JP3773388B2 - クロック信号再生回路およびクロック信号再生方法 - Google Patents

クロック信号再生回路およびクロック信号再生方法 Download PDF

Info

Publication number
JP3773388B2
JP3773388B2 JP2000072119A JP2000072119A JP3773388B2 JP 3773388 B2 JP3773388 B2 JP 3773388B2 JP 2000072119 A JP2000072119 A JP 2000072119A JP 2000072119 A JP2000072119 A JP 2000072119A JP 3773388 B2 JP3773388 B2 JP 3773388B2
Authority
JP
Japan
Prior art keywords
signal
circuit
clock signal
frequency
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000072119A
Other languages
English (en)
Other versions
JP2001268043A (ja
Inventor
晶子 前野
卓 藤原
純 井戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2000072119A priority Critical patent/JP3773388B2/ja
Priority to GB0100500A priority patent/GB2364221B/en
Priority to CNB011012722A priority patent/CN1185816C/zh
Publication of JP2001268043A publication Critical patent/JP2001268043A/ja
Application granted granted Critical
Publication of JP3773388B2 publication Critical patent/JP3773388B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2668Details of algorithms
    • H04L27/2673Details of algorithms characterised by synchronisation parameters
    • H04L27/2675Pilot or known symbols
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2657Carrier synchronisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2668Details of algorithms
    • H04L27/2673Details of algorithms characterised by synchronisation parameters
    • H04L27/2676Blind, i.e. without using known symbols
    • H04L27/2679Decision-aided

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Synchronisation In Digital Transmission Systems (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、OFDM方式に基づいて変調された変調信号を受信するOFDM受信機におけるクロック再生装置およびクロック再生方法に関する。
【0002】
【従来の技術】
近年デジタル信号を伝送する方法として、直交周波数分割多重方式(OFDM:Orthogonal Frequency Division Multiplexing)と呼ばれる変調方式が提案されている。このOFDM方式は伝送帯域内に多数の直交する副搬送波を設け、それぞれの副搬送波の振幅及び位相にデータを割り当て、PSK(Phase Shift Keying)やQAM(Quadrature Amplitude Modulation)等の技術を用いてディジタル変調する方式である。このOFDM方式では、多数の副搬送波により伝送帯域を分割し、多数の副搬送波を並列に伝送しているため、副搬送波1波に割り当てられる伝送帯域としては狭くなり、副搬送波1波についての変調速度は遅くなるが、副搬送波の数が多数であることから総合的な伝送速度については従来の変調方式と変わらないことになる。
【0003】
また、このOFDM方式は、上記のように多数の副搬送波が分割されて並列に伝送されることから、任意の単位時間に含まれる1シンボルの信号量が減少することから変調速度は遅くなるが、伝送路にマルチパス妨害波の存在する場合には、1シンボルの信号を受信する時間中に受信する相対的なマルチパス妨害波の受信量を減少させることができることから、マルチパス妨害波による妨害に強くなるという利点を有している。
【0004】
以上に記載した特徴からOFDM方式は、地形や建造物等によるマルチパス妨害の影響を強く受ける地上波においてディジタル信号を伝送する場合に有利であり、日本の地上波ディジタル放送方式にも採用されている。
【0005】
ところで、OFDM方式の受信機においてOFDM変調信号を正しく復調するためには、復調回路中で各種の同期を取ることが必要であり、また、復調処理における全ての処理の基準となるクロック信号も送信側のクロック信号と同期させなければならない。
【0006】
ここで、受信側で発生するクロック信号を送信側のクロック信号と同期させるための方法として、従来から提案されているクロック信号の再生方法について説明する。
【0007】
図13は、例えば、特開平10−308715号公報に示されたOFDM受信機におけるクロック信号の再生回路のブロック図である。
【0008】
図のクロック信号の再生回路115は、差動復調回路3と、ROM(Reed Only Memory)12と、ゲート回路14と、累積加算回路15(累積加算手段)と、平均値回路16と、比較回路18と、制御回路20と、符号反転回路21と、セレクタ22と、クロック発振制御回路60(制御手段)とから構成され、差動復調回路3は、さらにRAM(Random Access Memory)6、7(記憶手段)、符号反転回路10、および、複素乗算回路11を有している。
【0009】
差動復調回路3は、主搬送波周波数信号により1次復調されたアナログ信号の副搬送波周波数信号(IF信号)が、OFDM受信機中のアナログ/デジタル(A/D)変換回路によりディジタル化され、該IF信号から副搬送波周波数信号(ベースバンド信号)の復調回路にて生成されるシンボル毎のIチャンネルデータIR(以下、IRと記す)およびQチャンネルデータQR(以下、QRと記す)が入力されて、そのIRおよびQRに基づいて実数成分データRNと虚数成分データJNを演算して出力する。なお、IRおよびQRは、ベースバンド信号の復調回路中において離散的フーリエ変換を実施する高速フーリエ演算(FFT)回路から出力される。
【0010】
差動復調回路3中のRAM6、7は、入力されたIRまたはQRを、後述する制御回路20から出力される制御信号cに応じて、シンボル単位で記憶し、記憶したシンボル毎のデータ(IRまたはQR)を1シンボル時間だけ遅らせて出力する。符号反転回路10は、RAM7から出力したデータの正負符号を反転して出力する。
【0011】
複素乗算回路11は、遅延されていないIRとQRに対して、RAM6およびRAM7により遅延されたIRとQRをそれぞれdIR、dQRと表すと、以下の式(1)に示す複素演算を行い、演算結果を実数成分データRNと虚数成分データJNとに分けて出力する。なお、以下の説明中において、jは虚数を表す。
【0012】
(I+jQ)(I-1−jQ-1) ・・・(1)
【0013】
ROM(Read Only Memory)12は、アークタンジェント(逆正接関数)データを格納しており、入力された実数成分データRNおよび虚数成分データJNに対応する位相変動量データPSを出力する。また、上記の複素乗算回路11及びROM12により演算回路13を構成している。
【0014】
ゲート回路14は、制御回路20からの制御信号に従ってROM12から出力される位相変動量データPS中から、送信側にて挿入されたパイロット信号に対応する成分だけを選択し、符号反転回路21およびセレクタ22に供給する。符号反転回路21は、入力された位相変動量データPS(パイロット信号に対応する成分のみ)の符号を反転し、セレクタ22に供給する。
【0015】
セレクタ22は、制御回路20からの制御信号によって制御され、ゲート回路14から直接入力されたパイロット信号に対応する位相変動量データPSが正の周波数であれば、その位相変動量PSを選択し、また、その位相変動量PSが負の周波数であれば、符号反転回路21から入力された位相変動量を選択して累積加算回路15に供給する。
【0016】
累積加算回路15は、シンボル毎の位相変動量PSが入力される直前に制御回路20から供給される制御信号bにより初期化された後、セレクタ22から出力されるパイロット信号に対応する位相誤差量PSを累積加算し、シンボル毎に出力する。
【0017】
平均値回路16は、シンボル毎に累積加算回路15から出力される累積加算された位相誤差量を数シンボルに渡って平均化してシンボル毎に出力することにより、位相誤差量に含まれるガウス雑音を取り除いた位相誤差量PS0を出力する。
【0018】
比較回路18は、OFDM受信機用クロック発振回路から出力されるクロック信号の周波数が確定(ロックイン)されたこと、すなわち、各シンボル間の差動復調データが0になることから平均値回路16のシンボル毎の出力にも差が無くなる場合を検出して制御回路20に通知する。すなわち、比較回路18では、シンボル間の差動復調データが0である場合の平均値回路16の出力値に等しい値の基準値SVと、現在の平均値回路16の出力値である位相誤差量PS0とを比較し、その比較結果をシンボル毎に制御回路20に出力する。
【0019】
制御回路20は、シンボル毎の比較回路18の比較結果を受信して、ゲート回路14とセレクタ22をパイロット信号毎の位相変動量データPSのタイミングに対応するように制御すると共に、累積加算回路15に制御信号b、RAM6およびRAM7に制御信号cを出力することにより、それらから入出力される信号がシンボル期間毎となるように制御する。
【0020】
クロック発振制御回路60は、平均値回路16の出力データPS0に基づいて、不図示のOFDM受信機用クロック信号発振器の発振周波数を制御するための制御信号CSを出力する。
【0021】
特開平10−308715号公報に示されたOFDM受信機では、上記したクロック信号の再生回路を用いることにより、OFDM受信機内のクロック発振回路にて発振されるクロック信号を、送信側のクロック信号と同期させるようにしている。
【0022】
【発明が解決しようとする課題】
ところで、OFDM受信機の副搬送波信号を復調する場合には、高速フーリエ変換回路にて離散的フーリエ変換が実施されて、時間領域信号が周波数領域信号に変換される。その変換の際の、時間領域における変換範囲を規定する領域を時間窓と称している。この時間窓は、クロック信号に周波数誤差、位相誤差がある場合にはずれることになる。
【0023】
例えば、クロック信号に位相誤差のみがあって周波数誤差が無い場合には、時間窓は全シンボルに対して一定の時間だけずれるので、全シンボルの副搬送波の周波数成分に対して一定の位相回転が与えられる。
【0024】
一方、クロック信号に周波数誤差のみがある場合には、時間窓には毎シンボル毎に異なる時間のずれが生じるので、副搬送波の周波数成分に対しては、時間によって変動する位相回転が与えられることになる。
【0025】
ここで、上記特開平10−308715号公報に示されたOFDM受信機のように、先に1シンボル前の全副搬送波信号と現シンボル中の全副搬送波信号とから、現シンボル中の全副搬送波信号についての位相誤差量を検出してしまい、その位相誤差量中からパイロット信号に対応する成分のみを選択し、選択された位相誤差量の成分に基づいてクロック信号を再生する場合には、検出される位相誤差中に、クロック信号の周波数誤差に起因する位相誤差は含まれるが、クロック信号の位相誤差に起因する位相誤差は含まれない。
【0026】
これは、前記したようにクロック信号に周波数誤差がある場合には、副搬送波に時間によって変動する位相回転がおこることから、各シンボルのパイロット信号間で副搬送波の位相が変動するが、クロック信号に位相誤差のみがある場合には、副搬送波の位相がシンボル間で変動しないので、シンボル間位相変動量としては検出することができなくなるためである。
【0027】
その結果、上記公報に記載されたクロック信号の再生回路では、クロック信号の位相誤差に関しては制御不可能であり、クロック信号の引き込み性能を上げることができないという問題を有していた。
【0028】
また、クロック信号の引き込み性能が上がらないと、クロック信号に周波数誤差が残ってしまう。OFDM受信機においてクロック信号に周波数誤差がある場合には、再生信号におけるビット誤り率特性が悪くなるだけでなく、各副搬送波間の直交性が崩れることから、副搬送波間の干渉による妨害が発生するという問題を有していた。
【0029】
本発明は上記問題を解決するためになされたもので、周波数誤差および位相誤差のないクロック信号を正確に生成することができるOFDM受信機用のクロック信号再生回路を提供することを目的としている。
【0030】
【課題を解決するための手段】
上記した目的を達成するために、請求項1に記載した本発明のクロック信号再生回路は、受信したアナログ信号のOFDM変調信号を主搬送波周波数について1次復調して副搬送波周波数帯域信号とし、該副搬送波周波数帯域信号をクロック信号発振器から出力されたクロック信号を用いてデジタル信号に変換し、該デジタル信号に対して2次復調すると共に離散的フーリエ変換を実施することにより副搬送波周波数帯域信号の復調信号を生成するOFDM受信機において、前記復調信号中から送信側で内挿されたパイロット信号を選択する第1の選択手段と、前記第1の選択手段にて選択された前記パイロット信号の周波数成分を記憶する記憶手段と、前記パイロット信号の周波数成分と、前記パイロット信号と同一シンボル内であり且つ該パイロット信号より少なくとも1副搬送波前の前記記憶手段に記憶されたパイロット信号の周波数成分との間の位相変動量を演算する演算手段と、前記位相変動量を1シンボル期間に亘って累積加算して出力する累積加算手段と、前記累積加算された位相変動量から雑音成分を除去するフィルタ手段と、前記フィルタ手段の出力値に応じて前記クロック信号発振器にて発生させるクロック信号の周波数を制御するための制御信号を出力する制御手段とを備えることを特徴とする。
【0031】
また、請求項2に記載した本発明のクロック信号再生回路は、受信したアナログ信号のOFDM変調信号を主搬送波周波数について1次復調して副搬送波周波数帯域信号とし、該副搬送波周波数帯域信号をクロック信号発振器から出力されたクロック信号を用いてデジタル信号に変換し、該デジタル信号に対して2次復調すると共に離散的フーリエ変換を実施することにより副搬送波周波数帯域信号の復調信号を生成するOFDM受信機において、前記復調信号中から伝送パラメータ等の受信機の復調動作に関る情報を伝送するTMCC(Transmission and Multiplexing Configuration Control)信号および付加情報を伝送するAC(Auxiliary Channel)信号を選択する第2の選択手段と、前記第2の選択手段にて選択された前記TMCC信号および前記AC信号の周波数成分を記憶する記憶手段と、前記TMCC信号および前記AC信号の周波数成分と、前記TMCC信号および前記AC信号と同一シンボル内であり且つ前記TMCC信号および前記AC信号より少なくとも1副搬送波前の前記記憶手段に記憶されたTMCC信号および前記AC信号の周波数成分との間の位相変動量を演算する演算手段と、前記位相変動量を1シンボル期間に亘って累積加算して出力する累積加算手段と、前記累積加算された位相変動量から雑音成分を除去するフィルタ手段と、前記フィルタ手段の出力値に応じて前記クロック信号発振器にて発生させるクロック信号の周波数を制御するための制御信号を出力する制御手段とを備えることを特徴とする。
【0032】
請求項2の本発明では、前記請求項1に記載したクロック信号再生回路においてパイロット信号を選択して復調信号中の位相変動量を算出していたものを、TMCC信号およびAC信号を選択して位相変動量を算出するようにした。
【0033】
また、請求項3の本発明は、請求項1または2に記載のクロック信号再生回路において、前記OFDM受信機がQPSK(Quadrature Phase Shift Keying)方式またはQAM(Quadrature Amplitude Modulation)方式により副搬送波が変調された同期変調信号部と、DQPSK(Diffrential Quadrature Phase Shift Keying)方式により副搬送波が変調された差動変調信号部とが混在するOFDM変調信号を受信し、前記同期変調信号部あるいは前記差動変調信号部にて伝送されるパイロット信号、TMCC信号またはAC信号の周波数軸上における各信号の配置が異なる場合に、前記第1の選択手段および前記第2の選択手段を備えると共に、入力した復調信号が前記同期変調信号部あるいは前記差動変調信号部の何れであるかを判定して、各変調信号部毎に前記第1の選択手段と前記第2の選択手段のどちらで選択するかの切替指示を出力する信号判定手段を有することを特徴とする。
【0034】
また、請求項4の本発明は、請求項1乃至3の何れか1項に記載したクロック信号再生回路において、前記演算手段は、前記位相変動量についてタンジェント(正接関数)を用いて近似した結果を出力することを特徴とする。
【0035】
また、請求項5の本発明は、請求項1乃至3の何れか1項に記載したクロック信号再生回路において、前記演算手段は、前記位相変動量についてサイン(正弦関数)を用いて近似した結果を出力することを特徴とする。
【0036】
また、請求項6の本発明は、請求項1乃至3の何れか1項に記載したクロック信号再生回路において、前記演算手段は、前記位相変動量の極性のみを出力することを特徴とする。
【0037】
また、請求項7の本発明は、請求項1乃至6の何れか1項に記載したクロック信号再生回路において、前記演算手段から出力される前記位相変動量が所定値以上であるか否かを判定する判定手段と、該判定手段により前記出力が所定値以上であると判定された場合には前記出力を後段の回路に出力する一方で前記出力が所定値未満であると判定された場合には後段の回路に出力しない切替手段とを備えることを特徴とする。
【0038】
また、請求項8に記載した本発明のクロック信号再生方法は、受信したアナログ信号のOFDM変調信号を主搬送波周波数について1次復調して副搬送波周波数帯域信号とし、該副搬送波周波数帯域信号をクロック信号発振器から出力されたクロック信号を用いてデジタル信号に変換し、該デジタル信号に対して2次復調すると共に離散的フーリエ変換を実施することにより副搬送波周波数帯域信号の復調信号を生成するOFDM受信機において、前記復調信号中から送信側で内挿されたパイロット信号、伝送パラメータ等の受信機の復調動作に関る情報を伝送するTMCC信号または付加情報を伝送するAC信号を選択する選択ステップと、前記選択ステップにて選択された前記パイロット信号、前記TMCC信号または前記AC信号の周波数成分を記憶する記憶ステップと、前記パイロット信号、前記TMCC信号または前記AC信号の周波数成分と、前記各信号と同一シンボル内であり且つ前記記憶ステップにて記憶された前記各信号より少なくとも1副搬送波前の同種の各信号の周波数成分との間の位相変動量を演算する演算ステップと、前記位相変動量を1シンボル期間に亘って累積加算して出力する累積加算ステップと、前記累積加算された位相変動量から雑音成分を除去するフィルタステップと、前記フィルタステップの出力値に応じて前記クロック信号発振器にて発生させるクロック信号の周波数を制御するための制御信号を出力する制御ステップと実施することを特徴とする。
【0039】
【発明の実施の形態】
以下、本発明を図示した実施の形態に基づいて説明する。
【0040】
実施の形態1.
図1は、本発明の実施の形態1のクロック信号再生回路が用いられるOFDM受信機の構成を示すブロック図である。
【0041】
OFDM受信機150は、図1に示したように、受信アンテナ101と、乗算回路102と、主搬送波発振回路103と、帯域通過フィルタ(BPF)104と、アナログ/デジタル(A/D)変換回路105と、副搬送波周波数信号復調回路120と、クロック信号発振器116と、クロック信号再生回路130とから構成される。また、副搬送波周波数信号復調回路120は、さらに、デマルチプレクサ106と、ローパスフィルタ(LPF)107および108と、複素乗算回路109と、数値コントロール発振回路110と、加算回路111と、高速フーリエ変換回路(FFT)112と、相関値演算回路113と、搬送波周波数誤差演算回路114とからなる。
【0042】
受信アンテナ101は、OFDM変調された無線信号(OFDM変調信号)を受信する。乗算回路102は、主搬送波発振回路103から出力される所定の主搬送波周波数信号と受信した無線信号とを乗算する。帯域通過フィルタ(BPF)104は、乗算回路102の出力から副搬送波周波数帯域となる中間周波数(IF)信号を抽出する。アナログ/デジタル(A/D)変換回路105は、BPF104により抽出されたアナログのIF信号をデジタル信号に変換する。
【0043】
デマルチプレクサ106は、デジタル化されたIF信号からIチャネルIFデータとQチャネルIFデータとを分離して出力する。ローパスフィルタ(LPF)107は、IチャネルIFデータに含まれる不要な高域成分を除去し、LPF108は、QチャネルIFデータに含まれる不要な高域成分を除去する。
【0044】
複素乗算回路109は、入力するIチャネルIFデータとQチャネルIFデータに対し、数値制御発振回路110より制御されつつ供給される副搬送波周波数信号を乗算することにより、周波数誤差を除外しつつIチャネル復調データとQチャネル復調データを生成する。高速フーリエ変換回路(FFT)112は、複素乗算回路109から入力する時間信号であるIチャネル復調データとQチャネル復調データを、周波数分解することにより、離散的フーリエ変換を実施したIチャネル復調データIRとQチャネル復調データQRを生成する。
【0045】
相関値演算回路113は、複素乗算回路109の出力をそのまま使った信号中の被転送ガード期間と、有効シンボル期間だけ遅延させた信号のガード期間とから2信号間の相関値を演算して出力する。搬送波周波数誤差演算回路114は、FFT112の出力から周波数毎の出力の偏りを検出することにより、復調データIRとQRの周波数誤差を検出し、加算回路111に出力する。加算回路111は、相関値演算回路113の相関値出力と、搬送波周波数誤差演算回路114の周波数誤差出力とを加算して数値制御発振回路110に供給する。
【0046】
副搬送波周波数信号復調回路120では、上記のように複素乗算回路109により相関値が最大となるタイミングにて後段のFFT112に演算を開始させるので、FFT112から出力される変換データIRとQRの周波数誤差を最小にすることができる。
【0047】
クロック信号再生回路130は、復調データIRとQRとから、クロック信号発振器116の発振周波数を制御するための制御信号CSを生成して出力する。クロック信号発振器116は、クロック信号再生回路130から出力され制御信号CSに応じてクロック信号を発振してA/D変換回路105およびその他の回路に対して出力する。
【0048】
図2は、本発明の実施の形態1のクロック信号再生回路の構成を示すブロック図である。
【0049】
尚、図2に示したクロック信号再生回路130において、図13に示した従来のクロック信号再生回路115と同じ機能の部分については同じ符号を付す。
【0050】
図2のクロック信号再生回路130と図13に示した従来のクロック信号再生回路115とが異なる点は、クロック信号再生回路130では、復調データIRとQRが差動復調回路3に入力される前に、復調データIRとQRとから送信側で規定されたパイロット信号に対応するデータのみを選択する第1の選択手段であるセレクタ30および40を設けている点と、複素乗算回路11及びROM12によりなる演算回路13が位相変動量データPSを出力してからクロック発振制御回路60に信号が入力するまでの処理回路が、累積加算回路15とループフィルタ50(フィルタ手段)になっている点である。
【0051】
セレクタ30の中には、復調データIR中からパイロット信号に対応するデータのみを選択するスイッチ31と、スイッチ31にて選択されたデータから送信側で規定された位相値を除去する位相補正回路32とを有している。同様に、セレクタ40の中には、復調データQR中からパイロット信号に対応するデータのみを選択するスイッチ41と、スイッチ41にて選択されたデータから送信側で規定された位相値を補正する位相補正回路32とを有している。
【0052】
送信側で規定されたパイロット信号に対応する位相値とは、例えば、日本ディジタル地上波放送規格に規定された位相値である。日本ディジタル地上波放送規格では、パイロット信号に対応する副搬送波の振幅および位相は、予め送信側で規定するようになっており、その規定値が受信側にも既知となるようにしている。具体例としては、送信側でパイロット信号の位相を0もしくはπと規定する場合には、受信側に対して受信したパイロット信号に対応する副搬送波の位相が0であるかπであるかを予め通知しておく。このパイロット信号に対応する副搬送波の既知位相がπである場合、位相補正回路32、42はパイロット信号の位相からπを減算補正して出力することになる。
【0053】
本実施の形態の差動復調回路3内では、パイロット信号に対応するデータのみの差動復調を実施することになる。RAM6および7では、位相補正回路32および42から出力された復調データIRおよびQRを記憶するが、その際に、復調データIRおよびQR中のパイロット信号に対応するデータのみを記憶し、パイロット信号の発生間隔の1間隔分に相当する時間だけ遅延させて遅延復調データdIRおよびdQRを出力する。符号反転回路10は、RAM7から出力される遅延復調データdQRの符号を反転して出力するが、これもパイロット信号に対応する遅延復調データdQRのみが出力される。
【0054】
複素乗算回路11は、遅延されていないパイロット信号の復調データIRおよびQRと、RAM6および7により遅延されたパイロット信号の遅延復調データdIRおよびdQRとの複素演算を行い、演算結果をパイロット信号の実数成分データRNとパイロット信号の虚数成分データJNとに分けて出力する。
【0055】
ROM12は、入力されたパイロット信号の実数成分データRNおよび虚数成分データJNに対応するデータを格納されているアークタンジェント(逆正接関数)データから読み出し、パイロット信号の位相変動量データPSとして出力する。
【0056】
累積加算回路15は、ROM12から出力されたパイロット信号の位相変動量データPSを1シンボル時間に亘って累積して加算する。ループフィルタ50は、累積加算回路15から出力されたパイロット信号の位相変動量データPSの累積加算データから雑音成分を除去する。クロック発振制御回路60は、ループフィルタ50の出力データ(パイロット信号の位相変動量データPSの累積加算データ)によってクロック信号発振器116の発振周波数を制御する制御信号CSを出力する。
【0057】
図3(a)、(b)、(c)は、図1のクロック信号発振器116にて生成されるクロック信号に周波数誤差がある場合に、図2のクロック信号再生回路130に入力する復調データIRおよびQRの周波数成分に現れる位相誤差を説明するための図である。図3(a)がクロック信号に周波数誤差が無い場合の復調データIRおよびQRの周波数成分を示す図であり、図3(b)がクロック信号に周波数誤差が有る場合の復調データIRおよびQRの周波数成分を示す図であり、図3(c)がクロック信号に周波数誤差が有る場合の復調データIRおよびQR中のパイロット信号の周波数成分の位相誤差を示す図である。
【0058】
図3(a)、(b)において、SP0は、1シンボル内における最低周波数のパイロット信号であり、SP1およびSP2は、前記パイロット信号SP0と同一シンボル内であるがより周波数の高いパイロット信号であり、SP3は、前記パイロット信号SP0と同一のシンボル内における最高周波数のパイロット信号である。
【0059】
図3(c)において、91は最低周波数のパイロット信号SP0の位相θ0とパイロット信号SP1の位相θ1との間の位相変動量(θ1−θ0)であり、92はパイロット信号SP1の位相θ1とパイロット信号SP2の位相θ2との間の位相変動量(θ2−θ1)であり、93はパイロット信号SP2の位相θ2と最高周波数のパイロット信号SP3の位相θ3との間の位相変動量(θ3−θ2)である。また、94は同一シンボル内の隣接パイロット信号間の位相変動量91乃至は93を累積加算した位相変動量Σ(θf−θf-1)である。
【0060】
この累積加算した位相変動量である位相変動量94は、同一シンボル内の最低周波数のパイロット信号SP0から最高周波数のパイロット信号SP3までの位相変動量と一致する。従って、同一シンボル内において隣接するパイロット信号の各周波数成分の位相変動量について、1シンボル時間に亘って累積加算を実施する場合には、同一シンボル内における最低周波数のパイロット信号と最高周波数のパイロット信号との間の位相変動量と等しいことになる。
【0061】
次に、図1および図2に示した本発明の実施の形態1の動作について説明する。
【0062】
図4は、本実施の形態1の動作を示すフローチャートである。
【0063】
副搬送波周波数信号復調回路120のFFT112から出力された復調データIRおよびQRのうち、送信側で規定されるパイロット信号に対応する副搬送波のデータをセレクタ30および40により選択して出力する(ステップS1)。
【0064】
セレクタ30および40から出力されたパイロット信号の復調データは、RAM6および7に供給される。RAM6はパイロット信号の復調データIRを記憶し、RAM7はパイロット信号の復調データQRをそれぞれ記憶し、次のパイロット信号に対応する復調データIRおよびQRが供給されるまで前記データを保持する。すなわち、RAM6およびRAM7は、記憶した復調データを各パイロット信号の発生間隔の1間隔分に相当する時間だけ遅延させた遅延復調データdIRおよびdQRとして出力する(ステップS2)。
【0065】
また、RAM7から出力された遅延復調データdQRQは、符号反転回路10により正負符号が反転されて出力される。
【0066】
パイロット信号の復調データIR、復調データQR、遅延復調データdIR、および、符号反転された遅延復調データdQRは、複素乗算回路11に供給されて複素乗算が施される。複素乗算回路11の演算結果は、実成分データRNおよび虚成分データJNとして分割され、複素乗算回路11から出力される(ステップS3)。
【0067】
ROM12では、複素乗算回路11から出力された実成分データRNおよび虚成分データJNに対応するアークタンジェント(逆正接関数)データが読み出され、それらの値に基づいて隣接するパイロット信号間の位相変動量PSが演算されて出力される(ステップS4)。
【0068】
累積加算回路15は、同一シンボルにおいてROM12から出力される隣接するパイロット信号間の各位相変動量データPSを、1シンボル時間に亘って累積して加算する。1シンボル分の累積加算が終了すると、累積加算結果を出力して、累積加算値を初期化する(ステップS5)。
【0069】
累積加算回路15から1シンボル分の処理が終了するごとに出力される累積加算結果は、ループフィルタ50に供給される。累積加算結果はループフィルタ50で不要な雑音成分が除去された位相変動データPS1として出力される。(ステップS6)。
【0070】
クロック発振制御回路60は、上記のように検出された同一シンボル内の各パイロット信号の位相変動量の累積加算値である位相変動データPS1から、位相変動データPS1中に内在するクロック信号の周波数誤差および位相誤差を検出し、そのクロック信号の周波数誤差および位相誤差に基づいて、クロック信号発振器116の発振周波数を制御するための制御信号CSを出力する(ステップS7)。
【0071】
このように図1に示したA/D変換回路105と、副搬送波周波数信号復調回路120と、クロック信号再生回路130と、クロック信号発振器116とは、クロック信号の周波数を制御するためにPLL回路を構成している。
【0072】
本実施の形態では、上記のように、パイロット信号を選択してから複素乗算を実施することにより、同一シンボル内において隣接するパイロット信号間の位相変動量をパラメータとして持つデータを得ている。すなわち、本実施の形態では、図3(c)に示した如き同一シンボル内におけるパイロット信号に対応する副搬送波周波数成分の位相変動量を算出している。これにより、各シンボル間の副搬送波の位相が変動しない場合でも、クロック信号の周波数誤差および位相誤差による位相変動量が検出でき、クロック信号の引き込み性能を上げることができる。
【0073】
また、同一シンボル内の最低周波数のパイロット信号SP0から最高周波数のパイロット信号SP3までの位相変動量94を、例えば、+3πであったとした場合、前記位相変動量94は本実施の形態のように累積加算せずに一度に算出することも考えられる。しかし、演算回路13により一度に算出できる位相変動量の最大値は+2πまでであり、例え+3πの位相変動があっても1度に算出した場合には、擬似的に+πの位相変動量が算出されるので、正しく算出できないことになる。
【0074】
なお、一般的にシンボル内のパイロット信号の数は多数であるので、隣接するパイロット信号間の位相変動量91乃至93が+2π以上になることはないが、同一シンボル内の位相変動量94としては、+2π以上の例えば+3πになる場合が考えられる。
【0075】
それに対して本実施の形態の構成では、隣接するパイロット信号間の位相変動量91乃至93がそれぞれ+2π以下であるならば、同一シンボル内の最低周波数のパイロット信号SP0から最高周波数のパイロット信号SP3までのトータルの位相変動量94が+2π以上であっても、隣接するパイロット信号間の各位相変動量91〜93を1シンボル時間に亘って累積加算するので、同一シンボル内の位相変動量94を正しく算出でき、さらに、同一シンボル内の最低周波数のパイロット信号SP0から最高周波数のパイロット信号SP3までの位相変動量94の検出範囲を+2π以上に広げることができる。
【0076】
また、上記のようにシンボル内のパイロット信号の数は多数であることから、例えば、1シンボル期間よりも短い期間間隔で位相変動量を算出することにより、位相変動量94の算出頻度を上げることができる。その場合、位相変動量の算出精度が上がることから、クロック信号の引き込み速度および性能を上げることができる。
【0077】
さらに、上記のようにクロック信号の引き込み性能が上がると、復調時の副搬送波間の干渉による妨害を抑えることができ、再生信号のビット誤り率特性を向上させることができる。
【0078】
実施の形態2.
上記実施の形態1では、パイロット信号の位相情報を利用したが、実施の形態2では、TMCC信号またはAC信号の位相情報を利用する。
【0079】
TMCC信号は、伝送多重制御(Transmission and Multiplexing Configuration Control)に用いる信号であり、伝送された信号を受信機で復調動作するために必要な最も基本的な情報、例えば、変調方式や誤り訂正符号方式等を含む伝送パラメータ等、を伝送する信号である。AC信号は、例えば、副音声や文字情報等の付加情報を伝送するための副チャネル(Auxiliary Channel)に用いる信号である。
【0080】
日本の地上波ディジタル放送規格によるOFDM伝送では、DQPSK等により副搬送波の変調が指定される差動変調部とQPSK、QAM等により変調が指定される同期変調部が混在して伝送される。前記同期変調部には同期復調用信号としてパイロット信号が含まれるが、差動変調部にはパイロット信号が含まれない。従って、上記した実施の形態1では、差動変調部を受信している時には、位相変動量を算出できなくなる。そこで、本実施の形態では、差動変調部を受信する際にはパイロット信号のかわりに、TMCC信号およびAC信号に対応する副搬送波周波数成分の位相情報から位相変動量を算出するようにした。
【0081】
前記日本の地上波ディジタル放送規格によると、同一シンボル内におけるTMCC信号およびAC信号に対応する副搬送波の周波数成分は全て同一の位相で伝送される。よって、上記した実施の形態1で示したパイロット信号と同様に、TMCC信号およびAC信号の位相情報を用いて同一シンボル内における位相変動量を容易に算出することができる。
【0082】
図5は、本発明の実施の形態2のクロック信号再生回路の構成を示すブロック図である。
【0083】
尚、図5に示したクロック信号再生回路131において、図13に示した従来のクロック信号再生回路115および図2に示した実施の形態1のクロック再生回路130と同じ機能の部分については同じ符号を付す。
【0084】
また、本発明の実施の形態2のクロック信号再生回路131が用いられるOFDM受信機の構成は、実施の形態1にて用いた図1の構成と同様である。
【0085】
図5の本実施の形態のクロック信号再生回路131と図2の実施の形態1のクロック信号再生回路130とが異なる点は、クロック信号再生回路130では、復調データIRとQRとから送信側で規定されたパイロット信号に対応するデータのみを選択する第1の選択手段がセレクタ30および40であったが、クロック信号再生回路131では、復調データIRとQRとから送信側で規定されたTMCC信号およびAC信号に対応するデータのみを選択する第2の選択手段がセレクタ33および43になっている点である。
【0086】
セレクタ33は、復調データIR中からTMCC信号およびAC信号に対応するデータのみを選択するスイッチ機能を有している。同様に、セレクタ43は、復調データQR中からTMCC信号およびAC信号に対応するデータのみを選択するスイッチ機能を有している。
【0087】
また、実施の形態1では必要とされた位相補正回路32および42については、TMCC信号およびAC信号が同一シンボル内では同一の位相で伝送されることから不要となる。上記以外の構成については、実施の形態1と同様である。
【0088】
次に、本発明の実施の形態2の動作について説明する。
【0089】
実施の形態2の動作は、図4を用いて説明した実施の形態1の動作におけるステップS1が、パイロット信号を選択する処理ではなく、TMCC信号およびAC信号を選択する処理に変更される。そのため、その後のステップ中にて用いられるパイロット信号もTMCC信号およびAC信号に変更される。
【0090】
以上のようにTMCC信号、AC信号を用いることで、パイロット信号が含まれない差動変調部においても同一シンボル内における副搬送波周波数成分の位相変動量を算出することができる。また、TMCC信号とAC信号の両方の信号を利用することで、位相変動量を検出するための周波数成分の数を増やすことができ、位相変動量の算出頻度が上がることから位相変動量の算出精度が上がり、クロック信号の引き込み速度および性能を上げることができる。
【0091】
実施の形態3.
上記実施の形態1ではパイロット信号の位相情報を、実施の形態2ではTMCC信号、AC信号の位相情報を利用したが、実施の形態3ではパイロット信号、TMCC信号、AC信号の位相情報を受信変調部ごとに切り替えて利用する。
【0092】
前記したように日本の地上波ディジタル放送規格によるOFDM伝送では、DQPSK等により副搬送波の変調が指定される差動変調部とQPSK、QAM等により変調が指定される同期変調部が混在して伝送されており、前記同期変調部には同期復調用信号としてパイロット信号が含まれるが、差動変調部にはパイロット信号が含まれない。TMCC信号とAC信号は、同期変調部であるか、あるいは差動変調部であるかに関係無く含まれるが、同期変調部に含まれる場合と差動変調部に含まれる場合では伝送される周波数の配置が一部異なっている。また、送出側からは、同期変調部と差動変調部が混在して伝送出力されることから、各変調部の切り替わりのタイミング情報をTMCC信号によって伝送するようにしている。受信側では、TMCC信号を解析(デコード)することにより、受信した変調信号内の上記各変調部が切り替わるタイミング情報を検出し、そのタイミング情報を用いて変調部毎に適した復調を実施する。
【0093】
従って、OFDM受信機において受信を開始した時点からTMCC信号をデコードするまでの期間は、どのタイミングで同期変調部と差動変調部が切り替わるのかは不明となる。そこで本実施の形態では、受信初期状態においては、差動変調部と同期変調部に共通の周波数配置で伝送されるTMCC信号およびAC信号に対応する周波数成分の位相情報のみを利用して位相変動量を算出し、TMCC信号をデコードすることによりタイミング情報が検出されて差動変調部と同期変調部の伝送出力中の配置が明らかになった状態では、各変調部毎に特定される周波数配置のパイロット信号、TMCC信号、AC信号の位相情報を利用して位相変動量を算出する。
【0094】
図6は、本発明の実施の形態3のクロック信号再生回路の構成を示すブロック図である。
【0095】
尚、図6に示したクロック信号再生回路132において、図13に示した従来のクロック信号再生回路115、図2に示した実施の形態1のクロック再生回路130および図5に示した実施の形態2のクロック再生回路131と同じ機能の部分については同じ符号を付す。
【0096】
また、本発明の実施の形態3のクロック信号再生回路132が用いられるOFDM受信機の構成は、実施の形態1にて用いた図1の構成と同様である。
【0097】
図6の本実施の形態のクロック信号再生回路132と、図2の実施の形態1のクロック信号再生回路130あるいは図5の実施の形態2のクロック信号再生回路131とが異なる点は、クロック信号再生回路130あるいはクロック信号再生回路131では、選択手段が第1の選択手段であるセレクタ30および40のみであるか、第2の選択手段であるセレクタ33および43のみであったが、本実施の形態のクロック信号再生回路132では、第1の選択手段であるセレクタ30および40と、第2の選択手段であるセレクタ33および43との双方の選択手段を有している点と、その選択手段の動作を制御するためにクロック信号再生回路132に入力する復調データが差動変調部であるかあるいは同期変調部であるかを判定する信号判定回路71および72(信号判定手段)を設けた点である。
【0098】
セレクタ30とセレクタ33は信号判定回路71と差動復調回路3との間に並列に接続される。同様にセレクタ40とセレクタ43も信号判定回路71と差動復調回路3との間に並列に接続される。
【0099】
信号判定回路71には、復調データIR、および、後述するデコード回路141によりTMCC信号がデコードされた結果のタイミング情報が入力される。また、信号判定回路71は、復調データIR、および、セレクタ30とセレクタ33の選択動作を制御するため制御信号を出力する。同様にして、信号判定回路72には、復調データQR、および、デコード回路141によりTMCC信号がデコードされた結果のタイミング情報が入力される。また、信号判定回路72は、復調データQR、および、セレクタ40とセレクタ43の選択動作を制御するため制御信号を出力する。
【0100】
デコード回路141は、副搬送波周波数復調回路120の後段に位置する出力生成回路140内の回路であり、送信側でコード化された信号を解読(デコード)する回路である。本実施の形態のTMCC信号には、前記したように、送出側で同期変調部と差動変調部の切り替わるタイミング情報を含ませて伝送している。従って、デコード回路141では、TMCC信号をデコードすることにより、同期変調部と差動変調部の切り替わるタイミング情報を得ることができる。得られたタイミング情報は、信号判定回路71および72に送出される。
【0101】
次に、図6に示した本発明の実施の形態3の動作について説明する。
【0102】
実施の形態3の動作は、図4を用いて説明した実施の形態1の動作におけるステップS1が、パイロット信号を選択する処理ではなく、信号判定回路71および72により、第1の選択手段であるセレクタ30および40と、第2の選択手段であるセレクタ33および43とを選択する処理に変更される。この処理と各セレクタ固有の機能により、パイロット信号、TMCC信号およびAC信号それぞれの位相情報が正しく出力される。
【0103】
図7は、本実施の形態3における実施の形態1と異なる動作部分を示すフローチャートである。
【0104】
受信の開始初期のTMCC信号がまだデコードされていない状態では、信号判定回路71および72は、副搬送波周波数信号復調回路120のFFT112から出力された復調データIRおよびQRのうち、差動変調部と同期変調部とで共通の周波数配置で伝送されるTMCC信号、AC信号に対応するデータをセレクタ33および43により選択して出力する(ステップS11)。
【0105】
信号判定回路71および72は、デコード回路141によりTMCC信号のデコードが終了してタイミング情報が入力したか否かを判断し(ステップS12)、タイミング情報が入力した場合(ステップS12:yes)には、ステップS13に進み、タイミング情報が入力しない場合(ステップS12:no)には、ステップS11に戻る。
【0106】
信号判定回路71および72は、入力したタイミング情報から、復調データIRおよびQRが同期変調部であるか否かを判断し(ステップS13)、同期変調部である場合(ステップS13:yes)には、ステップS14に進み、同期変調部でない場合(ステップS13:no)には、ステップS15に進む。
【0107】
セレクタ30および40では、入力した復調データIRおよびQRの同期変調部がパイロット信号であるか否かを判断し(ステップS14)、パイロット信号である場合(ステップS14:yes)には、ステップS16に進み、パイロット信号でない場合(ステップS14:no)には、ステップS15に進む。
【0108】
セレクタ33および43では、TMCC信号およびAC信号の位相情報を出力し(ステップS15)、セレクタ30および40は、パイロット信号の位相情報を出力する(ステップS16)。
【0109】
信号判定回路71および72は、入力する復調データIRおよびQRが終了したか否かを判断し(ステップS17)、終了した場合(ステップS17:yes)には、図4のステップS2に進み、終了していない場合(ステップS17:no)には、ステップS13に戻る。
【0110】
以上のように本実施の形態では、受信開始直後には、差動変調部と同期変調部とで共通の周波数配置にて伝送されるTMCC信号およびAC信号に対応する副搬送波周波数成分のデータを選択して利用することにより、差動変調部であるかあるいは同期変調部であるかに関係無くクロック信号の引き込みを行うことができる。
【0111】
また、TMCC信号がデコードされ各変調部の周波数配置が判別された後には、各変調部に多く含まれるパイロット信号、またはTMCC信号およびAC信号に対応する選択手段をそれぞれ選択することで、位相変動量を検出するための副搬送波周波数成分の数を増やすことができる。
【0112】
以上のようにパイロット信号、TMCC信号およびAC信号の全信号を利用することで、位相変動量を検出するための周波数成分の数を増やすことができ、位相変動量の算出頻度を上げることにより位相変動量の算出精度を上げて、クロック信号の引き込み速度および性能を上げることができる。
【0113】
実施の形態4.
上記実施の形態1では、演算手段13において位相変動量PSを算出する際に、複素乗算回路11から出力された実数成分RNおよび虚数成分JNのデータがROM12に供給され、アークタンジェント(逆正接関数)データを格納するROM12から、入力された実数成分RNおよび虚数成分JNデータに対応する位相変動量データPSが出力されている。ここで、例えば、アークタンジェント(逆正接関数)を用いて算出される位相の値が±π/4に比較して十分小さい場合には、後述するように、タンジェント(正接関数)を用いて近似することができる。本実施の形態では、このタンジェントで近似できることを利用して、演算手段から出力する位相変動量データについて、タンジェント(正接関数)の近似値で出力するようにする。
【0114】
図8は、本発明の実施の形態4のクロック信号再生回路の構成を示すブロック図である。
【0115】
尚、図8に示したクロック信号再生回路133において、図13に示した従来のクロック信号再生回路115、図2に示した実施の形態1のクロック再生回路130と同じ機能の部分については同じ符号を付す。
【0116】
また、本発明の実施の形態4のクロック信号再生回路133が用いられるOFDM受信機の構成は、実施の形態1にて用いた図1の構成と同様である。
【0117】
図8の本実施の形態のクロック信号再生回路133と、図2の実施の形態1のクロック信号再生回路130とが異なる点は、クロック信号再生回路130では、演算手段13中にROM12が設けられていたが、本実施の形態のクロック信号再生回路133では、演算手段70中にtan算出回路25が設けられている点である。
【0118】
tan算出回路25は、複素乗算回路11から出力された実数成分RNおよび虚数成分JNのデータから、タンジェント(正接関数)の値を算出するタンジェント算出回路である。
【0119】
複素乗算回路11は、従来のクロック信号の再生回路115の説明中に示したように式(1)に示す演算を行う。ところで、式(1)は、例えば、同一シンボル内における各副搬送波周波数成分の振幅をA、位相をθ、f番目のパイロット信号に対応する副搬送波周波数成分をAfj θ fとした場合、次の式(2)のように複素表記することができる。
【0120】
Figure 0003773388
【0121】
前記式(2)の実部Reと虚部Imよりtan(θf−θf-1)を算出する。ここで、通常は、θf−θf-1が±π/4に比較して十分小さい値であることを利用し、位相変動量θf−θf-1を近似算出する。
【0122】
Im/Re=tan(θf−θf-1)≒θf−θf-1 ・・・(3)
【0123】
次に、図8に示した本発明の実施の形態4の動作について説明する。
【0124】
本実施の形態4の動作では、図4を用いて説明した実施の形態1の動作におけるステップS4の処理が、実施の形態1に示したROM12により入力されたデータに対応するアークタンジェントの位相変動量データPSを演算する処理ではなく、タンジェント算出回路25により入力されたデータからタンジェントの位相変動量データPSを演算する処理に変更される。その他の本実施の形態4の動作は、実施の形態1の動作と同様である。
【0125】
具体的には、従来のクロック信号再生回路130では、複素乗算回路11の出力はROM12に入力され、ROM12から位相変動量データPSが出力されていたが、本実施の形態のクロック信号再生回路133では、演算手段70中の複素乗算回路11の出力はtan算出回路25に入力され、tan算出回路25から位相変動量データPSが出力されている。
【0126】
上記のようにタンジェントを用いて近似した位相変動量データPSとすることにより、実施の形態1のようにROM12を使用しなくても、タンジェントの値を算出するのみで、容易に位相変動量PSを算出することができる。
【0127】
実施の形態5.
上記実施の形態4では、位相変動量PSの値が十分小さい場合には、アークタンジェントを用いて算出される位相の値がタンジェント(正接関数)で近似できることを利用してROM12を使用しないようにしたが、本実施の形態5では、アークタンジェントを用いて算出される位相の値をサイン(正弦関数)で近似して位相変動量PSを算出するようにする。
【0128】
図9は、本発明の実施の形態5のクロック信号再生回路の構成を示すブロック図である。
【0129】
尚、図9に示したクロック信号再生回路134において、図13に示した従来のクロック信号再生回路115、図2に示した実施の形態1のクロック再生回路130と同じ機能の部分については同じ符号を付す。
【0130】
また、本発明の実施の形態5のクロック信号再生回路134が用いられるOFDM受信機の構成は、実施の形態1にて用いた図1の構成と同様である。
【0131】
図9の本実施の形態のクロック信号再生回路134と、図2の実施の形態1のクロック信号再生回路130とが異なる点は、クロック信号再生回路130では、演算手段13中にROM12が設けられていたが、本実施の形態のクロック信号再生回路134では、演算手段71中に複素乗算回路11の他は何も設けられていない点である。
【0132】
本実施の形態では、上記実施の形態4の説明中に示した式(2)における虚部Imの値は、θf−θf-1の値が±π/4に対して十分に小さい場合には、以下に示す式(4)にて近似することができることを利用する。
【0133】
f-1fsin(θf−θf-1)≒Af-1f(θf−θf-1) ・・・(4)
【0134】
式(4)において、複素乗算回路11から算出されるごとのAf-1fの変動量が小さく、且つ、式(4)の値を、累積加算回路15にて1シンボルに亘って累積加算した結果が、例えば、1シンボル内の位相変動量に一定の値を乗算したものであるとみなせる場合には、式(4)の値は、位相変動量を表わすことになり、クロック信号の位相誤差、周波数誤差に対応する値を検出できることになる。すなわち、位相変動量PSは、式(2)の虚部で近似することができることになる。
【0135】
次に、図9に示した本発明の実施の形態5の動作について説明する。
【0136】
本実施の形態5の動作では、図4を用いて説明した実施の形態1の動作におけるステップS4の処理が、実施の形態1に示したROM12により入力されたデータに対応するアークタンジェントの位相変動量データPSを演算する処理ではなく、複素乗算回路11から出力された虚数成分JNデータを位相変動量データPSとして用いる処理に変更される。複素乗算回路11から出力される実数成分RNデータは使用されない。その他の本実施の形態4の動作は、実施の形態1の動作と同様である。
【0137】
具体的には、従来のクロック信号再生回路130では、複素乗算回路11の出力はROM12に入力され、ROM12から位相変動量データPSが出力されていたが、本実施の形態のクロック信号再生回路134では、演算手段70中の複素乗算回路11から虚数成分JNデータが位相変動量データPSとしてそのまま出力されている。
【0138】
このように位相変動量PSをサイン(正弦関数)で近似して算出するようにしたことにより、複素乗算回路11の乗算結果における虚数成分データをそのまま位相変動量PSとして利用でき、実施の形態4で示したタンジェント(正接関数)による近似と比較しても、虚部Imを実部Reにて除算する処理を省略できるので容易に位相変動量を得ることができる。
【0139】
実施の形態6.
上記した実施の形態5では、演算手段71により位相変動量PSをサイン(正弦関数)で近似して算出するようにしたが、本実施の形態6ではサイン(正弦関数)で近似した値の極性のみを位相変動量PSとして演算手段72より出力するようにする。
【0140】
図10は、本発明の実施の形態6のクロック信号再生回路の構成を示すブロック図である。
【0141】
尚、図10に示したクロック信号再生回路135において、図13に示した従来のクロック信号再生回路115、図2に示した実施の形態1のクロック再生回路130と同じ機能の部分については同じ符号を付す。
【0142】
また、本発明の実施の形態6のクロック信号再生回路135が用いられるOFDM受信機の構成は、実施の形態1にて用いた図1の構成と同様である。
【0143】
図10の本実施の形態のクロック信号再生回路135と、図2の実施の形態1のクロック信号再生回路130とが異なる点は、クロック信号再生回路130では、演算手段13中にROM12が設けられていたが、本実施の形態のクロック信号再生回路135では、演算手段72中に極性検出回路26が設けられている点である。
【0144】
上記実施の形態5では、式(4)において、周波数成分の振幅値の乗算結果であるAf-1fの複素乗算回路11から算出されるごとの変動量が小さく、位相変動量PSに比較して無視できる場合について示した。しかし、式(4)において、Af-1fの値が位相変動量PSに比較して無視できない場合には、例えば、位相変動量PSを式(2)の虚部の極性を位相変動量PSとして扱う方が近似計算における誤差を小さく抑えることができる。そこで、本実施の形態では、演算手段72に複素乗算回路11の出力から式(2)の虚部の極性を検出する極性出力回路26を設けた。極性出力回路26により式(2)の虚部の極性が正である場合には+1を位相変動量PSとして出力し、極性が負である場合には−1を位相変動量PSとして出力するようにした。
【0145】
次に、図10に示した本発明の実施の形態6の動作について説明する。
【0146】
本実施の形態6の動作では、図4を用いて説明した実施の形態1の動作におけるステップS4の処理が、実施の形態1に示したROM12により入力されたデータに対応するアークタンジェントの位相変動量データPSを演算する処理ではなく、複素乗算回路11から出力された虚数成分JNデータから極性を検出する処理に変更される。複素乗算回路11から出力される実数成分RNデータは使用されない。その他の本実施の形態4の動作は、実施の形態1の動作と同様である。
【0147】
具体的には、クロック信号再生回路130では、複素乗算回路11の出力はROM12に入力され、ROM12から位相変動量データPSが出力されていたが、本実施の形態のクロック信号再生回路135では、演算手段72中の複素乗算回路11の虚数成分JNデータ出力は極性検出回路26に入力され、極性検出回路26から位相変動量データPSが出力されている。
【0148】
このように、位相変動量PSをサインで近似した値の極性で出力することにより、複素乗算回路11の出力中の虚数成分データの極性を、そのまま位相変動量PSとして利用でき、実施の形態4で示したタンジェントにより近似した値と比較しても虚部Imを実部Reにて除算する処理を省略して容易に位相変動量を得ることができる。また、実施の形態5で示したサインにより近似した値と比較する場合には、前記したように周波数成分の振幅値の乗算結果であるAf-1fの値が算出ごとに大きく変動して無視できない場合に、位相変動量の算出精度を上げることができるという利点を有する。
【0149】
実施の形態7.
前記した実施の形態1、2、3における選択手段により選択されたパイロット信号、TMCC信号、AC信号に対応する副搬送波周波数成分の位相変動量PSについて、それぞれ所定値未満であるか否かを判定し、位相変動量PSが所定値未満であると判定した場合には、演算手段13で演算した位相変動量PSに基づいてクロック信号の周波数を制御できないようにする。
【0150】
図11は、本発明の実施の形態7のクロック信号再生回路の構成を示すブロック図である。
【0151】
尚、図11に示したクロック信号再生回路136において、図13に示した従来のクロック信号再生回路115、図2に示した実施の形態1のクロック再生回路130と同じ機能の部分については同じ符号を付す。
【0152】
また、本発明の実施の形態7のクロック信号再生回路136が用いられるOFDM受信機の構成は、実施の形態1にて用いた図1の構成と同様である。
【0153】
尚、本実施の形態は、上記した全ての実施の形態に適用可能であるが、以下の説明では、実施の形態1に適用することとする。
【0154】
図11の本実施の形態のクロック信号再生回路136と、図2の実施の形態1のクロック信号再生回路130とが異なる点は、クロック信号再生回路130では、演算手段13と累積加算回路15とが直接に接続されていたが、本実施の形態のクロック信号再生回路136では、演算手段13と累積加算回路15との間に、所定値判定回路81(判定手段)と切替え回路82(切替手段)とが設けられている点である。
【0155】
所定値判定回路81は、ROM12から出力された位相変動量PSが、使用者によって指定された所定値未満であるか否かを判定する回路である。切替え回路82は、所定値判定回路81により位相変動量PSが所定値未満であると判定された場合に、位相変動量PSの値を後段の累積加算回路15に出力せず、「0」値を出力する回路である。
【0156】
本実施の形態において、使用者によって指定される所定値とは、例えば、実際に復調データIRおよびQRがクロック信号再生回路136に入力されていない場合であっても演算手段13から発生するガウス雑音による値や、演算手段13中で発生する演算誤差分の値を加えた値である。
【0157】
次に、図11に示した本発明の実施の形態7の動作について説明する。
【0158】
実施の形態7の動作は、図4を用いて説明した実施の形態1の動作における位相変動量の演算処理(ステップS4)と、累積加算処理(ステップS5)との間に追加挿入される処理である。その他の本実施の形態4の動作は、実施の形態1の動作と同様である。
【0159】
具体的には、従来のクロック信号再生回路130では、演算手段13で演算された位相変動量PSが直接に累積加算回路15に入力されていたが、本実施の形態のクロック信号再生回路136では、演算手段13から出力された位相変動量PSは、所定値判定回路81に入力されてから、切替え回路82を経由して累積加算回路15に入力されるようになる。
【0160】
図12は、本実施の形態7における実施の形態1の動作のステップS4とステップS5との間に挿入される部分の動作を示すフローチャートである。
【0161】
所定値判定回路81は、演算手段13から出力された位相変動量PSが使用者により設定された所定値未満であるか否かを判定(ステップS21)し、所定値未満である場合(ステップS21:yes)には、ステップS22に進み、定値未満でない場合(ステップS21:no)には、ステップS23に進む。
【0162】
切替え回路82は、位相変動量PSが使用者により設定された所定値未満であることから、位相変動量PSを後段の累積回路15に出力しないようにし、位相変動量=0を出力する(ステップS22)。
【0163】
切替え回路82は、位相変動量PSが使用者により設定された所定値以上であることから、位相変動量PSを後段の累積回路15に出力する(ステップS23)。
【0164】
以上のように、演算手段13から出力された位相変動量PSが所定値未満であった場合に位相変動量を0とすることにより、例えば、ガウス雑音や算出誤差分が位相変動量PSとして累積加算回路15にて累積加算されることを無くすことができることから、位相変動量PS中から不要な雑音成分等を除去して位相変動量の算出精度を上げることができるので、クロック信号の引き込み速度および性能を上げることができる。
【0165】
【発明の効果】
本発明は、以上説明したように構成されているので、以下のような効果を奏する。
【0166】
請求項1に記載のクロック信号再生回路および請求項8に記載のクロック信号再生方法によれば、同一シンボル内におけるパイロット信号に対応する副搬送波周波数成分の位相変動量を算出するようにしているので、
クロック信号の周波数誤差および位相誤差による位相変動量が検出でき、クロック信号の引き込み性能を上げることができる。また、一度に算出することのできる隣接するパイロット信号間の位相変動量値の最大値は+2πであるが、累積加算することでシンボル内位相変動量の検出範囲を広げることができる。また、パイロット信号はシンボル内に多数含まれることから、シンボル内位相変動量を高精度で算出でき、クロック信号の引き込み速度および性能を上げることができる。さらに、クロック信号の引き込み性能が上がることから、副搬送波間干渉による妨害を抑えることができ、再生信号のビット誤り率特性を向上させることができる。
【0167】
請求項2に記載のクロック信号再生回路によれば、同一シンボル内におけるTMCC信号、AC信号に対応する副搬送波周波数成分の位相変動量を算出するようにしているので、
クロック信号の周波数誤差および位相誤差による位相変動量が検出でき、クロック信号の引き込み性能を上げることができる。また、一度に算出することのできる隣接するTMCC信号、AC信号間の位相変動量値の最大値は+2πとなるが、累積加算することでシンボル内位相変動量の検出範囲を広げることができる。また、TMCC信号、AC信号はシンボル内に多数含まれることから、シンボル内位相変動量を高精度で検出でき、クロック信号の引き込み速度および性能を上げることができる。さらに、クロック信号の引き込み性能が上がることから、副搬送波間干渉による妨害を抑えることができ、再生信号のビット誤り率特性を向上させることができる。
【0168】
請求項3に記載のクロック信号再生回路によれば、受信開始直後には差動変調部と同期変調部で共通の周波数配置で伝送されるTMCC信号、AC信号に対応する副搬送波周波数成分のデータを選択して利用するようにしているので、
差動変調部、同期変調部に関係無くクロック信号の引き込みを行うことができる。また、各変調部の周波数配置が判別された後には、各変調部に多く含まれるパイロット信号、またはTMCC信号、AC信号に対応する副搬送波周波数成分を抽出することで、位相変動量を検出するための副搬送波周波数成分の数を増やすことができ、シンボル内位相変動量を高精度で検出でき、クロック信号の引き込み速度および性能を上げることができる。クロック信号の引き込み速度が上がることから、受信開始後、早期に再生信号のビット誤り率特性を向上させることができる。
【0169】
請求項4、請求項5および請求項6に記載のクロック信号再生回路によれば、ROMを使用することなく容易に位相変動量を算出することができる。
【0170】
請求項7に記載のクロック信号再生回路によれば、算出した位相変動量をが所定値以下であった場合に位相変動量を0とするので、
ガウス雑音や算出誤差による位相変動量をキャンセルすることができ、クロック信号の引き込み速度および性能を上げることができる。
【図面の簡単な説明】
【図1】 本発明の実施の形態1のクロック信号再生回路が用いられるOFDM受信機を示すブロック図である。
【図2】 本発明の実施の形態1であるクロック信号再生回路を示すブロック図である。
【図3】 本発明の実施の形態1であるクロック信号再生回路において、クロック信号に周波数誤差があった場合に、高速フーリエ変換回路(変換手段)から出力される副搬送波の周波数成分に現れる位相誤差を表す図である。
【図4】 本発明の実施の形態1の動作を示すフローチャートである。
【図5】 本発明の実施の形態2であるクロック信号再生回路を示すブロック図である。
【図6】 本発明の実施の形態3であるクロック信号再生回路を示すブロック図である。
【図7】 本発明の実施の形態3における選択手段の動作を示すフローチャートである。
【図8】 本発明の実施の形態4であるクロック信号再生回路を示すブロック図である。
【図9】 本発明の実施の形態5であるクロック信号再生回路を示すブロック図である。
【図10】 本発明の実施の形態6であるクロック信号再生回路を示すブロック図である。
【図11】 本発明の実施の形態7であるクロック信号再生回路を示すブロック図である。
【図12】 本発明の実施の形態7であるクロック信号再生回路における検出手段と禁止手段の動作を示すフローチャートである。
【図13】 従来のクロック信号再生回路を示すブロック図である。
【符号の説明】
3 差動復調回路、6、7 RAM(記憶手段)、10 符号反転回路、11複素乗算回路、12 ROM、13、70、71 演算手段、25 タンジェント算出回路、26 極性出力回路、30、40 セレクタ(第1の選択手段)、33、43 セレクタ(第2の選択手段)、31、41 スイッチ、32、42 位相補正回路、15 累積加算回路(累積加算手段)、50 ループフィルタ(フィルタ手段)、60 クロック発振制御回路(制御手段)、71、72 信号判定回路(信号判定手段)、81 所定値判定回路(判定手段)、82 切替回路(切替手段)、105 A/D変換回路、112 高速フーリエ変換回路、115、130〜136 クロック信号再生回路、116 クロック信号発振器、120 副搬送波周波数信号復調回路。

Claims (8)

  1. 受信したアナログ信号のOFDM変調信号を主搬送波周波数について1次復調して副搬送波周波数帯域信号とし、該副搬送波周波数帯域信号をクロック信号発振器から出力されたクロック信号を用いてデジタル信号に変換し、該デジタル信号に対して2次復調すると共に離散的フーリエ変換を実施することにより副搬送波周波数帯域信号の復調信号を生成するOFDM受信機において、
    前記復調信号中から送信側で内挿されたパイロット信号を選択する第1の選択手段と、
    前記第1の選択手段にて選択された前記パイロット信号の周波数成分を記憶する記憶手段と、
    前記パイロット信号の周波数成分と、前記パイロット信号と同一シンボル内であり且つ該パイロット信号より少なくとも1副搬送波前の前記記憶手段に記憶されたパイロット信号の周波数成分との間の位相変動量を演算する演算手段と、
    前記位相変動量を1シンボル期間に亘って累積加算して出力する累積加算手段と、
    前記累積加算された位相変動量から雑音成分を除去するフィルタ手段と、
    前記フィルタ手段の出力値に応じて前記クロック信号発振器にて発生させるクロック信号の周波数を制御するための制御信号を出力する制御手段とを備えることを特徴とするクロック信号再生回路。
  2. 受信したアナログ信号のOFDM変調信号を主搬送波周波数について1次復調して副搬送波周波数帯域信号とし、該副搬送波周波数帯域信号をクロック信号発振器から出力されたクロック信号を用いてデジタル信号に変換し、該デジタル信号に対して2次復調すると共に離散的フーリエ変換を実施することにより副搬送波周波数帯域信号の復調信号を生成するOFDM受信機において、
    前記復調信号中から受信機の復調動作に関る情報を伝送するTMCC(Transmission and Multiplexing Configuration Control)信号および付加情報を伝送するAC(Auxiliary Channel)信号を選択する第2の選択手段と、
    前記第2の選択手段にて選択された前記TMCC信号および前記AC信号の周波数成分を記憶する記憶手段と、
    前記TMCC信号および前記AC信号の周波数成分と、前記TMCC信号および前記AC信号と同一シンボル内であり且つ前記TMCC信号および前記AC信号より少なくとも1副搬送波前の前記記憶手段に記憶されたTMCC信号および前記AC信号の周波数成分との間の位相変動量を演算する演算手段と、
    前記位相変動量を1シンボル期間に亘って累積加算して出力する累積加算手段と、
    前記累積加算された位相変動量から雑音成分を除去するフィルタ手段と、
    前記フィルタ手段の出力値に応じて前記クロック信号発振器にて発生させるクロック信号の周波数を制御するための制御信号を出力する制御手段とを備えることを特徴とするクロック信号再生回路。
  3. 前記OFDM受信機がQPSK(Quadrature Phase Shift Keying)方式またはQAM(Quadrature Amplitude Modulation)方式により副搬送波が変調された同期変調信号部と、DQPSK(Diffrential Quadrature Phase Shift Keying)方式により副搬送波が変調された差動変調信号部とが混在するOFDM変調信号を受信し、
    前記同期変調信号部あるいは前記差動変調信号部にて伝送されるパイロット信号、TMCC信号またはAC信号の周波数軸上における各信号の配置が異なる場合に、
    前記第1の選択手段および前記第2の選択手段を備えると共に、
    入力した復調信号が前記同期変調信号部あるいは前記差動変調信号部の何れであるかを判定して、各変調信号部毎に前記第1の選択手段と前記第2の選択手段のどちらで選択するかの切替指示を出力する信号判定手段を有することを特徴とする請求項1または2に記載のクロック信号再生回路。
  4. 前記演算手段は、前記位相変動量についてタンジェント(正接関数)を用いて近似した結果を出力することを特徴とする請求項1乃至3の何れか1項に記載のクロック信号再生回路。
  5. 前記演算手段は、前記位相変動量についてサイン(正弦関数)を用いて近似した結果を出力することを特徴とする請求項1乃至3の何れか1項に記載のクロック信号再生回路。
  6. 前記演算手段は、前記位相変動量の極性のみを出力することを特徴とする請求項1乃至3の何れか1項に記載のクロック信号再生回路。
  7. 前記演算手段から出力される前記位相変動量が所定値以上であるか否かを判定する判定手段と、該判定手段により前記出力が所定値以上であると判定された場合には前記出力を後段の回路に出力する一方で前記出力が所定値未満であると判定された場合には後段の回路に出力しない切替手段とを備えることを特徴とする請求項1乃至6の何れか1項に記載のクロック信号再生回路。
  8. 受信したアナログ信号のOFDM変調信号を主搬送波周波数について1次復調して副搬送波周波数帯域信号とし、該副搬送波周波数帯域信号をクロック信号発振器から出力されたクロック信号を用いてデジタル信号に変換し、該デジタル信号に対して2次復調すると共に離散的フーリエ変換を実施することにより副搬送波周波数帯域信号の復調信号を生成するOFDM受信機において、
    前記復調信号中から送信側で内挿されたパイロット信号または受信機の復調動作に関る情報を伝送するTMCC信号または付加情報を伝送するAC信号を選択する選択ステップと、
    前記選択ステップにて選択された前記パイロット信号、前記TMCC信号または前記AC信号の周波数成分を記憶する記憶ステップと、
    前記パイロット信号、前記TMCC信号または前記AC信号の周波数成分と、前記各信号と同一シンボル内であり且つ前記記憶ステップにて記憶された前記各信号より少なくとも1副搬送波前の同種の各信号の周波数成分との間の位相変動量を演算する演算ステップと、
    前記位相変動量を1シンボル期間に亘って累積加算して出力する累積加算ステップと、
    前記累積加算された位相変動量から雑音成分を除去するフィルタステップと、前記フィルタステップの出力値に応じて前記クロック信号発振器にて発生させるクロック信号の周波数を制御するための制御信号を出力する制御ステップと実施することを特徴とするクロック信号再生方法。
JP2000072119A 2000-03-15 2000-03-15 クロック信号再生回路およびクロック信号再生方法 Expired - Fee Related JP3773388B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2000072119A JP3773388B2 (ja) 2000-03-15 2000-03-15 クロック信号再生回路およびクロック信号再生方法
GB0100500A GB2364221B (en) 2000-03-15 2001-01-09 Clock recovery circuit and method
CNB011012722A CN1185816C (zh) 2000-03-15 2001-01-15 时钟信号再生电路和方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000072119A JP3773388B2 (ja) 2000-03-15 2000-03-15 クロック信号再生回路およびクロック信号再生方法

Publications (2)

Publication Number Publication Date
JP2001268043A JP2001268043A (ja) 2001-09-28
JP3773388B2 true JP3773388B2 (ja) 2006-05-10

Family

ID=18590589

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000072119A Expired - Fee Related JP3773388B2 (ja) 2000-03-15 2000-03-15 クロック信号再生回路およびクロック信号再生方法

Country Status (3)

Country Link
JP (1) JP3773388B2 (ja)
CN (1) CN1185816C (ja)
GB (1) GB2364221B (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2134048A2 (en) 2008-06-11 2009-12-16 Mitsubishi Electric Corporation Carrier frequency error detection in a multicarrier receiver

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4003386B2 (ja) * 2000-09-13 2007-11-07 三菱電機株式会社 クロック信号再生装置および受信装置、クロック信号再生方法および受信方法
GB0303546D0 (en) 2003-02-15 2003-03-19 4I2I Comm Ltd Synchronisation method for ofdm symbols
US7564875B2 (en) * 2003-11-11 2009-07-21 Intel Corporation Techniques to map and de-map signals
JP2009033492A (ja) * 2007-07-27 2009-02-12 Mitsubishi Electric Corp クロック信号制御回路及びofdm受信機
CN115242589B (zh) * 2021-04-23 2024-05-14 华为技术有限公司 一种时钟恢复方法及装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2278257B (en) * 1993-05-05 1996-10-02 British Broadcasting Corp Receiving equipment for digital transmissions
SE504787C2 (sv) * 1994-12-14 1997-04-28 Hd Divine Ab Metod vid OFDM-mottagning för korrigering av frekvens, tidsfönster, samplingsklocka och långsamma fasvariationer
JP3700290B2 (ja) * 1996-10-30 2005-09-28 日本ビクター株式会社 直交周波数分割多重信号伝送方法及びそれに用いる受信装置
JP3797397B2 (ja) * 1997-05-02 2006-07-19 ソニー株式会社 受信装置および受信方法
DE69819673T2 (de) * 1998-01-19 2004-09-30 Victor Company of Japan, Ltd., Yokohama Anordnung zur Symbolsynchronisierung in einem OFDM-Übertragungssystem unter Verwendung der Eigenschaften eines Kommunikationskanals
US6618352B1 (en) * 1998-05-26 2003-09-09 Matsushita Electric Industrial Co., Ltd. Modulator, demodulator, and transmission system for use in OFDM transmission

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2134048A2 (en) 2008-06-11 2009-12-16 Mitsubishi Electric Corporation Carrier frequency error detection in a multicarrier receiver

Also Published As

Publication number Publication date
CN1313684A (zh) 2001-09-19
CN1185816C (zh) 2005-01-19
GB0100500D0 (en) 2001-02-21
GB2364221B (en) 2002-08-28
GB2364221A (en) 2002-01-16
JP2001268043A (ja) 2001-09-28

Similar Documents

Publication Publication Date Title
KR0136718B1 (ko) 직교 주파수 분할 다중(ofdm) 동기 복조 회로
US5787123A (en) Receiver for orthogonal frequency division multiplexed signals
JP3797397B2 (ja) 受信装置および受信方法
US7149266B1 (en) Signal receiver and method of compensating frequency offset
JPH0746218A (ja) ディジタル復調装置
JPH11163957A (ja) 階層化伝送ディジタル復調器
JP3743629B2 (ja) 正確にバーストの位置を特定できかつ再生搬送波の周波数誤差の小さな無線通信端末
JP3773388B2 (ja) クロック信号再生回路およびクロック信号再生方法
KR20000068674A (ko) 직교 주파수 분할 다중 신호 복조 장치
JP3392037B2 (ja) ディジタル復調器
JP3084363B2 (ja) キャリア再生回路
JP4003386B2 (ja) クロック信号再生装置および受信装置、クロック信号再生方法および受信方法
JP2000165346A (ja) Ofdm復調装置
JP3342967B2 (ja) Ofdm同期復調回路
WO1999039485A1 (fr) Recepteur
JPH11196148A (ja) ディジタル復調器
JP3946422B2 (ja) クロック信号再生制御回路及びクロック信号再生制御方法
JP3865893B2 (ja) 復調回路
JP3382891B2 (ja) 位相変調信号のデジタル処理による復調方法及びデジタル復調装置
JP2006287672A (ja) Ofdm復調装置およびofdm復調方法
JP4803079B2 (ja) 復調装置
JP3394276B2 (ja) Afc回路
JPH10224320A (ja) Ofdm復調装置
JPH09200176A (ja) Ofdm同期復調回路
JPH11122318A (ja) Afc回路

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040405

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060104

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060214

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060214

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100224

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100224

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110224

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120224

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130224

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130224

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140224

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees