JP3787627B2 - 電動射出成形機の制御装置 - Google Patents

電動射出成形機の制御装置 Download PDF

Info

Publication number
JP3787627B2
JP3787627B2 JP2002370384A JP2002370384A JP3787627B2 JP 3787627 B2 JP3787627 B2 JP 3787627B2 JP 2002370384 A JP2002370384 A JP 2002370384A JP 2002370384 A JP2002370384 A JP 2002370384A JP 3787627 B2 JP3787627 B2 JP 3787627B2
Authority
JP
Japan
Prior art keywords
injection
command
pressure
control
speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002370384A
Other languages
English (en)
Other versions
JP2004195926A (ja
Inventor
則之 赤坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of National Colleges of Technologies Japan
Original Assignee
Institute of National Colleges of Technologies Japan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of National Colleges of Technologies Japan filed Critical Institute of National Colleges of Technologies Japan
Priority to JP2002370384A priority Critical patent/JP3787627B2/ja
Publication of JP2004195926A publication Critical patent/JP2004195926A/ja
Application granted granted Critical
Publication of JP3787627B2 publication Critical patent/JP3787627B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Injection Moulding Of Plastics Or The Like (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、電動射出成形機の射出速度及び射出圧力を制御する射出制御装置に関する。
【0002】
【従来の技術】
高精度な制御と優れた応答性を特徴とするACサーボモータは、モータに用いる永久磁石の性能向上とコストダウンの実現により大容量化が図られている。この結果、従来は油圧駆動であった中型射出成形機(型締力350t〜1000t)でもACサーボモータを用いたACサーボ駆動が急速に適用されるようになった。この射出成形機においてACサーボ駆動を用いることの利点は主に、成形安定性の向上が可能であること、油圧駆動でのリリーフ損失をなくすことにより約50%もの省エネルギー効果があること、クリーンであることの3つが挙げられる。
【0003】
なお、このような射出成形機には、スクリュ回転により樹脂ペレットを溶融する可塑化機構、スクリュの前進移動により溶融樹脂を金型に高速射出し、高圧で保持する射出・保圧機構、及び金型を開閉する型開閉機構がある。ACサーボ駆動はこれらのどの機構の射出成形機にも適用することができるが、ここでは、ACサーボ駆動に関して技術課題の多い射出・保圧機構によるACサーボ制御技術について以下に説明する。
【0004】
射出・保圧機構による射出成形機において、射出は、金型内に充填された樹脂温度を一定にするために、一般に、可能な限り高速に行われる。しかし、過度の高速化により、過度の射出圧力を発生させてしまうと成形不良の要因ともなるので、射出圧力はある所定の値以下という制約が課される。そして、このような工程に続いて金型内に充填された樹脂に圧力を掛ける保持圧工程がある。
【0005】
これら2つの工程は射出・保圧機構によって行われる。したがって、射出・保圧機構におけるACサーボ制御では、速度制御及びトルク(力)制御の混在された制御が要求される。
【0006】
一方、サーボモータが大容量化したとは言え、樹脂の高速充填を実現するには、機械コストの観点からもサーボモータの多軸駆動が不可避である。サーボモータの多軸駆動は、現状ではサーボモータとボールねじの組合せによる2軸駆動が一般的である。
【0007】
このようなサーボモータの2軸駆動により動作する電動射出成形機の射出・保圧機構の模式図を図2に示す。
【0008】
射出成形機は、地上に固定された図示しない射出成形機基盤上に、リニアガイドにより移動可能な図示しない移動装置台が設けられる。更に、この移動装置台に図2に示す金型1以外の全部品が搭載される。
【0009】
そして、この移動装置台を移動させることにより、射出シリンダ2の先端部を金型1に押し付けることができ、また、逆に金型1から射出シリンダ2の先端部を離すこともできる。なお、図2は、金型1内に樹脂を射出するために射出シリンダ2の先端部を金型1に押し付けている状態を示す。
【0010】
移動装置台の上には、図中、一点鎖線で示す軸を対称にして、一対のサーボモータ3a,3b、減速機4a,4b、ボールネジ5a,5b及び軸受6a,6bが固設されている。また、上記ボールネジのナット7a,7b、可動部8、スクリュ9及び圧力検出センサ10a,10bが一体構造となっている。そして、この一体構造部は、ボールねじ5a,5bのナット移動により前後移動可能なように、可動部8が図示しないリニアガイド上に取り付けられている。
【0011】
このような射出成形機では、2軸駆動に一対のサーボモータ3a,3bを用いる。これは前述したように小型のモータを2台使用して射出成形機の低コスト化を図るためである。このサーボモータ3a,3bの回転運動は減速機4a,4bを介して倍力機構としてのボールねじ5a,5bに伝えられる。そして、このボールねじ5a,5bの回転運動はボールねじ軸上のナット7a,7bの直線運動に変換される。これにより、可動部8を介してスクリュ9の前後移動が実現される。
【0012】
また、スクリュ9の位置はそれぞれのサーボモータ軸に設けられたモータエンコーダ11a,11bで検出される。更に、スクリュ9が射出シリンダ2の先端部の溶融樹脂に与える圧力は、ボールねじのナット7a,7bと可動部8との間に挟まれて設置される圧力検出センサ(例えば、ロードセル)10a,10bにより検出される。
【0013】
このような2軸駆動による射出成形機では、機械本体に過度の応力負荷を与えないために、両ボールねじのナット7a,7bの位置の同期制御、言い換えれば、両サーボモータ3a,3bの位置同期制御が不可欠である。
【0014】
ここで、射出成形機で成形品を作る射出工程は、充填工程と保圧工程とからなる。充填工程では溶融樹脂を短時間でキャビティ12内に充填することが必要である。また、充填後の保圧工程では溶融樹脂が冷却するまで一定時間圧力を掛ける必要がある。
【0015】
このような射出成形機の制御装置の概略を図3に示す。つまり、この制御装置においては、入力としては、射出速度を指令するための射出速度指令、射出圧力を指令するための射出圧力指令、スクリュ9の位置を検出するためのモータエンコーダ信号及び実際の射出圧力を検出するための射出圧力センサ信号が与えられる。これらの入力が制御装置内で処理されて、最終的にモータの駆動制御するためのモータ電流を指令するモータ電流指令が出力される。
【0016】
一般に射出工程中の射出速度及び射出圧力に対しては、次の2つの要求課題が与えられる。
【0017】
(1)充填工程中は、所定の射出速度を実現すると同時に射出圧力が所定の圧力以下であること。
(2)保圧工程中は、所定の保持圧力を実現すると同時に射出速度が所定の速度以下であること。
【0018】
つまり、図4(a)に示す充填工程中(時間0〜t)では、所定の射出速度を実現するために図4(b)のように与えられた射出速度指令を忠実に実行させるような射出速度制御がなされる。しかし、射出圧力は図4(c)のように与えられた射出圧力指令以下に抑える制御がなされなければならない。ここで、図4(b)、図4(c)の縦軸で示す100%はそれぞれ射出速度及び射出圧力の最大値を示す。
【0019】
次に保圧工程(時間t〜t)に入ったときには所定の射出圧力を実現するために図4(c)のように与えられた射出圧力指令を忠実に実行させるような射出圧力制御がなされる。しかし、射出速度は図4(b)のように与えられた射出速度指令以下に抑える制御がなされなければならない。
【0020】
図5はこのような制御装置の内部構成について説明するためのブロック図である。この制御装置は、射出制御器20とサーボアンプ40a,40bとを含んで構成される。
【0021】
まず、射出制御器20について説明する。射出制御器20は一定時間間隔Δt毎に制御演算を行い、制御指令を更新する。
【0022】
つまり、この射出制御器20は射出速度指令タイムシーケンス21、変換器22、パルス発生器23、アナログ/デジタル(A/D)変換器25、射出圧力指令タイムシーケンス26、減算器27、圧力制御器28、デジタル/アナログ(D/A)変換器29を含んで構成される。また、射出制御器20には、前述の圧力検出センサ10aが接続される。
【0023】
射出速度指令タイムシーケンス21は、そのシーケンスに従った射出速度指令V を変換器22に出力する。変換器22は、入力された射出速度指令V に対してΔt時間に進むべきスクリュ9の移動量を、スクリュ移動量指令Δx として、次の(式1)により算出する。
Δx =ΔV Δt (式1)
この後、算出したスクリュ移動量指令Δx をパルス発生器23に出力する。
【0024】
パルス発生器23は、スクリュ移動量指令Δx に相当する数のパルスを含むパルス列24を発生させる。そして、この発生させたパルス列24をサーボアンプ40a,40b内のカウンタ41に出力する。
【0025】
また、圧力検出センサ10aで検出された圧力を射出圧力センサ信号PとしてA/D変換器25を介して射出制御器20に取り込む。A/D変換器25は取り込んだ射出圧力センサ信号Pを減算器27に入力する。
【0026】
ここで、圧力検出センサ10bがもう一方のモータ駆動軸に取り付けられている場合には、2つの圧力検出センサ10a,10bの出力信号の平均値を射出圧力センサ信号Pとする。
【0027】
また射出圧力指令タイムシーケンス26は、そのシーケンスに従った射出圧力指令P を減算器27に入力する。減算器27は射出圧力指令P と射出圧力センサ信号Pとの制御偏差ΔPを次の(式2)により算出する。
ΔP=P −P (式2)
この後、算出した制御偏差ΔPを圧力制御器28に入力する。
【0028】
圧力制御器28は、制御偏差ΔPに対して比例積分微分(PID)制御演算を実行してモータ電流指令i を算出する。そして、この算出したモータ電流指令i をD/A変換器29を介してサーボアンプ40a,40bに入力する。サーボアンプ40aでは、内蔵のA/D変換器42によりモータ電流指令I を取り込んだ後、このモータ電流指令I を比較器43に入力する。
【0029】
次にサーボアンプ40a,40bについて説明する。ここで、サーボアンプ40a及び40bはモータの2軸駆動のために設けられたものである。なお、これらのサーボアンプの構造及び動作は同一のものであるので、以後の説明はサーボアンプ40aのみについて行う。
【0030】
つまり、サーボアンプ40aはカウンタ41及び44、A/D変換器42、比較器43、減算器45及び48、位置制御器46、微分回路47、速度制御器49、パルス幅変調制御(PWM)回路50を含んで構成される。また、このサーボアンプ40aは前述のサーボモータ3aに接続されている。更にサーボモータ3aにはモータエンコーダ11aが取り付けられている。
【0031】
射出制御器20からの速度指令用のパルス列24を受けるサーボアンプ40a内のカウンタ41は、このパルス列24のパルス数を計数して、スクリュ9の位置指令xを検出する。そして、このxを減算器45に入力する。
【0032】
また、カウンタ44はモータエンコーダ11aからのパルスを受ける。カウンタ44はこのパルス数を計数して、スクリュ9の実際の位置xを検出する。そして、このxを減算器45に入力する。
【0033】
減算器45は入力されたx及びxから位置制御偏差(x−x)を算出した後、この結果を位置制御器46に入力する。位置制御器46は次式より速度指令vを算出した後、その結果を減算器48に入力する。
=K(x−x) (式3)
ここで、Kは位置制御器46の比例ゲインである。
【0034】
なお、モータエンコーダ11aはパルスを、カウンタ44の他に微分回路47にも入力する。微分回路47はこのパルスにより実速度vを検出する。そして、このvを減算器48に入力する。
【0035】
減算器48は入力されたv及びvから速度制御偏差(v−v)を算出して速度制御器49に入力する。速度制御器49は次式によりモータ電流指令i を算出し、比較器43に入力する。
【数1】
Figure 0003787627
ここで、KPvは速度制御器49の比例ゲインであり、TIvは速度制御器49の積分時間である。
【0036】
なお、サーボアンプ40a内では、位置制御ループのマイナループとして速度制御ループが形成されている。
【0037】
速度制御器49からの出力であるモータ電流指令iと圧力制御器28からの出力であるモータ電流指令iとが入力される比較器43は、i とi の小さいほうの値を選択し、その値を最終的なモータ電流指令iとしてPWM回路50に入力する。PWM回路50は与えられたモータ電流指令iに基づいて所定の3相電圧をサーボモータ3aに印加する。これにより、サーボモータ3aはモータ電流iで駆動する。
【0038】
また、比較器43は位置制御ループにより決定されるモータ電流指令i を制御ループ外からのモータ電流指令i によって制限するために設けられている。
【0039】
次に、この比較器43の動作により前述した2つの要求課題が実現されることを、図4を用いて説明する。
まず、図4の充填工程の終了時間であるtが、実際にキャビティ12に樹脂が十分充填される時間よりも前に設定されていた場合を考える。このときは、キャビティ12内にはまだ空隙が存在するので射出圧力は一般的に低くなっている。この状態から次の保圧工程に入るときには、一般に射出圧力指令P のほうが実際の射出圧力よりも高いので、実際の射出圧力を高くするために圧力制御器28から出力されるモータ電流指令i が大きくなる。
【0040】
ここで、モータ電流指令i が最終的なモータ電流指令として採用されたとすると、キャビティ12内が未充填なので射出速度が上昇する。これにより、図4(b)の射出速度指令を上回ってしまうおそれがある。
【0041】
しかし、比較器43では常にi とi のうちで小さいほうの値が選択されるので、充填中に保圧制御に移行してi がi を上回っても、比較器43においてi が最終的なモータ電流指令として採用される。
【0042】
つまり、射出圧力制御から射出速度制限に移行させることができ、前述の要求課題(2)を常に満足させることが可能である。
【0043】
次に、図4の充填工程の終了時間であるtが、実際にキャビティ12に樹脂が十分充填される時間よりも後に設定されていた場合を考える。このときはキャビティ12内に樹脂が十分充填されていても、まだ充填工程中であるので射出速度制御を実行する。しかし、この時点ではキャビティ12が十分充填されているので実際のスクリュ速度はかなり低下している。そのため、速度制御器49から出力されるモータ電流指令i が大きくなる。
【0044】
ここで、モータ電流i が最終的なモータ電流指令として採用されたとすると、既にキャビティ12内に樹脂が十分充填されているので急激に射出圧力が上昇する。これにより、図4(c)の射出圧力指令を上回ってしまうおそれがある。
【0045】
しかし、比較器43では常にi とi のうちで小さいほうの値が選択されるので、充填が完了し、i がi を上回っても、比較器43においてi が最終的なモータ電流指令として採用される。
【0046】
つまり、射出速度制御から射出圧力制限に移行させることができ、前述の要求課題(1)を常に満足させることが可能である。
【0047】
【特許文献1】
特許第2652274号公報
【0048】
【特許文献2】
特許第2652275号公報
【0049】
【特許文献3】
特開平4−31488号公報
【0050】
【特許文献4】
特許第2992329号公報
【0051】
【特許文献5】
特許第2746474号公報
【0052】
【特許文献6】
特許第2628770号公報
【0053】
【特許文献7】
特許第2628769号公報
【0054】
【非特許文献1】
稲葉善治,上口賢男,根子哲明,電動式射出成形機における圧力波形追従制御(第1報)−流動圧力制御における学習制御の適用,“精密工学会誌”,65,2,(1999),pp.293-299
【0055】
【非特許文献2】
稲葉善治,上口賢男,根子哲明,電動式射出成形機における圧力制御,“精密工学会誌”,65,4,(1999),pp.542-548
【0056】
【非特許文献3】
稲葉善治,上口賢男,根子哲明,電動式射出成形機における圧力波形追従制御(第2報)−圧力波形編集制御における学習制御の適用,“精密工学会誌”,65,5,(1999),pp.746-752
【0057】
【発明が解決しようとする課題】
図5において、2台のサーボモータ3a,3bのそれぞれのサーボアンプ40a,40bには、射出速度指令V に対しては共通の速度指令用パルス列が与えられる。しかし、射出圧力指令P に対しては、圧力検出センサ10aがアナログ信号を出力するので、結果としてサーボアンプ40a,40bには、共通のアナログ電流指令i が与えられることになる。
【0058】
したがって、比較器43が、両サーボモータ3a,3bに与えるモータ電流指令iとしてi を選択したときには、両ボールねじのナット7a,7bの移動量は図5の位置制御ループにより同じ量になることが保証される。このため、可動部8が両側のボールねじ5a,5bから不当な回転モーメントを受けることはない。
【0059】
しかし、比較器43が両サーボモータ3a,3bに与えるモータ電流指令iとしてi を選択したときには、例え両サーボモータ3a,3bに同じモータ電流指令i が与えられたとしても、両ボールねじのナット7a,7bの移動量が図5の位置制御ループから開放されているので、両ボールねじ5a,5bの負荷分担の相異などにより同じ量になることは保証されない。このため、可動部8が両側のボールねじ5a,5bから不当な回転モーメントを受けることがある。可動部8は前述したように、一般に2本のレール上を摺動移動するリニアガイドで保持される構造になっているので、不当な回転モーメントはリニアガイドに過度の横応力を発生させ、結果としてレールの破損などを生じさせる。
【0060】
つまり、図5のような構造による2軸駆動制御では、射出速度制御に関してはモータエンコーダ11aからのフィードバック信号を用いることができるので2軸共通の位置指令パルス信号を使用しての2軸位置同期制御を行うことが可能である。しかし、射出圧力制御を行うトルク制御ではフィードバック信号がロードセル信号であるので2軸位置同期制御を行うことが困難であり、レールの破損などが生じてしまう可能性がある。
【0061】
このレールの破損などを防止するために、現状では、2台のモータ出力軸を歯付ベルトで機械的に結合して位置同期制御を実現するマスタスレーブ方式を採用している。このマスタスレーブ方式は、マスタとなるサーボモータが速度制御又はトルク制御され、スレーブとなるもう一方のモータはマスタモータの実電流を電流指令として受ける方式である。しかし、このようなマスタスレーブ方式では、機械ベルトを用いることにより機械が大型化しやすく、また機械ベルトの保守なども行う必要もある。
【0062】
本発明は、上記の事情に鑑みてなされたもので、機械ベルトを用いずに、多軸サーボモータによるトルク制御での位置同期制御が可能である電動射出成形機の制御装置を提供することを目的とする。
【0063】
【課題を解決するための手段】
上記目的を達成するために、本発明による電動射出成形機の制御装置は、複数のモータからなる多軸駆動の電動射出成形機の制御装置であって、射出速度を指令するための射出速度指令手段と、上記射出速度指令手段で指令された射出速度から第1のスクリュ移動量指令を算出する第1のスクリュ移動量指令算出手段と、射出圧力を指令するための射出圧力指令手段と、上記射出圧力指令手段で指令された射出圧力と実際の圧力との差から第2のスクリュ移動量指令を算出する第2のスクリュ移動量指令算出手段と、上記第1のスクリュ移動量指令と上記第2のスクリュ移動量指令とを比較して、何れか小さいほうを最終的なスクリュ移動量指令として選択する比較手段と、を含む射出制御部と、上記複数のモータに対応して設けられ、上記比較手段によって選択されたスクリュ移動量指令に基づいてそれぞれのモータの位置同期制御を行うための位置制御ループを有する複数のモータ制御部とを具備することを特徴とする。
【0065】
【発明の実施の形態】
以下、本発明の実施の形態を図面を参照して説明する。
図1は、本発明の一実施の形態に係る電動射出成形機の制御装置の内部構成を示すブロック図である。
つまり、本一実施の形態の制御装置も射出制御器20と複数のサーボアンプ40a,40bを含んで構成される。なお、射出制御器20は特許請求の範囲に記載の「射出制御部」に対応する。また、サーボアンプ40a,40bは特許請求の範囲に記載の「モータ制御部」に対応する。
【0066】
まず、射出制御器20について説明する。射出制御器20は一定時間Δt毎に制御演算を行い、制御指令を更新する。
【0067】
つまり、本一実施形態の射出制御器20は、射出速度指令タイムシーケンス21、変換器22、パルス発生器23、アナログ/デジタル(A/D)変換器25、射出圧力指令タイムシーケンス26、減算器27、圧力制御器28、比較器30を含んで構成される。また、射出制御器20には、圧力検出センサ10aが接続される。
【0068】
ここで、変換器22は特許請求の範囲に記載の「第1のスクリュ移動量指令算出手段」に対応する。また、圧力制御器28は特許請求の範囲に記載の「第2のスクリュ移動量指令算出手段」に対応し、比較器30は特許請求の範囲に記載の「比較手段」に対応する。更に、射出速度指令タイムシーケンス21は特許請求の範囲に記載の「射出速度指令手段」に対応し、射出圧力指令タイムシーケンス26は特許請求の範囲に記載の「射出圧力指令手段」に対応する。
【0069】
つまり、本一実施形態においては、前述の比較器43に相当する機能をサーボアンプ側でなく射出制御器側に設けたところが大きな特徴である。これに伴って圧力制御器28における演算が前述の図5の例と異なっているが、この演算については後に詳述する。
【0070】
次にこのような射出制御器20の動作について説明する。射出速度指令タイムシーケンス21からの射出速度指令V に対して、変換器22はΔt時間にスクリュ9が移動すべき量をスクリュ移動量指令Δx として次の(式5)より算出する。
Δx =V Δt (式5)
そして、変換器22は算出したスクリュ移動量指令Δx を比較器30に入力する。
【0071】
また、圧力検出センサ10aで検出された圧力を射出圧力センサ信号PとしてA/D変換器25を介して射出制御器20に取り込む。A/D変換器25は取り込んだ射出圧力センサ信号Pを減算器27に入力する。
【0072】
ここで、圧力検出センサ10bがもう一方のモータ駆動軸に取り付けられている場合には、2つの圧力検出センサ10a,10bの出力信号の平均値を射出圧力センサ信号Pとする。
【0073】
また射出圧力指令タイムシーケンス26は、そのシーケンスに従った射出圧力指令P を減算器27に入力する。減算器27は射出圧力指令P と射出圧力センサ信号Pとの制御偏差ΔPを次の(式6)により算出する。
ΔP=P −P (式6)
この後、算出した制御偏差ΔPを圧力制御器28に入力する。
【0074】
圧力制御器28は、制御偏差ΔPに対してPID制御演算を実行してモータΔt時間の間にスクリュ9が進むべき量をスクリュ移動量指令Δx として算出する。そして、圧力制御器28は算出したスクリュ移動量指令Δx を比較器30に入力する。
【0075】
比較器30は2つのスクリュ移動量指令Δx とΔx のうちで小さいほうの値を次の(式7)により決定する。
Δx=min(Δx ,Δx ) (式7)
ここで、この(式7)により前述の比較器43に相当する機能、つまり、前述の要求課題(1)及び前述の要求課題(2)を満足させることができることを以下に説明する。
【0076】
前述の(式5)により射出速度指令V は次の(式8)により表すことができる。
【数2】
Figure 0003787627
【0077】
このとき、圧力制御器28の出力であるスクリュ移動量指令Δx を時間間隔Δtで割れば、射出圧力制御に必要なスクリュ速度指令V が次の(式9)により得られる。
【数3】
Figure 0003787627
【0078】
また、(式7)の両辺を時間間隔Δtで割れば、(式8)、(式9)により次の(式10)が得られる。
【数4】
Figure 0003787627
【0079】
ここで、比較器30が出力するスクリュ速度指令をVとすれば、次の(式11)が成り立つ。
【数5】
Figure 0003787627
【0080】
つまり、(式10)、(式11)により比較器30の機能は次の(式12)の演算を行うものであるとも考えることができる。
=min(V ,V ) (式12)
射出開始当初は、金型1のキャビティ12内に樹脂が充填されていないので射出圧力が低い。このため、射出開始時の高い射出圧力設定値に対して射出圧力制御偏差ΔPが大きくなる。したがって、圧力制御器28の出力であるスクリュ移動指令Δx 、言い換えるとV が大きくなる。このため一般に、V <V となる。このとき、比較器30は(式12)より、最終的なスクリュ速度指令VとしてV を選択し、V=V となる。このことは(式7)の演算においてスクリュ移動量指令Δx が選択されたことを意味する。したがって、射出開始時は射出速度制御が優先されることになる。
【0081】
また、射出速度制御中に射出圧力が上昇してΔPが小さくなると、圧力制御器28の出力であるスクリュ移動量指令Δx 、言い換えるとΔV が小さくなる。つまり、V >V となると、このとき比較器30は(式12)より、最終的なスクリュ速度指令VとしてV を選択し、V=V となる。このことは(式7)の演算においてスクリュ移動量指令Δx が選択されたことを意味する。
【0082】
したがって、射出速度制御から射出圧力制限に移行できるような制御、つまり、前述の要求課題(1)を満足させる制御を行うことができる。
【0083】
また、射出圧力制御中に射出速度指令V が仮に小さくなった場合には、V <V となる。このとき比較器30は(式12)より、最終的なスクリュ速度指令VとしてV を選択し、V=V となる。
【0084】
したがって、射出圧力制御から射出速度制限に移行できるような制御、つまり、前述の要求課題(2)を満足させる制御を行うことができる。
【0085】
ここで、再び図1の説明に戻る。
比較器30は、(式7)により最終的なスクリュ移動量指令Δxを選択し、その後、このΔxをパルス発生器23に入力する。パルス発生器23はΔxに相当するモータエンコーダのパルス数をΔt時間内に速度指令用のパルス列24として発生させ、各サーボアンプ内のカウンタ41に入力する。
【0086】
次にサーボアンプについて説明する。すなわち、サーボアンプ40aはカウンタ41及び44、減算器45及び48、位置制御器46、微分回路47、速度制御器49、パルス幅変調制御(PWM)回路50を含んで構成される。また、このサーボアンプ40aは前述のサーボモータ3aに接続されている。更にサーボモータ3aにはモータエンコーダ11aが取り付けられている。
【0087】
ここで、射出制御器20に比較器30を設けているので、図1のサーボアンプ内には比較器43に相当するものが必要ない。
【0088】
射出制御器20からの速度指令用のパルス列24を受けるサーボアンプ40a内のカウンタ41は、このパルス列のパルス数を計数して、スクリュ9の位置指令xを検出する。そして、このxを減算器45に入力する。
【0089】
また、カウンタ44はモータエンコーダ11aからのパルスを受ける。カウンタ44はこのパルス数を計数して、スクリュ9の実際の位置xを検出する。そして、このxを減算器45に入力する。
【0090】
減算器45は入力されたx及びxから位置制御偏差(x−x)を算出した後、この結果を位置制御器46に入力する。位置制御器46は次式より速度指令vを算出する。
=K(x−x) (式13)
ここで、Kは位置制御器46の比例ゲインである。
【0091】
なお、モータエンコーダ11aはパルスを、カウンタ44の他に微分回路47にも入力する。微分回路47はこのパルスにより実速度vを検出する。そして、このvを減算器48に入力する。
【0092】
減算器48は入力されたv及びvから速度制御偏差(v−v)を算出して速度制御器49に入力する。速度制御器49は次式によりモータ電流指令iを算出し、PWM回路50に入力する。
【数6】
Figure 0003787627
ここで、KPvは速度制御器49の比例ゲインであり、TIvは速度制御器49の積分時間である。
【0093】
PWM回路50は与えられたモータ電流指令iに基づいて所定の3相電圧をサーボモータ3aに印加する。これにより、サーボモータ3aはモータ電流iで駆動する。
【0094】
以上説明したように、本一実施の形態によれば、射出制御器20内のパルス発生器23から2台のサーボモータ3a,3bのそれぞれのサーボアンプ40a,40b内のカウンタ41に同じパルス列が与えられ、更に、常に位置制御ループによる位置制御が行われるので、2台のサーボモータ3a,3bは同期のとれた回転角、すなわち、2台のサーボモータで駆動される2軸のボールねじ5a,5bの同期のとれた同じナット移動量を、射出速度制御中はもちろん、射出圧力制御中にも常に実現することが可能である。
【0095】
これにより、機械ベルトを用いることなしに、射出圧力制御時に発生する2軸駆動の同期ずれによる構造強度上の問題を回避できる。
【0096】
以上一実施の形態に基づいて本発明を説明したが、本発明は前述した一実施の形態に限定されるものではなく、本発明の要旨の範囲内で種々の変形や応用が可能なことは勿論である。例えば、前述の一実施の形態ではサーボモータを2台用いているがこれに限るものではない。また、本発明は電動射出成形機の射出・保圧機構にのみ限定して用いられるものではなく、可塑化機構、型開閉機構にも適用することが可能である。
【0097】
【発明の効果】
以上詳述したように、本発明によれば、機械ベルトを用いずに、多軸サーボモータによるトルク制御での位置同期制御が可能である射出成形機の制御装置を提供することができる。
【図面の簡単な説明】
【図1】 本発明の一実施形態に係る電動射出成形機の制御装置の内部構成を示すブロック図である。
【図2】 電動射出成形機における2軸駆動での射出・保圧機構の模式図である。
【図3】 電動射出成形機の制御装置の概略図である。
【図4】 電動射出成形機の制御装置の動作を説明するためのタイミングチャートである。
【図5】 従来例による電動射出成形機の制御装置の内部構成を示すブロック図である。
【符号の説明】
1…金型、2…射出シリンダ、3a,3b…サーボモータ、4a,4b…減速機、5a,5b…ボールネジ、6a,6b…軸受、7a,7b…ナット、8…可動部、9…スクリュ、10a,10b…圧力検出センサ、11a,11b…モータエンコーダ、12…キャビティ、20…射出制御器、21…射出速度指令タイムシーケンス、22…変換器、23…パルス発生器、25,42…アナログ/デジタル(A/D)変換器、26…射出圧力指令タイムシーケンス、27,45,48…減算器、28…圧力制御器、29…デジタル/アナログ(D/A)変換器、30,43…比較器、40a,40b…サーボアンプ、41,44…カウンタ、46…位置制御器、47…微分回路、49…速度制御器、50…パルス幅変調制御(PWM)回路

Claims (1)

  1. 複数のモータからなる多軸駆動の電動射出成形機の制御装置であって、
    射出速度を指令するための射出速度指令手段と、上記射出速度指令手段で指令された射出速度から第1のスクリュ移動量指令を算出する第1のスクリュ移動量指令算出手段と、射出圧力を指令するための射出圧力指令手段と、上記射出圧力指令手段で指令された射出圧力と実際の圧力との差から第2のスクリュ移動量指令を算出する第2のスクリュ移動量指令算出手段と、上記第1のスクリュ移動量指令と上記第2のスクリュ移動量指令とを比較して、何れか小さいほうを最終的なスクリュ移動量指令として選択する比較手段と、を含む射出制御部と、
    上記複数のモータに対応して設けられ、上記比較手段によって選択されたスクリュ移動量指令に基づいてそれぞれのモータの位置同期制御を行うための位置制御ループを有する複数のモータ制御部と、
    を具備することを特徴とする電動射出成形機の制御装置。
JP2002370384A 2002-12-20 2002-12-20 電動射出成形機の制御装置 Expired - Lifetime JP3787627B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002370384A JP3787627B2 (ja) 2002-12-20 2002-12-20 電動射出成形機の制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002370384A JP3787627B2 (ja) 2002-12-20 2002-12-20 電動射出成形機の制御装置

Publications (2)

Publication Number Publication Date
JP2004195926A JP2004195926A (ja) 2004-07-15
JP3787627B2 true JP3787627B2 (ja) 2006-06-21

Family

ID=32766321

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002370384A Expired - Lifetime JP3787627B2 (ja) 2002-12-20 2002-12-20 電動射出成形機の制御装置

Country Status (1)

Country Link
JP (1) JP3787627B2 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4674923B1 (ja) * 2010-11-01 2011-04-20 則之 赤坂 電動射出成形機の圧力制御装置および圧力制御方法
JP4674924B1 (ja) * 2010-11-07 2011-04-20 則之 赤坂 電動射出成形機の可塑化制御装置および可塑化制御方法
US8229592B2 (en) 2009-05-18 2012-07-24 Noriyuki Akasaka Device and method for pressure control of electric injection molding machine

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5246784B2 (ja) * 2009-02-26 2013-07-24 株式会社名機製作所 射出成形機の同期駆動制御方法および同期駆動制御装置
JP2015136803A (ja) 2014-01-20 2015-07-30 ファナック株式会社 同期誤差を低減する機能を有する射出成形機の制御装置

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8229592B2 (en) 2009-05-18 2012-07-24 Noriyuki Akasaka Device and method for pressure control of electric injection molding machine
JP4674923B1 (ja) * 2010-11-01 2011-04-20 則之 赤坂 電動射出成形機の圧力制御装置および圧力制御方法
WO2012059964A1 (ja) * 2010-11-01 2012-05-10 Akasaka Noriyuki 電動射出成形機の圧力制御装置および圧力制御方法
US8871128B2 (en) 2010-11-01 2014-10-28 Noriyuki Akasaka Device and method for pressure control of electric injection molding machine
JP4674924B1 (ja) * 2010-11-07 2011-04-20 則之 赤坂 電動射出成形機の可塑化制御装置および可塑化制御方法
US8119044B1 (en) 2010-11-07 2012-02-21 Noriyuki Akasaka Device and method for plasticization control of electric injection molding machine
WO2012060018A1 (ja) * 2010-11-07 2012-05-10 Akasaka Noriyuki 電動射出成形機の可塑化制御装置および可塑化制御方法

Also Published As

Publication number Publication date
JP2004195926A (ja) 2004-07-15

Similar Documents

Publication Publication Date Title
US5911924A (en) Process for injection molding machine with electric drives
EP3000577B1 (en) Injection molding machine for bimaterial molding and methods of controlling the same
JP4272205B2 (ja) 射出成形機の制御方法
WO2010134359A9 (ja) 電動射出成形機の圧力制御装置および圧力制御方法
JP4674923B1 (ja) 電動射出成形機の圧力制御装置および圧力制御方法
US8097193B2 (en) Method of adjusting mold thickness of toggle-type mold clamping device
JP3787627B2 (ja) 電動射出成形機の制御装置
KR100467984B1 (ko) 사출성형기 및 사출성형기에 있어서의 스크루위치 제어방법
JP4982436B2 (ja) 射出成形機及び射出成形方法
EP1640136A1 (en) Molding device and control method thereof
JPH09109220A (ja) 射出成形機の制御方法及び装置
JP2007021888A (ja) 射出成形機及びその射出軸制御方法
CN108688108B (zh) 注射成型机及工业用机械
CN102306011B (zh) 一种直线运动单元双轴同步控制方法
US20050248307A1 (en) Method for controlling induction motor
JPH10151650A (ja) 型締装置の制御方法
CN112775198A (zh) 一种蒙皮拉伸机托架的液压伺服控制系统
JP5654327B2 (ja) ダイカストマシン及びダイカストマシンの増圧制御方法
JP2003200469A (ja) 電動射出成形機における射出駆動部の制御装置
JP2003117979A (ja) 電動射出成型機の異常処理方法
JPH0628253Y2 (ja) 電動式射出成形機の保圧制御装置
CN117620131B (zh) 一种压铸机的双轴同步控制方法
JPS63112136A (ja) 射出成形機の型開閉制御方法及び装置
JP2628773B2 (ja) 電動射出成形機の射出圧力制限装置
EP0884157B1 (en) Mold clamping control device for motor-driven injection molding machine

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050308

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050502

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20050615

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050615

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060228

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S801 Written request for registration of abandonment of right

Free format text: JAPANESE INTERMEDIATE CODE: R311801

ABAN Cancellation of abandonment
R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350