JP3774278B2 - Method for manufacturing thin film transistor substrate for liquid crystal display device - Google Patents

Method for manufacturing thin film transistor substrate for liquid crystal display device Download PDF

Info

Publication number
JP3774278B2
JP3774278B2 JP27048196A JP27048196A JP3774278B2 JP 3774278 B2 JP3774278 B2 JP 3774278B2 JP 27048196 A JP27048196 A JP 27048196A JP 27048196 A JP27048196 A JP 27048196A JP 3774278 B2 JP3774278 B2 JP 3774278B2
Authority
JP
Japan
Prior art keywords
liquid crystal
display device
crystal display
thin film
transistor substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP27048196A
Other languages
Japanese (ja)
Other versions
JPH09133928A (en
Inventor
柱亨 李
宰瑚 許
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung Electronics Co Ltd
Original Assignee
Samsung Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung Electronics Co Ltd filed Critical Samsung Electronics Co Ltd
Publication of JPH09133928A publication Critical patent/JPH09133928A/en
Application granted granted Critical
Publication of JP3774278B2 publication Critical patent/JP3774278B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66742Thin film unipolar transistors
    • H01L29/6675Amorphous silicon or polysilicon transistors
    • H01L29/66757Lateral single gate single channel transistors with non-inverted structure, i.e. the channel layer is formed before the gate
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/1368Active matrix addressed cells in which the switching element is a three-electrode device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/268Bombardment with radiation with high-energy radiation using electromagnetic radiation, e.g. laser radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78606Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device
    • H01L29/78618Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device characterised by the drain or the source properties, e.g. the doping structure, the composition, the sectional shape or the contact structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78651Silicon transistors
    • H01L29/7866Non-monocrystalline silicon transistors
    • H01L29/78672Polycrystalline or microcrystalline silicon transistor
    • H01L29/78675Polycrystalline or microcrystalline silicon transistor with normal-type structure, e.g. with top gate

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Ceramic Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Liquid Crystal (AREA)
  • Toxicology (AREA)
  • Health & Medical Sciences (AREA)
  • Mathematical Physics (AREA)
  • Electromagnetism (AREA)
  • Thin Film Transistor (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は液晶表示装置用薄膜トランジスタ基板の製造方法に係り、より詳しくは、レーザビーム照射による活性化の際にこのレーザビームの全透過が可能な絶縁層がゲート電極上に形成されていて、ソース/ドレイン形成のためのイオン注入時にゲート電極が損傷されることを防止する液晶表示装置用薄膜トランジスタ基板の製造方法に関する。
【0002】
【従来の技術】
一般に、液晶表示装置は薄膜トランジスタおよび画素電極による多数の画素単位が行列の形態で形成されており、ゲートラインおよびデータラインがそれぞれ画素行と画素列に沿って形成されている薄膜トランジスタ基板と、共通電極が形成されているカラーフィルタ基板およびその間に封じ入れている液晶物質を含んでいる。
【0003】
このとき、前記薄膜トランジスタ基板およびそのゲート電極は、ゲート駆動ドライブからのゲート駆動信号がゲートラインを介して入力されアクティブ層にチャンネルを形成させる。これによってデータ駆動ドライブからのデータ信号が前記データラインを通じてソース電極に伝達され、半導体層とドレイン電極を経て画素電極に伝達される。
【0004】
このような液晶表示装置はアクティブ層を多結晶シリコンを用いて形成することができる。このとき、多結晶シリコンで形成したアクティブ層にソース/ドレイン領域を形成するために不純物イオンを注入して活性化する方法として、工程中の温度に基づいて高温工程と低温工程とに分けることができる。
まず、高温工程は高いイオン電流あるいは高い基板温度、すなわち200℃ないし300℃におけるイオンシャワー注入技術を用いる方法である。この方法では、イオンシャワー注入の際にフォトレジストマスクの使用が難しく金属マスクを使用する工程が必要になり、これによって製造工程が複雑で生産費用が多くかかるという短所がある。
【0005】
次に、低温工程は低い温度、すなわち100℃以下の基板温度でイオン注入を行い、この後レーザを用いて活性化する方法である。
このようなレーザを用いた活性化方法では、レーザ照射を行う際にゲート電極が露出しているため、急激な熱膨張によるヒルロックが発生する。特に、ゲート電極がイオン注入工程を経た後ゲート電極内に不純物が流入されるとき、レーザ波長に対する吸収係数が急激に増加してヒルロックの発生がさらに激しくなるという問題点がある。
【0006】
【発明が解決しようとする課題】
本発明の目的は、低い基板温度でアクティブ層のソース/ドレイン領域にイオン注入を行う低温工程を用いることにより製造コストを低減するとともに、レーザビームの照射により活性化を行う際に、ゲート電極の損傷を防止することが可能な液晶表示装置用薄膜トランジスタ基板の製造方法を提供することにある。
【0007】
【課題を解決するための手段】
本発明に係る液晶表示装置用薄膜トランジスタ基板の製造方法は、基板上に多結晶シリコン膜を形成する工程と、前記多結晶シリコン膜上にゲート絶縁膜を形成する工程と、前記ゲート絶縁膜上に金属層を蒸着する工程と、前記金属層上に絶縁膜を積層する工程と、前記金属層と前記絶縁膜とを同時にパターニングしてゲート電極及びイオン遮断層を各々形成する工程と、前記多結晶シリコン膜に不純物イオンを注入してソース/ドレイン領域を形成する工程と、前記ソース/ドレイン領域にイオン注入された不純物をレーザビームを用いてアニーリングする工程とを含み、前記イオン遮断層は前記不純物イオンが前記ゲート電極の表面に移動することを防止する物質で形成することを特徴とする。
【0008】
ここで、絶縁膜として、照射されるレーザビームのエネルギーバンドギャップより大きいバンドギャップを有する絶縁物質を用いて形成することが好ましい。具体的には、二酸化ケイ素(SiO2)または窒化ケイ素(SiNx)で形成することができる。
このことにより、多結晶シリコン膜で形成された基板上のアクティブ層にレーザビームを照射することによって不純物イオンの注入を行う際に、ゲート電極上に位置する絶縁膜によって、注入されたイオンはゲート電極の表面まで至ることなく、また活性化を行うために照射されたレーザビームはこの絶縁膜を通過してゲート電極の表面で全反射されることとなる。このことから、ゲート電極の損傷を防止することができる。
【0009】
また、アニーリングする工程で用いられるレーザビームとして、XeClを、用いることができる。
【0010】
【発明の実施の形態】
以下、本発明の好ましい実施例を添付図面に基づいて詳細に説明する。
図1は本発明の一実施形態に従う液晶表示装置用薄膜トランジスタ基板を示す断面図であり、図2ないし図8は本発明の実施形態に従う液晶表示装置用薄膜トランジスタ基板の製造工程を示す断面図である。
【0011】
まず、図2に示すように、基板2上に多結晶シリコン膜を積層してアクティブ層4を形成する。
次に、図3に示すように、多結晶シリコン膜によるアクティブ層4上に酸化ケイ素(SiO2)を用いてゲート絶縁膜6を形成する。
次に、図4に示すように、ゲート絶縁膜6上にアルミニウム(Al)で金属層8を積層する。
【0012】
次に、図5に示すように、金属層8上に絶縁膜10を積層する。
次に、図6に示すように、金属層8と絶縁膜10とを同時にパターニングする。
次に、図7に示すように、n+ 不純物をイオン注入12してイオン注入領域4−1を形成する。
【0013】
次に、図8に示すように、アクティブ層4にイオン注入された不純物をレーザビーム14の照射によってアニーリングする。
絶縁膜10はバンドギャップが8.0eV程度であるSiO2を形成する。これは、アニーリングを行うために照射する代表的なレーザビームであるXeClの波長が308nmであるため、これをエネルギーの大きさで換算すると4.0eVである。従って、これよりバンドギャップが大きい絶縁膜10を形成することにより、レーザビームの照射によるアニーリングの際にゲート電極8が損傷されることを防止できる。
【0014】
また、絶縁膜10としてバンドギャップエネルギーが5eVであるSiNxを用いることも可能である。
【0015】
【発明の効果】
以上説明したように、本発明ではアクティブ層のソース/ドレイン領域に不純物イオンの注入を行う際に、注入を行う不純物イオンがゲート電極に至ることを抑制することができ、ソース/ドレイン領域に注入されたイオンを活性化する際に、照射されるレーザビームを透過させることによってゲート電極の損傷を防止できるという効果がある。
【図面の簡単な説明】
【図1】 本発明の一実施形態に従う液晶表示装置用薄膜トランジスタ基板を示す断面図である。
【図2】 本発明の一実施形態に従う液晶表示装置用薄膜トランジスタ基板の製造工程を示す断面図である。
【図3】 本発明の一実施形態に従う液晶表示装置用薄膜トランジスタ基板の製造工程を示す断面図である。
【図4】 本発明の一実施形態に従う液晶表示装置用薄膜トランジスタ基板の製造工程を示す断面図である。
【図5】 本発明の一実施形態に従う液晶表示装置用薄膜トランジスタ基板の製造工程を示す断面図である。
【図6】 本発明の一実施形態に従う液晶表示装置用薄膜トランジスタ基板の製造工程を示す断面図である。
【図7】 本発明の一実施形態に従う液晶表示装置用薄膜トランジスタ基板の製造工程を示す断面図である。
【図8】 本発明の一実施形態に従う液晶表示装置用薄膜トランジスタ基板の製造工程を示す断面図である。
【符号の説明】
2 基板
6 ゲート絶縁膜
8 金属層(ゲート電極)
10 絶縁膜
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method of manufacturing a thin film transistor substrate for a liquid crystal display device, and more particularly, an insulating layer capable of transmitting all of the laser beam when activated by laser beam irradiation is formed on a gate electrode, and The present invention relates to a method of manufacturing a thin film transistor substrate for a liquid crystal display device that prevents a gate electrode from being damaged during ion implantation for forming a drain.
[0002]
[Prior art]
