),d1(r)を検出する変位検出手段16b,16cを設け、検出した各相対的変位d1(l),d1(r),d2から操作力Hの車体前後方向の分力H1と車体左右方向の分力H2と車体旋回方向モーメントHMとを検出してもよい。
【0013】
更には、操作力Hに応じて操作部3の操作部ベース9に対して左右に生じる車体前後方向の相対的変位d1(l),d1(r)を夫々dl,dr、操作部ベース9の車体4に対して生じる車体左右方向の相対的変位d2をdc、操作力Hの車体前後方向の分力H1及び車体左右方向の分力H2及び車体旋回方向モーメントHMをFhx,Fhy,Mhとすると、Fhx,Fhy,Mhとdl,dr,dc間の線形性から、比例定数k1,k2,k3,k4を実験で求め、操作力検出手段5の演算部にて下記式
Fhx=k1×(dr+dl)
Fhy=k2×dc
Mh=k3×(dr−dl)+k4×dc
により、Fhx,Fhy,Mhを求めればよい。
【0014】
また、操作力検出手段5は、1つの操作部3に加えられた操作力Hの車体前後方向の分力H1と車体左右方向の分力H2と車体旋回方向モーメントHMとを検出するにあたっては、操作部3と車体4とを左右2ヵ所で接続すると共に前記左右2ヵ所の接続部17に該接続部17に作用する車体前後方向の力I1(l),I1(r)と車体左右方向の力I2(l),I2(r)を検出する力センサー18を夫々配設し、検出した左右の接続部17に作用する車体前後方向の力I1(l),I1(r)と車体左右方向の力I2(l),I2(r)から、操作力Hの車体前後方向の分力H1と車体左右方向の分力H2と車体旋回方向モーメントHMとを検出してもよい。
【0015】
この時、操作力Hに応じて左側接続部17lに生じる車体前後方向の力I1(l)と車体左右方向の力I2(l)をFlx,Fly、右側接続部17rに生じる車体前後方向の力I1(r)と車体左右方向の力I2(r)をFrx,Fry、操作力Hの車体前後方向の分力H1及び車体左右方向の分力H2及び車体旋回方向モーメントHMをFhx,Fhy,Mhとすると、MhとFlx,Frx間の線形性から、比例定数k5を実験で求め、操作力検出手段5の演算部にて下記式
Fhx=Frx+Flx
Fhy=Fry+Fly
Mh=k5×(Frx−Flx)
により、Fhx,Fhy,Mhを求めればよい。
【0016】
また、操作部3と車体4とを操作力Hに応じて車体前後方向に相対的変位が生じる機構21l,21rにより左右2ヵ所で接続すると共に前記左右2ヵ所で生じる各相対的変位d1(l),d1(r)を検出する変位検出手段22a,22bを設け、検出した各相対的変位d1(l),d1(r)から操作力Hの車体前後方向の分力H1と車体左右方向の分力H2と車体旋回方向モーメントHMとを検出するものも好適に用いることができる。
【0017】
この時、操作力Hに応じて生じる前記各相対的変位d1(l),d1(r)の内、左側の相対的変位d1(l)をdl、右側の相対的変位d1(r)をdr、操作力Hの車体前後方向の分力H1及び車体左右方向の分力H2及び車体旋回方向モーメントHMをFhx,Fhy,Mhとすると、Fhx,Fhy,Mhとdl,dr間の線形性から、比例定数k6,k7,k8を実験で求め、操作力検出手段5の演算部にて下記式
Fhx=k6×(dr+dl)
Fhy=k7×(dr−dl)
Mh=k8×(dr−dl)
により、Fhx,Fhy,Mhを求めればよい。
【0018】
また操作力検出手段5からの出力値の所定時間内の変化量をもとに断線を判定する断線判定手段を備えるとともに、該断線判定手段は車体4の速度に応じて上記判定のための所定時間の値を変更するものも好ましい。
【0019】
また、全方向移動可能な駆動車輪1が、ユニバーサルホイールタイプの全方向駆動車輪であって、4個以上の偶数個の駆動車輪1が車体に左右対称に且つ左右に並ぶ対の駆動車輪1の駆動軸1aの交点が車体4の左右方向中央に位置するものとして配置されているとともに、左右に並ぶ対の駆動車輪1の駆動軸1aが車体の前後方向軸となす角度θがすべて同じであり、さらに上記対の駆動車輪1は車体の前後方向において離れて配置されているものが好ましい。
【0020】
また、全方向移動可能な駆動車輪1が、ボールホイールやユニバーサルホイール等の全方向駆動車輪であって、該駆動車輪1を操作部3から離れている側に多く配置しているものであってもよい。
【0021】
この場合、駆動車輪1の両側に自在車輪23を配置することが好ましい。
【0022】
また、全方向移動可能な駆動車輪1と車体4とを繋ぐ連結部24にその長さが駆動車輪1の接地する接地面25の凹凸に応じて上下に伸縮し、尚且つ連結部24の伸縮範囲内において駆動車輪1が接地面25に対して一定値以上の押付力で作用する駆動車輪押付機構を設けたものも好ましい。
【0023】
また、操作者の手が操作部3から離れたことを検知する手段の出力を受けて制御手段6は車体を停止させるものであってもよい。
【0024】
この場合、操作者の手が操作部3から離れたことを検知する手段の出力を受けて制御手段6は制御中心CCにおける車体速度を徐々に低下させて停止させることが好ましい。
【0025】
そして制御手段6は、操作者の手が操作部3に触れていることを検知する手段の出力を受けて通常制御に戻すものであることが好ましい。
【0026】
また、車体4に搭載した制御手段6において、車体4を前後方向に駆動させる駆動要素D1と車体4を左右方向に駆動させる駆動要素D2と車体4を旋回させる駆動要素D3として車体4を前後方向に駆動させる駆動力F1と車体左右方向推進力F2と車体旋回モーメントMを設定し、これら駆動要素D1,D2,D3から規定される駆動系の駆動要素値Dを操作力検出手段5で検出された操作力Hに応じて最適化し、得られた駆動系の駆動要素値Dに応じて各駆動車輪1の駆動力fi(i=1,…,n)を演算し、演算により得られた各駆動車輪1の駆動力fi(i=1,…,n)となるよう各駆動車輪1に駆動力fi(i=1,…,n)を発生させるものを好適に用いることができる。
【0027】
この時、車体4に搭載した制御手段6において、車体4を前後方向に駆動させる駆動要素D1と車体を左右方向に駆動させる駆動要素D2と車体を旋回させる駆動要素D3として車体前後方向速度υ1と車体左右方向速度υ2と車体旋回方向速度υ3を設定し、これら駆動要素D1,D2,D3から規定される駆動系の駆動要素値Dを操作力検出手段5で検出された操作力Hに応じて最適化し、得られた駆動系の駆動要素値Dに応じて各駆動車輪1の駆動速度υi(i=1,…,n)を演算し、演算により得られた各駆動車輪1の駆動速度υi(i=1,…,n)となるよう各駆動車輪1に駆動力fi(i=1,…,n)を発生させるとよい。
【0028】
また、車体4に搭載した制御手段6において、車体4を前後方向に駆動させる駆動要素D1と車体を左右方向に駆動させる駆動要素D2と車体を旋回させる駆動要素D3として車体前後方向加速度α1と車体左右方向加速度α2と車体旋回方向加速度α3を設定し、これら駆動要素D1,D2,D3から規定される駆動系の駆動要素値Dを操作力検出手段5で検出された操作力Hに応じて最適化し、得られた駆動系の駆動要素値Dに応じて各駆動車輪1の駆動加速度ai(i=1,…,n)を演算し、演算により得られた各駆動車輪1の駆動加速度ai(i=1,…,n)となるよう各駆動車輪1に駆動力fi(i=1,…,n)を発生させるものであってもよい。
【0029】
【発明の実施の形態】
本発明の実施の形態の一例を図1乃至図6に示す。図1は本発明の全方向移動台車の一例である配膳車を示し、図4はこの配膳車の車体4に配設される全方向移動可能な駆動車輪1を示すものである。この駆動車輪1は、ユニバーサルホイールタイプの全方向駆動車輪であって、駆動部2である駆動モーター26のモーター軸に連結された主軸1aと、この主軸の周りに回転可能な回転枠体1bと、この回転枠体1bに支持され、主軸1aに垂直な平面内においてこの主軸1aの周りに等間隔に配設された4本の支軸1cに夫々回転自在に保持された4個のローラー1dとからなり、この各ローラー1dの支軸1cを含む縦断面の外形が主軸1aを中心とする円の円周の一部を形成することにより4個のローラー1dによって主軸1aを中心として形成される大径ローラー1eの主軸1aを中心とする回転と各ローラー1dによる夫々の支軸1cを中心とする回転とが可能に構成されたものであり、ローラー1dの位置を周方向において半ピッチずらした2つの大径ローラー1eが軸方向に並んでいる駆動車輪1を図5に示すように車体4の底面4bの前側に1個、その主軸1aが車体4の前後方向の中心線上に位置するように配設すると共に、車体4の底面4bの後側に2個、夫々の主軸1aの延長線が車体4の前後方向の中心線と略45°で交わるように車体4の前後方向の中心線に対して線対称に位置するように配設する(尚、以下の説明では車体4の底面4bの前側に配設した駆動車輪1を1F、車体4の底面4bの後側左に配設した駆動車輪1を1RL、車体4の底面4bの後側右に配設した駆動車輪1を1RRと呼ぶことにする)。
【0030】
このように駆動車輪1F,1RL,1RRを車体4の底面4bに配置することで、駆動車輪1F,1RL,1RRを適宜回転駆動させることによって、車体4の前後方向及び左右方向の移動を可能にすると共に、駆動車輪1F,1RL,1RRの主軸1aの延長線が点A(以下、車軸交点Aと呼ぶ)で交わるため、各駆動車輪1F,1RL,1RRの大径ローラー1eを適宜回転駆動させることによって、点Aを中心とした車体4の旋回も可能となる。
【0031】
車体4の前面4fの上部には3個の駆動車輪1F,1RL,1RRの主軸1aの回転中心を含む平面に平行に操作部3となる略円弧状の把持部27が配設される。操作者はこの操作部3を把持して、意図する方向に配膳車を誘導する。この時、操作部3に操作者が加える操作力Hを、操作部3或いは操作部3と車体4の前面4fとの接続部に設けられた操作力検出手段5にて検出し、車体4に搭載した制御手段6によって、車体4を前後方向に駆動させる駆動要素D1と車体を左右方向に駆動させる駆動要素D2と車体を旋回させる駆動要素D3から規定される駆動系の駆動要素値Dを操作力検出手段5で検出された操作力Hに応じて最適化し、得られた駆動系の駆動要素値Dに応じて駆動車輪1F,1RL,1RRを駆動する。
【0032】
尚、上記の車体4を前後方向に駆動させる駆動要素D1と車体を左右方向に駆動させる駆動要素D2と車体を旋回させる駆動要素D3とは、全方向移動台車を1つの移動単体と見なした場合に、3つの駆動車輪1F,1RL,1RRの力学的要素(駆動力fi/駆動速度υi/駆動加速度ai;i=1,2,3)の合成で決まる移動単体の力学的要素(推進力F/速度υ/加速度α)を、移動単体を前後方向に推進させる力学的要素(車体前後方向推進力F1/車体前後方向速度υ1/車体前後方向加速度α1)と移動単体を左右方向に駆動させる力学的要素(車体左右方向推進力F2/車体左右方向速度υ2/車体左右方向加速度α2)と移動単体を旋回させる力学的要素(車体旋回モーメントM/車体旋回速度υ3/車体旋回加速度α3)とに分解することで各々定義されるものであり、駆動系の駆動要素値Dとは上記D1,D2,D3の3つの値から定義される行列を指す。
【0033】
次に上記制御方法について詳述する。図2は上記駆動要素D1,D2,D3として車体前後方向推進力F1、車体左右方向推進力F2、車体旋回モーメントMを設定した場合の制御系の基本的なフローチャートを示すものである。まず、操作者の操作部3に加えた操作力Hを操作力検出手段5にて検出し、この検出値に基づいて配膳車を1つの移動単体と見なした場合に要求される、車体前後方向推進力F1と、車体左右方向推進力F2と、車体旋回モーメントMとを演算する。続いて、このF1,F2,Mを基にして3つの駆動車輪1F,1RL,1RRに求められる駆動力f1,f2,f3を演算し、3つの駆動車輪1F,1RL,1RRが演算した駆動力f1,f2,f3となるよう3つの駆動車輪1F,1RL,1RRの駆動部2に必要トルクを出力する。
【0034】
図6は上記演算を導くための全方向移動台車の力学モデル図である。この力学モデル図は、全方向移動台車の3つの駆動車輪1F,1RL,1RRの路面との接地部分を作用点P1,P2,P3と見なす。車軸交点Aから作用点P1,P2,P3までの距離をL1,L2,L3とし、作用点F,RL,RRに車軸交点Aと作用点P1,P2,P3を結ぶ線に対して直角な方向に上記駆動力f1,f2,f3が作用したとする。この時、3つの駆動車輪1F,1RL,1RRの駆動力f1,f2,f3の車軸交点Aにおける合力Fとその作用方向φと、合力Fの車体を前後方向に駆動させる成分F1と、合力Fの車体を左右方向に駆動させる成分F2及び車軸交点A回りの車体旋回モーメントMは次式で表せる。
【0035】
【数1】
【0036】
上記式より、各駆動車輪1F,1RL,1RRの駆動力fi(i=1,2,3)を制御することによって、全方向移動台車の車軸交点Aにおける合力Fと車軸交点A回りの車体旋回モーメントMは制御することができるため、全方向駆動性と最適な駆動力Fの実現を可能とする。尚、上記モデルは、駆動車輪1が3つの時のものであるが、駆動車輪1が何個であっても、各駆動車輪1の主軸1aが1点で交わるのであれば、上記式と同様な関係式に基づいて全方向移動台車の移動方向と駆動力Fを制御することができる。
【0037】
図3は上記理論に基づいた全方向移動台車の駆動特性を制御するためのブロック図である。まず、操作者が操作部3に操作力Hを加えると、操作力Hが操作部3を介して直接全方向移動台車に加わると共に、操作力検出手段5によって検出された操作力Hに応じて適宜駆動車輪1F,1RL,1RRにアシスト力Fa1,Fa2,Fa3が働く。このアシスト力Fa1,Fa2,Fa3は、次の流れで決定される。まず、操作力検出手段5によって検出した操作力Hより、操作力の車体前後方向の分力H1と、操作力の車体左右方向の分力H2と、操作力の車体左右方向の分力HMとに分解し、これらに予め設定したアシストゲイン(力増倍率)を乗じて、全方向移動台車を1つの移動単体と見なした場合の、車体前後方向推進力F1と、車体左右方向推進力F2と、車体旋回モーメントMとで規定される駆動系の駆動要素値Dを演算する。
【0038】
次に前述の関係式より、駆動車輪1F,1RL,1RRに求められる駆動力f1,f2,f3を演算し、これらf1,f2,f3をアシスト力Fa1,Fa2,Fa3として駆動車輪1F,1RL,1RRに働かせる。このように車体4に搭載した制御手段6によって、車体4を前後方向に駆動させる駆動要素D1と車体を左右方向に駆動させる駆動要素D2と車体を旋回させる駆動要素D3から規定される駆動系の駆動要素値Dを操作力検出手段5で検出された操作力Hに応じて最適化し、得られた駆動系の駆動要素値Dに応じて各駆動車輪1を駆動することで、従来の人誘導型台車としては、実現されなかった、全方向に移動可能な駆動方向性に極めてフレキシビリティのある全方向移動台車を実現できる。
【0039】
尚、上記の例でのユニバーサルホイールタイプの駆動車輪1は、4個のローラー1dで大径ローラー1eが形成されたものとなっているが、このユニバーサルホイールタイプの駆動車輪1は、図7に示すように3個以上のローラー1dで大径ローラー1eを形成することができる。
【0040】
本発明の実施の形態の他の例を図8に示す。この全方向移動台車は、使用時の重心位置Gに作用する、車体4を前後方向に駆動させる駆動要素D1(G)と車体を左右方向に駆動させる駆動要素D2(G)と車体を旋回させる駆動要素D3(G)を駆動系の駆動要素値Dとして用いるものであり、他の構成は前記例と同じである。図8(a)の例は、全方向移動台車の任意の点Gと操作部3における操作力Hの作用点Wが車体4の前後方向に距離L、車体4の左右方向に距離lだけ離れている場合を示すものであり、使用時の重心位置Gに作用する、車体4を前後方向に駆動させる駆動要素D1(G)と車体を左右方向に駆動させる駆動要素D2(G)と車体を旋回させる駆動要素D3(G)として、使用時の重心位置Gに作用する、車体前後方向推進力F1(G)、車体左右方向推進力F2(G)、車体旋回モーメントM(G)を設定する。この時、操作力Hの操作力の車体前後方向の分力H1と、操作力Hの車体左右方向の分力H2と、操作力Hの車体旋回方向モーメントHMと、使用時の重心位置Gに作用する、車体前後方向推進力F1(G)、車体左右方向推進力F2(G)、車体旋回モーメントM(G)との関係は次式で表せる。
【0041】
F1(G)=H1
F2(G)=H2
M(G)=HM+H2×L−H1×l
上記式よりF1(G),F2(G),M(G)を求め、これらの値より、駆動系の駆動要素値Dを決定し、前記例の演算式に従って、各駆動車輪1の駆動力fi(i=1,…,n)を求める。尚、図8(b)は、全方向移動台車の使用時の重心位置Gが図8(a)のものと車体4の左右方向に対称な位置にある場合を示すものである。この場合、D1(G),D2(G),D3(G)の内、D3(G)、即ち、使用時の重心位置Gに作用する車体旋回モーメントM(G)のみが異なり、M(G)は次式で表せる。
【0042】
M(G)=HM+H2×L+H1×l
このように全方向移動台車の使用時の重心位置Gに作用する、車体4を前後方向に駆動させる駆動要素D1(G)と車体を左右方向に駆動させる駆動要素D2(G)と車体を旋回させる駆動要素D3(G)を駆動系の駆動要素値Dとして用いることにより、操作者の手応えに自然な操作感を与え、新規使用者でも操作し易い全方向移動台車を実現できる。
【0043】
次に本発明の実施の形態の他の例を図9乃至図10に示す。この例は、制御手段6への入力手段を操作力検出手段5とは別に設けたものであり、他の構成は第1の例と同じである。図9は制御手段6への入力手段を操作力検出手段5とは別に設けた操作パネル28の2例を例示したものであり、上側に示す操作パネル28は、操作者が操作力Hを直接加える操作部3の他に車体左右方向の操作を直接行えるジョイスティック29を設けた例であり、下側に示す操作パネル28は、操作者が操作力Hを直接加える操作部3の他に車体左右方向の操作を直接行える操作スイッチ30を設けた例である。
【0044】
この2例のブロック図は図10に示す通りである。このブロック図から明らかなように操作部3に加わる操作力Hを検出する操作力検出手段5の他に全方向移動台車へのインターフェースを別に設けることによって、全方向移動台車の駆動方向を拘束した操作ができるため、限られた空間等で全方向移動台車を操作する際、操作者にとって操作が容易になる。
【0045】
次に本発明の実施の形態の他の例を図11乃至図12に示す。この例は、全方向移動台車の駆動方向の自由度を前後、左右、旋回の3自由度と、前後、旋回の2自由度とに切り替えられることを特徴とするもので、他の構成は第1の例と同じである。図11は上記のモード切替を切替スイッチ8にて行えるようにしたものであり、そのブロック図は第1の例にて既述のブロック図(図3)において、車体前後方向推進力F1と、車体左右方向推進力F2と、車体旋回モーメントMとで規定される駆動系の駆動要素値Dの演算プロセスと、駆動車輪1F,1RL,1RRに求められる駆動力f1,f2,f3の演算プロセスとの間に前後、左右、旋回の3自由度と、前後、旋回の2自由度の2つの駆動自由度を切り替えるプロセスを設けたものである(図12)。このブロック図から明らかなように全方向移動台車の駆動方向が前後、左右、旋回の3自由度に駆動可能なモードと前後、旋回の2自由度に駆動可能なモードとに切り替えられることにより、駆動方向性に極めてフレキシビリティのある全方向移動性と左右方向の駆動方向性を拘束した前後・旋回移動性を提供することができるため、操作者の熟練度に応じて操作部の操作特性を設定できる。
【0046】
次に本発明の実施の形態の他の例を図13乃至図14に示す。この例は、全方向移動台車の駆動方向の自由度を前後、左右の2自由度と、前後、旋回の2自由度とに切り替えられることを特徴とするもので、他の構成は第1の例と同じである。図13は上記のモード切替を切替スイッチ8にて行えるようにしたものであり、そのブロック図は第1の例にて既述のブロック図(図3)において、車体前後方向推進力F1と、車体左右方向推進力F2と、車体旋回モーメントMとで規定される駆動系の駆動要素値Dの演算プロセスと、駆動車輪1F,1RL,1RRに求められる駆動力f1,f2,f3の演算プロセスとの間に前後、左右の2自由度と、前後、旋回の2自由度の2つの駆動自由度を切り替えるプロセスを設けたものである(図14)。このブロック図から明らかなように全方向移動台車の駆動方向が前後、左右の2自由度に駆動可能なモードと前後、旋回の2自由度に駆動可能なモードとに切り替えられることにより、旋回方向の駆動方向性を拘束した前後・左右移動性と左右方向の駆動方向性を拘束した前後・旋回移動性を提供することができるため、操作者の熟練度に応じて操作部の操作特性を設定できる。
【0047】
次に本発明の実施の形態の他の例を図15乃至図16に示す。この例は、全方向移動台車の駆動方向の自由度を前後、旋回の2自由度と、左右の1自由度とに切り替えられることを特徴とするもので、他の構成は第1の例と同じである。図12は上記のモード切替を切替スイッチ8にて行えるようにしたものであり、そのブロック図は第1の例にて既述のブロック図(図3)において、車体前後方向推進力F1と、車体左右方向推進力F2と、車体旋回モーメントMとで規定される駆動系の駆動要素値Dの演算プロセスと、駆動車輪1F,1RL,1RRに求められる駆動力f1,f2,f3の演算プロセスとの間に前後、旋回の2自由度と、左右の1自由度の2つの駆動自由度を切り替えるプロセスを設けたものである(図16)。このブロック図から明らかなように全方向移動台車の駆動方向が前後、旋回の2自由度に駆動可能なモードと左右の1自由度に駆動可能なモードとに切り替えられることにより、左右方向の駆動方向性を拘束した前後・旋回移動性と前後、旋回の駆動方向性を拘束した左右移動性を提供することができるため、操作者の熟練度に応じて操作部の操作特性を設定できる。
【0048】
尚、図11乃至図12の例及び図13乃至図14の例及び図15乃至図16の例のフローチャートは図17、図18、図19のようになる。このように上記3例とも全方向移動台車の駆動方向の自由度切替が切替スイッチ8によって行われることで、操作者にとって駆動自由度のモード切替操作が容易になると共にヒューマンエラーを未然に防ぐことが可能となる。
【0049】
次に本発明の実施の形態の他の例を図20に示す。この例は、操作部3が複数個設けてあり、操作者がいずれの操作部3で操作するかによって駆動方向の自由度が切り替わることを特徴とするものであり、他の構成は第1の例と同じである。図20は複数個の操作部3を設けた操作パネル28の3例を例示したものであり、図中左上側に示す操作パネル28は、操作者が直接加える操作力Hの内、操作力Hの車体前後方向の分力H1と操作力Hの操作力の車体旋回方向モーメントHMを検出できる操作力検出手段5と連結された操作部3と、車体左右方向の操作を直接行えるジョイスティック29を設けた例であり、図中左下側に示す操作パネル28は、操作者が直接加える操作力Hの内、操作力Hの車体前後方向の分力H1と操作力Hの車体旋回方向モーメントHMを検出できる操作力検出手段5と連結された操作部3と、車体左右方向の操作を直接行える操作スイッチ30を設けた例であり、図中右下側に示す操作パネル28は、操作者が直接加える操作力Hの内、操作力Hの車体前後方向の分力H1と操作力Hの車体旋回方向モーメントHMを検出できる操作力検出手段5と連結された操作部3と、車体前後方向及び車体左右方向及び車体旋回方向の3軸方向の操作が行えるジョイスティック31を設けた例である。尚、図中右下側に示す操作パネル28に設けたジョイスティック31は、車体前後方向及び車体左右方向の2軸方向の操作が行えるものであってもよい。このように操作部3が複数個設けてあり、操作者がいずれの操作部3で操作するかによって駆動方向の自由度が切り替わることで、操作者に駆動自由度のモード切替を自覚的に行わせることができるため、全方向移動台車の意図しない動作を起こりにくくし、ヒューマンエラーを未然に防ぐことが可能となると共に、駆動自由度のモード切替操作が切替スイッチ8等によらないため、操作手順が簡略化できる。
【0050】
次に本発明の実施の形態の他の3例を図21乃至図25及び図26乃至図29及び図30乃至図33に示す。これらの例は全て操作力検出手段5が、1つの操作部3に加えられた操作力Hの車体前後方向の分力H1と車体左右方向の分力H2と車体旋回方向モーメントHMとを検出することを特徴とするものであり、他の構成は第1の例と同じである。このようにすることで、1つの操作部3で操作力の3軸方向の力を検出できるため、全方向移動台車の操作が簡単になる。以下、各例について詳細を述べる。
【0051】
まず、図21乃至図25の例について述べる。この例は、操作部3と操作部ベース9とを操作力Hに応じて車体前後方向に相対的変位d1(l),d1(r)が生じる機構10l,10rにより左右2ヵ所で接続し、操作部ベース9に操作力Hに応じて車体4に対して車体左右方向に相対的変位d2が生じる機構11を設けると共に前記各相対的変位d1(l),d1(r),d2を検出する変位検出手段12a,12b,12cを設け、検出した各相対的変位d1(l),d1(r),d2から操作力Hの車体前後方向の分力H1と車体左右方向の分力H2と車体旋回方向モーメントHMとを検出することを特徴とするものであり、他の構成は第1の例と同じである。尚、本例では上記の操作部3と操作部ベース9との間に設けられる操作力Hに応じて車体前後方向に相対的変位d1(l),d1(r)が生じる機構10l,10rに板バネ32を用いると共に、操作部ベース9に操作力Hに応じて車体4に対して車体左右方向に相対的変位d2が生じる機構11に車体左右方向の動きをバネで拘束したリニアガイド33を用い、また、各相対的変位d1(l),d1(r),d2を検出する変位検出手段12a,12b,12cにはギャップセンサー34a,34b,34cを用いる。これらギャップセンサー34a,34b,34cにて検出された各相対的変位d1(l),d1(r),d2をdl,dr,dcとし、操作力Hの車体前後方向の分力H1と車体左右方向の分力H2と車体旋回方向モーメントHMをFhx,Fhy,Mhとすると、Fhx,Fhy,Mhとdl,dr,dc間の線形性から、次式が成り立つ。
【0052】
Fhx=k1×(dr+dl)
Fhy=k2×dc
Mh=k3×(dr−dl)+k4×dc
尚、上記式の比例定数k1,k2,k3,k4は実験で求められるものであり、上記3式より、各相対的変位dl,dr,dcからFhx,Fhy,Mhを精度良く計算することが可能となる。
【0053】
ここで、図22は、操作部3に操作力H(車体前後方向の分力H1のみ)が車体前方に作用した状態を示すものであり、図23は操作部3に操作力H(車体左右方向の分力H2のみ)が車体左方向に作用した状態を示すものであり、図24は操作部3に操作力H(車体旋回方向の分力HMのみ)が反時計回りの方向に作用した状態を示すものである。このように操作部3と操作部ベース9とを操作力Hに応じて車体前後方向に相対的変位d1(l),d1(r)が生じる機構10l,10rにより左右2ヵ所で接続し、操作部ベース9に操作力Hに応じて車体4に対して車体左右方向に相対的変位d2が生じる機構11を設けると共に前記各相対的変位d1(l),d1(r),d2を検出する変位検出手段12a,12b,12cを設け、検出した各相対的変位d1(l),d1(r),d2から操作力Hの車体前後方向の分力H1と車体左右方向の分力H2と車体旋回方向モーメントHMとを検出することで、簡単な構成で請求項11の構成が実現できる。また、リニアガイド33のバネの剛性とギャップセンサー34a,34b,34cの分解能を仕様に合わせて適宜選定できるので、仕様に応じた変位検出手段を設定することができる。尚、上記例では、操作部ベース9と車体4の前面4fとが車体左右方向の動きをバネで拘束したリニアガイド33を介して連結され、操作力Hの車体左右方向の分力H2の大きさにより相対的変位d2が生じるような機構になっているが、このリニアガイド33を図25に示す板バネ35で代用することも可能である。
【0054】
次に図26乃至図29の例について述べる。この例は、操作部3の把持部13が操作力Hに応じて操作部3に対して車体左右方向に相対的変位d2を生じる機構14を設けると共に前記相対的変位d2を検出する変位検出手段16aを設け、操作部3と車体4とを操作力Hに応じて車体前後方向に相対的変位d1(l),d1(r)が生じる機構15l,15rにより左右2ヵ所で接続すると共に前記左右2ヵ所で生じる各相対的変位d1(l),d1(r)を検出する変位検出手段16b,16cを設け、検出した各相対的変位d1(l),d1(r),d2から操作力Hの車体前後方向の分力H1と車体左右方向の分力H2と車体旋回方向モーメントHMとを検出することを特徴とするものであり、他の構成は第1の例と同じである。図26(b)は操作部3の把持部13が操作力Hに応じて操作部3に対して車体左右方向に相対的変位d2を生じる機構14を示す詳細図である。この機構14と相対的変位d2の変位検出手段16aを簡単に説明すると、把持部13を加えられた操作力Hの車体左右方向の分力H2によって把持部13が車体左右方向の分力H2の方向にハンドル36に対してスライドし、このスライド量、即ち操作部3に対する相対的変位d2をハンドル36に固設した変位検出手段16a(ギャップセンサー34a)にて検出する仕組みになっている。尚、把持部13に加える操作力Hをなくすと、把持部13に内装したバネ37の復元力で把持部13がハンドル36に対して正規位置に戻る。また、操作部3と車体4とを操作力Hに応じて車体前後方向に相対的変位d1(l),d1(r)が生じる機構15l,15rには板バネ32を用い、また、各相対的変位d1(l),d1(r)を検出する変位検出手段16b,16cにはギャップセンサー34b,34cを用いる。これらギャップセンサー34a,34b,34cにて検出された各相対的変位d1(l),d1(r),d2をdl,dr,dcとし、操作力Hの車体前後方向の分力H1と車体左右方向の分力H2と車体旋回方向モーメントHMをFhx,Fhy,Mhとすると、Fhx,Fhy,Mhとdl,dr,dc間の線形性から、前記例と同じく次式が成り立つ。
【0055】
Fhx=k1×(dr+dl)
Fhy=k2×dc
Mh=k3×(dr−dl)+k4×dc
尚、上記式の比例定数k1,k2,k3,k4は実験で求められるものであり、上記3式より、各相対的変位dl,dr,dcからFhx,Fhy,Mhを精度良く計算することが可能となる。
【0056】
ここで、図27は、操作部3に操作力H(車体前後方向の分力H1のみ)が車体前方に作用した状態を示すものであり、図28は操作部3に操作力H(車体左右方向の分力H2のみ)が車体左方向に作用した状態を示すものであり、図29は操作部3に操作力H(車体旋回方向の分力HMのみ)が反時計回りの方向に作用した状態を示すものである。このように操作部3の把持部13が操作力Hに応じて操作部3に対して車体左右方向に相対的変位d2を生じる機構14を設けると共に前記相対的変位d2を検出する変位検出手段16aを設け、操作部3と車体4とを操作力Hに応じて車体前後方向に相対的変位d1(l),d1(r)が生じる機構15l,15rにより左右2ヵ所で接続すると共に前記左右2ヵ所で生じる各相対的変位d1(l),d1(r)を検出する変位検出手段16b,16cを設け、検出した各相対的変位d1(l),d1(r),d2から操作力Hの車体前後方向の分力H1と車体左右方向の分力H2と車体旋回方向モーメントHMとを検出することで、簡単な構成で請求項11の構成が実現できる。また、把持部13に内装したバネ37の剛性とギャップセンサー34a,34b,34cの分解能を仕様に合わせて適宜選定できるので、仕様に応じた変位検出手段を設定することができる。
【0057】
次に図30の例について述べる。この例は、操作部3と車体4とを左右2ヵ所で接続すると共に前記左右2ヵ所の接続部17に接続部17に作用する車体前後方向の力I1(l),I1(r)と車体左右方向の力I2(l),I2(r)を検出する力センサー18を夫々配設し、検出した左右の接続部17に作用する車体前後方向の力I1(l),I1(r)と車体左右方向の力I2(l),I2(r)から、操作力Hの車体前後方向の分力H1と車体左右方向の分力H2と車体旋回方向モーメントHMとを検出することを特徴とするもので、他の構成は第1の例と同じである。接続部17は操作部3の把持部分の径よりも細く、剛性が低くしてあり、操作部3に加わる操作力Hにより、歪みが生じ易くしてある。この左右の接続部17に接続部17の車体前後方向及び車体左右方向の歪みを計測する力センサー18、即ち、2軸力センサー38が取り付けられる。2軸力センサー38の詳細図を図30(b)(c)に示す。この2軸力センサー38は、左右の接続部17のくびれ部分に左右一対の歪みゲージ39を貼り付けることで構成され、左右の接続部17のくびれ部分にて歪み量εll,εlr,εrl,εrrが検出される。これら歪み量より、操作部3に加えた操作力Hに応じて左右の接続部17に発生する力が次式より求まる。
【0058】
I1(l)=k9×(εlr+εll)
I2(l)=k10×(εlr−εll)
I1(r)=k11×(εrr+εrl)
I2(r)=k12×(εrr−εrl)
尚、上記式で、k9,k10,k11,k12は接続部17の断面形状、材質から決まる比例定数である。上記4式から得られる、左側接続部17lに作用する車体前後方向の力I1(l)及び車体左右方向の力I2(l)をFlx,Flyとし、右側接続部17rに作用する車体前後方向の力I1(r)及び車体左右方向の力I2(r)をFrx,Fryとし、操作力Hの車体前後方向の分力H1と車体左右方向の分力H2と車体旋回方向モーメントHMをFhx,Fhy,Mhとすると、Fhx,Fhy,Mhは次式で表せる。
【0059】
Fhx=Frx+Flx
Fhy=Fry+Fly
Mh=k5×(Frx−Flx)
尚、上記式中の比例定数k5は、MhとFlx,Frx間の線形性から実験で求められるものである。このように操作部3と車体4とを左右2ヵ所で接続すると共に前記左右2ヵ所の接続部17に接続部17に作用する車体前後方向の力I1(l),I1(r)と車体左右方向の力I2(l),I2(r)を検出する力センサー18を夫々配設し、検出した左右の接続部17に作用する車体前後方向の力I1(l),I1(r)と車体左右方向の力I2(l),I2(r)から、操作力Hの車体前後方向の分力H1と車体左右方向の分力H2と車体旋回方向モーメントHMとを検出することで、簡単な構成で請求項11の構成を実現できると共に、上記3式より、各相対的変位dl,dr,dcからFhx,Fhy,Mhを精度良く計算することができる。また、歪みゲージ39で力センサー18を構成するため、操作力検出手段5が安価で済む。
【0060】
次に本発明の実施の形態の他の例を図31乃至図33に示す。この例は、操作部3と車体4とを操作力Hに応じて車体前後方向に相対的変位d1(l),d1(r)が生じる機構21l,21rにより左右2ヵ所で接続すると共に前記左右2ヵ所で生じる各相対的変位d1(l),d1(r)を検出する変位検出手段22a,22bを設け、検出した各相対的変位d1(l),d1(r)から操作力Hの車体前後方向の分力H1と車体左右方向の分力H2と車体旋回方向モーメントHMとを検出することを特徴とするものであり、他の構成は第1の例と同じである。尚、本例では上記の操作部3と車体4とを操作力Hに応じて車体前後方向に相対的変位d1(l),d1(r)が生じる機構21l,21rに板バネ32を用い、上記左右2ヵ所で生じる各相対的変位d1(l),d1(r)を検出する変位検出手段22a,22bにはギャップセンサー34a,34bを用いる。これらギャップセンサー34a,34bにて検出された各相対的変位d1(l),d1(r)をdl,drとし、操作力Hの車体前後方向の分力H1と車体左右方向の分力H2と車体旋回方向モーメントHMをFhx,Fhy,Mhとすると、Fhx,Fhy,Mhとdl,dr間の線形性から、次式が成り立つ。
【0061】
Fhx=k6×(dr+dl)
Fhy=k7×(dr−dl)
Mh=k8×(dr−dl)
尚、上記式で、比例定数k6,k7,k8は実験によって求められる。
【0062】
ここで、図32は、操作部3に操作力H(車体前後方向の分力H1のみ)が車体前方に作用した状態を示すものであり、図33は操作部3に操作力H(車体左右方向の分力H2のみ)が車体左方向に作用した状態を示すものである。このように、操作部3と車体4とを操作力Hに応じて車体前後方向に相対的変位が生じる機構21l,21rにより左右2ヵ所で接続すると共に前記左右2ヵ所で生じる各相対的変位d1(l),d1(r)を検出する変位検出手段22a,22bを設け、検出した各相対的変位d1(l),d1(r)から操作力Hの車体前後方向の分力H1と車体左右方向の分力H2と車体旋回方向モーメントHMとを検出することで、簡単な構成で請求項11の構成を実現できると共に、各相対的変位dl,drからFhx,Fhy,Mhを精度良く計算することができる。
【0063】
次に本発明の実施の形態の他の例を図34に示す。この例は、全方向駆動車輪である駆動車輪1を操作部3から離れている側に多く配置することを特徴とするものであり、他の構成は第1の例と同じである。既述の通り、全方向駆動車輪である駆動車輪1が3つ以上あれば、全方向移動が実現できる。図34に示す例は操作部3側に1車輪、後部側に2車輪を配置したものであり、各駆動車輪1の主軸1aが1点で交わるように配置したものである。このように全方向駆動車輪である駆動車輪1を操作部3から離れている側に多く配置することで、全方向移動台車の駆動車輪1の配置が不均一な場合でも走行性に悪影響を及ぼさない。
【0064】
次に本発明の実施の形態の他の例を図35に示す。この例は、全方向駆動車輪である駆動車輪1の両側に自在車輪23を配置することを特徴とするものであり、他の構成は第1の例と同じである。即ち、これは、図4に示したユニバーサルホイールタイプの駆動車輪1の両側に駆動車輪1のローラー1dよりも車輪径の大きい自在車輪23を配置したものである。これによって、ユニバーサルホイールタイプの駆動車輪1にあっては、本来、自由回転を行うローラー1dの直径は、駆動車輪1全体の直径の制約を受けて小さくせざるを得ず、これ故にローラー1dの自由回転方向の段差踏破性に問題を生じるが、上記のように駆動車輪1の両側に駆動車輪1のローラー1dよりも車輪径の大きい自在車輪23を配置し、段差を自在車輪23で受けられるようにすることで、段差踏破性に影響を与えるのは自在車輪23の直径となるため、段差踏破性を確保することができる。
【0065】
次に本発明の実施の形態の他の例を図36乃至図38に示す。この例は、全方向移動可能な駆動車輪1の駆動部2と車体4の底面4bとを連結部24にて繋いだものであり、他の構成は第1の例と同じである。この連結部24は、ガイド部材41と、バネガイド42と、バネ43と、駆動車輪懸架部材43とからなる。駆動車輪懸架部材43は、各駆動車輪1の駆動部2と結ばれた脚部43aと、バネガイド42の外周に嵌め込まれたバネ43によるバネ圧を受ける受け部43bとからなり、各駆動車輪1の駆動部2に結ばれた駆動車輪懸架部材43は、全方向移動台車の荷の積載状況及び路面の凹凸具合及び全方向移動台車の駆動による重心位置の移動等に応じて、ガイド部材41にガイドされて上下にストロークする。
【0066】
ユニバーサルホイールタイプ(あるいはボールホイールタイプ)の全方向駆動車輪を駆動車輪1とする場合、少なくとも3つ以上の駆動車輪1を設けることで車体の全方向移動を可能とするが、前述のように駆動車輪1を4つ以上設ける場合も考えられる。ここで、駆動車輪1が3つである場合、全方向移動台車は3点支持されるため、路面に凹凸があっても、3つの駆動車輪1全てが路面に確実に接地し、全駆動車輪1と路面とのグリップ力が確保され、安定した全方向移動台車の駆動制御が得られる。ところが、駆動車輪1が4つ以上である場合、全方向移動台車の荷の積載状況や路面の凹凸具合や全方向移動台車の駆動による重心位置の移動等によって、全駆動車輪1の内のどれかが路面から浮いてしまう場合が考えられ、このような場合、安定した全方向移動台車の駆動制御を確保することはできなくなる。ところが、上記のような駆動車輪懸架部材43が全方向移動台車の荷の積載状況や路面の凹凸具合や全方向移動台車の駆動による重心位置の移動等に応じて、ガイド部材41にガイドされて上下にストロークする駆動車輪押付機構を設けることで、前記問題は解消され、全方向移動台車の全駆動車輪1と接地面25とのグリップ力は確保され、全方向移動台車の駆動制御の安定性が向上する。尚、図37は駆動車輪懸架部材が最下限まで降りた時の上記駆動車輪押付機構の概略図であり、図38は接地面25が凹面の時の駆動車輪押付機構の概略図を示すものである。
【0067】
ところで、上述の実施の形態の例は全て、車体4に搭載した制御手段6において、車体4を前後方向に駆動させる駆動要素D1と車体4を左右方向に駆動させる駆動要素D2と車体4を旋回させる駆動要素D3として車体4を前後方向に駆動させる駆動力F1と車体左右方向推進力F2と車体旋回モーメントMを設定し、これら駆動要素D1,D2,D3から規定される駆動系の駆動要素値Dを操作力検出手段5で検出された操作力Hに応じて最適化し、得られた駆動系の駆動要素値Dに応じて各駆動車輪1の駆動力fi(i=1,…,n)を演算し、演算により得られた各駆動車輪1の駆動力fi(i=1,…,n)となるよう各駆動車輪1に駆動力fi(i=1,…,n)を発生させるようにしたもの(トルク制御としたもの)であるが、車体4に搭載した制御手段6において、車体4を前後方向に駆動させる駆動要素D1と車体を左右方向に駆動させる駆動要素D2と車体を旋回させる駆動要素D3として車体前後方向速度v1と車体左右方向速度v2と車体旋回方向速度v3を設定し、これら駆動要素D1,D2,D3から規定される駆動系の駆動要素値Dを操作力検出手段5で検出された操作力Hに応じて最適化し、得られた駆動系の駆動要素値Dに応じて各駆動車輪1の駆動速度υi(i=1,…,n)を演算し、演算により得られた各駆動車輪1の駆動速度υi(i=1,…,n)となるよう各駆動車輪1に駆動力fi(i=1,…,n)を発生させることも可能である。
【0068】
図39は上記方法に基づいた全方向移動台車の駆動特性を制御(速度制御)するためのブロック図である。まず、操作者が操作部3に操作力Hを加えると、操作力Hが操作部3を介して直接全方向移動台車に加わると共に、操作力検出手段5によって検出された操作力Hに応じて適宜駆動車輪1F,1RL,1RRにアシスト力Fa1,Fa2,Fa3が働く。このアシスト力Fa1,Fa2,Fa3は、次の流れで決定される。まず、操作力検出手段5によって検出した操作力Hより、操作力の車体前後方向の分力Hを、操作力の車体前後方向の分力H1と、操作力の車体左右方向の分力H2と、操作力の車体旋回方向モーメントHMとに分解し、これらに予め設定した変換率を乗じて、全方向移動台車を1つの移動単体と見なした場合の、車体前後方向速度v1と、車体左右方向速度v2と、車体旋回方向速度v3とで規定される駆動系の駆動要素値Dを演算する。次に予め設定した関係式より、駆動車輪1F,1RL,1RRに求められる駆動力f1,f2,f3を演算し、これらf1,f2,f3をアシスト力Fa1,Fa2,Fa3として駆動車輪1F,1RL,1RRに働かせる。
【0069】
このように車体4に搭載した制御手段6において、車体4を前後方向に駆動させる駆動要素D1と車体を左右方向に駆動させる駆動要素D2と車体を旋回させる駆動要素D3として車体前後方向速度v1と車体左右方向速度v2と車体旋回方向速度v3を設定し、これら駆動要素D1,D2,D3から規定される駆動系の駆動要素値Dを操作力検出手段5で検出された操作力Hに応じて最適化し、得られた駆動系の駆動要素値Dに応じて各駆動車輪1の駆動速度υi(i=1,…,n)を演算し、演算により得られた各駆動車輪1の駆動速度υiとなるよう各駆動車輪1に駆動力fi(i=1,…,n)を発生させることで、全方向移動台車の積載状況や路面状況に関係なく全方向移動台車が操作者に追従する。
【0070】
さらに、前記例は車体4に搭載した制御手段6において、車体4を前後方向に駆動させる駆動要素D1と車体を左右方向に駆動させる駆動要素D2と車体を旋回させる駆動要素D3として車体前後方向速度v1と車体左右方向速度v2と車体旋回方向速度v3を設定し、これら駆動要素D1,D2,D3から規定される駆動系の駆動要素値Dを操作力検出手段5で検出された操作力Hに応じて最適化し、得られた駆動系の駆動要素値Dに応じて各駆動車輪1の駆動速度υi(i=1,…,n)を演算し、演算により得られた各駆動車輪1の駆動速度υi(i=1,…,n)となるよう各駆動車輪1に駆動力fi(i=1,…,n)を発生させるようにしたものであるが、以下に述べる例は、車体4に搭載した制御手段6において、車体4を前後方向に駆動させる駆動要素D1と車体を左右方向に駆動させる駆動要素D2と車体を旋回させる駆動要素D3として車体前後方向加速度a1と車体左右方向加速度a2と車体旋回方向加速度a3を設定し、これら駆動要素D1,D2,D3から規定される駆動系の駆動要素値Dを操作力検出手段5で検出された操作力Hに応じて最適化し、得られた駆動系の駆動要素値Dに応じて各駆動車輪1の駆動加速度ai(i=1,…,n)を演算し、演算により得られた各駆動車輪1の駆動加速度ai(i=1,…,n)となるよう各駆動車輪1に駆動力fi(i=1,…,n)を発生させることも可能である。
【0071】
図40は上記方法に基づいた全方向移動台車の駆動特性を制御(加速度制御)するためのブロック図である。まず、操作者が操作部3に操作力Hを加えると、操作力Hが操作部3を介して直接全方向移動台車に加わると共に、操作力検出手段5によって検出された操作力Hに応じて適宜駆動車輪1F,1RL,1RRにアシスト力Fa1,Fa2,Fa3が働く。このアシスト力Fa1,Fa2,Fa3は、次の流れで決定される。まず、操作力検出手段5によって検出した操作力Hより、操作力の車体前後方向の分力Hを、操作力の車体前後方向の分力H1と、操作力の車体左右方向の分力H2と、操作力の車体左右方向の分力HMとに分解し、これらに予め設定した変換率を乗じて、全方向移動台車を1つの移動単体と見なした場合の、車体前後方向加速度a1と、車体左右方向加速度a2と、車体旋回方向加速度a3とで規定される駆動系の駆動要素値Dを演算する。次に予め設定した関係式より、駆動車輪1F,1RL,1RRに求められる駆動力f1,f2,f3を演算し、これらf1,f2,f3をアシスト力Fa1,Fa2,Fa3として駆動車輪1F,1RL,1RRに働かせる。
【0072】
このように車体4に搭載した制御手段6において、車体4を前後方向に駆動させる駆動要素D1と車体を左右方向に駆動させる駆動要素D2と車体を旋回させる駆動要素D3として車体前後方向加速度a1と車体左右方向加速度a2と車体旋回方向加速度a3を設定し、これら駆動要素D1,D2,D3から規定される駆動系の駆動要素値Dを操作力検出手段5で検出された操作力Hに応じて最適化し、得られた駆動系の駆動要素値Dに応じて各駆動車輪1の駆動加速度ai(i=1,…,n)を演算し、演算により得られた各駆動車輪1の駆動加速度ai(i=1,…,n)となるよう各駆動車輪1に駆動力fi(i=1,…,n)を発生させることで、全方向移動台車の積載重量や路面状況に関係なく全方向移動台車が操作者に追従する。
【0073】
図41は前述のユニバーサルホイールタイプの駆動車輪1を車体4に4つ設ける場合の一例を示しており、車体1に左右対称に且つ左右に並ぶ対の駆動車輪1,1の主軸(駆動軸)1aの交点が車体4の左右方向中央に位置するものとして配置されているとともに、左右に並ぶ対の駆動車輪1,1の主軸1a,1aが車体の前後方向軸となす角度がすべて同じであり、さらに上記対の駆動車輪1,1は車体4の前後方向において離れて配置されたものとなっている。このような駆動車輪1の配置は、車体4が前後方向に長い長方形状であっても、安定した配置となる上に、駆動制御に際しての演算が簡単となるほか、段差乗り越え性も良好なものとなる。
【0074】
ユニバーサルホイールタイプの駆動車輪1が4つの場合の制御について説明すると、図42はトルク制御を行っている場合を示しており、4つの駆動車輪1の出力f1,f2,f3,f4で発生する車体4の重心Gでの駆動力(Fx、Fy、M)を求めると、
Fx=−f1・sinθ−f2・sinθ+f3・sinθ+f4・sinθ
Fy=f1・cosθ−f2・cosθ−f3・cosθ+f4・cosθ
Mx=Wsinθ・(f1+f2+f3+f4)
My=L1cosθ・(f1+f4)+L2・cosθ(f2+f3)
ただし、Mx、Myは全駆動車輪1で発生する力のx,y分力により発生するモーメントの夫々の合計であり、
M=Mx+My
=(Wsinθ+L1・cosθ)(f1+f4)+(Wsinθ・+L2・cosθ)(f2+f3)
また、前後のバランスを考慮してf1−f4=f2−f3となるようにする。これらをまとめれば、
【0075】
【数2】
【0076】
となり、該式から所望の車体駆動力(Fx、Fy、M)を発揮させる場合の各駆動車輪1のトルク(f1,f2,f3,f4)は
【0077】
【数3】
【0078】
で求めることができる。ここで、L,αは
L=Wsinθ+L1・cosθ
α=(Wsinθ+L2・cosθ)/(Wsinθ+L1・cosθ)
である。
【0079】
車体4を速度制御で駆動している場合については、図43に示すように、車体4の制御中心CCの速度が[Vax,Vay,Vaψ]の時、各駆動車輪1の回転速度v1,v2,v3,v4は次式(0)で求めることができる。
【0080】
【数4】
【0081】
これは
(L1・cosθ+W・sinθ)=L1v
(L2・cosθ+W・sinθ)=L2v
とおくと、次式
【0082】
【数5】
【0083】
で表すことができる。つまり、所望の車体速度[Vax,Vay,Vaψ]に対して各駆動車輪1の駆動回転速度v1,v2,v3,v4を求めることができ、車体4の速度制御を行うことができる。
【0084】
なお、駆動車輪1の速度から車体4の速度[Vax,Vay,Vaψ]を求めることを考えると、4輪の速度から3軸(x、y、ψ)の速度を求めるのは冗長であるために、1輪を除く他の3輪(好ましくはスリップ等のために1輪が空転している時を考慮して最も回転速度が速い駆動車輪1を除く他の3輪)から逆行列で車体4の速度(平面内動作速度)を求めるとよい。
【0085】
たとえば、速度v1の駆動車輪1が空転していると判断された場合、速度v1を除く他の駆動車輪1の速度v2,v3,v4と車体4の所望速度[Vax,Vay,Vaψ]との関係
【0086】
【数6】
【0087】
つまりは
【0088】
【数7】
【0089】
から
【0090】
【数8】
【0091】
を求める。
【0092】
ここで、
L1v−L2v=cosθ・(L1−L2)
L1v+L2v=(cosθ・(L1+L2)+2sinθ・W)
=LL
とおくと、上記式の右辺は
【0093】
【数9】
【0094】
となり、よって
【0095】
【数10】
【0096】
となる。
【0097】
同様に、速度v2,v3,v4のいずれかの駆動車輪1が空転していると判断されれば、車体速度[Vax,Vay,Vaψ]は速度v2,v3,v4のいずれかを省いた時の以下の算出式で各々求めることができる。
【0098】
【数11】
【0099】
ここで、3輪から車体速度[Vax,Vay,Vaψ]を求める場合、上記4つの式(1)(2)(3)(4)のいずれかの式を用いて求めるほか、各式で車輪による重みが違うことから、式(1)(2)(3)(4)の左辺右辺を各々足し合わせて、平均して求めるようにすることもできる。
【0100】
また、駆動軸1aの取付角度θを45°にすれば、sinθ=cosθとなるために、さらに計算が簡単となる。
【0101】
ところで、速度制御を行っている場合において、左右方向の真横に移動させる場合、制御中心CC周りの移動速度[Vax,Vay,Vaψ]は、操作部3から制御中心までの距離をLh(図44参照)とすると、操作力(fhx、fhy、fhψ)が制御中心CCに働いた作用力(fhx,fhy,fhψ+Lh・fhy)の各成分に定数であるところのアシストゲイン(Kx,Ky,Kψ)を掛けたものとして、
vax=Kx・fhx
vay=Ky・fhy
vaψ=Kψ・fhψ+Kψ・Lh・fhy (i)
で求めているが、図44(b)に示すように、操作者が両手間の距離Lsだけ離して操作部3を握って操作している場合、操作部3に働く操作力のモーメント成分fhψは、左手でx方向にflx、右手でx方向にfrxの力を加えて発生させたとすると、
fhψ=flx・Ls/2−frx・Lx/2
であり、flx,frxは偶力で総和は0(flx+frx=0)であることから、
flx=−frx=fhψ/Ls (ii)となる。
【0102】
一方、真横移動させるためには、vaψ=0である必要があることから、上記式(i)から
fhψ+Lh・fhy=0
fhy=−fhψ/Lh (iii)
式(ii)(iii)より、
frx/fhy=(fhψ/Lx)/(fhψ/Lh)
frx=(Lh/Ls)・fhy (iv)
つまり、真横に移動させる場合、横方向の力の(Lh/Ls)倍の力を前後方向に加える必要がある。ちなみに、距離Lhがほぼ1.25m、距離Lsがほぼ0.5mの場合、式(iv)からfrx=2.5fryとなり、真横に移動させる場合、横方向の約2.5倍の力を前後方向に加える必要がある。
【0103】
これは、旋回を抑えるために加える力の方が真横にかける力よりも遙かに大きいことを意味するのであるが、これではかなりの違和感があると考えられることから、第4のアシストゲインとしてKyψを導入し、vaψの式を
vaψ=Kψ・fhψ+Kyψ・Lh・fhy
とし、Kψ:Kyψ=Ls:Lhとなるような値のKψ,Kyψを用いることで、横方向の力と偶力とが同程度で真横移動できるようになる。
【0104】
次に本発明の実施の形態の他の例を図45に示す。この例は、車体4の左右両側面における前端寄りと後端寄りとの部分に、超音波センサーからなる障害物センサー60を夫々取り付けて、車体4の左右方向の障害物を検知することができるようにしたものであり、また前記制御手段6は、左右方向の移動時のみ、障害物センサー60からの障害物検知出力を受けた時、障害物検知の警報を出力したり、操作部6への操作入力の状態にかかわらず停止させてしまうようにしたものである。
【0105】
左右方向移動(横移動)していない時には、余計な警報が鳴ったり不用意に停止してしまったりすることがなくて障害物検知についての信頼性を高めることができるものであり、しかも周囲の人にとっては予測しがたい移動である横移動を行っている時には、障害物センサー6を作動させ、所定距離内に障害物(人を含む)を検知すれば警報を鳴らしたり停止させたりするために、安全な運行を行うことができる。
【0106】
なお、横移動しているかどうかの判断については、横移動指令値がある閾値以上の時、または各駆動車輪1の速度検出値から演算で求めた車体速度の横移動速度成分がある閾値以上の時、または請求項5乃至請求項8の発明のように駆動方向の自由度を切り換える場合において現状が横方向移動が可能となっている時とすればよい。障害物センサー60そのものは常時作動させておき、障害物検知に伴う警報出力や停止は横移動している時のみとしてもよいのはもちろんである。
【0107】
また、警報音を発する場合、警報発生手段(図示せず)を車体4の左右に夫々設けて、障害物を検知した側の警報音発生手段が警報を発するようにしておくことで、どちらの側面に障害物があるかを操作者に知らせることもできる。操作者用に正面パネルの左右に警報音発生手段を取り付け、車体4の側方に立っている人用に左右両側面にも警報音発生手段を取り付けるようにしてもよい。なお、障害物を検知した場合、ある距離までは警報を、障害物がさらに近づけば停止を行うようにしてもよいものである。
【0108】
ところで、全方向移動台車の運行の安全性を高めるという点においては、操作力検出手段5に関して断線を検出することができるようにしておくことが望ましく、この場合の断線の検出は、操作部3に加えられた操作力を検出する操作力検出手段5からの出力の所定時間内の変化量が小さい時に断線していると判断する断線判定手段で行うのが簡便である。しかし、このような判定で断線を検出する場合、停止状態から動かす時のように加速のために大きな操作力を操作部3に加えると、操作力検出手段5の測定範囲を超えるようなことがあり、この時には最大検出範囲の値で上記出力はほぼ一定となることが多く、誤って断線していると判定されてしまうことがある。これを回避するために、断線判定のための所定時間の値を長くすることが考えられるが、長くした時には速度が速い時点で実際に断線が起こった時、これを検出して停止させてしまうまでに時間がかかるとともにこの間の移動距離も長くなる。
【0109】
このために上記断線判定にあたっては、車体速度に応じて断線判定のための所定時間の長さを切り換えるとよい。すなわち、図46に示すように、車体速度が零の時の断線判定のための所要時間をT0、車体速度がv1の時の断線判定のための所要時間をT1、車体速度がv2の時の断線判定のための所要時間をT2(ただし、|v1|<|v2|)とする時、T0>T1>T2とするのである。これによって、上記問題を解消することができる。
【0110】
図47は駆動車輪1全体をカバー19で覆ったものを示している。カバー19の下端と床面との間の隙間は20〜30mm程度としておくのが好ましい。このようなカバー19の存在は、駆動車輪1が操作者や他の人の足を踏んでしまう事態が生じるのを避けることができるほか、駆動車輪1から発生する騒音を抑制することができる。カバー19の内面に防音材を貼っておけば、より効果的である。また、図48に示すように、カバー19の下端縁にブラシ状の防音材19aを取り付けて、カバー19と床面との間の隙間に位置させた防音材19aで音漏れを防ぐようにするのも効果的である。
【0111】
以上の各例では、全方向移動可能な駆動車輪1として、姿勢変化を必要とすることなく駆動方向を切り換えることができるユニバーサルホイールタイプの全方向駆動車輪を用いたものを示したが、全方向駆動車輪としてはボールホイールタイプを用いたものであってもよく、さらには図49以下に示すような全方向移動に際して姿勢変化を伴うタイプの駆動車輪1を備えたものであってもよい。
【0112】
すなわち、同軸上に並ぶ一対の通常車輪である駆動車輪1,1が車体4の底面に配した回転テーブル70に取り付けられて、各駆動車輪1毎に駆動源2であるモータ26が設けられている。また、上記回転テーブル70は車体4に対して方向指示(ステアリング)用のモータ71で鉛直軸回りに回転駆動されるものとなっている。なお、駆動車輪1の軸は、回転テーブル70の回転中心を通っている。さらに、自在車輪23が車体4の操作部3が配された一端側の底面に取り付けられている。両駆動車輪1,1は独立して回転駆動させることができるために、両駆動車輪1,1の駆動用モータ26,26の合力によって推進させることができ、両モータ26,26の出力差によって旋回させることができ、さらに方向指示用のモータ71によって進行方向を任意に設定することができる。図中72は速度エンコーダーである。
【0113】
今、操作部3で検出された操作力Hのうちの車体前後方向の分力をH1、車体左右方向の分力をH2、旋回方向モーメントをHMとすると、上記前後方向及び左右方向の分力H1,H2及び旋回方向モーメントHMを合力の大きさと方向(Fp,ψ)で表すと、
Fp=(H1 2+H2 2)1/2
ψ=tan-1(H2,H1)
となることから、方向指示用のモータ71は上記ψに従って角度制御する。また、駆動車輪1,1の間隔をd、操作部3から回転テーブル70中心までの距離をLhとすると、車体の推進力Fmx及び旋回力Fmy・dは
Fmx=Kp・Fp
Fmy・d=Ks・HM・Lh
となり(ただし、Kp,Ksはアシストゲインとなる定数)、2つのモータ26,26への出力のうちの一方への出力FrはFr=(Fmx+Fmy)/2他方への出力FlはFl=(Fmx−Fmy)/2となる。これらモータ26,26への出力Fr、Flと上記モータ71への出力(角度)ψにより、操作入力に応じて前後方向と左右方向と旋回とを行わせることができ、図52に示すような動きを車体4に行わせることができる。すなわち、この場合においても、車体4を前後方向に駆動させる駆動要素D1と車体4を左右方向に駆動させる駆動要素D2と車体4を旋回させる駆動要素D3から規定される駆動系の駆動要素値を操作力検出手段5で検出された操作力Hに応じて最適化し、得られた駆動系の駆動要素値に応じて各駆動車輪1のための駆動源26,71を駆動するものとなっている。なお、図53は上記制御のフローチャートを、図51はトルク制御としている場合の上記アシストゲイン(力増幅率)Kp,Ksの例を示しており、図51(b)に示すように不感帯を設定するようにしてもよい。
【0114】
本発明の実施の形態のさらに他の例を図54及び図55に示す。これは操作者が操作力を加える操作部3に操作者の手が触れているかどうかを検出するためのセンサー80(たとえば静電容量型タッチセンサーや光電式タッチセンサー)を設けておき、操作者の手が操作部3から離れたことのセンサー80による検知出力で、たとえばダイナミックブレーキをオンとすることにより車体4を停止させるようにしたものである。操作されていない状態での慣性による移動が殆どなく、安全なものである。なお、図54には方向指示用モータ71を備えた全方向移動可能な駆動車輪1,1の場合を示しているが、前述の全方向駆動車輪である駆動車輪1,1を備えたものであってもよいのはもちろんである。
【0115】
上記停止に際しては、より好ましくは制御中心CC(図43参照)における速度(Vax,Vay,Vaψ)を図56に示すように手が離れた瞬間Tsより徐々に低下させて零とすることで停止させるのが好ましい。滑らかに停止させることができる。図57はこの場合の制御フローの一例を示しており、4つの駆動車輪1から夫々駆動速度v1,v2,v3,v4を得ることができるようにしているとともに、これら駆動速度から制御中心CCにおける台車速度(Vax,Vay,Vaψ)を求めて、パワーアシストのための台車指令速度(Vaax,Vaay,Vaaψ)を算出し、この指令速度から各駆動車輪1への指令速度を算出する速度制御を行っている場合において、所定の単位時間当たりの速度減速量(Vx0,Vy0,Vψ)を設定しておき、手が離れた瞬間Tsからの経過時間に応じて指令速度(Vaax,Vaay,Vaaψ)を低下させて停止させている。図中のax(b)はbの符号を返す関数である。制御中心CCでの速度を徐々に下げていくために、単純に各モータ26への指令速度を下げていく場合よりもスムーズに停止させることができる。
【0116】
さらには車体速度が略零になった時に、電磁ブレーキをかけるようにしておくと、坂で停止した時でも安全なものとなる。図58中のTbは電磁ブレーキロック時点を示す。
【0117】
なお、操作者の手が操作部3に再度触れたことがセンサー80から出力されたならば、通常制御に戻すものとする。間違って手を離してしまったり手が離れた誤判断されるようなことがあっても、手が離れていないと判断された時点で復帰するために、違和感を少なくすることができる。
【0118】
また、操作者の手が操作部3に触れたことや操作部3から離れたことの検出については、上記センサー80を用いるほか、操作部3に加えられる操作力を検出する前述の力センサの出力値の変動量から判断するようにしてもよい。
【0119】
ところで、この全方向移動台車は、前述のように、病院などでの配膳に使用する配膳車に好適に適用することができる。温冷機能を備えた最近の多機能型配膳車は600〜700kgにも達する質量がある上にそのサイズも大きいが、軽く動かせるとともに小回りも効くために、その運行が容易となる。
【0120】
【発明の効果】
本発明の請求項1に記載の発明にあっては、全方向移動可能な少なくとも3つ以上の駆動車輪と、駆動車輪を駆動する駆動部と、操作者が操作力を加える操作部を備えた車体と、前記操作部に加えられた操作力を検出する操作力検出手段とを有し、上記全方向移動可能な駆動車輪が、ボールホイールやユニバーサルホイール等の全方向駆動車輪であって、該全方向駆動車輪を少なくとも3個備え、車体に搭載した制御手段によって、車体を前後方向に駆動させる駆動要素と車体を左右方向に駆動させる駆動要素と車体を旋回させる駆動要素から規定される駆動系の駆動要素値を操作力検出手段で検出された操作力に応じて最適化し、得られた駆動系の駆動要素値に応じて各駆動車輪を駆動することで、従来の人誘導型台車としては、実現されなかった、斜行や横行を含む全方向に移動可能で駆動方向性に極めてフレキシビリティのある全方向移動台車を実現できる。
【0121】
しかも上記全方向移動可能な駆動車輪が、ボールホイールやユニバーサルホイール等の全方向駆動車輪であって、該全方向駆動車輪を少なくとも3個備えていることから、駆動車輪はその姿勢を何も変化させない状態で移動方向を全方向に切り替えることができるものであり、このために瞬時に動かせたい方向に移動できるホロノミックな全方向移動台車となる。ことにパワーアシスト制御を行うものにおいては、もたつきがないものとすることができる。
【0122】
更には、全方向移動台車の使用時の重心位置に作用する、車体を前後方向に駆動させる駆動要素と車体を左右方向に駆動させる駆動要素と車体を旋回させる駆動要素を駆動系の駆動要素値として用いているために、操作者の手応えに自然な操作感を与え、新規使用者でも操作し易い全方向移動台車を実現できる。
【0123】
また、前記制御手段への入力手段として補助入力手段を別途設けたことで、全方向移動台車の駆動方向を拘束した操作ができるため、限られた空間等で全方向移動台車を操作する際、操作者にとって操作が容易になる。
【0124】
また、車体に搭載した制御手段によって、車体を前後方向に駆動させる駆動要素と車体を左右方向に駆動させる駆動要素と車体を旋回させる駆動要素から規定される駆動系の駆動要素値を操作力検出手段で検出された操作力に応じて最適化するにあたり、前後方向の駆動要素値は検出された前後方向の力に対して第1のゲインを掛けたものから最適化し、左右方向の駆動要素値は検出された左右方向の力に対して第2のゲインを掛けたものから最適化し、さらに旋回方向の駆動要素値は検出された旋回方向の力に対して第3のゲインを掛けたものと左右方向の力に第4のゲインを掛けたものとの和から最適化するために、真横移動を違和感なくできるようにゲインを調整することができる。
【0125】
また、全方向移動台車の駆動方向が前後、左右、旋回の3自由度に駆動可能なモードと前後、旋回の2自由度に駆動可能なモードとに切り替えられることで、駆動方向性に極めてフレキシビリティのある全方向移動性と左右方向の駆動方向性を拘束した前後・旋回移動性を提供することができるため、操作者の熟練度に応じて操作部の操作特性を設定できる。
【0126】
また、全方向移動台車の駆動方向が前後、左右の2自由度に駆動可能なモードと前後、旋回の2自由度に駆動可能なモードとに切り替えられることで、旋回方向の駆動方向性を拘束した前後・左右移動性と左右方向の駆動方向性を拘束した前後・旋回移動性を提供することができるため、操作者の熟練度に応じて操作部の操作特性を設定できる。
【0127】
また、全方向移動台車の駆動方向が前後、旋回の2自由度に駆動可能なモードと左右の1自由度に駆動可能なモードとに切り替えられることで、左右方向の駆動方向性を拘束した前後・旋回移動性と前後、旋回の駆動方向性を拘束した左右移動性を提供することができるため、操作者の熟練度に応じて操作部の操作特性を設定できる。
【0128】
また、全方向移動台車の駆動方向の自由度切替が切替スイッチによって行われることで、操作者にとって駆動自由度のモード切替操作が容易になると共にヒューマンエラーを未然に防ぐことが可能となる。
【0129】
また、操作部が複数個設けてあり、操作者がいずれの操作部で操作するかによって駆動方向の自由度が切り替わることで、操作者に駆動自由度のモード切替を自覚的に行わせることができるため、全方向移動台車の意図しない動作を起こりにくくし、ヒューマンエラーを未然に防ぐことが可能となると共に、駆動自由度のモード切替操作が切替スイッチ等によらないため、操作手順が簡略化できる。
【0130】
また、車体に搭載した制御手段は、左右方向の移動時のみ、車体の左右方向の障害物を検知する障害物検知手段の出力を受けて警報の出力もしくは停止を行うために、第3者にとって予想外の動きを行うものであっても、第3者に対する安全性を確保することができる上に、余計な警報を鳴らす恐れを少なくすることができる。
【0131】
また、操作力検出手段が、1つの操作部に加えられた操作力の車体前後方向の分力と車体左右方向の分力と車体旋回方向モーメントとを検出することで、1つの操作部で操作力の3軸方向の力を検出できるため、全方向移動台車の操作が簡単になる。
【0132】
また、操作部と操作部ベースとを操作力に応じて車体前後方向に相対的変位が生じる機構により左右2ヵ所で接続し、前記操作部ベースに操作力に応じて車体に対して車体左右方向に相対的変位が生じる機構を設けると共に前記各相対的変位を検出する変位検出手段を設け、検出した各相対的変位から操作力の車体前後方向の分力と車体左右方向の分力と車体旋回方向モーメントとを検出することで、簡単な構成で請求項12の構成が実現できる。
【0133】
また、操作部の把持部が操作力に応じて操作部に対して車体左右方向に相対的変位を生じる機構を設けると共に前記相対的変位を検出する変位検出手段を設け、操作部と車体とを操作力に応じて車体前後方向に相対的変位が生じる機構により左右2ヵ所で接続すると共に前記左右2ヵ所で生じる各相対的変位を検出する変位検出手段を設け、検出した各相対的変位から操作力の車体前後方向の分力と車体左右方向の分力と車体旋回方向モーメントとを検出することで、簡単な構成で請求項12の構成が実現できる。
【0134】
また、操作力に応じて操作部の操作部ベースに対して左右に生じる車体前後方向の相対的変位を夫々dl,dr、操作部ベースの車体に対して生じる車体左右方向の相対的変位をdc、操作力の車体前後方向の分力及び車体左右方向の分力及び車体旋回方向モーメントをFhx,Fhy,Mhとすると、Fhx,Fhy,Mhとdl,dr,dc間の線形性から、比例定数k1,k2,k3,k4を実験で求め、操作力検出手段の演算部にて下記式
Fhx=k1×(dr+dl)
Fhy=k2×dc
Mh=k3×(dr−dl)+k4×dc
により、Fhx,Fhy,Mhを求めることで、各相対的変位dl,dr,dcからFhx,Fhy,Mhを精度良く計算することができる。
【0135】
また、操作部と車体とを左右2ヵ所で接続すると共に前記左右2ヵ所の接続部に該接続部に作用する車体前後方向の力と車体左右方向の力を検出する力センサーを夫々配設し、検出した左右の接続部に作用する車体前後方向の力と車体左右方向の力から、操作力の車体前後方向の分力と車体左右方向の分力と車体旋回方向モーメントとを検出することで、簡単な構成で請求項12の構成を実現できる。
【0136】
また、操作力に応じて左側接続部17lに生じる車体前後方向の力と車体左右方向の力をFlx,Fly、右側接続部17rに生じる車体前後方向の力と車体左右方向の力をFrx,Fry、操作力の車体前後方向の分力及び車体左右方向の分力及び車体旋回方向モーメントをFhx,Fhy,Mhとすると、MhとFlx,Frx間の線形性から、比例定数k5を実験で求め、操作力検出手段の演算部にて下記式
Fhx=Frx+Flx
Fhy=Fry+Fly
Mh=k5×(Frx−Flx)
により、Fhx,Fhy,Mhを求めることで、各相対的変位dl,dr,dcからFhx,Fhy,Mhを精度良く計算することができる。
【0137】
また、操作部と車体とを操作力に応じて車体前後方向に相対的変位が生じる機構により左右2ヵ所で接続すると共に前記左右2ヵ所で生じる各相対的変位を検出する変位検出手段を設け、検出した各相対的変位から操作力の車体前後方向の分力と車体左右方向の分力と車体旋回方向モーメントとを検出することで、簡単な構成で請求項12の構成を実現できる。
【0138】
また、操作力に応じて生じる前記各相対的変位の内、左側の相対的変位をdl、右側の相対的変位をdr、操作力の車体前後方向の分力及び車体左右方向の分力及び車体旋回方向モーメントをFhx,Fhy,Mhとすると、Fhx,Fhy,Mhとdl,dr間の線形性から、比例定数k6,k7,k8を実験で求め、操作力検出手段の演算部にて下記式
Fhx=k6×(dr+dl)
Fhy=k7×(dr−dl)
Mh=k8×(dr−dl)
により、Fhx,Fhy,Mhを求めることで、各相対的変位dl,drからFhx,Fhy,Mhを精度良く計算することができる。
【0139】
また、操作力検出手段からの出力値の所定時間内の変化量をもとに断線を判定する断線判定手段を備えるとともに、該断線判定手段は車体の速度に応じて上記判定のための所定時間の値を変更するために、断線についての誤判定が生じるおそれを少なくすることができる。
【0140】
また、全方向移動可能な駆動車輪が、ユニバーサルホイールタイプの全方向駆動車輪であって、4個以上の偶数個の駆動車輪が車体に左右対称に且つ左右に並ぶ対の駆動車輪の駆動軸の交点が車体の左右方向中央に位置するものとして配置されているとともに、左右に並ぶ対の駆動車輪の駆動軸が車体の前後方向軸となす角度がすべて同じであり、さらに上記対の駆動車輪は車体の前後方向において離れて配置されていることから、台車形状が矩形状、殊に前後に長い長方形状であっても安定した駆動車輪の配置が可能である上に、制御のための演算も容易となり、さらには段差乗り越え性も良好となる。
【0141】
また、全方向移動可能な駆動車輪を操作部から離れている側に多く配置することで、駆動車輪の配置が不均一な場合でも走行性に悪影響を及ぼさない。
【0142】
また、全方向移動可能な駆動車輪にあっては、本来、自由回転を行うローラーの直径は、駆動車輪全体の直径の制約を受け、大きくとられないため、ローラーの自由回転方向の段差踏破性に問題を生じるが、全方向移動可能な駆動車輪の両側に自在車輪を配置し、段差を自在車輪で受けられるようにすることで、段差踏破性に影響を与えるのは自在車輪の直径となるため、段差踏破性を確保することができる。
【0143】
また、全方向移動可能な駆動車輪と車体とを繋ぐ連結部にその長さが駆動車輪の接地する接地面の凹凸に応じて上下に伸縮し、尚且つ連結部の伸縮範囲内において駆動車輪が接地面に対して一定値以上の押付力で作用する駆動車輪押付機構を設けたことで、全方向移動台車の荷の積載状況及び路面の凹凸具合及び全方向移動台車の駆動による重心位置の移動等に応じて、駆動車輪押付機構が働き、全駆動車輪と接地面とのグリップ力が確保され、全方向移動台車の駆動制御の安定性が向上する。
【0144】
また、操作者の手が操作部から離れたことを検知する手段の出力を受けて制御手段は車体を停止させることから、早く停止できて安全である。
【0145】
また、操作者の手が操作部から離れたことを検知する手段の出力を受けて制御手段は制御中心における車体速度を徐々に低下させて停止させることから、滑らかに停止させることができる。
【0146】
また、制御手段は、操作者の手が操作部に触れていることを検知する手段の出力を受けて通常制御に戻すことから、間違って手が離れたとしても手を戻すことで復帰できるために、違和感を少なくすることができる。
【0147】
また、車体に搭載した制御手段において、車体を前後方向に駆動させる駆動要素と車体を左右方向に駆動させる駆動要素と車体を旋回させる駆動要素として車体前後方向推進力と車体左右方向推進力と車体旋回モーメントを設定し、これら駆動要素から規定される駆動系の駆動要素値を操作力検出手段で検出された操作力に応じて最適化し、得られた駆動系の駆動要素値に応じて各駆動車輪の駆動力を演算し、演算により得られた各駆動車輪の駆動力となるよう各駆動車輪に駆動力を発生させることで、全方向移動台車の操作時の操作者の手応えを軽減し、操作性の高い全方向移動台車を実現できる。
【0148】
また、車体に搭載した制御手段において、車体を前後方向に駆動させる駆動要素と車体を左右方向に駆動させる駆動要素と車体を旋回させる駆動要素として車体前後方向速度と車体左右方向速度と車体旋回方向速度を設定し、これら駆動要素から規定される駆動系の駆動要素値を操作力検出手段で検出された操作力に応じて最適化し、得られた駆動系の駆動要素値に応じて各駆動車輪の駆動速度を演算し、演算により得られた各駆動車輪の駆動速度となるよう各駆動車輪に駆動力を発生させることで、全方向移動台車の荷の積載状況や路面状況に関係なく全方向移動台車が操作者に追従できる。
【0149】
また、車体に搭載した制御手段において、車体を前後方向に駆動させる駆動要素と車体を左右方向に駆動させる駆動要素と車体を旋回させる駆動要素として車体前後方向加速度と車体左右方向加速度と車体旋回方向加速度を設定し、これら駆動要素から規定される駆動系の駆動要素値を操作力検出手段で検出された操作力に応じて最適化し、得られた駆動系の駆動要素値に応じて各駆動車輪の駆動加速度を演算し、演算により得られた各駆動車輪の駆動加速度となるよう各駆動車輪に駆動力を発生させることで、全方向移動台車の積載状況や路面状況に関係なく全方向移動台車が操作者に追従できる。
【図面の簡単な説明】
【図1】 本発明の実施の形態の一例を示すものであり、全方向移動台車の使用イメージ図である。
【図2】 同上のフローチャートである。
【図3】 同上のブロック図である。
【図4】 同上の(a)は全方向移動可能な駆動車輪の正面図、(b)は全方向移動可能な駆動車輪の側面図である。
【図5】 同上の全方向移動台車の下面図である。
【図6】 同上の全方向移動台車の力学モデル図である。
【図7】 全方向移動可能な駆動車輪の他の例を示し、(a)は駆動車輪の正面図、(b)は駆動車輪の側面図である。
【図8】 本発明の実施の形態の他の例を示すものであり、(a)(b)は全方向移動台車の力学モデル図である。
【図9】 本発明の実施の形態の他の例を示すものであり、全方向移動台車の使用イメージ図である。
【図10】 同上のブロック図である。
【図11】 本発明の実施の形態の他の例を示すものであり、走行自由度切替操作部を示す。
【図12】 同上のフローチャートである。
【図13】 本発明の実施の形態の他の例を示すものであり、走行自由度切替操作部を示す。
【図14】 同上のフローチャートである。
【図15】 本発明の実施の形態の他の例を示すものであり、走行自由度切替操作部を示す。
【図16】 同上のフローチャートである。
【図17】 本発明の実施の形態の他の例を示すものであり、フローチャートを示す。
【図18】 本発明の実施の形態の他の例を示すものであり、フローチャートを示す。
【図19】 本発明の実施の形態の他の例を示すものであり、フローチャートを示す。
【図20】 本発明の実施の形態の他の例を示すものであり、全方向移動台車の使用イメージ図である。
【図21】 本発明の実施の形態の他の例を示すものであり、操作部周辺の上面図である。
【図22】 同上の車体前後方向の力H1が加わった時の操作部周辺の上面図である。
【図23】 同上の車体左右方向の力H2が加わった時の操作部周辺の上面図である。
【図24】 同上の車体旋回方向モーメントHMが加わった時の操作部周辺の上面図である。
【図25】 本発明の実施の形態の他の例を示すものであり、操作部周辺の上面図である。
【図26】 本発明の実施の形態の他の例を示すものであり、(a)は操作部周辺の上面図、(b)は操作部の把持部周辺の断面図である。
【図27】 同上の車体前後方向の力H1が加わった時の操作部周辺の上面図である。
【図28】 同上の(a)は車体前後方向の力H2が加わった時の操作部周辺の上面図、(b)は操作部の把持部周辺の断面図である。
【図29】 同上の車体旋回方向モーメントHMが加わった時の操作部周辺の上面図である。
【図30】 本発明の実施の形態の他の例を示すものであり、(a)は操作部周辺の上面図、(b)は左側2軸力センサー取り付け部の拡大図、(c)は右側2軸力センサー取り付け部の拡大図である。
【図31】 本発明の実施の形態の他の例を示すものであり、操作部周辺の上面図である。
【図32】 同上の車体前後方向の力H1が加わった時の操作部周辺の上面図である。
【図33】 同上の車体前後方向の力H2が加わった時の操作部周辺の上面図である。
【図34】 本発明の実施の形態の他の例を示すものであり、全方向移動台車の下面図である。
【図35】 本発明の実施の形態の他の例を示すものであり、全方向移動台車の下面図である。
【図36】 本発明の実施の形態の他の例を示すものであり、駆動車輪押付機構の概略図である。
【図37】 同上の駆動車輪懸架部材が最下限まで降りた時の駆動車輪押付機構の概略図である。
【図38】 同上の接地面が凹面の時の駆動車輪押付機構の概略図である。
【図39】 本発明の実施の形態の他の例を示すものであり、ブロック図である。
【図40】 本発明の実施の形態の他の例を示すものであり、ブロック図である。
【図41】 本発明の実施の形態の他の例を示す概略平面図である。
【図42】 同上のトルク制御に関する説明図である。
【図43】 同上の速度制御に関する説明図である。
【図44】 (a)(b)は本発明の実施の形態の他の例における真横移動についての説明図である。
【図45】 本発明の実施の形態の他の例を示す概略平面図である。
【図46】 本発明の実施の形態の他の例における断線判定に関する説明図である。
【図47】 本発明の実施の形態の他の例を示す破断斜視図である。
【図48】 同上の他例の破断斜視図である。
【図49】 本発明の実施の形態の他の例を示す斜視図である。
【図50】 (a)(b)は同上の駆動車輪部分の断面図と底面図である。
【図51】 (a)(b)は同上のアシストゲインについての説明図である。
【図52】 (a)(b)は同上の動きの説明図である。
【図53】 同上のフローチャートである。
【図54】 本発明の実施の形態の他の例を示す斜視図である。
【図55】 同上のフローチャートである。
【図56】 同上の他例の動作説明図である。
【図57】 同上の他例のフローチャートである。
【図58】 本発明の実施の形態の他の例の動作説明図である。
【符号の説明】
1 駆動車輪
2 駆動部
3 操作部
4 車体
5 操作力検出手段
6 制御手段
8 切替スイッチ
10l 操作力に応じて車体前後方向に相対的変位を生じる機構
10r 操作力に応じて車体前後方向に相対的変位を生じる機構
11 操作力に応じて車体に対して車体左右方向に相対的変位を生じる機構
12a 変位検出手段
12b 変位検出手段
12c 変位検出手段
13 把持部
14 操作力に応じて操作部に対して車体左右方向に相対的変位を生じる機構
15l 操作力に応じて車体前後方向に相対的変位を生じる機構
15r 操作力に応じて車体前後方向に相対的変位を生じる機構
16a 変位検出手段
16b 変位検出手段
16c 変位検出手段
17 接続部
17l 左側接続部
17r 右側接続部
18 力センサー
21l 操作力に応じて車体前後方向に相対的変位を生じる機構
21r 操作力に応じて車体前後方向に相対的変位を生じる機構
22a 変位検出手段
22b 変位検出手段
23 自在車輪
23 自在車輪
24 連結部
25 接地面
α1 車体前後方向加速度
α2 車体左右方向加速度
α3 車体旋回方向加速度
ai 駆動車輪の駆動加速度
d1(l) 操作力に応じて車体前後方向に生じる相対的変位
d1(r) 操作力に応じて車体前後方向に生じる相対的変位
d2 操作力に応じて車体に対して車体左右方向に生じる相対的変位
dc 操作力に応じて操作部ベースの車体に対して生じる車体左右方向の相対的変位
dl 操作力に応じて操作部の操作部ベースに対して左に生じる車体前後方向の相対的変位
dr 操作力に応じて操作部の操作部ベースに対して右に生じる車体前後方向の相対的変位
D 駆動系の駆動要素値
D1 車体を前後方向に駆動させる駆動要素
D2 車体を左右方向に駆動させる駆動要素
D3 車体を旋回させる駆動要素
D1(G) 全方向移動台車の使用時の重心位置に作用する、車体を前後方向に駆動させる駆動要素
D2(G) 全方向移動台車の使用時の重心位置に作用する、車体を左右方向に駆動させる駆動要素
D3(G) 全方向移動台車の使用時の重心位置に作用する、車体を旋回させる駆動要素
fi 駆動車輪の駆動力
F1 車体前後方向推進力
F2 車体左右方向推進力
Fhx 操作力の車体前後方向の分力
Fhy 操作力の車体左右方向の分力
G 重心位置
H 操作力
H1 操作力の車体前後方向の分力
H2 操作力の車体左右方向の分力
HM 操作力の車体旋回方向モーメント
I1(l) 左側接続部に作用する車体前後方向の力
I1(r) 右側接続部に作用する車体前後方向の力
I2(l) 左側接続部に作用する車体左右方向の力
I2(r) 右側接続部に作用する車体左右方向の力
k1 比例定数
k2 比例定数
k3 比例定数
k4 比例定数
k5 比例定数
k6 比例定数
k7 比例定数
k8 比例定数
M 車体旋回モーメント
Mh 操作力の車体旋回方向モーメント
n 自然数
υ1 車体前後方向速度
υ2 車体左右方向速度
υ3 車体旋回方向速度
υi 駆動車輪の駆動速度
Claims (28)
- 全方向移動可能な駆動車輪と、駆動車輪を駆動する駆動部と、操作者が操作力を加える操作部を備えた車体と、前記操作部に加えられた操作力を検出する操作力検出手段とを有し、上記全方向移動可能な駆動車輪が、ボールホイールやユニバーサルホイール等の全方向駆動車輪であって、該全方向駆動車輪を少なくとも3個備え、車体に搭載した制御手段によって、車体を前後方向に駆動させる駆動要素と車体を左右方向に駆動させる駆動要素と車体を旋回させる駆動要素から規定される駆動系の駆動要素値を操作力検出手段で検出された操作力に応じて最適化し、得られた駆動系の駆動要素値に応じて各駆動車輪を駆動するものであり、且つ全方向移動台車の使用時の重心位置に作用する、車体を前後方向に駆動させる駆動要素と車体を左右方向に駆動させる駆動要素と車体を旋回させる駆動要素を駆動系の駆動要素値として用いるものであることを特徴とする全方向移動台車。
- 前記制御手段への入力手段として補助入力手段を別途設けたことを特徴とする請求項1記載の全方向移動台車。
- 車体に搭載した制御手段によって、車体を前後方向に駆動させる駆動要素と車体を左右方向に駆動させる駆動要素と車体を旋回させる駆動要素から規定される駆動系の駆動要素値を操作力検出手段で検出された操作力に応じて最適化するにあたり、前後方向の駆動要素値は検出された前後方向の力に対して第1のゲインを掛けたものから最適化し、左右方向の駆動要素値は検出された左右方向の力に対して第2のゲインを掛けたものから最適化し、さらに旋回方向の駆動要素値は検出された旋回方向の力に対して第3のゲインを掛けたものと左右方向の力に第4のゲインを掛けたものとの和から最適化することを特徴とする請求項1または2に記載の全方向移動台車。
- 制御手段は、全方向移動台車の駆動方向の自由度を前後、左右、旋回の3自由度と、前後、旋回の2自由度とに切り替えられることを特徴とする請求項1乃至3のいずれか1項に記載の全方向移動台車。
- 制御手段は、全方向移動台車の駆動方向の自由度を前後、左右の2自由度と、前後、旋回の2自由度とに切り替えられることを特徴とする請求項1乃至3のいずれか1項に記載の全方向移動台車。
- 制御手段は、全方向移動台車の駆動方向の自由度を前後、旋回の2自由度と、左右の1自由度とに切り替えられることを特徴とする請求項1乃至3のいずれか1項に記載の全方向移動台車。
- 全方向移動台車の駆動方向の自由度切替が切替スイッチによって行われることを特徴とする請求項4乃至6のいずれか1項に記載の全方向移動台車。
- 操作部が複数個設けてあり、操作者がいずれの操作部で操作するかによって駆動方向の自由度が切り替わることを特徴とする請求項4乃至6のいずれか1項に記載の全方向移動台車。
- 制御手段は、左右方向の移動時のみ、車体の左右方向の障害物を検知する障害物検知手段の出力を受けて警報の出力もしくは停止を行うものであることを特徴とする請求項1乃至8のいずれか1項に記載の全方向移動台車。
- 操作力検出手段は、1つの操作部に加えられた操作力の車体前後方向の分力と車体左右方向の分力と車体旋回方向モーメントとを検出するものであることを特徴とする請求項1乃至3のいずれか1項に記載の全方向移動台車。
- 操作部と操作部ベースとを操作力に応じて車体前後方向に相対的変位が生じる機構により左右2ヵ所で接続し、前記操作部ベースに操作力に応じて車体に対して車体左右方向に相対的変位が生じる機構を設けると共に前記各相対的変位を検出する変位検出手段を設け、検出した各相対的変位から操作力の車体前後方向の分力と車体左右方向の分力と車体旋回方向モーメントとを検出していることを特徴とする請求項10に記載の全方向移動台車。
- 操作部の把持部が操作力に応じて操作部に対して車体左右方向に相対的変位を生じる機構を設けると共に前記相対的変位を検出する変位検出手段を設け、操作部と車体とを操作力に応じて車体前後方向に相対的変位が生じる機構により左右2ヵ所で接続すると共に前記左右2ヵ所で生じる各相対的変位を検出する変位検出手段を設け、検出した各相対的変位から操作力の車体前後方向の分力と車体左右方向の分力と車体旋回方向モーメントとを検出していることを特徴とする請求項10に記載の全方向移動台車。
- 操作力に応じて操作部の操作部ベースに対して左右に生じる車体前後方向の相対的変位を夫々dl,dr、操作部ベースの車体に対して生じる車体左右方向の相対的変位をdc、操作力の車体前後方向の分力及び車体左右方向の分力及び車体旋回方向モーメントをFhx,Fhy,Mhとすると、Fhx,Fhy,Mhとdl,dr,dc間の線形性から、比例定数k 1 ,k 2 ,k 3 ,k 4 を実験で求め、操作力検出手段の演算部にて下記式
Fhx=k 1 ×(dr+dl)
Fhy=k 2 ×dc
Mh=k 3 ×(dr−dl)+k 4 ×dc
により、Fhx,Fhy,Mhを求めていることを特徴とする請求項11又は12に記載の全方向移動台車。 - 操作部と車体とを左右2ヵ所で接続すると共に前記左右2ヵ所の接続部に該接続部に作用する車体前後方向の力と車体左右方向の力を検出する力センサーを夫々配設し、検出した左右の接続部に作用する車体前後方向の力と車体左右方向の力から、操作力の車体前後方向の分力と車体左右方向の分力と車体旋回方向モーメントとを検出していることを特徴とする請求項10に記載の全方向移動台車。
- 操作力に応じて左側接続部に生じる車体前後方向の力と車体左右方向の力をFlx,Fly、右側接続部に生じる車体前後方向の力と車体左右方向の力をFrx,Fry、操作力の車体前後方向の分力及び車体左右方向の分力及び車体旋回方向モーメントをFhx,Fhy,Mhとすると、MhとFlx,Frx間の線形性から、比例定数k 5 を実験で求め、操作力検出手段の演算部にて下記式
Fhx=Frx+Flx
Fhy=Fry+Fly
Mh=k 5 ×(Frx−Flx)
により、Fhx,Fhy,Mhを求めていることを特徴とする請求項14に記載の全方向移動台車。 - 操作部と車体とを操作力に応じて車体前後方向に相対的変位が生じる機構により左右2ヵ所で接続すると共に前記左右2ヵ所で生じる各相対的変位を検出する変位検出手段を設け、検出した各相対的変位から操作力の車体前後方向の分力と車体左右方向の分力と車体旋回方向モーメントとを検出していることを特徴とする請求項1乃至3のいずれか1項に記載の全方向移動台車。
- 操作力に応じて生じる前記各相対的変位の内、左側の相対的変位をdl、右側の相対的変位をdr、操作力の車体前後方向の分力及び車体左右方向の分力及び車体旋回方向モーメントをFhx,Fhy,Mhとすると、Fhx,Fhy,Mhとdl,dr間の線形性から、比例定数k 6 ,k 7 ,k 8 を実験で求め、操作力検出手段の演算部にて下記式
Fhx=k 6 ×(dr+dl)
Fhy=k 7 ×(dr−dl)
Mh=k 8 ×(dr−dl)
により、Fhx,Fhy,Mhを求めていることを特徴とする請求項16に記載の全方向移動台車。 - 操作力検出手段からの出力値の所定時間内の変化量をもとに断線を判定する断線判定手段を備えるとともに、該断線判定手段は車体の速度に応じて上記判定のための所定時間の値を変更することを特徴とする請求項10乃至17のいずれか1項に記載の全方向移動台車。
- 全方向移動可能な駆動車輪が、ユニバーサルホイールタイプの全方向駆動車輪であって、4個以上の偶数個の駆動車輪が車体に左右対称に且つ左右に並ぶ対の駆動車輪の駆動軸の交点が車体の左右方向中央に位置するものとして配置されているとともに、左右に並ぶ対の駆動車輪の駆動軸が車体の前後方向軸となす角度がすべて同じであり、さらに上記対の駆動車輪は車体の前後方向において離れて配置されていることを特徴とする請求項1乃至18のいずれか1項に記載の全方向移動台車。
- 全方向移動可能な駆動車輪を操作部から離れている側に多く配置していることを特徴とする請求項1乃至19のいずれか1項に記載の全方向移動台車。
- 駆動車輪の両側に自在車輪を配置していることを特徴とする請求項20に記載の全方向移動台車。
- 全方向移動可能な駆動車輪と車体とを繋ぐ連結部にその長さが駆動車輪の接地する接地面の凹凸に応じて上下に伸縮し、尚且つ連結部の伸縮範囲内において駆動車輪が接地面に対して一定値以上の押付力で作用する駆動車輪押付機構を設けたことを特徴とする請求項19乃至21のいずれか1項に記載の全方向移動台車。
- 操作者の手が操作部から離れたことを検知する手段の出力を受けて制御手段は車体を停止させることを特徴とする請求項1乃至22のいずれか1項に記載の全方向移動台車。
- 操作者の手が操作部から離れたことを検知する手段の出力を受けて制御手段は制御中心における車体速度を徐々に低下させて停止させることを特徴とする請求項23記載の全方向移動台車。
- 制御手段は、操作者の手が操作部に触れていることを検知する手段の出力を受けて通常制御に戻すことを特徴とする請求項23または24に記載の全方向移動台車。
- 車体に搭載した制御手段において、車体を前後方向に駆動させる駆動要素と車体を左右方向に駆動させる駆動要素と車体を旋回させる駆動要素として車体前後方向推進力と車体左右方向推進力と車体旋回モーメントを設定し、これら駆動要素から規定される駆動系の駆動要素値を操作力検出手段で検出された操作力に応じて最適化し、得られた駆動系の駆動要素値に応じて各駆動車輪の駆動力を演算し、演算により得られた各駆動車輪の駆動力となるよう各駆動車輪に駆動力を発生させることを特徴とする請求項1乃至24のいずれか1項に記載の全方向移動台車。
- 車体に搭載した制御手段において、車体を前後方向に駆動させる駆動要素と車体を左右方向に駆動させる駆動要素と車体を旋回させる駆動要素として車体前後方向速度と車体左右方向速度と車体旋回方向速度を設定し、これら駆動要素から規定される駆動系の駆動要素値を操作力検出手段で検出された操作力に応じて最適化し、得られた駆動系の駆動要素値に応じて各駆動車輪の駆動速度を演算し、演算により得られた各駆動車輪の駆動速度となるよう各駆動車輪に駆動力を発生させることを特徴とする請求項1乃至25のいずれか1項に記載の全方向移動台車。
- 車体に搭載した制御手段において、車体を前後方向に駆動させる駆動要素と車体を左右方向に駆動させる駆動要素と車体を旋回させる駆動要素として車体前後方向加速度と車体左右方向加速度と車体旋回方向加速度を設定し、これら駆動要素から規定される駆動系の駆動要素値を操作力検出手段で検出された操作力に応じて最適化し、得られた駆動系の駆動要素値に応じて各駆動車輪の駆動加速度を演算し、演算により得られた各駆動車輪の駆動加速度となるよう各駆動車輪に駆動力を発生させることを特徴とする請求項1乃至25のいずれか1項に記載の全方向移動台車。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000222617A JP3826687B2 (ja) | 1999-07-27 | 2000-07-24 | 全方向移動台車 |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24601599 | 1999-07-27 | ||
JP11-246015 | 1999-07-27 | ||
JP2000222617A JP3826687B2 (ja) | 1999-07-27 | 2000-07-24 | 全方向移動台車 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2001097221A JP2001097221A (ja) | 2001-04-10 |
JP3826687B2 true JP3826687B2 (ja) | 2006-09-27 |
Family
ID=26537523
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000222617A Expired - Fee Related JP3826687B2 (ja) | 1999-07-27 | 2000-07-24 | 全方向移動台車 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3826687B2 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105142522A (zh) * | 2013-04-25 | 2015-12-09 | 株式会社岛津制作所 | 移动式放射线摄影装置 |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4523244B2 (ja) * | 2003-05-22 | 2010-08-11 | 独立行政法人科学技術振興機構 | パワーアシスト型移動台車 |
JP2005339181A (ja) * | 2004-05-26 | 2005-12-08 | Matsushita Electric Works Ltd | 自律移動車 |
JP5228155B2 (ja) * | 2007-05-09 | 2013-07-03 | 国立大学法人豊橋技術科学大学 | 全方向移動型パワーアシスト装置および全方向移動型パワーアシスト装置の制御方法 |
JP5222686B2 (ja) * | 2008-10-14 | 2013-06-26 | 株式会社日立メディコ | 移動型x線撮影装置 |
JP2011042248A (ja) * | 2009-08-21 | 2011-03-03 | Inoue Seisakusho:Kk | 駆動装置付き台車 |
US9364188B2 (en) | 2011-12-22 | 2016-06-14 | Shimadzu Corporation | X-ray apparatus for round visit |
JP2014046890A (ja) * | 2012-09-03 | 2014-03-17 | Araki Seisakusho:Kk | パワーアシスト機能を有する全方向移動台車 |
CN103465943A (zh) * | 2013-09-25 | 2013-12-25 | 杭州盈天科学仪器有限公司 | 转运车 |
SG11201510652VA (en) * | 2013-12-11 | 2016-01-28 | Reif Co Ltd | Self-propelled carriage using spherical-body-driven module |
JP2017071314A (ja) * | 2015-10-07 | 2017-04-13 | 株式会社デンソー | 移動装置 |
JP2021017131A (ja) * | 2019-07-19 | 2021-02-15 | いすゞ自動車株式会社 | 台車 |
-
2000
- 2000-07-24 JP JP2000222617A patent/JP3826687B2/ja not_active Expired - Fee Related
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105142522A (zh) * | 2013-04-25 | 2015-12-09 | 株式会社岛津制作所 | 移动式放射线摄影装置 |
CN105142522B (zh) * | 2013-04-25 | 2017-12-01 | 株式会社岛津制作所 | 移动式放射线摄影装置 |
Also Published As
Publication number | Publication date |
---|---|
JP2001097221A (ja) | 2001-04-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3826687B2 (ja) | 全方向移動台車 | |
KR102351719B1 (ko) | 보조된 추진 시스템, 방법 및 섀시 | |
JP4523244B2 (ja) | パワーアシスト型移動台車 | |
US20200352815A1 (en) | Electric Walking Assisting Vehicle | |
JP2016525977A5 (ja) | ||
CN101970276A (zh) | 带有辅助动力的车辆 | |
JP6164300B2 (ja) | 手押し車 | |
US20080257617A1 (en) | Traveling device | |
JP7229537B2 (ja) | 全方向移動装置及びその姿勢制御方法 | |
JP2010167808A (ja) | 移動体 | |
JP3656500B2 (ja) | 全方向移動型台車 | |
JP2011245958A (ja) | パワーアシスト付運搬車 | |
JP2000214016A (ja) | 人力検知センサ― | |
JP2002002488A (ja) | パワーアシスト型手押し車 | |
JP2010008204A (ja) | 力覚検出装置および車輪型ロボット | |
JP3501044B2 (ja) | 全方向移動台車 | |
US10787082B2 (en) | Wheel suspension of an electrical drive for supporting a manual movement impulse | |
JP6830708B1 (ja) | 台車及びその車輪システム | |
JP7144874B2 (ja) | 走行制御システム及び台車 | |
JP5328272B2 (ja) | 移動体、及びその制御方法 | |
KR102468606B1 (ko) | 탑승형 서비스 로봇 및 그 제어방법 | |
JP2002037120A (ja) | 全方向移動型台車 | |
JP2012061886A (ja) | 電動アシスト台車 | |
JP7570286B2 (ja) | 搬送補助装置および医療用ベッド | |
JP2002067962A (ja) | パワーアシスト型手押し車 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050405 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050606 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20051227 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060227 |
|
A911 | Transfer of reconsideration by examiner before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20060302 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20060613 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20060626 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 3826687 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090714 Year of fee payment: 3 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090714 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090714 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100714 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100714 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110714 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120714 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120714 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130714 Year of fee payment: 7 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |