JP3802245B2 - ガリウムの電解精製法および装置 - Google Patents

ガリウムの電解精製法および装置 Download PDF

Info

Publication number
JP3802245B2
JP3802245B2 JP31033198A JP31033198A JP3802245B2 JP 3802245 B2 JP3802245 B2 JP 3802245B2 JP 31033198 A JP31033198 A JP 31033198A JP 31033198 A JP31033198 A JP 31033198A JP 3802245 B2 JP3802245 B2 JP 3802245B2
Authority
JP
Japan
Prior art keywords
gallium
electrolytic
raw material
material liquid
anode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP31033198A
Other languages
English (en)
Other versions
JP2000144475A (ja
Inventor
健一 田山
長康 梁田
喜志雄 田山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Holdings Co Ltd
Original Assignee
Dowa Holdings Co Ltd
Dowa Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Holdings Co Ltd, Dowa Mining Co Ltd filed Critical Dowa Holdings Co Ltd
Priority to JP31033198A priority Critical patent/JP3802245B2/ja
Priority to US09/428,476 priority patent/US6221232B1/en
Publication of JP2000144475A publication Critical patent/JP2000144475A/ja
Application granted granted Critical
Publication of JP3802245B2 publication Critical patent/JP3802245B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Electrolytic Production Of Metals (AREA)

Description

【0001】
【発明の属する技術分野】
本発明はガリウムの電解精製法および装置に関する。
【0002】
【従来の技術】
ガリウム金属は,GaAsやGaP等の化合物半導体素子や発光素子の原料として,近来その需要が増大している。ガリウムは主としてアルミナ製造工程や亜鉛製錬の副産物として産出するが,その他,半導体材料のスクラップもガリウム原料となる。
【0003】
このようなガリウム原料からのガリウム精製法には,従来より結晶精製法,単結晶引上げ法および電解精製法が良く知られている。
【0004】
結晶精製法は,溶融したガリウム金属の冷却媒体側に種子結晶を存在せしめて冷却媒体による冷却効果で種子結晶を成長させ,成長した結晶側に精製された固体ガリウムを得る方法である。例えば特開平2−50926号公報にはこのような結晶成長を多段で行う結晶精製法を開示している。
【0005】
単結晶引上げ法は,溶融したガリウム金属中に種子結晶の先端を接触させ,この種子結晶から成長する,不純分の除かれた単結晶をゆっくり引上げる精製法である。例えば特開平2−243727号公報には,この方法において,溶融ガリウム表面に酸性溶液層を形成すると精製効率が向上すると教示している。
【0006】
電解精製法は,ガリウム原料を陽極として通電すると電解液中にガリウムおよび電気化学的にガリウムより卑な金属が溶出し,陰極においてガリウムおよびガリウムより貴な金属が電着する性質を利用して,陰極に精製されたガリウム金属を得る方法である。例えば特開平6−192877号公報には,電解槽の底部にガリウム原料液体を入れ,この原料液体を陽極として棒状の陰極との間で電解を行うと,陰極表面に析出したガリウム金属は粒状となって滴下して下方の受器に捕集され,他方,ガリウム原料中のインジウム,銅,鉛などの不純物は陽極側に残されると教示している。
【0007】
【発明が解決しようとする課題】
結晶精製法では,繰り返し操作しないとガリウム純度が上がらず,また工程が複雑で生産性が良くないこと等から,処理対象の原料としては5N以上(99.999%以上)のガリウム金属を適用し,これを6N或いは7N以上(99.9999%或いは99.999999%以上)まで精製する高純度の領域での適用に限られることが多く,2N,3N程度の純度のものについては収率が悪く適さない。また,単結晶引上げ法についても同様に高純度の領域での適用に限られ,さらに設備が高価であるという問題がある。
【0008】
一方,電解精製法は前2法に比べて工程は簡単で,ほとんど人手による操作を必要とせず,装置も安価であることから,高純度精製へのつなぎとしての,低純度精製法としても適用可能であるという利点がある。しかし,従来の電解精製法はインジウム,銅,鉛等を陽極中に濃縮して残すと言うものであり,所定量以上の不純物が陽極に濃縮すると,電解液中に不純物が入り込み,陰極に析出するガリウム純度が低下する結果となる。従って精製ガリウムの純度を規制した場合,自ずと電解寿命が決められることになる。また,従来の電解精製法では半導体スクラップ等に混入している「金」の除去ができないという問題がある。
【0009】
したがって本発明は,安価で工程が単純であり,ほとんど人手による操作を必要としないガリウムの電解精製法において,従来法では除去できなかった金等の不純物を除去可能とし,かつ陽極中への不純物の濃縮度を上昇させ,しかも電解寿命を延ばすことができるガリウムの電解精製法を開発し,高収率でガリウムを精製することを課題としたものである。
【0010】
【課題を解決するための手段】
本発明者等は前記の課題を解決すべく鋭意試験研究を重ねた結果、不純物を含む溶融ガリウム金属(ガリウム原料液体と言う)を陽極とし、陰極に純度の高い精製ガリウム金属を析出させる電解精製法において、陽極のガリウム原料液体を回転させると、陽極に発生したスカムが回転中心に集まること、そして、このスカムを系外に抜き出すと、電解寿命を著しく長くすることができ、また金の除去もできることを見出した。
【0011】
すなわち本発明によれば、ガリウム原料液体を陽極として陰極に精製ガリウムを電解液中で析出させるガリウムの電解精製法において、電解液中のガリウム原料液体を回転させ、その中心部に集まるスカムを電解槽の外に排出することを特徴とするガリウムの電解精製法を提供する。
【0012】
また,この方法を実施する装置として,ガリウムの融点以上の温度に維持された電解液を入れた電解槽内を,ガリウム原料液体を陽極としてこれを収容する陽極室と,陰極に析出した精製ガリウムを捕集する陰極室に区分し,該陽極室を円筒状容器とし,この円筒状容器の外側下方に磁石回転子を設置し,該円筒状容器内の中心部にサクションパイプを配置したガリウム電解精製装置を提供するものである。この装置には,前記のサクションパイプを電解槽の槽外に設けた中間槽に連結し,この中間槽からフイルタを介して電解槽に通ずる管路を付設することができる。
【0013】
【発明の実施の形態】
本発明らは,電解液中のガリウム原料液体を回転(旋回)させると,回転中心の液表面に黒色を呈する物質が集まることを知見した。この物質は黒色を呈することからガリウム酸化物を含むものと見てよい。本明細書では,この回転中心に集まる物質を「スカム」と呼ぶ。このスカムを電解中に集めて原料液体から分離できることは,ガリウム原料液体と電解液との界面に発生する酸化膜の除去を容易にすることに加えて,金も除去できる点で,特別の効果をもたらす。該酸化膜の生成は電解効率を極端に悪くするし,金は通常のガリウム電解精製法では分離できないからである。
【0014】
本発明者らは,この回転中心のガリウム原料液体表面に集まるスカムをサクションパイプを用いて吸い出す操作を行ったところ,驚くべきことに,金が同伴して吸い出されることを知った。その理由については必ずしも明らかではないが,電解の進行につれて原料液体の表面には主としてガリウムの酸化物が生成し,この酸化物が,原料ガリウムの液相よりも金を取込み易い性質を有しているのではないかと考えられる。
【0015】
ガリウム原料液体に同伴する金は,通常の電解では,後記の比較例に示すように,陽極残(アノードスライム)には残存してこない。標準電極電位からすると金は最も貴な分類に入り,電気化学的にはガリウムの電解電位では陽極から液中に溶け出すことはない(イオン化しない)筈である。にも拘わらず陽極残に残らないのであるから,何らかの原因で電解液中にコロイド状となって分散してゆくのではないかと考えられる。そして,このコロイド状態で電解液中に浮遊する金の微粒子が,陰極においてガリウムイオンが電着するときに巻き込まれ,精製ガリウム中に同伴するようになると思われる。
【0016】
このように,ガリウム原料に同伴する金は電解精製では除去し難いものであったが,本発明によると,サクションパイプを通じてスカムと共に金を同伴して抜き出すことができ,金の除去が非常に容易となった。他の不純物,例えばIn,Cu,Pb等は金とは別の挙動を示し,陽極残として濃縮されてくる。
【0017】
以下,本発明の実施の形態を図面を参照しながら説明する。図1は本発明法を実施する装置の例を示す略断面図であり,図2は該装置の電解槽の略平面を示したものである。
【0018】
この装置は,電解液1を入れた電解槽2内を,ガリウム原料液体3を陽極としてこれを収容する陽極室4と,陰極に析出した精製ガリウムを捕集する陰極室5に区分し,陽極室4を円筒状容器6で形成し,この円筒状容器6の外側下方に磁石回転子7を設置し,円筒状容器6内の中心部にサクションパイプ8を配置したものである。円筒状容器6は内壁が真円であるのが理想的にあるが,場合によっては部分的に角をもつ多角形であってもよく,また上下方向で半径が異なる内面をもつものであってもよい。9は絶縁被覆された導電ロッドである。この導電ロッド9の先端に取り付けた金属端子10がガリウム原料液体3内に浸漬され,導電ロッド9に正電圧が印加されることにより,ガリウム原料液体3が陽極になる。他方,陰極室5内の電解液中には陰極板11が浸漬され,これに負電圧が印加される。
【0019】
陽極室4と陰極室5とは電解液1が連通する構成とするが,図例の装置では,陽極室4を形成している円筒状容器6の高さを電解液1の液面より低くなるように電解槽2内の一方の側方に設置することにより,電解液が両室4と5に連通するようにしてある。12は両室4と5の間に配置された仕切板である。この仕切板12の高さも円筒状容器6とほぼ同様にして電解液の液面より低くしてある。なお,仕切板12と円筒状容器6との間に形成する空間部には蓋13が施してあり,この蓋13の下方空間は空洞となっている。陽極室4と陰極室5との間で電解液1が連通する構成とするには,この例に限られず,例えば,陽極室を形成する円筒状容器に隣接して独立した陰極室を作り,両室を区切る壁に連通路を設けるような構成でもよい。
【0020】
円筒状容器6の外側下方に設置される磁石回転子7は,容器6の中心軸の周りに回転するように取付けられ,その回転はモータ14によって付与される。この回転子7は永久磁石が用いられ,これが容器6の下方で容器軸を中心として水平面上を回転することにより,容器6内のガリウム原料液体3にはその磁力により同方向の回転力が付与されるので,容器軸を中心とした旋回流が発生し,この回転により遠心力が与えられる。
【0021】
円筒状容器6内の中心部に設置されるサクションパイプ8は,その先端のサクション孔が,旋回しているガリウム原料液体3の中央表面部に位置するように,電解槽2の上方から電解液中に上下動可能に挿入されている。これにより,サクションパイプ8に負圧を発生させて吸引すると,原料液体2の中央表面部の物質が吸い込まれる。そのさい,原料液体2の極表層部の物質を吸い込むことができるように先端のサクション孔の位置を調節する。
【0022】
旋回しているガリウム原料液体3の中央表面部には,遠心力によって,原料液体より比重の小さい物質15(スカム)が集まるので,サクションパイプ8からはそのスカム15を吸い出すことができる。そのさい,スカム15だけを吸い出すのが最も効率がよいが,電解液1が同伴しても,さらには少量の原料液体3が同伴しても,同伴量が電解に差し支えない程度であれば,特に問題はない。
【0023】
他方,陰極室5では,陰極板11の表面にガリウム金属が析出するが,電解液の温度がガリウムの融点以上の温度に維持されることにより,析出したガリウム金属は液状となり,下方の受溜め16に落下し,抜き出し口17から精製ガリウムとして回収される。
【0024】
このような装置構成において,図示の装置では,電解槽2の槽外にさらに中間槽19が設置されており,この中間槽19と前記のサクションパイプ8とを管路20で連結すると共に,この中間槽19からフイルタ21を介して電解槽2に通ずる管路22が設けられている。
【0025】
管路20にはポンプ23が介装され,このポンプ23の駆動により,サクションパイプ8に負圧を発生させると共にサクションパイプ8に吸い込まれた流体(スカム15+電解液1+原料液体3)を中間槽19に送給する。そのさいポンプ23の回転数制御や発停により,吸い出し量を調整することができ,また管路20に流量調整弁(図示しない)を設けて流量を調整することもできる。最も,中間槽19とサクションパイプ8との間に落差を設けておき,ポンプ23によらずに,そのヘッドにより自然に該流体を中間槽19に流し込むようにしてもよい。この場合には,管路20に流量調整弁を設けて流量を調整する。
【0026】
また,中間槽19には,電解槽2の溢流口24から管路25を経て,電解液1のオーバーフローが供給され,この電解液が前者のサクションパイプ8からの流体と一緒に槽19内に蓄えられる。中間槽19は保温槽に構成されており,攪拌機26と加熱器27が取付けられている。攪拌機26で槽内流体を掻き混ぜると共に,加熱器27により槽内流体を所定の温度に加熱する。加熱器27は図示の例では投げ込みヒータが用いられている。
【0027】
管路22には,フイルタ21とポンプ28が介装され,ポンプ28の駆動により槽19内の流体を電解槽2に戻す。そのさい,管路22の吐出端29を陽極室4の側(円筒状容器6)に配することにより,この流体を原料液体3の上部に投入する。管路22を経て行われる槽19内の流体の還流により,電解槽2内の電解液1の液面が電解中一定レベル(溢流口24のレベル)に維持されるように制御される。
【0028】
フイルタ21は,流体中のスカム分を濾別するためのもので,濾材として図示の装置では活性炭を用いている。この濾材としては,ポリプロピレンやテフロン等からなる樹脂フイルタを用いることもでき,その他,50℃で耐アルカリの素材であれば,特に限定されない。なお,図2において,電極板11を中心軸として左半分のものを右側にも対照的に配置し,陰極室5を挟んでその両側に円筒状容器6をもつ陽極室4を設けた電解槽に構成すると,処理量を倍増させることができる。
【0029】
次に,図示の装置を用いて本発明法を実施する場合の操作態様を説明する。
【0030】
円筒状容器6と仕切板板12の高さは特に限定されないが,電解液1の液面の1/3程度として,電解液1が陽極室4と陰極室5との間を自由に流通するようにするのがよい。電解液1にはNaOH水溶液を使用するが,NaOH濃度は100〜200g/L,さらに好ましくは150g/L程度である。NaOH濃度が100g/Lより低いと極間電圧が上がり,精製ガリウムの純度が下がるようになる。他方,200g/Lを超えると,液中に溶け込む不純物濃度が上がり,同じく精製ガリウムの純度が下がる。電解液の温度は35〜70℃が好ましく,さらに好ましくは50〜65℃である。35℃より低いと極間電圧が上がり,70℃を超えても特別に電解効率が上がる訳ではなく,電解槽の材質等に支障を与えることがある。この電解液の温度は図示の装置では,中間槽19の加熱器27で調節される。なお,金属ガリウムの融点は29.9℃であるから,槽内の温度はこれ以上に維持されねばならない。
【0031】
この電解液条件のもとで,陽極室4の円筒状容器6内に適量のガリウム原料液体3を入れ,磁石回転子7を回転して該原料液体3に遠心力を付与しながら,原料液体3を陽極として陰極板11との間に通電を開始するが,電流密度が0.02〜0.2A/cm2,好ましくは0.05〜0.1A/cm2となるように通電する。電流密度が0.02A/cm2より低いと電解が進まず,0.2A/cm2を超えると精製ガリウムの純度が下がるようになる。
【0032】
電解中,磁石回転子7により原料液体3を中心軸回りに回転して遠心力を付与し続けると,ガリウム金属より比重の低い物質(スカム15)が該原料液体3の表面中央部に集まってくる。このスカム15の集まり状態が最も良好となるように磁石回転子7の回転数を制御し,原料液体3の回転状況を調節する。スカム15は原料液体よりも黒色を呈するので,目視観察により,中央表面への集まり状態を知ることができる。
【0033】
先述のように,この中央に集まったスカム15には,ガリウム酸化物が含まれまた,原料液体3中の不純物の酸化物も若干含まれることがある。しかし,金は殆んど酸化しないので,金の酸化物が存在することはあり得ない筈であるが,実際にはサクションパイプ8でこのスカム15を吸い上げると金も同伴するようになる。
【0034】
中央に集まったスカム15をサクションパイプ8で吸い上げるさいには,原料液体3は出来るだけ吸い上げないようにするために,サクションパイプ8の先端のサクション孔をスカム15の若干上に位置させて,電解液1と共にスカム15を吸い上げるようにするのがよい。これにより,不可避的に原料液体が同伴するものは仕方がないとして,発生するスカム15の殆んどを電解液と共に吸い上げることができ,また金を同伴して吸い上げることができる。
【0035】
図示の装置では,電解液と共に吸い上げられた金同伴のスカム15は中間槽19に入り,オーバーフローの管路25から中間槽19に入る電解液と共に掻き混ぜられ且つ加熱器27で加熱される。これにより,電解液中にスカムおよび金,更には少量のガリウム原料液体が混濁した所定温度の流体が得られる。この流体は管路22を経て電解槽2に戻されるが,この還流する流体の温度と流量は電解槽2で必要とする電解液の温度と量に応じられるように加熱器27の操作とポンプ28の回転数により調整される。この操作は自動制御で行うことができる。
【0036】
この還流の過程でフイルタ21において流体中の懸濁分が濾別されるが,この濾別された物質には金が同伴する。ここで回収される金はガリウム原料液体中に混在した金の殆んどを占める。したがって,陽極残中の金濃度は極めて低くなり且つ陰極で析出する精製ガリウム中の金濃度も極めて低くなる。精製ガリウム中の金濃度が低くなることは,更に高純度ガリウムを得るための次工程の負荷を著しく低減することができる。本発明法で金が除去されていることは,6Nや7Nの高純度ガリウムを製造する上で非常に有利となる。
【0037】
このようにして,ガリウム原料液体3中に混在した金はフイルタ21で除去され,またガリウム原料液体3中に混在した不純物例えばIn,Cu,Pb等は陽極残中に濃縮される。その結果,陰極室5の受溜め16で回収される精製ガリウムには,Au,In,Cu,Pb等は殆んど混在せず,高純度の金属ガリウムとなる。他方,ガリウム原料液体3の表面に発生する酸化物系のスカムが除去されることにより,これら酸化物被膜発生によるブレークアウト(電解中止)等のトラブル発生(酸化物被膜が絶縁層となり極間電圧の急激な上昇を招き,無理に電解を続けると純度の低いガリウムが陰極に電着する等)も未然に防止されるので,電解寿命を長くすることができ,ひいては,陽極残として,In,Cu,Pb等の不純物濃度が高いものが得られるので,高い精製率のもとで効率よく電解操業が行える。
【0038】
【実施例】
〔実施例1〕
図1〜2に示した装置において,Ga:50g/LおよびNaOH:150g/Lを溶解した10Lの電解液を電解槽2内に入れ,電解槽2と中間槽19の間をポンプ28を駆動して,300mL/minの流量で循環させ,加熱器27のスイッチを入れて電解槽2内の電解液1の温度が50℃となるように,加熱器27での入熱量を,ヒータ附属のコントローラーで調節した。
【0039】
次いで,予め溶融しておいた3000gのガリウム原料液体3を陽極室4の円筒状容器6内に装入し,モータ14を駆動して磁石回転子7を回動させ,ガリウム原料液体3に旋回流を起こさせて遠心力を与えた。この状態で,サクションパイプ8の先端のサクション孔が,原料液体3の中心部表面から約5mm高い位置となるように調整し,ポンプ23を駆動して150mL/minの流量で吸引した。また,導電ロッド9の先端の金属端子10が常時ガリウム原料液体3内に浸漬されるようにセットした。この状態で,ステンレス鋼板製の陰極板11との間で,電流密度が0.10A/cm2で通電を開始し,200時間連続で電解を行った。この電解の間,極間電圧は4.5から5.5Vに僅かに上昇することがあった。
【0040】
電解の間,ポンプ23と28の送液量は前記の量にほぼ維持し続け,サクションパイプ8は中央部に集まるスカム15より約5mm高い位置に維持されるように上下位置を調整した。フイルタ21の濾材には活性炭を用いた。
【0041】
本例の操業結果を表1に示した。
【0042】
【表1】
Figure 0003802245
【0043】
表1の結果に見られるように,得られた精製ガリウム量は,原料ガリウム量に対して80%近くまで達し,また,精製ガリウムの不純物については,インジウムで5ppm,金は0.1ppm以下,銅と鉛については0.5ppm以下にまで低減でき,ガリウム品位として5N(99.999%)クラスであった。
【0044】
〔実施例2〕
電流密度を0.05A/cm2とした以外は実施例1と同様に電解した。その操業結果を表2に示した。
【0045】
【表2】
Figure 0003802245
【0046】
表2の結果に見られるように,実施例1に比べて電流密度を半減した本例では,200時間の電解では精製ガリウム量は原料ガリウム量に対して40%程度であったが,電解中の極間電圧の上昇も小さく,まだ十分に電解が継続できる状態であった。精製ガリウムの不純物については,インジウムで2ppm,金は0.1ppm以下,銅と鉛については0.5ppm以下まで低減でき,品位は実施例1より高いガリウムが得られたが,生産性は実施例1の1/2であった。
【0047】
〔比較例〕
磁石回転子7を回転させず(モータ14を駆動させず)且つサクションパイプ8から吸液しない(ポンプ23を停止)状態として,原料液体に遠心力を付与せず且つスカムも排出せず,フイルタ21も用いなかった以外は,実施例1と同様の条件で電解を行ったところ,120時間を経過した時点で電圧が急上昇して電解がストップした。円筒状容器内の原料液体を観察したところ表面が一様に変色しており,酸化膜で覆われていることが認められた。120時間の電解操業結果を表3に示した。
【0048】
【表3】
Figure 0003802245
【0049】
表3の結果に見られるように,陽極残が50%を切った時点で電解が停止し,得られた精製ガリウム量も原科ガリウムに対して40%強程度であり,不純物についても,インジウムで12ppm,金は5.3ppm,銅は1ppmと実施例1や2に比べて高い値を示した。特に金については除去が不十分であった。
【0050】
【発明の効果】
以上述べたように,本発明によれば,従来のガリウムの電解精製法では除去できなかった金等の不純物の除去ができ,かつ陽極残中への不純物の濃縮度を上昇させることができ,電解寿命を延ばすことができる。このため,精製ガリウムの収率が向上し且つその精製効率も向上させることができる。したがって,亜鉛製錬工程から生産されたガリウム原料や化合物半導体スクラップから回収された粗ガリウム,更には高純度ガリウム精製工程より発生する不純物含有率の高いガリウム原料からのガリウム精製に多大の貢献ができる。
【図面の簡単な説明】
【図1】本発明法を実施する装置の例を示す略断面図である。
【図2】図1の装置の電解槽部分の略平面図である。
【符号の説明】
1 電解液
2 電解槽
3 ガリウム液体原料
4 陽極室
5 陰極室
6 円筒状容器
7 磁石回転子
8 サクションパイプ
9 導電ロッド
10 金属端子
11 陰極板
12 仕切板
15 ガリウム液体原料の表面中央部に集まったスカム
17 精製ガリウム抜き出し口
19 中間槽
20 サクションパイプと中間槽を連結する管路
21 フイルタ
22 中間槽から電解槽に通ずる管路
27 加熱器

Claims (5)

  1. ガリウム原料液体を陽極として陰極に精製ガリウムを電解液中で析出させるガリウムの電解精製法において、電解液中のガリウム原料液体を回転させることによって該回転中心の該原料液体表面に集まるスカムを電解槽の外に排出することを特徴とするガリウムの電解精製法。
  2. 前記ガリウム原料液体は陽極室の外側下方に設置された回転する磁石の磁力によって回転力が付与される請求項1に記載のガリウムの電解精製法。
  3. スカムを電解液の一部と共に槽外に排出し、該スカムをフィルタで電解液と分離する請求項1または2に記載のガリウムの電解精製法。
  4. ガリウムの融点以上の温度に維持された電解液を入れた電解槽内を、ガリウム原料液体を陽極としてこれを収容する陽極室と、陰極に析出した精製ガリウムを捕集する陰極室に区分し、該陽極室を円筒状容器とし、この円筒状容器の外側下方に磁石回転子を設置し、該円筒状容器内の中心部にサクションパイプを配置したガリウム電解精製装置。
  5. ガリウムの融点以上の温度に維持された電解液を入れた電解槽内を、ガリウム原料液体を陽極としてこれを収容する陽極室と、陰極に析出した精製ガリウムを捕集する陰極室に区分し、該陽極室を円筒状容器とし、この円筒状容器の外側下方に磁石回転子を設置し、該円筒状容器内の中心部にサクションパイプを配置し、このサクションパイプを電解槽の槽外に設けた中間槽に連結し、この中間槽からフィルタを介して電解槽に通ずる管路を設けたガリウム電解精製装置。
JP31033198A 1998-10-30 1998-10-30 ガリウムの電解精製法および装置 Expired - Fee Related JP3802245B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP31033198A JP3802245B2 (ja) 1998-10-30 1998-10-30 ガリウムの電解精製法および装置
US09/428,476 US6221232B1 (en) 1998-10-30 1999-10-28 Electrolytic refining method for gallium and apparatus for use in the method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31033198A JP3802245B2 (ja) 1998-10-30 1998-10-30 ガリウムの電解精製法および装置

Publications (2)

Publication Number Publication Date
JP2000144475A JP2000144475A (ja) 2000-05-26
JP3802245B2 true JP3802245B2 (ja) 2006-07-26

Family

ID=18003955

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31033198A Expired - Fee Related JP3802245B2 (ja) 1998-10-30 1998-10-30 ガリウムの電解精製法および装置

Country Status (1)

Country Link
JP (1) JP3802245B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013105291A1 (ja) * 2012-01-10 2013-07-18 Jx日鉱日石金属株式会社 高純度マンガン及びその製造方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4536465B2 (ja) * 2004-09-15 2010-09-01 Dowaホールディングス株式会社 ガリウム中のゲルマニウム除去方法及びこの方法によって得たガリウム並びにゲルマニウム除去装置
JP5002790B2 (ja) * 2005-08-30 2012-08-15 Dowaメタルマイン株式会社 ガリウムの回収方法
CN111394751A (zh) * 2020-04-16 2020-07-10 广东省稀有金属研究所 电解提纯镓的方法、高纯镓及电解装置
CN113549955B (zh) * 2021-07-08 2022-05-20 中南大学 一种粗镓的电解精炼装置及电解精炼方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013105291A1 (ja) * 2012-01-10 2013-07-18 Jx日鉱日石金属株式会社 高純度マンガン及びその製造方法
JP5636515B2 (ja) * 2012-01-10 2014-12-03 Jx日鉱日石金属株式会社 高純度マンガン及びその製造方法

Also Published As

Publication number Publication date
JP2000144475A (ja) 2000-05-26

Similar Documents

Publication Publication Date Title
TWI628287B (zh) 高純度錫及其製造方法
KR101410187B1 (ko) 수산화인듐 또는 수산화인듐을 함유하는 화합물의 제조 방법
TWI577836B (zh) High purity tin manufacturing methods, high purity tin electrolytic refining devices and high purity tin
JP3802245B2 (ja) ガリウムの電解精製法および装置
JP3927706B2 (ja) ガリウムの電解精製法および装置
US6221232B1 (en) Electrolytic refining method for gallium and apparatus for use in the method
JPS60211092A (ja) 溶融塩浴中の金属ハロゲン化物電解による金属精練法及び該方法の実施装置
JP7398395B2 (ja) 銅電解精製の改善
JP5831432B2 (ja) 脱銅電解液からの脱ニッケル方法
JP6524973B2 (ja) 高純度In及びその製造方法
JP3146706B2 (ja) ガリウムの電解方法
JP3882608B2 (ja) 高純度錫の電解精製方法とその装置
CN1637171A (zh) 电镀处理装置和电镀处理方法
JP6318049B2 (ja) 高純度In及びその製造方法
NO773127L (no) Fremgangsmaate til gjenvinning av sink og elektrolyseinnretning for bruk ved fremgangsmaaten
CN216639668U (zh) 一种制备高纯镓的电解装置
JP3696525B2 (ja) 銅微粉製造方法
JP7497632B2 (ja) 固形物の回収方法および回収装置
JP4536465B2 (ja) ガリウム中のゲルマニウム除去方法及びこの方法によって得たガリウム並びにゲルマニウム除去装置
JP2570076B2 (ja) 高純度ニッケルの製造方法
JP2022022852A (ja) 固形物の回収方法および回収装置
TWI634216B (zh) High purity In and its manufacturing method
JP2022026613A (ja) 固形物の回収方法および装置
JP2022022852A5 (ja)
JPH0826469B2 (ja) 銅電解液の浄液方法

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040729

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051227

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060425

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060427

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090512

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090512

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090512

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100512

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110512

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110512

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120512

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130512

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140512

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees