WO2012060018A1 - 電動射出成形機の可塑化制御装置および可塑化制御方法 - Google Patents

電動射出成形機の可塑化制御装置および可塑化制御方法 Download PDF

Info

Publication number
WO2012060018A1
WO2012060018A1 PCT/JP2010/069760 JP2010069760W WO2012060018A1 WO 2012060018 A1 WO2012060018 A1 WO 2012060018A1 JP 2010069760 W JP2010069760 W JP 2010069760W WO 2012060018 A1 WO2012060018 A1 WO 2012060018A1
Authority
WO
WIPO (PCT)
Prior art keywords
screw
back pressure
motor
equation
screw back
Prior art date
Application number
PCT/JP2010/069760
Other languages
English (en)
French (fr)
Inventor
赤坂則之
Original Assignee
Akasaka Noriyuki
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Akasaka Noriyuki filed Critical Akasaka Noriyuki
Priority to JP2010547383A priority Critical patent/JP4674924B1/ja
Priority to US13/131,265 priority patent/US8119044B1/en
Priority to PCT/JP2010/069760 priority patent/WO2012060018A1/ja
Publication of WO2012060018A1 publication Critical patent/WO2012060018A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/76Measuring, controlling or regulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C2045/1784Component parts, details or accessories not otherwise provided for; Auxiliary operations not otherwise provided for
    • B29C2045/1792Machine parts driven by an electric motor, e.g. electric servomotor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2945/00Indexing scheme relating to injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould
    • B29C2945/76Measuring, controlling or regulating
    • B29C2945/76003Measured parameter
    • B29C2945/76083Position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2945/00Indexing scheme relating to injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould
    • B29C2945/76Measuring, controlling or regulating
    • B29C2945/76003Measured parameter
    • B29C2945/7611Velocity
    • B29C2945/76113Velocity linear movement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2945/00Indexing scheme relating to injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould
    • B29C2945/76Measuring, controlling or regulating
    • B29C2945/76177Location of measurement
    • B29C2945/7618Injection unit
    • B29C2945/76187Injection unit screw
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2945/00Indexing scheme relating to injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould
    • B29C2945/76Measuring, controlling or regulating
    • B29C2945/76344Phase or stage of measurement
    • B29C2945/76367Metering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2945/00Indexing scheme relating to injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould
    • B29C2945/76Measuring, controlling or regulating
    • B29C2945/76494Controlled parameter
    • B29C2945/76525Electric current or voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2945/00Indexing scheme relating to injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould
    • B29C2945/76Measuring, controlling or regulating
    • B29C2945/76494Controlled parameter
    • B29C2945/76595Velocity
    • B29C2945/76605Velocity rotational movement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2945/00Indexing scheme relating to injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould
    • B29C2945/76Measuring, controlling or regulating
    • B29C2945/76655Location of control
    • B29C2945/76658Injection unit
    • B29C2945/76692Injection unit drive means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2945/00Indexing scheme relating to injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould
    • B29C2945/76Measuring, controlling or regulating
    • B29C2945/76822Phase or stage of control
    • B29C2945/76846Metering

Definitions

  • the present invention relates to a plasticization control device and a plasticization control method for an electric injection molding machine.
  • the AC servo motor which features high-precision control and excellent responsiveness, has a large capacity by improving the performance of permanent magnets used in the motor and reducing costs.
  • An AC servo drive using an AC servo motor is also applied to an injection molding machine (clamping force 350 t or more).
  • the injection molding machine has a plasticizing mechanism that melts resin pellets by screw rotation, an injection and pressure holding mechanism that injects molten resin into a mold at a high speed by the forward movement of the screw, and a mold that opens and closes the mold. There is an opening and closing mechanism.
  • the AC servo drive can be applied to any of these mechanisms.
  • FIG. 1 a schematic diagram of the plasticizing mechanism is shown in FIG.
  • the injection molding machine is provided with a moving device base (not shown) that can be moved by a linear guide on an injection molding machine base (not shown) fixed on the ground. All parts other than the mold 1 shown in FIG. By moving this moving device base, the tip of the injection cylinder 2 can be pressed against the mold 1, and conversely, the tip of the injection cylinder 2 can be separated from the mold 1.
  • FIG. 2 shows a state during a plasticizing process in which resin pellets are melted by screw rotation.
  • An injection cylinder 2, an injection servo motor 3, a speed reducer 4, a ball screw 5, a bearing 6 and a hopper 16 are fixed on the moving device base. Further, the nut 7, the movable part 8, the screw 9, the speed reducer 10, the plasticizing servo motor 11 and the pressure sensor 12 of the ball screw 5 are integrated. In this integrated structure, the movable portion 8 is mounted on the linear guide 13 so that the ball screw 5 can be moved back and forth by the movement of the nut 7 of the ball screw 5.
  • the rotational motion of the injection servo motor 3 is transmitted to the ball screw 5 as a booster mechanism via the speed reducer 4, and the rotational motion of the ball screw 5 is converted into a linear motion of the nut 7 on the ball screw shaft.
  • the screw 9 is moved back and forth and the molten resin is pressurized by the screw 9 through the movable portion 8.
  • the pressure applied to the molten resin by the screw 9 in the plasticizing process is referred to as a screw back pressure.
  • the position of the screw 9 is detected by a motor encoder 14 provided on the injection servo motor shaft.
  • the screw back pressure is detected by the pressure sensor (for example, load cell) 12 that is sandwiched and installed between the nut 7 of the ball screw 5 and the movable portion 8.
  • the rotation of the screw 9 for melting and kneading the resin pellets in the plasticizing process is performed by the plasticizing servo motor 11 via the speed reducer 10, and the plasticizing servo motor 11 includes a motor.
  • An encoder 15 is attached.
  • the screw 9 advances at a high speed by the high-speed rotation of the injection servo motor 3, the molten resin stored at the tip of the screw 9 is filled into the cavity 17 in the mold 1 at a high speed, and pressure is applied for a predetermined time.
  • the injection process is finished, and a molded product having a predetermined shape is obtained.
  • Patent Document 1 a plasticizing motor gives a predetermined screw rotation speed, and a screw back pressure set value is realized by screw retraction speed control by an injection motor.
  • the injection motor realizes a constant or predetermined screw retraction speed pattern, and the screw back pressure setting value is realized by controlling the rotational speed of the plasticizing motor.
  • the screw back pressure setting value is realized by current (torque) control or current (torque) limitation of the injection motor.
  • Patent Literature 7 and Patent Literature 8 the amount of screw movement required to realize the screw back pressure setting value is performed by position control using an injection motor.
  • Patent Document 9 and Patent Document 10 the plasticizing motor achieves a predetermined screw rotation speed, and the injection motor realizes the screw retraction speed corrected by the deviation amount of the screw back pressure to perform screw back pressure control. Do.
  • Patent Document 11 from the first control mode in which the plasticizing motor is screw rotation speed control and the injection motor is screw back pressure control, the plasticizing motor is screw back pressure control and the injection motor is screw retraction control. Control to switch to the second mode is performed.
  • screw back pressure control is an indispensable technical problem in the plasticizing process, and a pressure sensor is required to realize accurate screw back pressure control.
  • Patent Document 12 a plasticizing pressure sensor (0 to 150 atmospheres (15.2 MPa)) having a small pressure detection value range and an injection / holding pressure sensor (150 to 3000 atmospheres (15) having a large pressure detection value range are disclosed. .2 to 304 MPa)), which switches between two types of pressure sensors. By using two types of pressure sensors with different detection ranges, the control accuracy of the screw back pressure in the plasticizing process is improved.
  • FIG. 3 is a block diagram for explaining an example of the internal configuration of a conventional plasticization control apparatus.
  • the plasticizing control device includes a back pressure controller 20, an injection motor controller (servo amplifier) 30, a screw rotation speed controller 40, a plasticizing motor controller 50 (servo amplifier), and a pressure sensor 12. .
  • the back pressure controller 20 will be described.
  • the back pressure controller 20 performs a control calculation at regular time intervals and updates a control command.
  • the back pressure controller 20 includes a screw back pressure commander 21, a subtractor 22, an analog / digital (A / D) converter 23, a pressure controller 24, and a digital / analog (D / A) converter 25.
  • the pressure sensor 12 is connected to the A / D converter 23.
  • the screw back pressure command device 21 outputs a screw back pressure command P * b according to a time sequence to the subtractor 22.
  • the pressure controller 24 outputs a current command i * m to the injection servomotor 3 to the D / A converter 25 by proportional integral derivative (PID) control calculation.
  • PID proportional integral derivative
  • the D / A converter 25 outputs a motor current command i * m to the injection motor controller 30.
  • the injection motor controller 30 includes an A / D converter 31 and a pulse width modulation control (PWM) circuit 32.
  • the injection servo motor 3 is connected to the injection motor controller 30, and the motor encoder 14 is attached to the injection servo motor 3.
  • the A / D converter 31 outputs the motor current command i * m from the D / A converter 25 to the PWM circuit 32.
  • the PWM circuit 32 applies a predetermined three-phase voltage to the injection servomotor 3 based on a given motor current command i * m .
  • the injection servo motor 3 is driven by the motor current i * m , and applies a pressing force by the screw to the molten resin stored at the screw tip so as to realize the screw back pressure P * b .
  • the screw rotation speed controller 40 includes a screw rotation speed command device 41.
  • the screw rotation speed command device 41 outputs a screw rotation speed command N * s according to a time sequence to the plasticizing motor controller 50.
  • the plasticizing motor controller 50 includes a subtractor 51, a differentiation circuit 52, a speed controller 53, and a PWM circuit 54.
  • the plasticizing servo motor 11 is connected to the plasticizing motor controller 50, and the motor encoder 15 is attached to the plasticizing servo motor 11.
  • the screw rotation speed command N * s from the screw rotation speed controller 40 is input to the subtractor 51.
  • the pulse signal of the motor encoder 15 is input to the differentiating circuit 52, and the differentiating circuit 52 outputs the actual screw speed N s to the subtractor 51.
  • the speed controller 53 outputs a current command i * for the plasticizing servomotor 11 to the PWM circuit 54 by PID control calculation.
  • the PWM circuit 54 applies a predetermined three-phase voltage to the plasticizing servomotor 11 based on a given motor current command i * .
  • the plasticizing servomotor 11 is driven by the motor current i * to achieve a predetermined screw rotation speed N * s .
  • Screw back pressure control is an effective means for ensuring the uniformity of the molten resin in the plasticizing process and improving the measurement accuracy.
  • a screw back pressure detecting means that satisfies the following two requirements is required.
  • A High accuracy
  • B The technique of a high gain observer (Non-Patent Document 1) is adopted as a pressure detection means that satisfies these two requirements with a very small time delay.
  • a simple controlled object model will be used to explain that a high gain observer that inputs variables that can be measured and estimates all state variables satisfies the two requirements (A) and (B). Equation (1) shows the state equation and output equation of the controlled object model.
  • x 1 and x 2 are state variables
  • u is an input variable
  • y is an output variable
  • ⁇ (x, u) is a nonlinear function composed of variables x and u.
  • the state equation is composed of first-order differential equations that express the behavior of the state variables x 1 and x 2 , and the output equation defines an observable variable, that is, an output variable y.
  • x 1 is the position variable
  • x 2 is the speed variables
  • u is the motor current.
  • x ⁇ 1, x ⁇ 2 represents the predicted value of the state variable x 1, x 2.
  • H 1 and H 2 are gain constants of the high gain observer.
  • the function ⁇ 0 represents the nominal (reference) function of the function ⁇ employed in the operation of the high gain observer.
  • Estimate error x ⁇ 1, x ⁇ 2 when using the high gain observer of formula (2) has the formula (1) is given by the following equation from the equation (2) (3).
  • is considered to be the difference between the true function ⁇ that is not actually obtained and the nominal function ⁇ 0 adopted in the high gain observer, that is, the model error of the controlled object.
  • is considered to be the difference between the true function ⁇ that is not actually obtained and the nominal function ⁇ 0 adopted in the high gain observer, that is, the model error of the controlled object.
  • a positive parameter ⁇ sufficiently smaller than 1 is introduced, and H 1 and H 2 are given by the following equation (5).
  • Equation (3) is expressed by the following equation (6).
  • equation (6) is expressed by the following equation (8).
  • the estimated value errors ⁇ 1 and ⁇ 2 can be sufficiently reduced from the model error ⁇ of the controlled object according to the equation (8). That is, if a high gain observer is used, the requirement (A) “high accuracy” required for pressure detection is satisfied by adopting a controlled object model that includes screw back pressure in the state variable. I understand.
  • Equation (11) the estimated value errors ⁇ 1 (t) and ⁇ 2 (t) rapidly become 0. That is, it can be seen that the use of a high gain observer satisfies the requirement (B) “very small time delay” required for pressure detection.
  • H is a gain constant of the high gain observer. Since the expression (12) includes the time derivative of the output y on the right side, it cannot be used directly as an arithmetic expression. However, the high gain observer given by the expression (12) requires the two necessary conditions (A) and (B ) (Paragraph (0028)). From the third equation of equation (1), the following equation (13) is obtained.
  • Expression (15) is expressed by the following Expression (18).
  • the estimated value errors x 1 to 2 can be sufficiently affected by the model error ⁇ of the control target from the equation (18).
  • the requirement (A) “high accuracy” required for pressure detection is satisfied by adopting a controlled object model that includes screw back pressure in the state variable. .
  • x 1 to 20 are initial values of the estimated value errors x 1 to 2 .
  • Equ (20) it can be seen that if the parameter ⁇ is sufficiently smaller than 1, the estimated value errors x 1 to 2 (t) rapidly become zero. That is, it can be seen that the use of a high gain observer satisfies the requirement (B) “very small time delay” required for pressure detection.
  • the high gain observer of equation (12) does not estimate the state variables that can be measured, but estimates the minimum necessary state variables, so the order is lower than the observer of equation (2), so a low-dimensional high gain observer Called.
  • equation (12) is given by equation (22) below.
  • FIG. 4 shows a schematic diagram of a plasticizing mechanism that does not use a pressure sensor. 4 is composed of parts having the same reference numerals as those in FIG. 2 except for the pressure sensor. Therefore, the description of FIG. 4 is the same as the description of FIG. 2 described in “Background Art” (paragraphs (0004) to (0008)). Instead of
  • FIG. 1 is an example in which screw back pressure detection by a high gain observer according to an embodiment of the present invention is applied to a plasticization control device of an electric injection molding machine, and is a block for explaining an internal configuration of the plasticization control device FIG.
  • the plasticizing control device includes a back pressure controller 60 with a built-in high gain observer 27, an injection motor controller (servo amplifier) 70, a screw rotation speed controller 40, and a plasticizing motor controller (servo amplifier) 50. Consists of
  • the back pressure controller 60 will be described.
  • the back pressure controller 60 performs a control calculation at regular time intervals and outputs a control command to the injection motor controller 70.
  • the back pressure controller 60 includes a screw back pressure commander 21, a subtractor 22, a pressure controller 24, a digital / analog (D / A) converter 25, an analog / digital (A / D) converter 26, and a high gain. It consists of an observer 27.
  • the screw back pressure command device 21 outputs a screw back pressure command P * b according to a time sequence to the subtractor 22.
  • the injection motor is detected by the injection motor controller within 70 actual current i m is input through the A / D converter 26. Further, the backward speed signal v of the screw 9 is input from the injection motor controller 70 to the high gain observer 27 using a pulse from the motor encoder 14 of the injection servo motor 3. Further, the actual screw rotational speed N s is input to the high gain observer 27 from the plasticizing motor controller 50.
  • the high gain observer 27 uses the input signals i m , v and N s to execute a built-in discrete arithmetic expression derived using a mathematical model of the plasticizing mechanism, and to estimate the screw back pressure estimated value P ⁇ . b is output.
  • the estimated screw back pressure value P ⁇ b is input to the subtractor 22.
  • the subtracter 22, a control deviation [Delta] P b and the screw back pressure command P * b and the screw back pressure estimated value P ⁇ b is calculated from the following equation (24).
  • the subtracter 22 outputs the calculated control deviation [Delta] P b to the pressure controller 24.
  • the motor current command i * m is output to the injection motor controller 70 via the D / A converter 25.
  • the injection motor controller 70 includes an A / D converter 31, a pulse width modulation control (PWM) circuit 32, an injection motor actual current detector 33, and a differentiation circuit 34.
  • the injection servo motor 3 is connected to the injection motor controller 70, and the motor encoder 14 is attached to the injection servo motor 3.
  • the A / D converter 31 receives the motor current command i * m of the injection servo motor 3 from the back pressure controller 60 and outputs i * m to the PWM circuit 32.
  • the PWM circuit 32 applies a predetermined three-phase voltage to the injection servo motor 3 based on the motor current command i * m . Thereby, the injection servo motor 3 is driven by the motor current command i * m .
  • the injection motor actual current detector 33 detects the motor drive current i m, and outputs to the A / D converter 26 of the back pressure regulator 60.
  • the differentiating circuit 34 receives a pulse from the motor encoder 14 of the injection servo motor 3 to detect the reverse speed v of the screw 9, and sends it to the high gain observer 27 in the back pressure controller 60. Output.
  • J M is the motor body inertia moment
  • J G1 is the motor side reduction gear inertia moment
  • ⁇ m is the motor angular velocity
  • TM is the motor torque
  • r 1 is the motor side reduction gear radius
  • F is the reduction gear transmission force
  • t Is time The equation of motion of the ball screw 5 is given by the following equation (26).
  • J S ball screw shaft moment of inertia J G2 load side reduction gear inertia
  • omega s is a ball screw shaft angular speed
  • r 2 is the load-side reduction gear radius
  • T a is the ball screw drive torque.
  • W movable unit weight g is the gravitational acceleration
  • v is a screw (movable portion) retraction rate
  • F a the ball screw shaft force
  • F L is The load force that the screw receives from the resin
  • is the moving part-linear guide friction coefficient.
  • the ball screw drive torque T a and the ball screw shaft force F a is given by the following equation (29).
  • V b is the cylinder reservoir volume
  • V b0 is the cylinder reservoir initial volume value (at the start of plasticization)
  • Q f is the amount of molten resin supplied from the screw to the cylinder reservoir
  • is the resin volume modulus. is there.
  • the motor characteristics are given by the following equation (34).
  • K T is the motor torque coefficient and i m is the injection servomotor current.
  • Equation (36) represents the equation of motion of the screw linear motion converted to the motor shaft
  • Equation (37) represents the motor shaft equivalent equivalent moment of inertia
  • equation (39) From equation (31), equation (34), and equation (36), the equation of motion of screw linear motion is given by the following equation (39).
  • Expression (32) is expressed by the following Expression (41).
  • v max (> 0) is the maximum screw retraction speed during plasticization
  • ⁇ max (> 0) is the maximum rotation speed of the servo motor for injection corresponding to v max
  • x max (> 0) is the maximum screw retraction amount during plasticization.
  • i max is a motor rated current.
  • P max represents the screw back pressure maximum value.
  • equation (43) the following relational equation (44) is used.
  • Expression (43) is expressed by the following expression (45).
  • a function of the screw plasticizing resin amount [Q f / Q max] is generally screw back pressure [P b / P max] and the screw rotation speed [N s / N max].
  • N max is the maximum screw speed.
  • equations (49), (50) from the equations (42), (45), (47), (48). Is given as equation (51).
  • Input variables u 1 and u 2 defined by the following equation (54) are introduced. It is assumed that u 1 and u 2 can be measured. Said high in the calculation of the gain observer 27, the injection servomotor actual current i m may also be considered to be equal to the motor current command i * m. time delay of i * m and i m is very small.
  • ⁇ (x 2 ), ⁇ (x, u 2 ) represents a nonlinear function.
  • variable y x 2 measurement of the formula (59)
  • the state variable x 1 using Equation (56) is sought from the following equation (62), is replaced with the variable y s determined from the output variables y .
  • the physical meaning of variable y s dimensionless screw position, an initial value of y s is set to 0 (paragraphs (0096)).
  • the high gain observer 27 inputs the screw retraction speed x 2 that can be measured, the motor actual current u 1, and the screw rotation speed u 2 , and outputs an estimated value of the state variable x 3 .
  • the estimated value x ⁇ 3 is given by the following equation (68) (Non-Patent Document 2).
  • K is a gain constant of the high gain observer 27.
  • ⁇ 0 (y), ⁇ 0 (x ⁇ 3 , u 2 , y, y s ) is the value of ⁇ (y), ⁇ (x ⁇ 3 , u 2 , y, y s ) used in the high gain observer 27. It is a nominal (reference) function.
  • Expression (68) is written as the following expression (69).
  • expression (72) is expressed by the following expression (77).
  • eta-0 is an estimate error eta initial value of. Since the b ⁇ 0 in plasticizing step of an injection molding machine, taking sufficiently small parameter ⁇ than 1 from the equation (85), the estimate error eta ⁇ (t) is found to be a rapid 0. That is, when the high gain observer 27 is used, the screw back pressure estimated value x ⁇ 3 obtained from the equations (78), (79), and (80) is equal to the necessary condition (B) “time delay is very small. Is satisfied.
  • a discrete arithmetic expression of time integration of Expression (78) is expressed by the following Expression (87) when the trapezoidal approximation method is adopted.
  • the estimated value ⁇ ⁇ (t k ) at the discrete time t k is expressed by ⁇ ⁇ (k).
  • u 1 (k) for even u 2 (k), shows the values at discrete time t k.
  • chi 0 (k) is obtained from equation (60)
  • [psi 0 (k) is obtained from equation (58) indicates the value of the discrete time t k.
  • Expression (91) can be expressed by the following expression (93).
  • the high gain observer 27 can obtain the screw back pressure estimated value x ⁇ 3 (k) by calculating the arithmetic expressions (88), (93), and (94) at regular time intervals ⁇ t.
  • the high gain observer 27 realized by the equations (88), (93), and (94) does not estimate the state variable x 2 (k) that can be measured, but the screw back pressure x that is a necessary state variable. It is a low-dimensional high-gain observer that estimates 3 (k).
  • FIG. 5 shows simulation conditions when screw back pressure control is performed.
  • FIG. 5B shows a time sequence of the screw back pressure command P * b given to the screw back pressure command device 21.
  • FIG. 6 shows a time response of the screw back pressure when the screw back pressure control is performed.
  • 6 (a) shows the time response of the screw back pressure P b when performing the screw back pressure control plasticized controller shown in FIG. 3 using the pressure sensor 12. It can be seen that the time response of the screw back pressure command P * b and the screw back pressure shown in FIG.
  • FIG. 6B shows the estimated screw back pressure value P ⁇ b output from the high gain observer 27 at this time. Since the time response of the P ⁇ b of P b and FIG. 6 (b) of FIG. 6 (a) match well, high gain observer 27, without delay the screw back pressure in time, precision It can be seen that
  • Figure 6 (c) shows the time response of the screw back pressure P b when performing the screw back pressure control plasticized controller shown in FIG. 1 using the high gain observer 27. Since the time response P b time response and FIG. 6 of the screw back pressure P b (c) in FIGS. 6 (a) using the pressure sensor 12 coincides well, the without using the pressure sensor 12 It can be seen that by using the high gain observation device 27, good screw back pressure control can be realized.
  • the estimated screw back pressure output from the high gain observer is used as a screw back pressure detection signal without using a pressure sensor.
  • a highly reliable pressure sensor in a high pressure environment becomes expensive.
  • the pressure sensor attached to the tip of the injection cylinder requires special processing, and the work cost cannot be ignored.
  • the load cell attached to the injection shaft system extending from the injection motor to the injection screw complicates the mechanical structure for incorporation, and further reduces the mechanical rigidity of the injection shaft system.
  • It is expensive to use two types of pressure sensors with different measurement ranges in order to improve the control accuracy of the screw back pressure (Patent Document 12).
  • the estimated screw back pressure value output from the high gain observer is highly accurate and has a very small time delay, so that it can be used as a screw back pressure monitoring signal and a control feedback signal. Therefore, it is considered that the plasticization control device and the plasticization control method of the electric injection molding machine using the high gain observer according to the present invention have a value that is sufficiently utilized.

Abstract

【課題】電動射出成形機の可塑化工程でのスクリュ背圧制御で、高価で、煩雑な取付け作業、複雑な機械構造、ノイズ対策やゼロ点調整等の人手作業を必要とする圧力検出センサを使わずに、高精度で時間的に遅れの非常に小さいスクリュ背圧検知方法が望まれていた。 【解決手段】電動射出成形機の可塑化機構の数式モデルを表現した状態方程式と出力方程式を利用して導出した離散演算式を内蔵し、入力信号としてスクリュ後退速度信号と射出用モータ電流指令或はモータ実電流及びスクリュ回転数信号を受取り、状態変数の1つであるスクリュ背圧の推定値を出力する高ゲイン観測器を採用する。高ゲイン観測器は、圧力検出センサを必要とせず、高精度で、時間的遅れの非常に小さいスクリュ背圧推定値を出力する。したがって、高ゲイン観測器の出力するスクリュ背圧推定値は、可塑化工程でのスクリュ背圧制御のフィードバック信号として採用できる。

Description

電動射出成形機の可塑化制御装置および可塑化制御方法
本発明は、電動射出成形機の可塑化制御装置および可塑化制御方法に関するものである。
高精度な制御と優れた応答性を特長とするACサーボモータは、モータに用いる永久磁石の性能向上とコストダウンの実現により大容量化が図られ、その結果、従来は油圧駆動であった中型射出成形機(型締力350t以上)でもACサーボモータを用いたACサーボ駆動が適用されるようなった。
射出成形機には、スクリュ回転により樹脂ペレットを溶融する可塑化機構、スクリュの前進移動により溶融樹脂を金型に高速射出し、高圧で保持する射出・保圧機構、及び金型を開閉する型開閉機構がある。ACサーボ駆動はこれらのどの機構にも適用できるが、ここでは、可塑化機構でのACサーボ技術を説明するために、可塑化機構の模式図を図2に示す。
射出成形機には、地上に固定された図示しない射出成形機基盤上に、リニアガイドにより移動可能な図示しない移動装置台が設けられる。この移動装置台に図2に示す金型1以外の全部品が搭載される。この移動装置台を移動させることにより、射出シリンダ2の先端部を前記金型1に押し付けることができ、また、逆に前記金型1から前記射出シリンダ2の先端部を離すこともできる。図2は、スクリュ回転により樹脂ペレットを溶融する可塑化工程中の状態を示す。
前記移動装置台の上には、射出シリンダ2、射出用サーボモータ3、減速機4、ボールネジ5、軸受6及びホッパー16が固設されている。また、前記ボールネジ5のナット7、可動部8、スクリュ9、減速機10、可塑化用サーボモータ11及び圧力センサ12が一体構造となっている。この一体構造は、前記ボールネジ5の前記ナット7の移動により前後移動可能なように、前記可動部8がリニアガイド13上に取り付けられている。
前記射出用サーボモータ3の回転運動は前記減速機4を介して倍力機構としての前記ボールネジ5に伝えられ、前記ボールネジ5の回転運動はボールネジ軸上の前記ナット7の直線運動に変換され、前記可動部8を介して前記スクリュ9の前後移動と前記スクリュ9による溶融樹脂への加圧が実現される。以降、可塑化工程での前記スクリュ9による溶融樹脂への加圧はスクリュ背圧と呼ぶ。前記スクリュ9の位置は射出用サーボモータ軸に設けられたモータエンコーダ14で検出される。スクリュ背圧は、前記ボールネジ5の前記ナット7と前記可動部8との間に挟まれて設置される前記圧力センサ(例えば、ロードセル)12により検出される。一方、可塑化工程で樹脂ペレットを溶融・混練するための前記スクリュ9の回転は、前記減速機10を介して前記可塑化用サーボモータ11で行われ、前記可塑化用サーボモータ11にはモータエンコーダ15が付いている。
図2を用いて射出成形のプロセスを説明すると、樹脂ペレットがホッパー16から供給され、前記スクリュ9は前記可塑化用サーボモータ11により回転し、溶融された樹脂は前記スクリュ9の先端側に押し出され、前記スクリュ9は発生するスクリュ背圧により後退する。このとき、スクリュ背圧は、前記射出用サーボモータ3の発生トルクで決まるスクリュ押圧力で調整される。成形に必要な量の溶融樹脂がスクリュ先端部に貯留されると、前記可塑化用サーボモータ11の回転は停止し、スクリュ回転停止により可塑化工程は終了する。
次に前記射出用サーボモータ3の高速回転により前記スクリュ9が高速前進し、前記スクリュ9の先端に貯留された溶融樹脂を前記金型1内のキャビティ17に高速充填し、一定時間圧力を掛けて射出工程を終了し、所定形状の成形品を得る。
良い成形品を得るには、可塑化工程で樹脂を均一に溶融することが必要である。しかし、可塑化工程で溶融樹脂がスクリュ先端部に貯留されるに伴い、前記スクリュ9は前記射出シリンダ2内を後退することになるので前記スクリュ9の有効長さが変化することになる。従って最初に溶融した樹脂と、最後に溶融した樹脂の溶融状態が異なるという不具合があった。この不具合を補う方法として、可塑化工程において前記スクリュ9が後退するのに応じてスクリュ背圧を予め設定したパターンで変化させて均一な溶融状態を得ようとする方法が提案されている。
特許文献1、特許文献2では、可塑化用モータは所定のスクリュ回転数を与え、射出用モータによるスクリュ後退速度制御によりスクリュ背圧設定値を実現している。
特許文献3、特許文献4では、射出用モータは一定或は所定のスクリュ後退速度パターンを実現し、可塑化用モータの回転数制御によりスクリュ背圧設定値を実現している。
特許文献5、特許文献6では、射出用モータの電流(トルク)制御或は電流(トルク)制限によりスクリュ背圧設定値を実現している。
特許文献7、特許文献8では、スクリュ背圧設定値を実現するのに必要なスクリュ移動量を射出用モータによる位置制御で行っている。
特許文献9、特許文献10では、可塑化用モータは所定のスクリュ回転数を実現し、射出用モータは、スクリュ背圧の偏差量で補正されたスクリュ後退速度を実現してスクリュ背圧制御を行う。
特許文献11では、可塑化用モータがスクリュ回転数制御、射出用モータがスクリュ背圧制御という第一の制御モードから、可塑化用モータがスクリュ背圧制御、射出用モータがスクリュ後退制御という第二のモードに切り換るという制御が行われる。
以上の特許文献1~特許文献11では、可塑化工程でスクリュ背圧制御は不可欠な技術課題であり、正確なスクリュ背圧制御を実現するためには圧力センサを必要としている。
特許文献12では、圧力検出値の範囲が小さい可塑化用圧力センサ(0~150気圧(15.2MPa))と、圧力検出値の範囲が大きい射出・保圧用圧力センサ(150~3000気圧(15.2~304MPa))の2種類の圧力センサを切換える発明である。検出範囲の異なる圧力センサを2種類使うことにより、可塑化工程でのスクリュ背圧の制御精度を改善している。
図3は、従来の可塑化制御装置の内部構成例を説明するためのブロック図である。可塑化制御装置は、背圧制御器20、射出用モータ制御器(サーボアンプ)30、スクリュ回転数制御器40、可塑化用モータ制御器50(サーボアンプ)及び圧力センサ12とで構成される。
前記背圧制御器20について説明する。前記背圧制御器20は一定時間間隔毎に制御演算を行い、制御指令を更新する。前記背圧制御器20は、スクリュ背圧指令器21、減算器22、アナログ/デジタル(A/D)変換器23、圧力制御器24及びデジタル/アナログ(D/A)変換器25から構成される。A/D変換器23には前記圧力センサ12が接続される。
前記スクリュ背圧指令器21は、時間シーケンスに従ったスクリュ背圧指令P を前記減算器22に出力する。前記圧力センサ12からの信号は前記A/D変換器23を介して実背圧信号Pとして前記減算器22に入力され、前記減算器22は、偏差信号ΔP=P ―Pを前記圧力制御器24に出力する。前記圧力制御器24は、比例積分微分(PID)制御演算により前記射出用サーボモータ3に対する電流指令i を前記D/A変換器25に出力する。前記D/A変換器25はモータ電流指令i を前記射出用モータ制御器30に出力する。
前記射出用モータ制御器30は、A/D変換器31とパルス幅変調制御(PWM)回路32から構成される。前記射出用モータ制御器30には前記射出用サーボモータ3が接続され、前記射出用サーボモータ3には前記モータエンコーダ14が取付けられている。前記A/D変換器31は、前記D/A変換器25からのモータ電流指令i を前記PWM回路32に出力する。前記PWM回路32は、与えられたモータ電流指令i に基づいて所定の3相電圧を前記射出用サーボモータ3に印加する。これにより前記射出用サーボモータ3はモータ電流i で駆動され、スクリュ背圧P を実現するように、スクリュ先端に貯留された溶融樹脂にスクリュによる押圧力を加える。
前記スクリュ回転数制御器40は、スクリュ回転数指令器41からなる。前記スクリュ回転数指令器41は、時間シーケンスに従ったスクリュ回転数指令N を前記可塑化用モータ制御器50に出力する。
前記可塑化用モータ制御器50は、減算器51、微分回路52、速度制御器53及びPWM回路54から構成される。前記可塑化用モータ制御器50には前記可塑化用サーボモータ11が接続され、前記可塑化用サーボモータ11には前記モータエンコーダ15が取付けられている。前記スクリュ回転数制御器40からのスクリュ回転数指令N は、前記減算器51に入力される。前記モータエンコーダ15のパルス信号は前記微分回路52に入力され、前記微分回路52は、スクリュの実回転数Nを前記減算器51に出力する。前記減算器51は、偏差信号ΔN=N ―Nを前記速度制御器53に出力する。前記速度制御器53は、PID制御演算により前記可塑化用サーボモータ11に対する電流指令iを前記PWM回路54に出力する。前記PWM回路54は、与えられたモータ電流指令iに基づいて所定の3相電圧を前記可塑化用サーボモータ11に印加する。これにより前記可塑化用サーボモータ11はモータ電流iで駆動され、所定のスクリュ回転数N を実現する。
しかし、可塑化工程で圧力センサを使うことは、次のような理由で不利である。
(1)   高圧環境下で信頼性の高い圧力センサは高価になる。
(2)   射出シリンダ先端部への圧力センサ取付けは、特別な加工を施す必要があり、作業コストが無視できない。
(3)   射出用モータから射出スクリュに至る射出軸系に取り付けるロードセルは、組み込むための機械構造を複雑にし、更には射出軸系の機械剛性の低下を招く。
(4)   歪みゲージを検出部に使用するロードセルでは、微弱なアナログ信号に対するノイズ対策が必要になり、また信号アンプのゼロ点調整やスパン調整等にも人手による作業が必要になる(特許文献13)。
(5)   スクリュ背圧の制御精度向上のために計測範囲の異なる2種類の圧力センサを使用すると高価になる(特許文献12)。
特開昭61-37409号公報 特開昭61-217227号公報 特開昭61-72512号公報 特開2005-35132号公報 特開昭61-258722公報 特開平3-58818号公報 特開平2-130117号公報 特開平4-249129号公報 特開平2-120020号公報 特開平7-9513号公報 特開2002-321264号公報 特開2000-351139号公報 特開2003-211514号公報
H.K.Khalil, Nonlinear Systems, 14.5 High-Gain Observers,Prentice-Hall, (2002), pp.610-625 B.D.O. Anderson and J.B. Moore, Optimal Control, Linear Quadratic Methods, 7.2 DeterministicEstimator Design, Prentice-Hall, (1990), pp.168-178 A.M. Dabroom andH.K. Khalil, Discrete-time implementation of high-gain observers for numericaldifferentiation, Int. J. Control, Vol.72, No.17, (1999), pp.1523-1537 A.M. Dabroom andH.K. Khalil, Output Feedback Sampled-Data Control of Nonlinear Systems Using High-GainObservers, IEEE Trans. Automat. Contr., Vol.46, No.11, (2001), pp.1712-1725
圧力センサを使うことによる「背景技術」で述べた前記5つの不利(段落(0024))を回避するために、圧力センサを使わずに電動射出成形機の可塑化制御装置に要求される機能、すなわち可塑化工程でスクリュ先端に貯留された溶融樹脂に適切なスクリュ背圧を印加する機能を達成できる可塑化制御装置(段落(0018)~(0021))を実現すること。
可塑化工程での溶融樹脂の均一性確保と計量精度の向上には、スクリュ背圧制御は有効な手段である。圧力センサを使わずに高精度なスクリュ背圧制御を実現するには、次の2つの必要条件を満たすスクリュ背圧検知手段が要求される。
(A)高精度である
(B)時間的遅れが非常に小さい
この2つの必要条件を満たす圧力検知手段として、高ゲイン観測器(非特許文献1)の手法を採用する。計測できる変数を入力して、すべての状態変数を推定する高ゲイン観測器が、前記2つの必要条件(A)、(B)を満たしていることを簡単な制御対象モデルを使って説明する。式(1)は制御対象モデルの状態方程式と出力方程式を示す。
Figure JPOXMLDOC01-appb-M000006
ここで、x1、は状態変数、uは入力変数、yは出力変数である。φ(x、u)は変数x、uからなる非線形関数である。状態方程式は状態変数x、xの挙動を表現するそれぞれ1階微分方程式より成り、出力方程式は観測できる変数、すなわち出力変数yを定める。例えば、xは位置変数、xは速度変数、uはモータ電流である。出力y及び入力uは計測できるとし、状態xを推定する高ゲイン観測器は、次の式(2)で与えられる。
Figure JPOXMLDOC01-appb-M000007
ここで、x^、x^は、状態変数x、xの推定値を表す。H、Hは高ゲイン観測器のゲイン定数である。関数φは、高ゲイン観測器の演算に採用された関数φの公称(基準)関数を表す。式(2)の高ゲイン観測器を用いたときの推定値誤差x 1、 は、式(1)、式(2)より次の式(3)で与えられる。
Figure JPOXMLDOC01-appb-M000008
ここで、δは、実際には得られない真の関数φと高ゲイン観測器で採用した公称の関数φとの差、すなわち制御対象のモデル誤差と考えられる。次に1より十分小さい正のパラメータεを導入して、H、Hを次の式(5)で与える。
Figure JPOXMLDOC01-appb-M000009
定数H、Hには、式(5)から判るように大きなゲイン定数を採用することから高ゲイン観測器と呼ばれる。式(5)を使うと、式(3)は次の式(6)で表される。
Figure JPOXMLDOC01-appb-M000010
推定値誤差x 1、 を次の式(7)で表される新変数η、ηに置き換える。
Figure JPOXMLDOC01-appb-M000011
式(7)より、式(6)は次の式(8)で表される。
Figure JPOXMLDOC01-appb-M000012
ここで、パラメータεを十分小さくとれば、式(8)より推定値誤差η、ηは制御対象のモデル誤差δから受ける影響を十分小さくできる。すなわち高ゲイン観測器を用いれば、状態変数にスクリュ背圧を含める制御対象モデルを採用することにより、圧力検知に要求される前記必要条件(A)「高精度である」ことが満たされることが判る。
次にモデル誤差の影響を無視すると、式(8)は次の式(9)で表される。
Figure JPOXMLDOC01-appb-M000013
行列Aの共役複素数の固有値λ1、λの実数部Re(λ)=Re(λ)が負になるようにK1、を決めると、式(9)より推定値誤差η、ηはその初期値η10、η20に対して次の式(11)で与えられる。
Figure JPOXMLDOC01-appb-M000014
tは時間変数で、C(t)~C(t)はK1、で決まる一定振幅、一定周波数成分を表す。Re(λ)<0で、パラメータεを1より十分小さくとれば、式(11)より推定値誤差η(t)、η(t)は急速に0になることが判る。すなわち高ゲイン観測器を用いれば、圧力検知に要求される前記必要条件(B)「時間的遅れが非常に小さい」ことが満たされることが判る。
式(2)の高ゲイン観測器では、すべての状態変数x1、の推定値を得たが、状態変数xは出力yとして計測できるので、状態変数xだけを推定すればよい。このときの高ゲイン観測器は、次の式(12)で与えられる(非特許文献2)。
Figure JPOXMLDOC01-appb-M000015
ここで、Hは高ゲイン観測器のゲイン定数である。式(12)は右辺に出力yの時間微分を含むので、直接、演算式としては使えないが、式(12)で与えられる高ゲイン観測器は、前記2つの必要条件(A)、(B)(段落(0028))を満たすことを示す。式(1)の3番目の式より、次の式(13)が得られる。
Figure JPOXMLDOC01-appb-M000016
式(12)、式(13)より次の式(14)が得られる。
Figure JPOXMLDOC01-appb-M000017
式(1)の2番目の式を使うと、式(14)より次の式(15)を得る。
Figure JPOXMLDOC01-appb-M000018
次に1より十分小さい正のパラメータεを導入してHを次の式(17)で与える。
Figure JPOXMLDOC01-appb-M000019
式(17)を使うと、式(15)は次の式(18)で表される。
Figure JPOXMLDOC01-appb-M000020
ここで、パラメータεを十分小さくとれば、式(18)より推定値誤差x は、制御対象のモデル誤差δから受ける影響を十分小さくできる。すなわち高ゲイン観測器を用いれば、状態変数にスクリュ背圧を含める制御対象モデルを採用することにより圧力検知に要求される前記必要条件(A)「高精度である」ことが満たされることが判る。
次にモデル誤差δの影響を無視すると、式(18)は次の式(19)で表される。
Figure JPOXMLDOC01-appb-M000021
式(19)より推定値誤差x は、次の式(20)で表される。
Figure JPOXMLDOC01-appb-M000022
ここで、x 20は推定値誤差x の初期値である。式(20)より、パラメータεを1より十分小さくとれば、推定値誤差x (t)は急速に0になることが判る。すなわち高ゲイン観測器を用いれば、圧力検知に要求される前記必要条件(B)「時間的遅れが非常に小さい」ことが満たされることが判る。式(12)の高ゲイン観測器は、計測できる状態変数は推定せず、必要最小限の状態変数を推定するので式(2)の観測器より次数が低くなるので、低次元高ゲイン観測器と呼ばれる。
次に式(12)の演算を出力yの時間微分を使わずに行う方法を示す。次の式(21)で与えられる新変数w^を導入する。
Figure JPOXMLDOC01-appb-M000023
式(21)を使うと、式(12)は次の式(22)で与えられる。
Figure JPOXMLDOC01-appb-M000024
式(22)よりw^を計算し、次の式(23)より推定値x^を求めることができる。
Figure JPOXMLDOC01-appb-M000025
状態変数にスクリュ背圧を含めた電動射出成形機の制御対象モデルに対して、高ゲイン観測器を適用する手順は後述の「実施例」で詳述する。
状態変数にスクリュ背圧を含めた電動射出成形機の制御対象モデルに高ゲイン観測器を適用することにより、圧力センサを使用しないで、時間的遅れが非常に小さく、高精度なスクリュ背圧検知が可能となる。これにより、圧力センサを使用しないで、電動射出成形機の可塑化制御装置に要求される機能を実現でき、さらに「背景技術」で述べた5つの不利(段落(0024))を回避することができる。
本発明に係る可塑化制御装置及び可塑化制御方法の全体構成を示す実施例の説明図である。 電動射出成形機の従来の可塑化機構の構成を示す模式図である。 従来の電動射出成形機の可塑化制御装置の全体構成を示す説明図である。 本発明に係る電動射出成形機の可塑化機構の構成を示す模式図である。 本発明に係る実施例での可塑化工程シミュレーション条件の説明図である。 本発明に係る実施例での高ゲイン観測器のスクリュ背圧推定シミュレーション結果の説明図である。
以下、本発明の実施形態に係る電動射出成形機の可塑化制御装置を図面に基づいて説明する。
図4は、圧力センサを使用しない可塑化機構の模式図を示す。図4は、圧力センサを除いて図2と同じ符号を持つ部品から構成されるので、図4の説明は、「背景技術」で述べた図2の説明(段落(0004)~(0008))に代える。
図1は、本発明の一実施形態に係る高ゲイン観測器によるスクリュ背圧検知を電動射出成形機の可塑化制御装置に適用した例で、可塑化制御装置の内部構成を説明するためのブロック図である。可塑化制御装置は、高ゲイン観測器27を内蔵する背圧制御器60、射出用モータ制御器(サーボアンプ)70、スクリュ回転数制御器40及び可塑化用モータ制御器(サーボアンプ)50とから構成される。
前記背圧制御器60について説明する。前記背圧制御器60は一定時間間隔毎に制御演算を行い、制御指令を前記射出用モータ制御器70に出力する。前記背圧制御器60は、スクリュ背圧指令器21、減算器22、圧力制御器24、デジタル/アナログ(D/A)変換器25、アナログ/デジタル(A/D)変換器26及び高ゲイン観測器27から構成される。
前記スクリュ背圧指令器21は、時間シーケンスに従ったスクリュ背圧指令P を前記減算器22に出力する。
前記高ゲイン観測器27には、前記射出用モータ制御器70内で検出された射出用モータ実電流iが前記A/D変換器26を介して入力される。また前記射出用サーボモータ3の前記モータエンコーダ14からのパルスを使って前記スクリュ9の後退速度信号vが前記射出用モータ制御器70より前記高ゲイン観測器27に入力される。更に前記可塑化用モータ制御器50よりスクリュ実回転数Nが前記高ゲイン観測器27に入力される。前記高ゲイン観測器27は、入力信号i、v及びNを使って、可塑化機構の数式モデルを利用して導出した内蔵する離散演算式を実行して、スクリュ背圧推定値P^を出力する。
スクリュ背圧推定値P^は、前記減算器22に入力される。前記減算器22は、前記スクリュ背圧指令P と前記スクリュ背圧推定値P^との制御偏差ΔPを次の式(24)より算出する。
Figure JPOXMLDOC01-appb-M000026
前記減算器22は、算出した制御偏差ΔPを前記圧力制御器24へ出力する。
前記圧力制御器24は、制御偏差ΔPに対して、PID制御演算を実行してモータ電流指令i を算出する。モータ電流指令i は前記D/A変換器25を介して前記射出用モータ制御器70へ出力される。
次に前記射出用モータ制御器70について説明する。前記射出用モータ制御器70はA/D換器31、パルス幅変調制御(PWM)回路32、射出用モータ実電流検出器33及び微分回路34から構成される。前記射出用モータ制御器70には、前記射出用サーボモータ3が接続され、前記射出用サーボモータ3には前記モータエンコーダ14が取り付けられている。
前記A/D変換器31は、前記背圧制御器60からの前記射出用サーボモータ3のモータ電流指令i を入力され、前記PWM回路32にi を出力する。
前記PWM回路32は、モータ電流指令i に基づいて所定の3相電圧を前記射出用サーボモータ3に印加する。これにより前記射出用サーボモータ3はモータ電流指令i で駆動される。前記射出用モータ実電流検出器33は、モータ駆動電流iを検出し、前記背圧制御器60内の前記A/D変換器26に出力する。
前記微分回路34は、前記射出用サーボモータ3の前記モータエンコーダ14からのパルスを入力されて前記スクリュ9の後退速度vを検出し、前記背圧制御器60内の前記高ゲイン観測器27に出力する。
前記スクリュ回転数制御器40と前記可塑化用モータ制御器50は、その構成と機能を「背景技術」の段落(0022)~(0023)で詳述したので、ここでは述べない。ただし、図1では、前記スクリュ9の実回転数Nが、前記可塑化用モータ制御器50内の前記微分回路52の出力として前記高ゲイン観測器27に入力されている。
次に、射出用サーボモータ実電流i,スクリュ後退速度v及びスクリュ回転数Nを入力してスクリュ背圧推定値P^を出力する前記高ゲイン観測器27の設計に必要になる可塑化機構の数式モデルを図4を使って説明する。図4の前記射出用サーボモータ3の運動方程式は次の式(25)で与えられる。
Figure JPOXMLDOC01-appb-M000027
ここで、Jはモータ本体慣性モーメント、JG1はモータ側減速歯車慣性モーメント、ωはモータ角速度、Tはモータトルク、rはモータ側減速歯車半径、Fは減速機伝達力及びtは時間である。前記ボールネジ5の運動方程式は次の式(26)で与えられる。
Figure JPOXMLDOC01-appb-M000028
ここで、Jはボールネジ軸慣性モーメント、JG2は負荷側減速歯車慣性モーメント、ωsはボールネジ軸角速度、rは負荷側減速歯車半径及びTはボールネジ駆動トルクである。前記可動部8の運動方程式は次の式(27)、式(28)で与えられる。
Figure JPOXMLDOC01-appb-M000029
ここで、Wは可動部重量、gは重力加速度、vはスクリュ(可動部)後退速度、xはスクリュ位置(可塑化開始時x=0)、Fはボールネジ軸力、Fはスクリュが樹脂から受ける負荷力、μは可動部―リニアガイド摩擦係数である。ボールネジ駆動トルクTとボールネジ軸力Fの関係は次の式(29)で与えられる。
Figure JPOXMLDOC01-appb-M000030
ここで、lはボールネジリード及びηはボールネジ効率である。スクリュ後退速度v、ボールネジ角速度ωs及び射出用モータ角速度ωの関係は次の式(30)で与えられる。
Figure JPOXMLDOC01-appb-M000031
スクリュの受ける負荷力Fは次の式(31)で与えられる。
Figure JPOXMLDOC01-appb-M000032
ここで、Aはスクリュ断面積、Pはスクリュ背圧、Cmtは射出シリンダ粘性係数、γは速度べき乗数である。スクリュ背圧Pの方程式は次の式(32)、式(33)で与えられる。
Figure JPOXMLDOC01-appb-M000033
ここで、Vはシリンダ貯留部容積、Vb0はシリンダ貯留部容積初期値(可塑化開始時)、Qはシリンダ貯留部へのスクリュからの溶融樹脂供給量及びβは樹脂体積弾性係数である。モータ特性は次の式(34)で与えられる。
Figure JPOXMLDOC01-appb-M000034
ここで、Kはモータトルク係数及びiは射出用サーボモータ電流である。式(25)、式(26)、式(30)を使ってωs、Fを消去すると、次の式(35)を得る。
Figure JPOXMLDOC01-appb-M000035
式(27)、式(29)、式(30)、式(35)を使って、T、Fを消去すると次の式(36)を得る。
Figure JPOXMLDOC01-appb-M000036
式(36)は、モータ軸に換算したスクリュ直線運動の運動方程式を表し、式(37)はモータ軸換算等価慣性モーメントを表す。式(28)、式(30)より次の式(38)が得られる。
Figure JPOXMLDOC01-appb-M000037
式(31)、式(34)、式(36)より、スクリュ直線運動の運動方程式は次の式(39)で与えられる。
Figure JPOXMLDOC01-appb-M000038
次に式(33)は、次の式(40)で表される。
Figure JPOXMLDOC01-appb-M000039
ここで、xは可塑化開始時の貯留溶融樹脂の等価初期長さである。式(30)と式(40)を使うと、式(32)は次の式(41)で表される。
Figure JPOXMLDOC01-appb-M000040
次に変数の無次元化を行う。式(38)の変数を無次元化すると、次の式(42)が得られる。
Figure JPOXMLDOC01-appb-M000041
ここで、射出用サーボモータの正回転はスクリュの射出方向移動に対応させるので、可塑化時のスクリュ位置x及びスクリュ後退速度vは負となる。vmax(>0)は可塑化時のスクリュ最大後退速度で、ωmax(>0)は、vmaxに対応した射出用サーボモータ最大回転数である。xmax(>0)は可塑化時のスクリュ最大後退量である。
次に式(39)の変数を無次元化すると、次の式(43)が得られる。
Figure JPOXMLDOC01-appb-M000042
ここで、imaxはモータ定格電流である。Pmaxはスクリュ背圧最大値を表す。式(43)では、次の関係式(44)を使っている。
Figure JPOXMLDOC01-appb-M000043
式(43)は、次の式(45)で表される。
Figure JPOXMLDOC01-appb-M000044
ここで、TMmax=Kmaxでモータ定格トルクを表す。
次に式(41)の変数を無次元化すると、次の式(46)が得られる。
Figure JPOXMLDOC01-appb-M000045
ここで、Qmax=Afmaxで最大可塑化量を表す。vfmax(>0)は、最大可塑化量Qmaxでのスクリュ後退速度である。式(46)は次の式(47)に書き換えられる。
Figure JPOXMLDOC01-appb-M000046
ここで、スクリュ可塑化樹脂量[Q/Qmax]は一般的にスクリュ背圧[P/Pmax]とスクリュ回転数[N/Nmax]の関数である。Nmaxはスクリュ最大回転数である。
Figure JPOXMLDOC01-appb-M000047
以上前記高ゲイン観測器27の設計に必要な可塑化機構の数式モデルは、式(42)、式(45)、式(47)、式(48)より、式(49)、式(50)、式(51)として与えられる。
Figure JPOXMLDOC01-appb-M000048
ここでは、可塑化樹脂量はスクリュ回転数に比例すると考えて、次の式(52)が成立つとする。
Figure JPOXMLDOC01-appb-M000049
次に式(53)で定義される状態変数x1、、xを導入する。
Figure JPOXMLDOC01-appb-M000050
次の式(54)で定義される入力変数u、uを導入する。u、uは計測できるとする。前記高ゲイン観測器27での計算では、射出用サーボモータ実電流iはモータ電流指令i に等しいと考えることもできる。i とiの時間的遅れは非常に小さいからである。
Figure JPOXMLDOC01-appb-M000051
計測できる状態変数としてxを選び、出力変数yを次の式(55)で定義する。
Figure JPOXMLDOC01-appb-M000052
式(49)、式(50)、式(51)、式(52)、式(55)を状態方程式と出力方程式で表現すると、次の式(56)~式(59)となる。
Figure JPOXMLDOC01-appb-M000053
χ(x2)、ψ(x,u)は非線形関数を表す。
式(59)の出力変数y=xが計測できることから、式(56)を使って状態変数xは次の式(62)より求められ、出力変数yより決まる変数yに置換される。変数yの物理的意味は無次元スクリュ位置で、yの初期値は0としている(段落(0096))。
Figure JPOXMLDOC01-appb-M000054
したがって、状態変数xは状態変数より除外されて、新たな状態方程式と出力方程式は式(57)~式(59)より次の式(63)、式(64)で与えられる。
Figure JPOXMLDOC01-appb-M000055
状態方程式を表す式(63)中の変数yは、入力変数u、uに加えて新たな入力変数と考えられ、式(62)より入力変数yは次の式(66)で与えられる。
Figure JPOXMLDOC01-appb-M000056
状態変数xは計測できるので、状態変数xは推定する必要がない。したがって、高ゲイン観測器27は、計測できるスクリュ後退速度x、モータ実電流uおよびスクリュ回転数uを入力して、状態変数xの推定値を出力する。その推定値x^は次の式(68)で与えられる(非特許文献2)。式(68)中の入力変数yは式(66)によるスクリュ後退速度y=xの時間積分値として高ゲイン観測器27内で算出される。Kは高ゲイン観測器27のゲイン定数である。
Figure JPOXMLDOC01-appb-M000057
χ(y)、ψ(x^、u、y、y)は高ゲイン観測器27で使われるχ(y)、ψ(x^、u、y、y)の公称(基準)関数である。式(68)を次の式(69)のように書く。
Figure JPOXMLDOC01-appb-M000058
新変数w^を次の式(70)で導入する。
Figure JPOXMLDOC01-appb-M000059
式(69)に式(70)を使うと、推定値x^は次の式(71)、式(72)より得られる。
Figure JPOXMLDOC01-appb-M000060
次に1より十分小さい正のパラメータεを導入して、ゲインKを次の式(73)で与え、次の式(74)で表される新変数η^を導入する。
Figure JPOXMLDOC01-appb-M000061
式(73)、式(74)を利用して式(71)を書き直すと、次の式(75)が得られる。
Figure JPOXMLDOC01-appb-M000062
式(74)より、次の式(76)が得られる。
Figure JPOXMLDOC01-appb-M000063
式(76)を使うと、式(72)は次の式(77)で表される。
Figure JPOXMLDOC01-appb-M000064
以上より前記高ゲイン観測器27での状態変数推定値x^を得る計算手順は式(66)、式(75)、式(77)より、次の式(78)、式(79)、式(80)で表される。
(1)   計算手順1
Figure JPOXMLDOC01-appb-M000065
(2)   計算手順2
Figure JPOXMLDOC01-appb-M000066
(3)計算手順3
Figure JPOXMLDOC01-appb-M000067
計算手順1でyを求め、計算手順2でη^を求め、計算手順3でx^3を求める。
次に「課題を解決するための手段」で述べた前記高ゲイン観測器27に要求される2つの必要条件
(A)高精度である
(B)時間的遅れが非常に小さい
が満たされることを明らかにする。式(79)で公称関数χ(y)、ψ(η^、u、y、y)ではなく、実際には得られない真の関数χ(y)、ψ(η、u、y、y)を使用したときに得られる変数ηは次の式(81)で決まる。
Figure JPOXMLDOC01-appb-M000068
推定値誤差η=η―η^は、式(79)、式(81)より次の式(82)で得られる。
Figure JPOXMLDOC01-appb-M000069
パラメータεは1より十分小さいことから、式(82)より推定値誤差ηは制御対象のモデル誤差δ、δから受ける影響を十分小さくできることが判る。すなわち前記高ゲイン観測器27を用いれば、式(78)、式(79)、式(80)より得られるスクリュ背圧推定値x^ は前記必要条件(A)「高精度である」ことが満たされる。
次にモデル誤差δ、δの影響を無視すると、式(82)は次の式(84)で表される。
Figure JPOXMLDOC01-appb-M000070
式(84)より推定値誤差ηは、次の式(85)で表される。
Figure JPOXMLDOC01-appb-M000071
ここで、η は推定値誤差ηの初期値である。射出成形機の可塑化工程ではb<0となるので、式(85)よりパラメータεを1より十分小さくとれば、推定値誤差η(t)は急速に0になることが判る。すなわち高ゲイン観測器27を用いれば、式(78)、式(79)、式(80)より得られるスクリュ背圧推定値x^は前記必要条件(B)「時間的遅れが非常に小さい」ことが満たされる。
前記背圧制御器60は一定時間間隔Δt毎に制御演算を行うので、前記高ゲイン観測器27での演算式(78)、(79)、(80)を離散演算式に変換する(非特許文献3、非特許文献4)。
新たなパラメータαを導入して、演算周期Δtを次の式(86)で表す。
Figure JPOXMLDOC01-appb-M000072
式(78)の時間積分の離散演算式は、台形近似法を採用すると次の式(87)で表される。
Figure JPOXMLDOC01-appb-M000073
離散時間t(k=0,1,2、・・・)での関数値y(t)、y(t)をy(k)、y(k)で表すと、式(87)は次の式(88)で表せる。
Figure JPOXMLDOC01-appb-M000074
演算周期Δtは小さいので、式(88)による出力変数y(t)の時間数値積分は高精度と考えられる。
次に式(79)に前進矩形近似を適用すると、時間微分を表すラプラス演算子sとz変換演算子zの間には次の式(89)が成立つ。
Figure JPOXMLDOC01-appb-M000075
式(79)に式(89)を適用すると、次の式(90)が成立つ。
Figure JPOXMLDOC01-appb-M000076
式(90)を式(88)と同様の離散演算式で表現すると、次の式(91)が得られる。
Figure JPOXMLDOC01-appb-M000077
ここで、離散時間tでの推定値η^(t)をη^(k)で表現している。u(k)、u(k)についても、離散時間tでの値を示す。χ0(k)は式(60)より得られ、ψ0(k)は式(58)から得られ、離散時間tでの値を示す。式(91)は次の式(93)で表せる。
Figure JPOXMLDOC01-appb-M000078
式(80)の離散演算式は次の式(94)で与えられる。
Figure JPOXMLDOC01-appb-M000079
前記高ゲイン観測器27は、演算式(88)、(93)、(94)を一定時間間隔Δt毎に演算することによりスクリュ背圧推定値x^(k)を得ることができる。式(88)、式(93)、式(94)で実現する前記高ゲイン観測器27は、計測できる状態変数x(k)は推定せず、必要となる状態変数であるスクリュ背圧x(k)を推定する低次元高ゲイン観測器である。
電動射出成形機を対象に前記高ゲイン観測器27を使ったときのシミュレーション計算結果を示す。制御対象のモデル数値は次の通りである。
スクリュ最大後退量 xmax=20.0cm
スクリュ最大後退速度 vmax=2.0cm/sec
スクリュ背圧最大値 Pmax=19.6MPa
射出用モータ最大回転数 ωmax=31.67rad/sec(302.4rpm)
制御対象のモデル定数を使って、式(56)~式(58)で使われる係数a,b,c,dは次の式(95)の値を用いた。
Figure JPOXMLDOC01-appb-M000080
関数g(P^/Pmax)は,スクリュ最大回転数でのスクリュ背圧の増加に対してスクリュ可塑化樹脂量が単調に減少する適切な関数形を用いた。式(73)で与えられる前記高ゲイン観測器27のゲインKはK=0.01、ε=0.01として次の式(96)で与えられる。演算周期Δt=5msecを採用した。
Figure JPOXMLDOC01-appb-M000081
図5は、スクリュ背圧制御を行ったときのシミュレーション条件を示す。図5(a)は、スクリュ回転数指令器41に与えられるスクリュ回転数指令N =Nの時間シーケンスを示す。図5(b)は、スクリュ背圧指令器21に与えられるスクリュ背圧指令P の時間シーケンスを示す。
図6は、スクリュ背圧制御を行ったときのスクリュ背圧の時間応答を示す。図6(a)は、前記圧力センサ12を使用した図3に示す可塑化制御装置でスクリュ背圧制御を行ったときのスクリュ背圧Pの時間応答を示す。図5(b)に示すスクリュ背圧指令P とスクリュ背圧の時間応答がよく一致していることが判る。
図6(b)は、このときの前記高ゲイン観測器27が出力したスクリュ背圧推定値P^である。図6(a)のPと図6(b)のP^の時間応答が良く一致していることから、高ゲイン観測器27は、スクリュ背圧を時間的に遅れることなく、高精度に推定できることが判る。
図6(c)は、前記高ゲイン観測器27を使用した図1に示す可塑化制御装置でスクリュ背圧制御を行ったときのスクリュ背圧Pの時間応答を示す。前記圧力センサ12を用いた図6(a)のスクリュ背圧Pの時間応答と図6(c)の時間応答Pが良く一致していることから、前記圧力センサ12を用いずに前記高ゲイン観測器27を使うことにより、良好なスクリュ背圧制御が実現できることが判る。
電動射出成形機の可塑化制御装置及び可塑化制御方法において、圧力センサを使わずに、高ゲイン観測器が出力するスクリュ背圧推定値をスクリュ背圧検知信号として使うことにより、次の5つの不利を回避できる。
(1)   高圧環境下で信頼性の高い圧力センサは高価になる。
(2)   射出シリンダ先端部への圧力センサ取付けは、特別な加工を施す必要があり、作業コストが無視できない。
(3)   射出用モータから射出スクリュに至る射出軸系に取り付けるロードセルは、組み込むための機械構造を複雑にし、更には射出軸系の機械剛性の低下を招く。
(4)   歪みゲージを検出部に使用するロードセルでは、微弱なアナログ信号に対するノイズ対策が必要になり、また信号アンプのゼロ点調整やスパン調整等にも人手による作業が必要になる(特許文献13)。
(5)   スクリュ背圧の制御精度向上のために計測範囲の異なる2種類の圧力センサを使用すると高価になる(特許文献12)
更に、高ゲイン観測器の出力するスクリュ背圧推定値は、高精度であり、時間的遅れも非常に小さいので、スクリュ背圧の監視信号及び制御のフィードバック信号として使える。したがって、本発明による高ゲイン観測器による電動射出成形機の可塑化制御装置及び可塑化制御方法は、十分利用される価値を有すると考えられる。
1   金型
 2   射出シリンダ
 3   射出用サーボモータ
 4   減速機
 5   ボールネジ
 6   軸受
 7   ナット
 8   可動部
 9   スクリュ
 10  減速機
 11  可塑化用サーボモータ
 12  圧力センサ
 13  リニアガイド
 14  モータエンコーダ
 15  モータエンコーダ
 16  ホッパー
 17  キャビティ
 20  背圧制御器
 21  スクリュ背圧指令器
 22  減算器
 23  アナログ/デジタル(A/D)変換器
 24  圧力制御器
 25  デジタル/アナログ(D/A)変換器
 26  アナログ/デジタル(A/D)変換器
 27  高ゲイン観測器
 30  射出用モータ制御器(サーボアンプ)
 31  アナログ/デジタル(A/D)変換器
 32  パルス幅変調制御(PWM)回路
 33  射出用モータ実電流検出器
 34  微分回路
 40  スクリュ回転数制御器
 41  スクリュ回転数指令器
 50  可塑化用モータ制御器(サーボアンプ)
 51  減算器
 52  微分回路
 53  速度制御器
 54  パルス幅変調制御(PWM)回路
 60  背圧制御器
 70  射出用モータ制御器(サーボアンプ)

Claims (2)

  1. 電動射出成形機の可塑化制御装置であって、射出用サーボモータの回転は減速機を介してボールネジに伝えられ、前記ボールネジの回転はボールネジ軸上のナットの直線運動に変換され、前記ナットにより駆動される可動部を介してスクリュが前後進移動し、前記スクリュの前後進により射出シリンダ先端部に貯留された溶融樹脂への加圧(スクリュ背圧)を実現する射出軸系と、可塑化用サーボモータの回転は減速機を介してスクリュを回転し樹脂ペレットを溶融するスクリュ回転駆動系とからなる可塑化機構の運動を表現する数式モデルとして、スクリュ後退速度変数とスクリュ背圧変数の2変数を状態変数とし前記射出用サーボモータへの制御信号として印加されるモータ電流指令信号或はモータ実電流信号とスクリュ回転数およびスクリュ位置の3変数を入力変数とする状態方程式と計測できる状態変数として前記スクリュ後退速度変数を出力変数とする出力方程式からなる連続時間系数式モデルおよびスクリュ位置とスクリュ後退速度の関係を与える時間積分式を採用し、前記時間積分式に対して時間積分近似を適用して導出した時間積分離散演算式および前記連続時間系数式モデルから前進矩形近似を適用して導出した離散演算式を一定時間間隔毎に実行する高ゲイン観測器と、スクリュ背圧指令を出力するスクリュ背圧指令器と、前記高ゲイン観測器が前記射出用サーボモータの軸に設けたモータエンコーダと微分回路で検出されるスクリュ後退速度信号と前記モータ電流指令信号或は前記モータ実電流信号および可塑化用モータ制御器で検出されるスクリュ回転数信号を入力されて内蔵する前記時間積分離散演算式と前記離散演算式を使用して算出して出力するスクリュ背圧推定値と前記スクリュ背圧指令器が出力する前記スクリュ背圧指令とが入力されて、前記スクリュ背圧指令と前記スクリュ背圧推定値との差を出力する減算器と、前記減算器の出力を入力して前記スクリュ背圧推定値が前記スクリュ背圧指令に追従するように前記モータ電流指令信号を算出する圧力制御器と、を含むスクリュ背圧制御器と、前記モータ電流指令信号が入力される射出用モータ制御器と、可塑化用サーボモータの回転数制御を行う可塑化用モータ制御器と、
    を具備することを特徴とする電動射出成形機の可塑化制御装置
  2. 電動射出成形機の可塑化制御方法であって、射出用サーボモータの回転は減速機を介してボールネジに伝えられ、前記ボールネジの回転はボールネジ軸上のナットの直線運動に変換され、前記ナットにより駆動される可動部を介してスクリュが前後進移動し、前記スクリュの前後進により射出シリンダ先端部に貯留された溶融樹脂への加圧(スクリュ背圧)を実現する射出軸系と、可塑化用サーボモータの回転は減速機を介してスクリュを回転し樹脂ペレットを溶融するスクリュ回転駆動系とからなる可塑化機構の運動を表現する数式モデルとして採用した、スクリュ後退速度xとスクリュ背圧xを状態変数とし射出用サーボモータへのモータ電流指令信号或はモータ実電流信号uとスクリュ回転数uとスクリュ位置yを入力変数とする下記(数77)の状態方程式(97)と前記スクリュ後退速度xを出力変数yとする出力方程式(98)および前記スクリュ位置yと前記スクリュ後退速度yの関係を与える下記(数78)の時間積分式(100)に対して、前記時間積分式(100)に時間積分近似を適用して導出した下記(数79)の時間積分離散演算式(101)および前記状態方程式(97)と出力方程式(98)から前進矩形近似を適用して導出した下記(数80)の離散演算式(103)及び(数81)の離散演算式(105)を一定時間間隔毎に実行する高ゲイン観測器が、前記射出用サーボモータの軸に設けたモータエンコーダおよび微分回路で検出されるスクリュ後退速度信号と前記モータ電流指令信号或は前記モータ実電流信号および可塑化用モータ制御器で検出されるスクリュ回転数信号を入力信号としてスクリュ背圧推定値x^を出力し、減算器が、スクリュ背圧指令器が出力するスクリュ背圧指令と前記スクリュ背圧推定値を入力信号として前記スクリュ背圧指令と前記スクリュ背圧推定値との差を出力し、圧力制御器が、前記減算器の出力を入力信号として前記スクリュ背圧推定値が前記スクリュ背圧指令に追従するように前記モータ電流指令信号を出力し、射出用モータ制御器が、前記モータ電流指令信号を入力信号として、前記射出用サーボモータに前記モータ電流指令信号に相当するモータトルクを発生させて前記スクリュ背圧指令に等しいスクリュ背圧を実現する電動射出成形機の可塑化制御方法
    Figure JPOXMLDOC01-appb-M000001
    ここで、x:スクリュ後退速度をスクリュ最大後退速度で無次元化した状態変数、x:スクリュ背圧をスクリュ背圧最大値で無次元化した状態変数、u:射出用サーボモータへのモータ電流指令或はモータ実電流をモータ定格電流で無次元化した入力変数、u:スクリュ回転数をスクリュ最大回転数で無次元化した入力変数、y:計測できる状態変数xを表す出力変数、y:下記(数78)の式(100)により出力変数yより決められる入力変数(無次元スクリュ位置)、b、c、d、e、h、p、q、γ:可塑化機構の数式モデルの定数、χ(x)、ψ(x、x、u、y):式(99)で表される非線形関数、f(x、u):最大可塑化量で無次元化された可塑化量の前記無次元変数x(スクリュ背圧)、u(スクリュ回転数)との関数関係
    Figure JPOXMLDOC01-appb-M000002
    ここで、a:可塑化機構の数式モデルの定数、t:時間変数、yの初期値は0とする。
    Figure JPOXMLDOC01-appb-M000003
    ここで、k:離散時間tを表す離散変数(k=0,1,2、・・・)、y(k):離散時間tでの入力変数値y(t)、y(k):離散時間tでの出力変数値y(t)、Δt:高ゲイン観測器の演算周期、ε:高ゲイン観測器でのパラメータで、一般に1より十分小さい正数
    Figure JPOXMLDOC01-appb-M000004
    ここで、η^(k):状態変数xを推定するために導入した新状態変数ηの離散時間tでの推定値η^(t)、u(k):離散時間tでの入力変数値u(t)、u(k):離散時間tでの入力変数値u(t)、χ(k)、ψ(k):離散時間tでの非線形関数値χ(t)、ψ(t)、K:高ゲイン観測器のゲイン(K/ε)を決めるパラメータで、K>0とする。
    Figure JPOXMLDOC01-appb-M000005
    ここで、x^(k):離散時間tでの状態変数xの状態推定値x^(t
PCT/JP2010/069760 2010-11-07 2010-11-07 電動射出成形機の可塑化制御装置および可塑化制御方法 WO2012060018A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2010547383A JP4674924B1 (ja) 2010-11-07 2010-11-07 電動射出成形機の可塑化制御装置および可塑化制御方法
US13/131,265 US8119044B1 (en) 2010-11-07 2010-11-07 Device and method for plasticization control of electric injection molding machine
PCT/JP2010/069760 WO2012060018A1 (ja) 2010-11-07 2010-11-07 電動射出成形機の可塑化制御装置および可塑化制御方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/069760 WO2012060018A1 (ja) 2010-11-07 2010-11-07 電動射出成形機の可塑化制御装置および可塑化制御方法

Publications (1)

Publication Number Publication Date
WO2012060018A1 true WO2012060018A1 (ja) 2012-05-10

Family

ID=44080045

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/069760 WO2012060018A1 (ja) 2010-11-07 2010-11-07 電動射出成形機の可塑化制御装置および可塑化制御方法

Country Status (3)

Country Link
US (1) US8119044B1 (ja)
JP (1) JP4674924B1 (ja)
WO (1) WO2012060018A1 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9073255B2 (en) 2010-02-09 2015-07-07 Noriyuki Akasaka Device and method for plasticization control of electric injection molding machine
US8878479B2 (en) * 2010-05-18 2014-11-04 Mitsubishi Electric Corporation Motor control device
WO2011145475A1 (ja) * 2010-05-18 2011-11-24 三菱電機株式会社 モータ制御装置
WO2012008222A1 (ja) * 2010-07-14 2012-01-19 三菱電機株式会社 モータ制御装置
US8871128B2 (en) * 2010-11-01 2014-10-28 Noriyuki Akasaka Device and method for pressure control of electric injection molding machine
JP4674924B1 (ja) 2010-11-07 2011-04-20 則之 赤坂 電動射出成形機の可塑化制御装置および可塑化制御方法
CN103038048B (zh) * 2011-08-01 2015-06-17 三菱电机株式会社 注塑成型机的控制装置及控制方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0655599A (ja) * 1992-08-10 1994-03-01 Sumitomo Heavy Ind Ltd 射出成形機の制御装置
JPH07334246A (ja) * 1994-06-13 1995-12-22 Seibu Electric & Mach Co Ltd 自動制御装置
JP3787627B2 (ja) * 2002-12-20 2006-06-21 独立行政法人国立高等専門学校機構 電動射出成形機の制御装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4841208A (en) * 1986-09-11 1989-06-20 Toshiba Kikai Kabushi Kaisha Position control system including a quick response control
US5371450A (en) 1992-08-10 1994-12-06 Sumitomo Heavy Industries, Ltd. Control unit capable of smoothly carrying out a switching operation between position and pressure feedback control systems
JP3686328B2 (ja) * 2000-11-15 2005-08-24 住友重機械工業株式会社 射出成形機の制御方法
US6695994B2 (en) 2001-09-29 2004-02-24 Van Dorn Demag Corporation Melt pressure observer for electric injection molding machine
JP2004034593A (ja) * 2002-07-05 2004-02-05 Fanuc Ltd 電動式射出成形機
WO2005028181A1 (ja) * 2003-09-17 2005-03-31 Ube Machinery Corporation, Ltd. 電動式射出成形機の圧力制御方法および装置
TW200909184A (en) * 2007-08-17 2009-03-01 Nat Univ Chung Cheng Method of sensing melt-front position and velocity
US8229592B2 (en) 2009-05-18 2012-07-24 Noriyuki Akasaka Device and method for pressure control of electric injection molding machine
JP4678894B1 (ja) 2010-02-09 2011-04-27 則之 赤坂 電動射出成形機の可塑化制御装置および可塑化制御方法
US8871128B2 (en) 2010-11-01 2014-10-28 Noriyuki Akasaka Device and method for pressure control of electric injection molding machine
JP4674924B1 (ja) 2010-11-07 2011-04-20 則之 赤坂 電動射出成形機の可塑化制御装置および可塑化制御方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0655599A (ja) * 1992-08-10 1994-03-01 Sumitomo Heavy Ind Ltd 射出成形機の制御装置
JPH07334246A (ja) * 1994-06-13 1995-12-22 Seibu Electric & Mach Co Ltd 自動制御装置
JP3787627B2 (ja) * 2002-12-20 2006-06-21 独立行政法人国立高等専門学校機構 電動射出成形機の制御装置

Also Published As

Publication number Publication date
US8119044B1 (en) 2012-02-21
JPWO2012060018A1 (ja) 2014-05-12
JP4674924B1 (ja) 2011-04-20

Similar Documents

Publication Publication Date Title
JP4674924B1 (ja) 電動射出成形機の可塑化制御装置および可塑化制御方法
JP4589460B1 (ja) 電動射出成形機の圧力制御装置および圧力制御方法
WO2011099175A1 (ja) 電動射出成形機の可塑化制御装置および可塑化制御方法
JP4674923B1 (ja) 電動射出成形機の圧力制御装置および圧力制御方法
JP4678894B1 (ja) 電動射出成形機の可塑化制御装置および可塑化制御方法
JP5998009B2 (ja) 成形機の制御装置及び成形機の制御方法
JP3794252B2 (ja) 電動式射出成形機および電動式射出成形機の射出制御方法
EP3473403B1 (en) Positioning control device and mold-clamping apparatus
JP3766371B2 (ja) 射出成形機の計量方法及び制御装置
JP2012000929A (ja) 可塑化状態監視手段を有する射出成形機の制御装置
JP4568343B2 (ja) 機械可動部の加減速制御方法
JP4627250B2 (ja) 射出成形機の制御方法
JP2015013467A (ja) 射出成形機の圧力制御装置
JP4982436B2 (ja) 射出成形機及び射出成形方法
JP5351307B1 (ja) 射出成形機の圧力制御装置
JP5113928B2 (ja) 射出成形機のノズルタッチ制御装置
EP2017061B1 (en) Injection molding machine with check ring closure determining means
JP5093750B2 (ja) 電動射出成形機の制御方法
JP5090996B2 (ja) 射出成形機の圧力異常検出装置
JP6077427B2 (ja) 射出成形機の制御装置及び制御方法
JP3245684B2 (ja) 電動式射出成形機の圧力制御装置
JP5073562B2 (ja) 射出成形機の圧力異常検出装置
JP5113596B2 (ja) 射出成形機の圧力異常検出装置
JP5325808B2 (ja) 射出成形機の可動部の加減速制御方法
JP5710362B2 (ja) 射出成形機の樹脂漏れ検出方法および樹脂漏れ防止方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2010547383

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13131265

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10859274

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10859274

Country of ref document: EP

Kind code of ref document: A1