JP3795630B2 - 乾式減湿装置のロータの劣化診断方法 - Google Patents
乾式減湿装置のロータの劣化診断方法 Download PDFInfo
- Publication number
- JP3795630B2 JP3795630B2 JP14097797A JP14097797A JP3795630B2 JP 3795630 B2 JP3795630 B2 JP 3795630B2 JP 14097797 A JP14097797 A JP 14097797A JP 14097797 A JP14097797 A JP 14097797A JP 3795630 B2 JP3795630 B2 JP 3795630B2
- Authority
- JP
- Japan
- Prior art keywords
- rotor
- zone
- deterioration
- temperature
- regeneration
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F3/00—Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
- F24F3/12—Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
- F24F3/14—Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
- F24F3/1411—Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant
- F24F3/1423—Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant with a moving bed of solid desiccants, e.g. a rotary wheel supporting solid desiccants
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F2203/00—Devices or apparatus used for air treatment
- F24F2203/10—Rotary wheel
- F24F2203/1016—Rotary wheel combined with another type of cooling principle, e.g. compression cycle
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F2203/00—Devices or apparatus used for air treatment
- F24F2203/10—Rotary wheel
- F24F2203/1032—Desiccant wheel
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F2203/00—Devices or apparatus used for air treatment
- F24F2203/10—Rotary wheel
- F24F2203/1056—Rotary wheel comprising a reheater
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F2203/00—Devices or apparatus used for air treatment
- F24F2203/10—Rotary wheel
- F24F2203/1072—Rotary wheel comprising two rotors
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F2203/00—Devices or apparatus used for air treatment
- F24F2203/10—Rotary wheel
- F24F2203/1084—Rotary wheel comprising two flow rotor segments
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F2203/00—Devices or apparatus used for air treatment
- F24F2203/10—Rotary wheel
- F24F2203/1088—Rotary wheel comprising three flow rotor segments
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Drying Of Gases (AREA)
Description
【発明の属する技術分野】
本発明は,乾式減湿装置のロータの劣化診断方法に関するものである。
【0002】
【従来の技術】
乾式減湿装置は、塩化リチウムや塩化カルシウムなどの吸収液を含浸させたハニカム状のロータや、シリカゲル、ゼオライトなどの吸着材で構成したロータを備え、このロータの端面に位置する空気の通過域を減湿区域と再生区域とに仕切り、ロータを回転させながら減湿区域に処理空気を通過させて乾燥空気を作り出すと共に、再生区域に高温の再生空気を通過させることによって、前記吸収液や吸着材中の水分を再生空気中に蒸発させて、連続的に減湿処理を行うように構成されている。この場合、ロータが高温のまま減湿区域に移行すると、処理空気が減湿しないままロータを通過して露点を上昇させるので、低湿度に制御された空間からの還気など、低温の空気を通過させてロータを冷却するためのパージ区域が再生区域と減湿区域との間に設定されていることがある。殊に後述の二段に直列に接続した場合における二段目の乾式減湿装置のロータ端面には、かかるパージ区域が設定されることが多い。
【0003】
この種の乾式減湿装置は、半導体製造プロセスやリチウム電池の製造プロセスなどのためにその内部を乾燥かつ低露点の雰囲気とする空間(以下、「低露点空間」という)へ、超低露点の空気を供給する空調機や空調システムに用いられているが、かかる場合前記超低露点の空気を供給するにあたり、乾式減湿装置を、例えば二段に直列に系統接続している場合がある。
【0004】
ところで前記低露点空間においては、露点温度の僅かな変化もプロセスに影響を与えるため、乾式減湿装置のロータの減湿能力の劣化には格別注意しなければならない。即ちロータの劣化を的確に診断して、その交換を適切な時期に実施する必要がある。
【0005】
この点に関し、出願人は先に特開平8−141352号公報や特開平8−155248公報において、既にロータの劣化を診断してロータの交換時期を予測する方法を開示している。特開平8−141352は、2台の乾式減湿装置を二段に系統接続して使用する場合の、一段目ロータの劣化を二段目の再生空気の出口温度の測定値に基づいて劣化を診断してロータの交換時期を予測するようにしたものであり、また特開平8−155248は、ロータの劣化の進行度を、正常時と測定時における処理空気のロータの入口側絶対湿度と減湿量との相関関係から求めるようにしたものである。
【0006】
【発明が解決しようとする課題】
しかしながら前者の方法では、2台の乾式減湿装置を二段に系統接続して使用する場合の、二段目の乾式減湿装置のロータの劣化は診断できない。また後者によれば、絶対湿度を測定するための露点計が必要となる。さらに二段目の乾式減湿装置のロータは元々減湿負荷が小さいため、ロータの劣化が再生区域の出口温度に与える影響が極めて小さい。そのためたとえ1℃でも再生区域の出口温度が変化すると、もはや給気における所期の露点温度の維持が図れないおそれがある。したがって、ただ単に再生区域の出口温度を測定することによってロータの劣化を判定する方法では、いずれにしろ二段目の乾式減湿装置のロータの劣化を診断することは困難である。
【0007】
本発明はかかる点に鑑みてなされたものであり,露点計を用いることなくロータの劣化の診断を行え,しかも乾式減湿装置を二段をはじめとする多段に直列系統接続した場合の,二段目以降の乾式減湿装置のロータの診断をも可能な乾式減湿装置のロータの劣化診断方法を提供して,前記問題の解決を図ることを目的としている。
【0008】
【課題を解決するための手段】
前記目的を達成するため,請求項1によれば,回転自在なロータの端面に位置する空気の通過域が少なくとも減湿区域と再生区域とパージ区域とに仕切られて,ロータの回転によって再生区域から減湿区域に移行する前にパージ区域が位置するように構成された乾式減湿装置のロータの劣化を診断する方法であって,再生区域の出口側温度を,減湿区域寄りとパージ区域寄りの少なくとも2カ所で測定し,少なくともこれら2つの測定値に基づいて前記ロータの劣化を診断することを特徴とする,乾式減湿装置のロータの劣化診断方法が提供される。
【0009】
このようなロータの劣化診断方法においては,減湿区域寄りとパージ区域寄りの地点とは,再生区域において減湿区域に近い側とパージ区域に近い側の地点をいう。また具体的に測定するにあたっては,ロータの端面から軸方向に所定距離(15cm以内)離れた地点に温度センサの温度検出部が位置するように,当該温度センサをロータ端面に位置するチャンバに取り付けることが提案できる。
【0011】
発明者らの知見によれば,減湿区域寄りとパージ区域寄りとでは,ロータの劣化に伴って異なった温度特性が現れる。したがって,本発明のように,そのような2つの異なった温度特性に基づいてロータの劣化の診断をするようにすれば,例えば時経列変化を測定することにより,より正確な劣化診断や交換時期の判断が行える。したがって,たとえ2台の乾式減湿装置を二段に系統接続して使用している場合であっても,二段目の乾式減湿装置のロータの劣化を診断することができる。なお温度測定地点については,前記ロータの端面から15cm以内の軸方向に離れた位置で測定することが好ましい。
【0012】
また前記した温度特性は,後述の実施形態で示したように正常時と劣化時では異なっているので,請求項2に記載したように,予め測定した前記少なくとも2カ所,即ち同一の測定箇所における正常時の出口側温度(再生区域を通過した空気の温度)と比較することによっても,ロータの劣化を診断することが可能である。
【0013】
ところで前記診断方法は、露点計を用いることなく再生区域の出口温度を測定することによってロータの劣化を診断するようにしているが、減湿区域に導入する処理空気の絶対湿度が大きく変動した場合には、正確な劣化診断ができないおそれがある。
【0014】
この点請求項3に記載したように,減湿区域入口側の空気の絶対湿度を一定にした状態で再生区域の出口側温度を測定するようにすれば,極めて正確な診断が行える。減湿区域入口側の空気の絶対湿度を一定にする方法としては,後述の実施の形態でも示したように,例えば減湿区域入口側に冷却装置などのプレクーラを設置したり,あるいは再生区域の出口チャンバー後の混ざり合った空気の温度を一定に保つように再生用の加熱装置を制御するようにしてもよい。
【0015】
【発明の実施の形態】
以下、図面に基づいて本発明の実施の形態を説明する。図1は、劣化診断の対象となる乾式減湿装置を採用した低露点空気供給システムの概略を示しており、この低露点空気供給システムは、低露点空間Rに低露点空気を供給するシステムとして構成されている。
【0016】
まず導入外気OAは、外気取り入れダクト1により導かれて、外気処理クーラ2によって冷却減湿される。冷却減湿された空気はその後、再生余剰 空気冷却クーラ3で冷却された再生余剰空気と混合されて、外気処理ファン4によって、1段目の乾式減湿装置5の減湿区域5aに導入され、例えば露点温度−10℃まで減湿される。この1段目の乾式減湿装置5は、減湿区域5aと再生区域5bとの2つに分割された空気の通過域をロータ端面を有しているタイプである。
【0017】
その後、1段目の乾式減湿装置5の減湿区域5aを通過して外気処理された空気は、低露点空間Rから還気ダクト6を通じて戻ってきた一部の還気RA1と混合され、処理ファン7によって、プレクーラ8に送られる。このプレクーラ8によって処理空気は冷却された後、二段目の乾式減湿装置10のロータ11の減湿区域11aに導入されて減湿処理される。
【0018】
二段目の乾式減湿装置10は、図2、図3に示した構成を有しており、回転するロータ11の両端面にチャンバ12、13が配置された構成を有している。そしてロータ11の端面は、図3中の矢印に示したロータ11の回転方向順に、減湿区域11a、再生区域11b、パージ区域11cの3つの空気通過域に区画されている。そしてチャンバ12の外側端面には、これら各区域に対応して、ダクトなどに接続するための減湿入口12a、再生出口12b、パージ出口12cが形成されている。なおチャンバ13の外方端面にも、前記3つの区域に対応して減湿出口、再生入口、パージ入口が各々形成されている(いずれも図示せず)。なおこの乾式減湿装置10のロータ11には、吸湿剤として塩化リチウムを利用しているが、吸湿剤としてシリカゲルやゼオライトを用いた場合にも本発明は同様に実施することが可能である。
【0019】
前記チャンバ12には、図3に示したように2つの温度センサ14、15が設けられており、各々の温度検出部14a、15aがチャンバ12内における再生区域11bに位置するように設けられている。そして温度センサ14の温度検出部14aは減湿区域11aに近い側、温度センサ15の温度検出部15aはパージ区域11cに近い側に位置するように各々取り付け位置が設定されている。
【0020】
乾式減湿装置10のロータ11の減湿区域11aで減湿されて、低露点となった空気は、その後ヒータ21、アフタークーラ22によって、所定の温度に調節された後、給気SAとして低露点空間Rに供給される。
【0021】
低露点空間Rからの他の一部の還気RA2は、パージ系還気ダクト23を通じ、パージ空気として、乾式減湿装置10のロータ11のパージ区域11cに導入され、これによってロータ11の冷却が行われる。ここでの冷却が十分でないと、温度が高いままロータ11が減湿区域11aに入ってしまい、減湿が十分にできないことになる。
【0022】
そしてロータ11のパージ区域11cを通過したパージ空気は、二段目の再生ファン26によって再生循環系統Pの空気に合流して混合される。このようにして混合された空気は、その大部分が再生系統ダクト27を通って、二段目の再生ヒータ28に送られ、この再生ヒータ28により、例えば120℃に加熱された後、乾式減湿装置10のロータ11の再生区域11bに導入されるのである。
【0023】
再生系統Zからの一部の空気は1段目の再生ファン29の作動により1段目の再生ヒータ30を通過した後、昇温されて1段目の乾式減湿装置5の再生区域5bに導入され、この乾式減湿装置5のロータの再生に用いられる。そしてその後、排気EAとしてシステム外に排出される。一方再生ヒータ30を通過しない残りの再生系統Zの空気は、再生余剰空気循環ダクト31を通って、前出再生余剰空気冷却用クーラ3によって冷却され、外気OAと混合されて1段目の乾式減湿装置5の減湿区域5aに導入されて減湿されるようになっている。即ち処理空気の一部として再使用される。なお図1におけるD1〜D8は、風量を調節するためダクト中に介装されたダンパである。
【0024】
第1の実施形態にかかる低露点供給システムは以上のように構成されているが、このように2つの乾式減湿装置5、10を二段に直列に系統接続した場合、二段目の乾式減湿装置10の劣化の診断を行うことは従来では露点計を用いない限りは困難であったが、本実施の形態によれば露点計を用いることなく次のようにして診断することが可能である。
【0025】
即ち図4のグラフに示したように、初期の正常時の再生出口温度分布の様子と、劣化したときの温度分布とは異なっている様子を示している。図4におけるA地点は温度センサ14の温度検出部14aの位置を示し、B地点は温度センサ15の温度検出部15aの位置を示している。そしてかかるグラフによれば、再生区域11bを通過した空気の減湿区域11aに近い側の温度は、ロータ11の劣化により温度下降が確認でき、これに対しパージ区域11cに近い側の温度は、ロータ11の劣化により温度上昇が確認できる。
【0026】
さらに各温度センサ14、15の初期の正常時から劣化時に至るまでの時経列変化を調べると、図5のグラフに示したように、温度センサ14、15とも、時間の経過と共に値が変化していく様子を示している。即ち、ロータ11の劣化にともなって温度センサ14の方では温度が下降し、温度センサ15の方では逆に上昇する傾向が明瞭に示されている。したがって、温度センサ14又は15のいずれか一方の測定結果の時経列変化に基づいて、ロータ11の劣化を診断することができる。なお、図5のグラフにおける特性の傾きはロータ個々の特性により異なる。そして時経列変化を常時、あるいは所定時間毎に測定して、所定のしきい値に達するまでの時間を予測することにより、ロータ11の交換時期を知ることも可能である。
【0027】
減湿区域11aの入口の絶対湿度と温度センサ14、15の計測温度との関係を図6に示した。この図6グラフからわかるように、温度センサ14、15の計測温度は減湿区域11aの入口の絶対湿度とほぼ直線の関係にある。したがって、例えば温度センサ14の計測値をT、減湿区域11a入口の絶対湿度をXとすれば、T=aX+bである。
【0028】
ここでa、bは回帰係数であり、減湿区域11aの入口の絶対湿度と温度センサ14の時経列データから最小2乗法による回帰分析によって値を求める。なおこのときの時経列データは、例えば1日に1回のように、所定の間隔をおいて求める。そして基準となるXの値(例えば0.5g/kg’)といった値を用いて、基準となるTを求める。なおこの場合、減湿区域11aの入口の絶対湿度が一定のシステムにおいては、そのような演算処理は不要であり、温度センサ14の計測値をそのままTとして用いることができる。
【0029】
このTを用いて、図5に見られる計測温度の劣化の進行状況との回帰を行う。回帰の方法としては、例えばTの値として、初期値が70、劣化時が60としたときには、y=(70−Ti)/(70−60)によって求める、いわば劣化進行度yを基にし、y=1となるまでの時刻を、特開平8−141352号公報に開示されたように、時経列データに基づいて予測すれば、余寿命時間、即ちロータの交換時期が予測できる。なおTiは計測時の温度センサ14の計測温度である。
【0030】
さらにまた温度センサ14、15からは、全く逆の温度特性が確認できるから、この2つの温度センサ14、15双方の温度特性を計測すれば、温度変化がたとえ僅かであっても、双方とも逆の温度特性を示しているから、この2つを各々正常時の温度と照合することで、正常時との違い、即ち劣化を判断することも可能である。
【0031】
したがってこれら各温度センサ14、15からの温度信号を、例えば別設の演算装置(図示せず)へと出力するように構成し、当該演算装置において、予め求め同一測定箇所で検出した正常時の温度信号と比較するようにすれば、いずれも(温度センサ14、15からの温度信号とも)予め設定した所定のしきい値を越える温度差があった時には、劣化していると判断することが可能になる。このように2つの温度特性によってロータの劣化を判断するようにしているので、劣化による再生出口温度の変化が小さい二段目の乾式減湿装置10のロータ11であっても、これを容易に診断することができる。
【0032】
ところで実際の運転の環境如何によっては、二段目の乾式減湿装置10における減湿区域11aの入口空気の絶対湿度が変動することがある。そうすると再生区域11bの出口温度が変化し、その影響により再生出口温度分布(温度センサ14、15によって得られた温度分布)の値が変動する。これを取り除くためには、減湿区域11aの入口の絶対湿度を露点計で測定すればよいが、露点計は高価であるため、再生区域11bの再生出口12bを出た後の混ざり合った空気の温度(以下、「再生出口代表温度」という)を測定し、前述の再生出口温度分布との関数の変化を求めれば、その結果より劣化の判定を行うことができる。即ち、減湿区域入口の絶対湿度と再生出口代表温度は、ほぼ線形の相関があるため、減湿区域入口の絶対湿度に代えて再生出口代表温度を用いても、同様な方法で診断できる。
【0033】
なお夏期には、図1の外気処理クーラ2で冷却除湿するため、減湿区域11a入口空気の絶対湿度が比較的安定しており、この時期のデータのみを用いると、前記した再生出口代表温度の測定を行わずに診断を行うことができる。また一段目の乾式減湿装置5のロータの能力に余裕がある場合には、一段目の再生ヒータ30をサイリスタなどで制御し、二段目のロータ11の再生出口代表温度を一定に保つことで、劣化の診断を行うことが容易になる。この場合、再生ヒータを制御することで、再生ヒータ30の消費エネルギーを低減させることができる。
【0034】
【発明の効果】
本発明によれば,露点計を用いることなく,二段目の乾式減湿装置のロータの劣化を診断することができる。また特に請求項3の乾式減湿装置のロータの劣化診断方法によれば,より正確な劣化診断を行うことが可能である。従って,本発明によれば,二段式乾式減湿装置で最近問題となってきた二段目の減湿装置のロータの状態を常にタイムリーに診断できるので,ユーザーの不安を取り除くことができ,しかも設備業者が必要以上のメンテナンス対応に追われるといった問題も解消される。また従前のサンプリング調査と比較すると診断に要する費用が大幅に低減できる。特に減湿ロータとして使用される機会が最近増えてきたシリカゲルやゼオライトのロータでは,サンプリング調査ができないため本発明は非常に有効な診断方法である。
【図面の簡単な説明】
【図1】本発明の実施の形態にかかる診断方法の対象となった乾式減湿装置が組み入れられた低露点空気供給システムの構成の概略を示す説明図である。
【図2】本発明の実施の形態にかかる診断方法の対象となった乾式減湿装置の斜視図である。
【図3】図2の乾式減湿装置の軸方向からみた正面図である。
【図4】図2の乾式減湿装置に取り付けられた2つの温度センサによって測定した正常時と劣化時のロータの再生出口温度の温度分布を示すグラフである。
【図5】図2の乾式減湿装置に取り付けられた2つの温度センサによって測定した正常時から劣化時に至るまでのロータの再生出口温度の時経列変化を示すグラフである。
【図6】ロータの減湿区域入口絶対湿度と図2の乾式減湿装置に取り付けられた2つの温度センサによって測定した温度との関係を示すグラフである。
【符号の説明】
10 乾式減湿装置
11 ロータ
11a 減湿区域
11b 再生区域
11c パージ区域
12、13 チャンバ
14、15 温度センサ
D1〜D8 ダンパ
R 低露点空間
Claims (3)
- 回転自在なロータの端面に位置する空気の通過域が少なくとも減湿区域と再生区域とパージ区域とに仕切られて,ロータの回転によって再生区域から減湿区域に移行する前にパージ区域が位置するように構成された乾式減湿装置のロータの劣化を診断する方法であって,
再生区域の出口側温度を,減湿区域寄りとパージ区域寄りの少なくとも2カ所で測定し,少なくともこれら2つの測定値に基づいて前記ロータの劣化を診断することを特徴とする,乾式減湿装置のロータの劣化診断方法。 - 再生区域の出口側温度を,減湿区域寄りとパージ区域寄りの少なくとも2カ所で測定した測定値と,予め測定した前記少なくとも2カ所における正常時の出口側温度と比較することによって,前記ロータの劣化を診断することを特徴とする,請求項1に記載の乾式減湿装置のロータの劣化診断方法。
- 減湿区域入口側の空気の絶対湿度を一定にした状態で再生区域の出口側温度を測定することを特徴とする,請求項1又は2に記載の乾式減湿装置のロータの劣化診断方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14097797A JP3795630B2 (ja) | 1997-05-15 | 1997-05-15 | 乾式減湿装置のロータの劣化診断方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14097797A JP3795630B2 (ja) | 1997-05-15 | 1997-05-15 | 乾式減湿装置のロータの劣化診断方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH10314540A JPH10314540A (ja) | 1998-12-02 |
JP3795630B2 true JP3795630B2 (ja) | 2006-07-12 |
Family
ID=15281261
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP14097797A Expired - Fee Related JP3795630B2 (ja) | 1997-05-15 | 1997-05-15 | 乾式減湿装置のロータの劣化診断方法 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3795630B2 (ja) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010281521A (ja) * | 2009-06-05 | 2010-12-16 | Mitsubishi Electric Corp | 加湿装置、加湿装置の制御方法及び加湿装置を有する空気調和機 |
JP5654960B2 (ja) * | 2011-08-08 | 2015-01-14 | 新菱冷熱工業株式会社 | 省エネ除湿システム |
JP6843166B2 (ja) * | 2019-02-19 | 2021-03-17 | 新日本空調株式会社 | 減湿システム及びその減湿システムの運転方法 |
-
1997
- 1997-05-15 JP JP14097797A patent/JP3795630B2/ja not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH10314540A (ja) | 1998-12-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102207314B (zh) | 吸附解吸装置及被吸附物交换状态监视方法 | |
US9777933B2 (en) | Apparatus and method for control of solid desiccant dehumidifiers | |
CN102441320B (zh) | 除湿装置和除湿装置的控制方法 | |
JP6446097B1 (ja) | 空気調和システム、空気調和方法および環境試験室 | |
JP5390242B2 (ja) | 除湿装置および除湿装置の制御方法 | |
JP5485726B2 (ja) | 除湿装置および除湿装置の劣化判定方法 | |
JP3795630B2 (ja) | 乾式減湿装置のロータの劣化診断方法 | |
WO2012011271A1 (ja) | ガス除去システム | |
JP5576619B2 (ja) | 除湿装置および除湿装置の制御方法 | |
JP3313916B2 (ja) | 二段式乾式減湿システムにおけるロータの劣化診断方法とロータの交換時期の予測方法 | |
JP3795636B2 (ja) | 乾式減湿装置の運転方法及び乾式減湿装置 | |
JP3753752B2 (ja) | 乾式減湿装置におけるロータの劣化診断方法とロータの交換時期の予測方法 | |
JP5654960B2 (ja) | 省エネ除湿システム | |
JPH0947630A (ja) | 自己診断機能付き加熱再生式空気冷却乾燥装置及びその診断方法 | |
KR102658652B1 (ko) | 퍼지 투 퍼지 방식을 이용한 데시칸트 제습기 및 데시칸트 제습방법 | |
KR20160102084A (ko) | 고체 건조제 제습기 제어 장치 및 제어 방법 | |
JP2011230098A5 (ja) | ||
JP6859398B2 (ja) | 除湿ローターの省エネ制御システム及びその方法 | |
JPS63158116A (ja) | ガス除湿装置における除湿塔の切替方法 | |
CN117704565A (zh) | 空调系统的控制方法、装置、空调及存储介质 | |
JP2020131106A (ja) | 減湿システム及びその減湿システムの運転方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040123 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20051214 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20051220 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060217 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20060411 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20060413 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090421 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100421 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100421 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110421 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110421 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120421 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130421 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130421 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140421 Year of fee payment: 8 |
|
LAPS | Cancellation because of no payment of annual fees |