JPH09237898A - Polycrystal semiconductor tft, manufacture thereof and tft substrate - Google Patents

Polycrystal semiconductor tft, manufacture thereof and tft substrate

Info

Publication number
JPH09237898A
JPH09237898A JP8043485A JP4348596A JPH09237898A JP H09237898 A JPH09237898 A JP H09237898A JP 8043485 A JP8043485 A JP 8043485A JP 4348596 A JP4348596 A JP 4348596A JP H09237898 A JPH09237898 A JP H09237898A
Authority
JP
Japan
Prior art keywords
insulating film
tft
gate insulating
polycrystalline semiconductor
pattern
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8043485A
Other languages
Japanese (ja)
Inventor
Kunio Masushige
邦雄 増茂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AG Technology Co Ltd
Original Assignee
AG Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AG Technology Co Ltd filed Critical AG Technology Co Ltd
Priority to JP8043485A priority Critical patent/JPH09237898A/en
Publication of JPH09237898A publication Critical patent/JPH09237898A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1259Multistep manufacturing methods
    • H01L27/1288Multistep manufacturing methods employing particular masking sequences or specially adapted masks, e.g. half-tone mask
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78606Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device
    • H01L29/78618Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device characterised by the drain or the source properties, e.g. the doping structure, the composition, the sectional shape or the contact structure
    • H01L29/78621Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device characterised by the drain or the source properties, e.g. the doping structure, the composition, the sectional shape or the contact structure with LDD structure or an extension or an offset region or characterised by the doping profile
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Thin Film Transistor (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent the increase in the manufacturing cost by thinning the extended part of the value of the specific range of a gate insulating film pattern without masking with a gate electrode pattern, and thinning ion impurity. SOLUTION: The gate pattern 5 of Cr to become a gate electrode is formed by photolithography. After a gate insulating film is etched without releasing photoresist, a substrate is again dipped in etchant of Cr, and etching is proceeded from the side of the pattern 5. The end face of the pattern 5 is formed 0.1 to 2.0μm at the inside from the gate insulating film. After the photoresist on the Cr is removed, photoresist is deposited as the mask layer 6 covering the part to become n-channel TFT.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は画像表示装置等の駆
動に使用される多結晶半導体TFT、その製造方法及び
TFT基板に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a polycrystalline semiconductor TFT used for driving an image display device, a method for manufacturing the same, and a TFT substrate.

【0002】[0002]

【従来の技術】近年、高品位の画像表示を提供する液晶
表示素子において、画素ごとの駆動素子として薄膜トラ
ンジスタ(TFT)等が用いられている。特に多結晶シ
リコン薄膜トランジスタの開発が活発に行われている。
多結晶シリコンTFTは非晶質シリコンTFTと比べて
電流供給能力が大きいため、液晶表示素子の個々の画素
の液晶の駆動のみならず、走査線、信号線の駆動回路を
同一基板上に形成できる利点を有する。多結晶シリコン
TFTを画素の駆動素子に用いる場合、オフ電流を抑制
する必要があり、ゲートオフセット構造がしばしば用い
られる。
2. Description of the Related Art In recent years, a thin film transistor (TFT) or the like has been used as a driving element for each pixel in a liquid crystal display element which provides a high quality image display. In particular, polycrystalline silicon thin film transistors have been actively developed.
Since the polycrystalline silicon TFT has a larger current supply capability than the amorphous silicon TFT, not only the driving of the liquid crystal of each pixel of the liquid crystal display element but also the driving circuit of the scanning line and the signal line can be formed on the same substrate. Have advantages. When a polycrystalline silicon TFT is used as a pixel driving element, it is necessary to suppress off-current, and a gate offset structure is often used.

【0003】微細なゲートオフセットを基板の面内にお
いて、再現性よく一様に形成するためにゲート電極、ゲ
ートオフセット、ソース・ドレイン領域を自己整合的に
形成する方法が特開平5−47791(従来例1)に開
示されている。図3を参照しながら、レーザ光を用いて
非晶質半導体を多結晶化し、形成した多結晶半導体TF
Tを以下に説明する。
A method of forming a gate electrode, a gate offset, and a source / drain region in a self-aligned manner in order to form a fine gate offset uniformly in a plane of a substrate with good reproducibility is disclosed in Japanese Patent Laid-Open No. 5-47791. Example 1). With reference to FIG. 3, a polycrystalline semiconductor TF formed by polycrystallizing an amorphous semiconductor by using laser light is formed.
T will be described below.

【0004】基板1上にパッシベーション膜2、非晶質
半導体層を積層し、レーザ光照射による多結晶化を行
い、フォトリソグラフィにより多結晶半導体薄膜3のパ
ターンを形成する。その上にゲート絶縁膜4、ゲート電
極材料を積層し、再びフォトリソグラフィによりゲート
電極のパターン5を形成する。その後、フォトレジスト
を剥離せずにゲート絶縁膜をエッチングし、さらにゲー
ト電極の側面よりエッチングを進行させることにより、
ゲート電極の端面を0.1〜2.0μmゲート絶縁膜よ
り内側に形成する。
A passivation film 2 and an amorphous semiconductor layer are laminated on a substrate 1, polycrystallized by laser light irradiation, and a pattern of the polycrystalline semiconductor thin film 3 is formed by photolithography. A gate insulating film 4 and a gate electrode material are laminated thereon, and a gate electrode pattern 5 is formed again by photolithography. After that, the gate insulating film is etched without peeling off the photoresist, and the etching is further advanced from the side surface of the gate electrode.
The end face of the gate electrode is formed inside the gate insulating film of 0.1 to 2.0 μm.

【0005】イオン注入法によりゲート電極をマスクに
多結晶半導体層に不純物イオンをドーピングし、不純物
イオン活性化のための熱処理を行いソース・ドレイン領
域7を形成する。さらに層間絶縁膜を堆積し、画素電極
のITOを成膜、パターニングし、ソース・ドレイン領
域上にコンタクトホールを形成し、その上にソース電極
・ドレイン電極を形成する。保護膜SiNx を成膜し、
窓あけした。
Impurity ions are doped into the polycrystalline semiconductor layer using the gate electrode as a mask by the ion implantation method, and heat treatment for activating the impurity ions is performed to form the source / drain regions 7. Further, an interlayer insulating film is deposited, ITO of the pixel electrode is formed and patterned, contact holes are formed on the source / drain regions, and source / drain electrodes are formed thereon. Forming a protective film SiN x ,
I opened the window.

【0006】また、TFTの構造としてチャネル領域と
ソース・ドレイン領域との間に低不純物濃度領域を形成
したものが知られている。信学技報(TECHNICA
LREPORT OF IEICE、EID94−14
2、ED94−170、SDM94−199(1995
−02))43〜48頁)に、イオン注入法を用いて形
成したLDD構造を有する多結晶シリコン半導体の特性
についての開示がある(従来例2)。
Further, as a structure of a TFT, a structure in which a low impurity concentration region is formed between a channel region and a source / drain region is known. Technical report (TECHNICA)
LREPORT OF IEICE, EID94-14
2, ED94-170, SDM94-199 (1995
-02)) 43 to 48), there is a disclosure about the characteristics of a polycrystalline silicon semiconductor having an LDD structure formed by using an ion implantation method (Prior art example 2).

【0007】しかし、従来例2には多結晶半導体の形成
にレーザアニールを用いることは特に記載がなく、TF
Tのオフセット構造におけるゲート絶縁膜の厚みを制御
することは全く触れられていない。
However, there is no particular description in the conventional example 2 that laser annealing is used to form a polycrystalline semiconductor, and TF is used.
There is no mention of controlling the thickness of the gate insulating film in the T offset structure.

【0008】[0008]

【発明が解決しようとする課題】TFTのゲートオフセ
ット構造はオン電流を減少させるため、周辺駆動回路用
のTFTにはふさわしくない。特に電界効果移動度の小
さいpチャネルTFTの場合オフセット部の抵抗も大き
くオン電流の低下が著しい。
Since the gate offset structure of the TFT reduces the ON current, it is not suitable for the TFT for the peripheral drive circuit. Particularly in the case of a p-channel TFT having a low field effect mobility, the resistance of the offset portion is large and the on-current is significantly reduced.

【0009】上記従来技術のゲートオフセット構造にお
いては、イオン注入時の加速電圧を充分大きくするか、
ゲート絶縁膜を薄くすることにより、ソース・ドレイン
領域のイオン注入時にゲートオフセット部分の半導体層
にもゲート絶縁膜を通過して微量の不純物イオンが注入
される。そして、いわゆるLDD構造が形成されること
によりTFTのオン電流の低下を防止できる。
In the above-mentioned prior art gate offset structure, the acceleration voltage at the time of ion implantation should be sufficiently high,
By thinning the gate insulating film, a small amount of impurity ions are also implanted through the gate insulating film into the semiconductor layer in the gate offset portion during ion implantation in the source / drain regions. Then, by forming a so-called LDD structure, it is possible to prevent a decrease in the on-current of the TFT.

【0010】しかしイオン注入時の加速電圧を大きくす
るとイオン注入時の基板の温度上昇が大きくなる。その
ため、TFTでCMOS回路を形成する場合、nチャネ
ルTFTとpチャネルTFTを作り分けるためのイオン
注入時のマスク(フォトレジスト層)が熱により変質
し、ひび割れを発生したり剥離しにくくなったりといっ
た問題が起きる。また、高加速電圧のTFT基板用イオ
ン注入装置はきわめて大型で高価なものとなり、TFT
基板の製造コストを増大させる。
However, if the acceleration voltage during ion implantation is increased, the temperature rise of the substrate during ion implantation will increase. Therefore, when a CMOS circuit is formed by TFTs, the mask (photoresist layer) at the time of ion implantation for forming the n-channel TFT and the p-channel TFT is altered by heat, and cracks are generated or peeling becomes difficult. I have a problem. Moreover, the ion implantation device for a TFT substrate with a high acceleration voltage becomes extremely large and expensive.
Increases the manufacturing cost of the substrate.

【0011】薄化したゲート絶縁膜を通してイオン注入
を行う製造法では、高加速電圧でのイオン注入に限界が
ある。つまり半導体製造技術において一般的に不純物イ
オンとして用いられる物質中で、最も質量数の小さいホ
ウ素イオンを注入する場合でもフォトレジストの耐熱性
に見合う加速電圧としなければならない。高い加速電圧
を用いることには製造装置、材料、製造温度等に起因す
る限界があり、ゲート絶縁膜の厚みを薄くすることにつ
いても素子構造の点で問題があった。
In the manufacturing method in which the ion implantation is performed through the thinned gate insulating film, there is a limit to the ion implantation at a high acceleration voltage. That is, even in the case of implanting boron ions having the smallest mass number among the substances generally used as impurity ions in the semiconductor manufacturing technology, the acceleration voltage must be suitable for the heat resistance of the photoresist. There is a limit in using a high accelerating voltage due to the manufacturing apparatus, material, manufacturing temperature, etc., and there is a problem in reducing the thickness of the gate insulating film in terms of the element structure.

【0012】[0012]

【課題を解決するための手段】本発明は上記の問題を解
決すべくなされたものであり、基板上に半導体層、ゲー
ト絶縁膜、ゲート電極の3つの材料層を順に形成し、ゲ
ート絶縁膜パターンより0.1〜2.0μm内側にゲー
ト電極パターンの端面を形成し、ゲート電極パターン及
びゲート絶縁膜パターンをマスクとして半導体層に不純
物イオンを注入し、半導体層のチャネル領域とソース・
ドレイン領域との間に低不純物濃度領域を形成する多結
晶半導体TFTの製造方法において、ゲート電極パター
ンにマスクされないゲート絶縁膜パターンの0.1〜
2.0μmのはみ出し部を薄化し、不純物イオンを薄化
せしめられたゲート絶縁膜パターンを通して半導体層に
注入することを特徴とする多結晶半導体TFTの製造方
法を提供する。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and a gate insulating film is formed by sequentially forming three material layers of a semiconductor layer, a gate insulating film and a gate electrode on a substrate. An end face of the gate electrode pattern is formed 0.1 to 2.0 μm inward of the pattern, and impurity ions are implanted into the semiconductor layer using the gate electrode pattern and the gate insulating film pattern as a mask to form a channel region and a source / source region of the semiconductor layer.
In a method of manufacturing a polycrystalline semiconductor TFT in which a low impurity concentration region is formed between a gate electrode pattern and a gate insulating film pattern,
Provided is a method for manufacturing a polycrystalline semiconductor TFT, characterized in that a protruding portion of 2.0 μm is thinned and impurity ions are injected into a semiconductor layer through a thinned gate insulating film pattern.

【0013】また、ゲート絶縁膜の材料層の厚さを12
0〜150nm、ゲート絶縁膜パターンの薄化された部
分の厚さを80〜100nmとし、ホウ素原子を含む不
純物イオンを加速電圧15〜25kVで注入する上記の
多結晶半導体TFTの製造方法を提供する。
Further, the thickness of the material layer of the gate insulating film is 12
Provided is a method for manufacturing the above-mentioned polycrystalline semiconductor TFT in which the thickness of the thinned portion of the gate insulating film pattern is 0 to 150 nm, the thickness of the gate insulating film pattern is 80 to 100 nm, and impurity ions containing boron atoms are implanted at an acceleration voltage of 15 to 25 kV. .

【0014】また、基板上に、低不純物濃度領域を有す
る多結晶半導体TFTと、低不純物濃度領域を有しない
多結晶半導体TFTの両方を形成する上記の多結晶半導
体TFTの製造方法を提供する。
Also provided is a method for manufacturing a polycrystalline semiconductor TFT as described above, wherein both a polycrystalline semiconductor TFT having a low impurity concentration region and a polycrystalline semiconductor TFT having no low impurity concentration region are formed on a substrate.

【0015】また、フォトレジストパターンをマスクと
して用いてゲート絶縁膜パターンを薄化する上記の多結
晶半導体TFTの製造方法を提供する。
Further, there is provided a method for manufacturing the above-mentioned polycrystalline semiconductor TFT, in which the gate insulating film pattern is thinned by using the photoresist pattern as a mask.

【0016】また、基板上に多結晶半導体層、ゲート絶
縁膜、ゲート電極を備え、多結晶半導体層のチャネル領
域とソース・ドレイン領域との間に低不純物濃度領域を
有する多結晶半導体TFTにおいて、ゲート電極に覆わ
れないオフセット部分のゲート絶縁膜の厚みが、チャネ
ルの非オフセット部分よりも20〜70nm薄く設けら
れてなることを特徴とする多結晶半導体TFTを提供す
る。
Further, in a polycrystalline semiconductor TFT having a polycrystalline semiconductor layer, a gate insulating film and a gate electrode on a substrate and having a low impurity concentration region between a channel region and a source / drain region of the polycrystalline semiconductor layer, Provided is a polycrystalline semiconductor TFT, wherein a thickness of a gate insulating film in an offset portion not covered with a gate electrode is 20 to 70 nm thinner than that in a non-offset portion of a channel.

【0017】また、オフセット部分のゲート絶縁膜の厚
みが80〜100nm、チャネル部分のゲート絶縁膜の
厚さが120〜150nmである上記の多結晶半導体T
FTを提供する。
The polycrystalline semiconductor T described above has a gate insulating film having a thickness of 80 to 100 nm in the offset portion and a gate insulating film having a thickness of 120 to 150 nm in the channel portion.
Provide FT.

【0018】また、チャネル長が3〜10μmである上
記の多結晶半導体TFTを提供する。
Also provided is the above-mentioned polycrystalline semiconductor TFT having a channel length of 3 to 10 μm.

【0019】また、レーザアニールによって多結晶半導
体が形成されてなる上記の多結晶半導体TFTを提供す
る。
Also provided is the above-mentioned polycrystalline semiconductor TFT in which a polycrystalline semiconductor is formed by laser annealing.

【0020】また、半導体層とソース・ドレイン領域と
の間に低不純物濃度領域を持たない多結晶半導体TFT
と上記の多結晶半導体TFTの両方が設けられてなるこ
とを特徴とするTFT基板を提供する。
A polycrystalline semiconductor TFT having no low impurity concentration region between the semiconductor layer and the source / drain regions
And a polycrystalline semiconductor TFT described above are provided.

【0021】[0021]

【発明の実施の形態】従来のTFTのオフセット構造に
おいてもイオン注入時の加速電圧を大きくすることによ
りゲートオフセット部分の半導体層にもゲート絶縁膜を
通過して微量の不純物イオンを注入して、TFTのLD
D構造が得られた。そしてこの構成によってTFTのオ
ン電流の低下を防止できる。
Even in the conventional TFT offset structure, a small amount of impurity ions are implanted into the semiconductor layer in the gate offset portion through the gate insulating film by increasing the acceleration voltage during ion implantation, LD of TFT
A D structure was obtained. With this configuration, it is possible to prevent the on-current of the TFT from decreasing.

【0022】例えばpチャネルTFTを形成するために
ホウ素イオンを注入する場合なら、ゲート絶縁膜SiO
2 膜120nmに対して30kV程度の加速電圧でソー
ス・ドレインのドーピングと同時にオフセット部分の半
導体層に必要充分な量のホウ素イオンを注入できる。
For example, when boron ions are implanted to form a p-channel TFT, the gate insulating film SiO
With the accelerating voltage of about 30 kV with respect to 120 nm of the two films, it is possible to dope the source / drain and simultaneously implant a necessary and sufficient amount of boron ions into the semiconductor layer in the offset portion.

【0023】しかしこの製造条件でTFTのCMOS回
路を形成しようとすると、前述のようにnチャネルTF
Tをマスクしているフォトレジストが熱により変質し、
ひび割れを発生したり剥離しにくくなるといった問題が
起きる。このように、フォトレジストが耐えうる加速電
圧は25kV程度までであることが実験でわかった。
However, if an attempt is made to form a TFT CMOS circuit under these manufacturing conditions, as described above, the n-channel TF is used.
The photoresist masking T is deteriorated by heat,
Problems such as cracking and difficulty in peeling occur. As described above, it has been experimentally found that the acceleration voltage that the photoresist can withstand is up to about 25 kV.

【0024】逆に加速電圧20kVでソース・ドレイン
のドーピングと同時にオフセット部分の半導体層に必要
充分な量のホウ素イオンを注入するためには、オフセッ
ト部分のゲート絶縁膜の厚さは100nm以下とする。
ゲート絶縁膜を薄くすると耐圧が低くなり、イオン注入
時における低不純物領域の形成を制御しにくくなる。そ
のため、厚みを80〜90nmとすることが好ましい。
On the contrary, in order to implant a necessary and sufficient amount of boron ions into the semiconductor layer in the offset portion at the same time as doping the source / drain at an acceleration voltage of 20 kV, the thickness of the gate insulating film in the offset portion is set to 100 nm or less. .
When the gate insulating film is thin, the breakdown voltage becomes low, and it becomes difficult to control the formation of the low impurity region during ion implantation. Therefore, the thickness is preferably 80 to 90 nm.

【0025】TFTのサイズとしては、チャネル長が短
い方、例えば20μm以下の方が効果が大きく、特に3
〜10μmの範囲が好ましい。オフセット長にについて
は0.2〜1.0μmの範囲ではオン電流がほぼ一定と
なり、製造上のプロセスマージンが広くなり好ましい。
Regarding the size of the TFT, the shorter the channel length, for example, 20 μm or less, the larger the effect is.
The range of 10 μm is preferable. With respect to the offset length, it is preferable that the ON current is substantially constant in the range of 0.2 to 1.0 μm and the manufacturing process margin is wide.

【0026】LDD構造の場合、オフセット長との相関
性がやや低下し、およそ15V程度となっている。その
ばらつきを一定の範囲に抑えうる。TN液晶及び液晶/
高分子複合体型素子の駆動が可能である。また、LDD
構造であって、TFTの下層に金属遮光膜がある場合に
は、遮光膜電位の影響を受けることによるオフ耐圧の低
下が発生しにくい利点がある。
In the case of the LDD structure, the correlation with the offset length is slightly lowered to about 15V. The variation can be suppressed within a certain range. TN liquid crystal and liquid crystal /
It is possible to drive a polymer composite type element. Also, LDD
In the structure, when the metal light-shielding film is provided in the lower layer of the TFT, there is an advantage that the off breakdown voltage is less likely to decrease due to the influence of the light-shielding film potential.

【0027】オフセット部分のゲート絶縁膜薄化のため
のエッチングは、ゲート電極、ゲートオフセット構造形
成後、イオン注入前に行えばよいが、エッチング量を必
要最小限にすることにより他の膜の膜減りやゲート電極
下のオーバーハング形成を抑える必要がある。
The etching for thinning the gate insulating film in the offset portion may be performed after the gate electrode and the gate offset structure are formed and before the ion implantation, but the film thickness of other films can be reduced by minimizing the etching amount. It is necessary to suppress the decrease and the formation of overhangs under the gate electrode.

【0028】イオン注入の加速電圧は低いほど製造コス
トも低く、マスクに用いるフォトレジスト等へのダメー
ジも小さくなる。しかし、上記したようにオフセット部
分のゲート絶縁膜薄化にも限度があるので15〜25k
V程度は必要である。
The lower the accelerating voltage for ion implantation, the lower the manufacturing cost and the less damage to the photoresist or the like used for the mask. However, as described above, there is a limit to the thinning of the gate insulating film in the offset portion, so it is 15 to 25 k.
About V is necessary.

【0029】オフセット部分のゲート絶縁膜薄化のため
のエッチングは、基板全面に対して行ってもよく、nチ
ャネルTFTをマスクするフォトレジストを用いてpチ
ャネルTFTに対してのみ行ってもよく、必要に応じて
専用のマスクを用いて同一基板面内でオフセット構造を
有するTFTと作り分けてもよい。
The etching for thinning the gate insulating film at the offset portion may be performed on the entire surface of the substrate, or may be performed only on the p-channel TFT using a photoresist masking the n-channel TFT. If necessary, a TFT having an offset structure may be formed separately on the same substrate surface by using a dedicated mask.

【0030】以上、ホウ素イオン注入を用いたpチャネ
ルTFT及びCMOS回路形成の場合についてを説明し
たが、本発明は、他の注入イオン種、他の膜構成の場合
においても適用でき、ソース・ドレイン領域とオフセッ
ト部の同時注入の条件を最適化できる。オフセット部へ
の低濃度注入は深さ方向の不純物濃度が指数関数的に変
化する領域を用いているので、ゲート絶縁膜の膜厚減少
はわずかでも効果が大きい。次に図1を参照しながら本
発明の実施例を説明する。
The case of forming a p-channel TFT and a CMOS circuit using boron ion implantation has been described above. However, the present invention can be applied to other implanted ion species and other film configurations, and source / drain. The conditions for simultaneous implantation of the region and the offset portion can be optimized. Since the low-concentration implantation into the offset portion uses the region in which the impurity concentration in the depth direction changes exponentially, even a slight reduction in the thickness of the gate insulating film is effective. Next, an embodiment of the present invention will be described with reference to FIG.

【0031】[0031]

【実施例】【Example】

(実施例1)ガラス基板1上にプラズマCVD法により
200nm厚のSiO2 の下地膜2を形成し、100n
m厚のa−Si層3を基板温度300℃で形成し、次に
50nm厚のSiNx の反射防止膜を350℃で形成し
た。8Wのアルゴンイオンレーザ光を約100μm径に
集光し、13m/sの線速度で走査照射し、a−Si層
3の多結晶化を行った。多結晶化の工程は約2分程度で
完了した。
(Example 1) forming the base film 2 of SiO 2 in 200nm thickness by the plasma CVD method on a glass substrate 1, 100n
An m-thick a-Si layer 3 was formed at a substrate temperature of 300 ° C., and then a 50 nm thick SiN x antireflection film was formed at 350 ° C. 8 W of argon ion laser light was condensed to a diameter of about 100 μm, and scanning irradiation was performed at a linear velocity of 13 m / s to polycrystallize the a-Si layer 3. The polycrystallization process was completed in about 2 minutes.

【0032】反射防止膜をエッチング除去した後、フォ
トリソグラフィにより多結晶Siを島状にパターン化
し、その上にプラズマCVD法によりSiO2 の120
nmからなるゲート絶縁膜4を350℃にて堆積し、さ
らにゲート電極材料としてCr150nmをスパッタリ
ング法により300℃で成膜した。
After removing the antireflection film by etching, the polycrystalline Si is patterned into an island shape by photolithography, and SiO 2 of 120 is formed thereon by plasma CVD.
A gate insulating film 4 having a thickness of 150 nm was deposited at 350 ° C., and Cr 150 nm was formed as a gate electrode material at 300 ° C. by a sputtering method.

【0033】フォトリソグラフィによりゲート電極とな
るCrのゲートパターン5を形成した。フォトレジスト
を剥離することなくゲート絶縁膜をエッチングした後、
再びCrのエッチング液に基板を浸漬し、ゲートパター
ン5の側面よりエッチングを進行させ、ゲートパターン
5の端面を0.7±0.1μmだけ、ゲート絶縁膜より
内側に形成した。
A Cr gate pattern 5 serving as a gate electrode was formed by photolithography. After etching the gate insulating film without peeling off the photoresist,
The substrate was again immersed in a Cr etching solution, and etching was advanced from the side surface of the gate pattern 5 to form the end surface of the gate pattern 5 by 0.7 ± 0.1 μm inside the gate insulating film.

【0034】Cr上のフォトレジストを除去した後、n
チャネルのTFTになる部分を覆うマスク層6としてフ
ォトレジストを堆積した。フォトレジストは東京応化製
OFPR−800を用いた。ここで0.5%フッ酸水溶
液に2分間基板を浸漬しゲートパターン5の端面より約
0.7μmはみだしているゲート絶縁膜を約90nm厚
までエッチングによって薄化した。
After removing the photoresist on Cr, n
Photoresist was deposited as a mask layer 6 covering the part of the channel to be the TFT. As the photoresist, OFPR-800 manufactured by Tokyo Ohka was used. Here, the substrate was immersed in a 0.5% hydrofluoric acid aqueous solution for 2 minutes, and the gate insulating film protruding by about 0.7 μm from the end face of the gate pattern 5 was thinned by etching to a thickness of about 90 nm.

【0035】次に、水素希釈10%B26 ガスを原料
ガスとしたイオンシャワー法(イオン源から質量分離せ
ず大面積面ビームを基板に照射するイオン注入法)によ
りゲートパターン5のCrをマスクに多結晶Siの島の
ソース・ドレイン領域7となる部分に、Hx 、BHx
2x イオンを加速電圧20kV、ドーズ量1×10
16個/cm2 の条件でドーピングした。
Next, the Cr of the gate pattern 5 is formed by the ion shower method (ion implantation method of irradiating the substrate with a large-area surface beam without mass separation from the ion source) using 10% B 2 H 6 gas diluted with hydrogen as a source gas. With the mask as a mask, H x , BH x ,
B 2 H x ions are accelerated at a voltage of 20 kV and a dose of 1 × 10
Doping was performed under the condition of 16 / cm 2 .

【0036】ゲートパターン5をマスクとしているが、
ゲートパターン5の端面よりはみだしているゲート絶縁
膜が薄化されているので、この下の部分の多結晶半導体
層8にも少量のB原子がドープされ、電気的に低抵抗化
されLDD構造のTFTを形成できた。
Although the gate pattern 5 is used as a mask,
Since the gate insulating film protruding from the end face of the gate pattern 5 is thinned, a small amount of B atoms is also doped into the polycrystalline semiconductor layer 8 below this, and the electrical resistance is lowered to form the LDD structure. A TFT could be formed.

【0037】マスク層6を除去した後、水素希釈5%P
3 ガスを原料ガスとしたイオンシャワー法により加速
電圧5kV、ドーズ量1×1015個/cm2 の条件でド
ーピングを行い、不純物イオン活性化のための熱処理を
行った。さらに層間絶縁膜としてSiNx を堆積し、画
素電極のITOを成膜、パターニングし、ソース・ドレ
イン領域上にコンタクトホールを形成し、その上にソー
ス・ドレインを形成した。保護膜SiNx を成膜、窓あ
けした後熱処理を行い、TFT特性を測定した。
After removing the mask layer 6, hydrogen diluted with 5% P
Doping was performed by an ion shower method using H 3 gas as a source gas under the conditions of an acceleration voltage of 5 kV and a dose amount of 1 × 10 15 pieces / cm 2 , and heat treatment for activating impurity ions was performed. Further, SiN x was deposited as an interlayer insulating film, ITO of the pixel electrode was formed and patterned, contact holes were formed on the source / drain regions, and source / drain were formed thereon. A protective film SiN x was formed, a window was opened, and then heat treatment was performed to measure TFT characteristics.

【0038】図2は本発明の製造法と従来の製造法によ
り形成されたpチャネル多結晶SiTFTの電界効果移
動度のチャネル長Lへの依存性を示すグラフである。従
来のオフセット構造のTFT(符号10)ではオフセッ
ト部分の抵抗が大きいためLが小さくなるとオフセット
部分の抵抗が支配的になり実効的な移動度が著しく減少
する。
FIG. 2 is a graph showing the dependence of the field effect mobility of the p-channel polycrystalline Si TFT formed by the manufacturing method of the present invention and the conventional manufacturing method on the channel length L. In the conventional TFT having the offset structure (reference numeral 10), since the resistance of the offset portion is large, when L is small, the resistance of the offset portion becomes dominant and the effective mobility is significantly reduced.

【0039】一方、本発明により形成されたTFT(符
号20)はチャネル長Lに関する依存性が小さく、TF
Tとして大きな移動度が得られた。TFTのオフセット
部分の抵抗が充分減少していることがわかった。
On the other hand, the TFT (reference numeral 20) formed according to the present invention has a small dependence on the channel length L, and thus TF
A large mobility was obtained as T. It was found that the resistance at the offset portion of the TFT was sufficiently reduced.

【0040】本発明によれば、従来の製造方法からエッ
チング工程を1回追加するだけで、きわめて高特性のT
FTを同一のTFT基板の面内において一様に安定に形
成できた。
According to the present invention, it is possible to obtain a T having extremely high characteristics by adding an etching step once from the conventional manufacturing method.
The FT could be uniformly and stably formed within the same TFT substrate.

【0041】(実施例2)実施例1と同様にして、行駆
動回路を同一基板面内に集積したTFT基板を形成し
た。対角長が9.1cmで、384×288の画素数と
し、行駆動回路は冗長回路付きスタティックレジスタと
電流増幅部を含み、行方向55mm×列方向3.5mm
程度の面積の中に納めることができた。従来技術では列
方向で6mm幅が必要であった。この行駆動回路で対角
長31cm(高密度情報の表示を行うエンジニアリング
ワークステーションの画素数、例えば1024×128
0)までの表示装置における駆動回路を形成できること
を実験によって確認した。形成したTFTの電界効果移
動度はnチャネル15cm2 /V・S、pチャネルのT
FTで20cm2 /V・Sであった。
(Example 2) In the same manner as in Example 1, a TFT substrate in which row driving circuits were integrated on the same substrate surface was formed. The diagonal length is 9.1 cm, the number of pixels is 384 × 288, and the row drive circuit includes a static register with a redundant circuit and a current amplification unit, and the row direction is 55 mm × the column direction is 3.5 mm.
It was possible to fit within the area. The prior art required a width of 6 mm in the column direction. This row drive circuit has a diagonal length of 31 cm (the number of pixels of an engineering workstation for displaying high density information, for example, 1024 × 128).
It was confirmed by experiments that drive circuits in display devices up to 0) can be formed. The field effect mobility of the formed TFT is n channel 15 cm 2 / V · S, p channel T
The FT was 20 cm 2 / V · S.

【0042】このTFT基板を用いてカラー液晶表示装
置を形成した。従来外付けであった駆動回路を同一基板
上に形成でき、高い生産性効率のもとで高性能の小型の
カラー液晶表示装置が得られた。そしてフルカラー、高
密度、高速のビデオ動画の表示を行うことができた。
A color liquid crystal display device was formed using this TFT substrate. A drive circuit which was conventionally attached externally can be formed on the same substrate, and a high-performance compact color liquid crystal display device has been obtained with high productivity and efficiency. We were able to display full-color, high-density, high-speed video movies.

【0043】また、本発明によりTFTのCMOS回路
を形成する場合、nチャネルTFTのマスキングをフォ
トレジストで行い、pチャネルTFTのホウ素のドーピ
ングを低加速電圧で行ってもLDD構造のpチャネルT
FTを形成でき、低コストなプロセスでCMOS回路組
込みTFT基板が実現できる。
Further, in the case of forming the CMOS circuit of the TFT according to the present invention, even if the masking of the n-channel TFT is carried out by the photoresist and the doping of boron of the p-channel TFT is carried out at a low acceleration voltage, the p-channel T of the LDD structure is formed.
An FT can be formed and a CMOS circuit-embedded TFT substrate can be realized by a low-cost process.

【0044】つまり、本発明によって、同一基板上にオ
フセット構造を有するnチャネルTFTと、LDD型p
チャネルTFTの両方を形成し、高性能のCMOS回路
を形成できた。また、画素領域のTFTはpチャネル又
はnチャネルのいずれのTFTを使用できた。この場合
仕様に応じていずれかを選択できるが、高速表示を目的
とする場合には高移動度を示すpチャネルが有利となっ
た。
That is, according to the present invention, an n-channel TFT having an offset structure and an LDD type p-type on the same substrate.
A high-performance CMOS circuit could be formed by forming both channel TFTs. As the TFT in the pixel region, either a p-channel TFT or an n-channel TFT could be used. In this case, either one can be selected according to the specifications, but for the purpose of high-speed display, the p-channel which exhibits high mobility is advantageous.

【0045】[0045]

【発明の効果】本発明によれば、製造プロセスを複雑化
することなく、高性能な多結晶半導体TFTが得られ
る。TFTの基板面内で各回路の仕様要求に応じた回路
の作り込みを適切に行うことができ、全体としてきわめ
て高性能の表示装置が得られる。
According to the present invention, a high-performance polycrystalline semiconductor TFT can be obtained without complicating the manufacturing process. It is possible to appropriately build a circuit according to the specification requirements of each circuit within the substrate surface of the TFT, and an extremely high-performance display device as a whole can be obtained.

【0046】特に、従来高移動度のものが得られなかっ
たpチャネルTFTについて、安定して移動度20cm
2 /V・S以上の素子が得られるので、高温多結晶TF
Tと同等以上の素子設計が可能となり、低コストでかつ
安定して多結晶半導体TFTを製造できる。また、使用
環境条件としても広い温度域(−10〜80℃)で安定
して動作する多結晶半導体TFTが得られる。
In particular, a p-channel TFT, which has not been able to obtain a high mobility conventionally, has a stable mobility of 20 cm.
High-temperature polycrystal TF because it can obtain elements of 2 / V · S or higher.
An element design equal to or higher than that of T can be made, and a polycrystalline semiconductor TFT can be manufactured stably at low cost. In addition, a polycrystalline semiconductor TFT that operates stably in a wide temperature range (-10 to 80 ° C) can be obtained as a use environment condition.

【0047】nチャネルのTFTよりも高移動度のpチ
ャネルTFTを形成できるようになることにより、特に
CMOS回路を形成する場合に、その総合的な動作特性
を自由に調整でき、バランスのよい回路構成を採用でき
る。
By making it possible to form a p-channel TFT having a mobility higher than that of an n-channel TFT, especially in the case of forming a CMOS circuit, the overall operation characteristics thereof can be freely adjusted and a well-balanced circuit can be obtained. Configuration can be adopted.

【0048】また、全体的な設計自由度が向上し、所望
のTFT液晶パネルの性能を引き出せる。本発明はその
効果を損しない範囲で、他の装置に応用できる。
Moreover, the degree of freedom in design is improved, and desired performance of the TFT liquid crystal panel can be obtained. The present invention can be applied to other devices as long as the effect is not impaired.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の多結晶半導体TFTの製造法の1工程
を示す模式図。
FIG. 1 is a schematic view showing one step of a method for manufacturing a polycrystalline semiconductor TFT of the present invention.

【図2】本発明と従来例のpチャネル多結晶SiTFT
の電界効果移動度のチャネル長Lへの依存性を示す特性
図。
FIG. 2 is a p-channel polycrystalline Si TFT of the present invention and a conventional example.
FIG. 6 is a characteristic diagram showing the dependence of the field-effect mobility on the channel length L.

【図3】従来例の多結晶半導体TFTの断面図。FIG. 3 is a cross-sectional view of a conventional polycrystalline semiconductor TFT.

【符号の説明】[Explanation of symbols]

1:基板 2:SiO2 膜 3:半導体層 4:ゲート絶縁膜 5:ゲート電極パターン1: Substrate 2: SiO 2 film 3: Semiconductor layer 4: Gate insulating film 5: Gate electrode pattern

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】基板上に半導体層、ゲート絶縁膜、ゲート
電極の3つの材料層を順に形成し、ゲート絶縁膜パター
ンより0.1〜2.0μm内側にゲート電極パターンの
端面を形成し、ゲート電極パターン及びゲート絶縁膜パ
ターンをマスクとして半導体層に不純物イオンを注入
し、半導体層のチャネル領域とソース・ドレイン領域と
の間に低不純物濃度領域を形成する多結晶半導体TFT
の製造方法において、 ゲート電極パターンにマスクされないゲート絶縁膜パタ
ーンの0.1〜2.0μmのはみ出し部を薄化し、不純
物イオンを薄化せしめられたゲート絶縁膜パターンを通
して半導体層に注入することを特徴とする多結晶半導体
TFTの製造方法。
1. A semiconductor layer, a gate insulating film, and three material layers of a gate electrode are sequentially formed on a substrate, and an end face of the gate electrode pattern is formed 0.1 to 2.0 μm inside the gate insulating film pattern. A polycrystalline semiconductor TFT in which impurity ions are implanted into a semiconductor layer by using a gate electrode pattern and a gate insulating film pattern as a mask to form a low impurity concentration region between a channel region and a source / drain region of the semiconductor layer.
In the method for manufacturing the same, the 0.1 to 2.0 μm protruding portion of the gate insulating film pattern not masked by the gate electrode pattern is thinned, and impurity ions are injected into the semiconductor layer through the thinned gate insulating film pattern. A method for manufacturing a characteristic polycrystalline semiconductor TFT.
【請求項2】ゲート絶縁膜の材料層の厚さを120〜1
50nm、ゲート絶縁膜パターンの薄化された部分の厚
さを80〜100nmとし、ホウ素原子を含む不純物イ
オンを加速電圧15〜25kVで注入する請求項1の多
結晶半導体TFTの製造方法。
2. The thickness of the material layer of the gate insulating film is 120 to 1
The method for producing a polycrystalline semiconductor TFT according to claim 1, wherein the thickness of the thinned portion of the gate insulating film pattern is 50 nm, the thickness is 80 to 100 nm, and the impurity ions containing boron atoms are implanted at an acceleration voltage of 15 to 25 kV.
【請求項3】基板上に、低不純物濃度領域を有する多結
晶半導体TFTと、低不純物濃度領域を有しない多結晶
半導体TFTの両方を形成する請求項1又は2の多結晶
半導体TFTの製造方法。
3. The method for producing a polycrystalline semiconductor TFT according to claim 1, wherein both a polycrystalline semiconductor TFT having a low impurity concentration region and a polycrystalline semiconductor TFT not having a low impurity concentration region are formed on a substrate. .
【請求項4】フォトレジストパターンをマスクとして用
いてゲート絶縁膜パターンを薄化する請求項1、2又は
3の多結晶半導体TFTの製造方法。
4. The method for producing a polycrystalline semiconductor TFT according to claim 1, 2 or 3, wherein the gate insulating film pattern is thinned using the photoresist pattern as a mask.
【請求項5】基板上に多結晶半導体層、ゲート絶縁膜、
ゲート電極を備え、多結晶半導体層のチャネル領域とソ
ース・ドレイン領域との間に低不純物濃度領域を有する
多結晶半導体TFTにおいて、 ゲート電極に覆われないオフセット部分のゲート絶縁膜
の厚みが、チャネルの非オフセット部分よりも20〜7
0nm薄く設けられてなることを特徴とする多結晶半導
体TFT。
5. A polycrystalline semiconductor layer, a gate insulating film, and
In a polycrystalline semiconductor TFT having a gate electrode and a low impurity concentration region between a channel region and a source / drain region of the polycrystalline semiconductor layer, the thickness of the gate insulating film at the offset portion not covered by the gate electrode is 20 to 7 more than the non-offset part of
A polycrystalline semiconductor TFT characterized by being provided with a thickness of 0 nm.
【請求項6】オフセット部分のゲート絶縁膜の厚みが8
0〜100nm、チャネル部分のゲート絶縁膜の厚さが
120〜150nmである請求項5の多結晶半導体TF
T。
6. The thickness of the gate insulating film at the offset portion is 8
The polycrystalline semiconductor TF according to claim 5, wherein the gate insulating film in the channel portion has a thickness of 0 to 100 nm and a thickness of 120 to 150 nm.
T.
【請求項7】チャネル長が3〜10μmである請求項5
又は6の多結晶半導体TFT。
7. The channel length is 3 to 10 μm.
Or a polycrystalline semiconductor TFT of 6.
【請求項8】レーザアニールによって多結晶半導体が形
成されてなる請求項5、6又は7の多結晶半導体TF
T。
8. The polycrystalline semiconductor TF according to claim 5, 6 or 7, wherein the polycrystalline semiconductor is formed by laser annealing.
T.
【請求項9】半導体層とソース・ドレイン領域との間に
低不純物濃度領域を持たない多結晶半導体TFTと請求
項5、6、7又は8の多結晶半導体TFTの両方が設け
られてなることを特徴とするTFT基板。
9. A polycrystalline semiconductor TFT having no low impurity concentration region between the semiconductor layer and the source / drain regions, and the polycrystalline semiconductor TFT according to claim 5, 6, 7 or 8. TFT substrate characterized by.
JP8043485A 1996-02-29 1996-02-29 Polycrystal semiconductor tft, manufacture thereof and tft substrate Pending JPH09237898A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8043485A JPH09237898A (en) 1996-02-29 1996-02-29 Polycrystal semiconductor tft, manufacture thereof and tft substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8043485A JPH09237898A (en) 1996-02-29 1996-02-29 Polycrystal semiconductor tft, manufacture thereof and tft substrate

Publications (1)

Publication Number Publication Date
JPH09237898A true JPH09237898A (en) 1997-09-09

Family

ID=12665031

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8043485A Pending JPH09237898A (en) 1996-02-29 1996-02-29 Polycrystal semiconductor tft, manufacture thereof and tft substrate

Country Status (1)

Country Link
JP (1) JPH09237898A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011093322A (en) * 1999-01-15 2011-05-12 Three M Innovative Properties Co Thermal transfer element for forming multilayer device
CN112103245A (en) * 2020-09-22 2020-12-18 成都中电熊猫显示科技有限公司 Manufacturing method of array substrate, array substrate and display panel

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011093322A (en) * 1999-01-15 2011-05-12 Three M Innovative Properties Co Thermal transfer element for forming multilayer device
CN112103245A (en) * 2020-09-22 2020-12-18 成都中电熊猫显示科技有限公司 Manufacturing method of array substrate, array substrate and display panel
CN112103245B (en) * 2020-09-22 2023-08-11 成都京东方显示科技有限公司 Manufacturing method of array substrate, array substrate and display panel

Similar Documents

Publication Publication Date Title
US6875999B2 (en) Semiconductor integrated circuit
JP2564725B2 (en) Method of manufacturing MOS transistor
US6259120B1 (en) Semiconductor device and method for fabricating the same
JP3398453B2 (en) Method for manufacturing thin film transistor
US6777763B1 (en) Semiconductor device and method for fabricating the same
JP2002184710A (en) Method of doping semiconductor layer, method of manufacturing thin film semiconductor element, and thin film semiconductor element
US5985701A (en) Process for fabricating liquid crystal electro-optical device comprising complementary thin film field effect transistors
JP3224215B2 (en) Method for manufacturing thin-film insulated gate semiconductor device
JP4312741B2 (en) Thin film transistor substrate for liquid crystal display device and manufacturing method thereof
JP4657361B2 (en) Semiconductor device
JPH0697073A (en) Formation of polycrystalline silicon layer and polycrystalline silicon thin film transistor using the same
JPH07202209A (en) Thin film transistor and manufacture thereof
JPH09237898A (en) Polycrystal semiconductor tft, manufacture thereof and tft substrate
JP4197270B2 (en) Method for manufacturing semiconductor integrated circuit
JP2917925B2 (en) Method of manufacturing thin film transistor and active matrix array for liquid crystal display device
JP2001274413A (en) Method of manufacturing thin film transistor
JP3331642B2 (en) Method for manufacturing thin film transistor
JP3946690B2 (en) Inverter circuit fabrication method
JPH07142739A (en) Manufacture of polycrystal line silicon thin-film transistor
JP2001094108A (en) Field effect transistor, transistor array substrate, and manufacturing method for the substrate
JP3084252B2 (en) Method for manufacturing inverted staggered insulated gate semiconductor device
JP2000068513A (en) Manufacture of semiconductor device
JP3963663B2 (en) Semiconductor device
JP3346060B2 (en) Method for manufacturing thin film semiconductor device
JP2002353239A (en) Method of manufacturing thin film transistor