In general, a liquid crystal display device includes a thin film transistor substrate in which a large number of pixel units including thin film transistors and pixel electrodes are formed in a matrix, a gate line and a data line formed along a pixel row and a pixel column, respectively, and a common electrode And a liquid crystal substance sealed therebetween.
[0003]
At this time, the thin film transistor substrate and the gate electrode thereof receive a gate driving signal from the gate driving drive through the gate line to form a channel in the active layer. Accordingly, a data signal from the data driving drive is transmitted to the source electrode through the data line, and is transmitted to the pixel electrode through the semiconductor layer and the drain electrode.
[0004]
In such a liquid crystal display device, the active layer can be formed using polycrystalline silicon. At this time, as a method of activating by implanting impurity ions to form source / drain regions in the active layer formed of polycrystalline silicon, it can be divided into a high temperature process and a low temperature process based on the temperature during the process. it can.
First, the high temperature process is a method using an ion shower implantation technique at a high ion current or a high substrate temperature, that is, 200 ° C. to 300 ° C. In this method, it is difficult to use a photoresist mask at the time of ion shower implantation, and a process using a metal mask is required, which results in a complicated manufacturing process and high production costs.
[0005]
Next, the low-temperature process is a method in which ion implantation is performed at a low temperature, that is, a substrate temperature of 100 ° C. or less, and then activated using a laser.
In such an activation method using a laser, the gate electrode is exposed when laser irradiation is performed, so that hill rock is generated due to rapid thermal expansion. In particular, when impurities flow into the gate electrode after the gate electrode has undergone the ion implantation process, there is a problem in that the absorption coefficient with respect to the laser wavelength increases abruptly and hillocks are further generated.
[0006]
[Problems to be solved by the invention]
The object of the present invention is to reduce the manufacturing cost by using a low temperature process in which ions are implanted into the source / drain regions of the active layer at a low substrate temperature. An object of the present invention is to provide a method for manufacturing a thin film transistor substrate for a liquid crystal display device capable of preventing damage.
[0007]
[Means for Solving the Problems]
A method of manufacturing a thin film transistor substrate for a liquid crystal display device according to the present invention includes a step of forming a polycrystalline silicon film on a substrate, a step of forming a gate insulating film on the polycrystalline silicon film, and a step of forming a gate insulating film on the gate insulating film. A step of depositing a metal layer, a step of laminating an insulating film on the metal layer, a step of simultaneously patterning the metal layer and the insulating film to form a gate electrode and an ion blocking layer, and the polycrystal A step of forming a source / drain region by implanting impurity ions into the silicon film; and a step of annealing the impurity ion implanted into the source / drain region using a laser beam, wherein the ion blocking layer includes the impurity It is characterized by being formed of a material that prevents ions from moving to the surface of the gate electrode.
[0008]
Here, the insulating film is preferably formed using an insulating material having a band gap larger than the energy band gap of the irradiated laser beam. Specifically, it can be formed of silicon dioxide (SiO 2 ) or silicon nitride (SiNx).
As a result, when the impurity ions are implanted by irradiating the active layer on the substrate formed of the polycrystalline silicon film with a laser beam, the implanted ions are gated by the insulating film located on the gate electrode. The laser beam irradiated for activation without reaching the surface of the electrode passes through this insulating film and is totally reflected on the surface of the gate electrode. Thus, damage to the gate electrode can be prevented.
[0009]
Further, XeCl can be used as a laser beam used in the annealing step.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.
FIG. 1 is a cross-sectional view illustrating a thin film transistor substrate for a liquid crystal display device according to an embodiment of the present invention, and FIGS. 2 to 8 are cross-sectional views illustrating manufacturing processes of the thin film transistor substrate for a liquid crystal display device according to an embodiment of the present invention. .
[0011]
First, as shown in FIG. 2, an active layer 4 is formed by laminating a polycrystalline silicon film on the substrate 2.
Next, as shown in FIG. 3, a gate insulating film 6 is formed on the active layer 4 made of a polycrystalline silicon film using silicon oxide (SiO 2 ).
Next, as shown in FIG. 4, a metal layer 8 is laminated on the gate insulating film 6 with aluminum (Al).
[0012]
Next, as shown in FIG. 5, the insulating film 10 is laminated on the metal layer 8.
Next, as shown in FIG. 6, the metal layer 8 and the insulating film 10 are patterned simultaneously.
Next, as shown in FIG. 7, an ion implantation region 4-1 is formed by ion implantation 12 of n @ + impurities.
[0013]
Next, as shown in FIG. 8, the impurity ion-implanted into the active layer 4 is annealed by irradiation with a laser beam 14.
The insulating film 10 is formed of SiO 2 having a band gap of about 8.0 eV. This is because the wavelength of XeCl, which is a typical laser beam irradiated for annealing, is 308 nm, and this is 4.0 eV when converted in terms of energy. Therefore, by forming the insulating film 10 having a larger band gap than this, it is possible to prevent the gate electrode 8 from being damaged during the annealing due to the laser beam irradiation.
[0014]
Further, SiNx having a band gap energy of 5 eV can be used as the insulating film 10.
[0015]
【The invention's effect】
As described above, according to the present invention, when impurity ions are implanted into the source / drain regions of the active layer, the impurity ions to be implanted can be prevented from reaching the gate electrode, and the ions are implanted into the source / drain regions. When activating the generated ions, there is an effect that damage of the gate electrode can be prevented by transmitting the irradiated laser beam.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing a thin film transistor substrate for a liquid crystal display device according to an embodiment of the present invention.
FIG. 2 is a cross-sectional view showing a manufacturing process of a thin film transistor substrate for a liquid crystal display device according to an embodiment of the present invention.
FIG. 3 is a cross-sectional view showing a manufacturing process of a thin film transistor substrate for a liquid crystal display device according to an embodiment of the present invention.
FIG. 4 is a cross-sectional view showing a manufacturing process of a thin film transistor substrate for a liquid crystal display device according to an embodiment of the present invention.
FIG. 5 is a cross-sectional view showing a manufacturing process of a thin film transistor substrate for a liquid crystal display device according to an embodiment of the present invention.
FIG. 6 is a cross-sectional view showing a manufacturing process of a thin film transistor substrate for a liquid crystal display device according to an embodiment of the present invention.
FIG. 7 is a cross-sectional view showing a manufacturing process of a thin film transistor substrate for a liquid crystal display device according to an embodiment of the present invention.
FIG. 8 is a cross-sectional view showing a manufacturing process of a thin film transistor substrate for a liquid crystal display device according to an embodiment of the present invention.
[Explanation of symbols]
2 Substrate 6 Gate insulating film 8 Metal layer (gate electrode)
10 Insulating film

Claims (6)

基板上に多結晶シリコン膜を形成する工程と、
前記多結晶シリコン膜上にゲート絶縁膜を形成する工程と、
前記ゲート絶縁膜上に金属層を蒸着する工程と、
前記金属層上に絶縁膜を積層する工程と、
前記金属層と前記絶縁膜とを同時にパターニングしてゲート電極及びイオン遮断層を各々形成する工程と、
前記多結晶シリコン膜に不純物イオンを注入してソース/ドレイン領域を形成する工程と、
前記ソース/ドレイン領域にイオン注入された不純物をレーザビームを用いてアニーリングする工程とを含み、
前記イオン遮断層は前記不純物イオンが前記ゲート電極の表面に移動することを防止する物質で形成する液晶表示装置用薄膜トランジスタ基板の製造方法。
Forming a polycrystalline silicon film on the substrate;
Forming a gate insulating film on the polycrystalline silicon film;
Depositing a metal layer on the gate insulating film;
Laminating an insulating film on the metal layer;
Patterning the metal layer and the insulating film simultaneously to form a gate electrode and an ion blocking layer,
Implanting impurity ions into the polycrystalline silicon film to form source / drain regions;
Annealing the impurities ion-implanted into the source / drain regions using a laser beam,
The method of manufacturing a thin film transistor substrate for a liquid crystal display device, wherein the ion blocking layer is formed of a material that prevents the impurity ions from moving to the surface of the gate electrode.
前記絶縁膜は照射されるレーザビームのエネルギーバンドギャップより大きいバンドギャップを有する絶縁物質で形成することを特徴とする、請求項1に記載の液晶表示装置用薄膜トランジスタ基板の製造方法。  2. The method of manufacturing a thin film transistor substrate for a liquid crystal display device according to claim 1, wherein the insulating film is formed of an insulating material having a band gap larger than an energy band gap of an irradiated laser beam. 前記絶縁膜は二酸化ケイ素(SiO2)で形成することを特徴とする、請求項1に記載の液晶表示装置用薄膜トランジスタ基板の製造方法。 2. The method of manufacturing a thin film transistor substrate for a liquid crystal display device according to claim 1, wherein the insulating film is made of silicon dioxide (SiO2). 前記絶縁膜は窒化ケイ素(SiNx)で形成することを特徴とする、請求項1に記載の液晶表示装置用薄膜トランジスタ基板の製造方法。  2. The method of manufacturing a thin film transistor substrate for a liquid crystal display device according to claim 1, wherein the insulating film is made of silicon nitride (SiNx). 前記アニーリング工程で用いられるレーザビームとしてXeClを用いることを特徴とする、請求項1に記載の液晶表示装置用薄膜トランジスタ基板の製造方法。  2. The method of manufacturing a thin film transistor substrate for a liquid crystal display device according to claim 1, wherein XeCl is used as a laser beam used in the annealing step. 前記ゲート電極はアルミニウムで形成することを特徴とする、請求項1に記載の液晶表示装置用薄膜トランジスタ基板の製造方法。  2. The method of manufacturing a thin film transistor substrate for a liquid crystal display device according to claim 1, wherein the gate electrode is made of aluminum.
JP27048196A 1995-10-12 1996-10-14 Method for manufacturing thin film transistor substrate for liquid crystal display device Expired - Fee Related JP3774278B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1019950035200A KR100188090B1 (en) 1995-10-12 1995-10-12 Fabrication method of thin film transistor panel for lcd
KR1995P35200 1995-10-12

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2005172379A Division JP4312741B2 (en) 1995-10-12 2005-06-13 Thin film transistor substrate for liquid crystal display device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH09133928A JPH09133928A (en) 1997-05-20
JP3774278B2 true JP3774278B2 (en) 2006-05-10

Family

ID=19430017

Family Applications (3)

Application Number Title Priority Date Filing Date
JP27048196A Expired - Fee Related JP3774278B2 (en) 1995-10-12 1996-10-14 Method for manufacturing thin film transistor substrate for liquid crystal display device
JP2005172379A Expired - Fee Related JP4312741B2 (en) 1995-10-12 2005-06-13 Thin film transistor substrate for liquid crystal display device and manufacturing method thereof
JP2008232509A Withdrawn JP2009048199A (en) 1995-10-12 2008-09-10 Thin film transistor substrate for liquid crystal display device and method for manufacturing the same

Family Applications After (2)

Application Number Title Priority Date Filing Date
JP2005172379A Expired - Fee Related JP4312741B2 (en) 1995-10-12 2005-06-13 Thin film transistor substrate for liquid crystal display device and manufacturing method thereof
JP2008232509A Withdrawn JP2009048199A (en) 1995-10-12 2008-09-10 Thin film transistor substrate for liquid crystal display device and method for manufacturing the same

Country Status (3)

Country Link
JP (3) JP3774278B2 (en)
KR (1) KR100188090B1 (en)
TW (1) TWI246620B (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3318285B2 (en) 1999-05-10 2002-08-26 松下電器産業株式会社 Method for manufacturing thin film transistor
KR101781175B1 (en) * 2015-08-31 2017-09-22 가천대학교 산학협력단 Junctionless field-effect transistor having ultra-thin low-crystalline-silicon channel and fabrication method thereof
CN109920731B (en) * 2019-03-20 2021-03-19 上海华虹宏力半导体制造有限公司 Polycrystalline silicon thin film transistor and manufacturing method thereof
CN115497816B (en) * 2022-10-19 2023-10-17 弘大芯源(深圳)半导体有限公司 Semiconductor field effect integrated circuit and preparation method thereof

Also Published As

Publication number Publication date
JP2005326867A (en) 2005-11-24
KR970024303A (en) 1997-05-30
TWI246620B (en) 2006-01-01
JP4312741B2 (en) 2009-08-12
JPH09133928A (en) 1997-05-20
KR100188090B1 (en) 1999-07-01
JP2009048199A (en) 2009-03-05

Similar Documents

Publication Publication Date Title
US6259120B1 (en) Semiconductor device and method for fabricating the same
JP3325992B2 (en) Method for manufacturing semiconductor device
JPH11233790A (en) Manufacture of thin film transistor
US6777763B1 (en) Semiconductor device and method for fabricating the same
JPH01187814A (en) Manufacture of thin film semiconductor device
JPS639978A (en) Manufacture of thin-film transistor
JP2003045889A (en) Field-effect transistor, manufacturing method therefor, liquid crystal display device using the same and manufacturing method therefor
JP4312741B2 (en) Thin film transistor substrate for liquid crystal display device and manufacturing method thereof
JPH06333823A (en) Manufacture of polycrystalline silicon film, manufacture of thin film transistor and remote plasma device
JP3347340B2 (en) Method for manufacturing thin film transistor
JPH04340725A (en) Manufacture of thin film transistor
JP3444047B2 (en) Method for manufacturing semiconductor device
JP4249886B2 (en) Method for manufacturing thin film semiconductor device
JP2546524B2 (en) Method for manufacturing thin film transistor
JP2000036602A (en) Thin-film transistor, manufacture of it, and display device
JP3413710B2 (en) Method for manufacturing thin film transistor
JPH0582552A (en) Manufacture of thin film transistor
JP2831006B2 (en) Method for manufacturing thin film transistor
JP3467571B2 (en) Method for manufacturing thin film transistor
JPS62119974A (en) Manufacture of thin film transistor
JPH08139016A (en) Manufacture of thin film integrated circuit
JP3075498B2 (en) Method for manufacturing thin film transistor
JPH1187724A (en) Manufacture of semiconductor device
JPH09237898A (en) Polycrystal semiconductor tft, manufacture thereof and tft substrate
JP3493160B2 (en) Method for manufacturing semiconductor device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040507

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040518

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20040528

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20040819

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041214

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20050314

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20050318

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060124

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060217

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100224

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100224

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110224

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110224

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120224

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120224

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130224

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130224

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140224

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140224

Year of fee payment: 8

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees