JP3761862B2 - 両面配線板の製造方法 - Google Patents

両面配線板の製造方法 Download PDF

Info

Publication number
JP3761862B2
JP3761862B2 JP2002377945A JP2002377945A JP3761862B2 JP 3761862 B2 JP3761862 B2 JP 3761862B2 JP 2002377945 A JP2002377945 A JP 2002377945A JP 2002377945 A JP2002377945 A JP 2002377945A JP 3761862 B2 JP3761862 B2 JP 3761862B2
Authority
JP
Japan
Prior art keywords
layer
hole
film
wiring
copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002377945A
Other languages
English (en)
Other versions
JP2003204152A (ja
Inventor
隆 伏江
猛 加賀爪
茂和 松井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoya Corp
Original Assignee
Hoya Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya Corp filed Critical Hoya Corp
Priority to JP2002377945A priority Critical patent/JP3761862B2/ja
Publication of JP2003204152A publication Critical patent/JP2003204152A/ja
Application granted granted Critical
Publication of JP3761862B2 publication Critical patent/JP3761862B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Printing Elements For Providing Electric Connections Between Printed Circuits (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は表裏面に配線パターンを備える両面配線板の製造方法に関し、特に高密度の配線パターンの形成が可能な両面配線板の製造方法に関する。
【0002】
【従来の技術】
近年、両面配線板を基本構造とする多層配線板上に複数のLSIをベアチップで高密度実装したMCM(Multi Chip Module)の普及が進んでいる。MCMは、ノート型パソコン、携帯電話をはじめとする様々なOA機器、移動体通信機器、産業機器等に利用され、これらの小型・軽量化に大きく貢献している。ノート型パソコン及び携帯電話等の分野では、今後もさらなる小型・軽量化が進むものと思われ、これらに対応するMCMにもさらなる小型化が必要とされていくことは必須である。
【0003】
MCMを小型化する要素としては、実装されるLSIの小型化、配線パターンの高密度化等がある。LSIとしてフリップチップを用いる場合、そのパッドピッチは、将来的に0.07mm程度までなるといわれており、このようなフリップチップを実装する多層配線板についても、このようなパッドパターンの微細化に対応した高密度配線パターン形成が必要となる。
【0004】
一般に、このような多層配線板としては、セラミック素材を用いたセラミック配線板及びガラスエポキシ等を用いたビルドアップ配線板が知られている。セラミック配線板の製造にはグリーンシートが用いられ、そこにパンチング処理を行なうことによりスルーホールが形成される。また、配線パターンの形成は、グリーンシートに導電性インクを印刷することによって行なう。そして、このようにスルーホール及び配線パターンが形成されたグリーンシートを多数枚重ね合わせ、高温・高圧化で焼結させることにより、配線パターンが積層された配線板が形成される。一方、ビルドアップ配線板の製造には、銅張りしたガラスエポキシを出発材料として用い、そこにドリルでスルーホールを形成した後、メッキ処理を行なうことによってスルーホール内壁に導電層を形成し、表裏面の導電接続を行なう。その後、配線パターンの形成を行ない(以下コア層)、その配線済み材料の片面或いは両面に有機系の絶縁層(以下ビルドアップ層)を形成する。そして、各層の接続部分にあたるビルドアップ層のみをレーザやエッチング等で除去し、メッキを使用して各層間を接続することによって多層化した配線板を形成する。
【0005】
【発明が解決しようとする課題】
しかし、セラミック配線板の場合、グリーンシートへの配線パターンの形成は、印刷により行なうこととなるため、高密度の配線パターン形成が困難であるという問題点がある。
【0006】
また、セラミック配線板の場合スルーホールの形成はパンチングで行なうこととなるため、小径のスルーホール形成が困難であり、その径に対応するランド幅も大きくなってしまうため、配線パターンの密度向上が困難であるという問題点もある。
【0007】
一方、ビルドアップ配線板の場合、コア層の銅箔とガラスエポキシの間に形成されるメッキ銅の熱膨張係数(16ppm/℃)とガラスエポキシの厚み方向の熱膨張係数(80ppm/℃)との差が大きいため、その熱膨張係数の差によって生じる断線等の不具合を回避する必要性から、メッキ銅の厚みは20μm以上確保しなければならない。さらに、コア層の銅箔は、その裏面を3〜5μm程度粗化し、樹脂にラミネートすることにより密着強度を確保しているため、その粗化分の厚み3〜5μmも確保する必要がある。そのため、極薄の銅箔を用いた場合でも、メッキ銅及び粗化分を含めた銅箔の厚みの合計は35μm以上となる。このような厚い銅膜をエッチングする場合、そのサイドエッチング量が大きくなる傾向があるため、コア層の配線の微細化を図ることができないという問題点がある。
【0008】
また、ビルドアップ配線板の場合、スルーホール形成はドリル加工によって行なわれることとなるため、0.3mm径以下のスルーホール形成が困難であり、その径に対応するランド幅も大きくなってしまうため、配線パターンの密度向上が困難であるという問題点もある。
【0009】
本発明はこのような点に鑑みなされたものであり、微細な配線パターンの形成を可能とし、配線パターンの高密度化を実現できる両面配線板の製造方法を提供することを目的とする。
【0010】
【課題を解決するための手段】
本発明では上記課題を解決するために、表裏面を連通するように形成された貫通孔を備えるガラス基板と、前記ガラス基板の表裏面上に形成された配線層と、前記貫通孔の内壁面に導体膜が形成され、前記ガラス基板の表裏面を導体接続してなる導通部とを備え、かつ前記ガラス基板が感光性ガラスからなる両面配線板の製造方法において、前記ガラス基板にマスクを通して前記貫通孔を形成する部分に潜像が形成されるように露光し、該露光した部分に熱処理を行ない結晶化させ、結晶化した部分を溶解除去して前記貫通孔を形成する貫通孔形成工程と、前記貫通孔形成工程についで、前記貫通孔が形成された前記ガラス基板を加熱して結晶化させる結晶化工程と、結晶化された前記ガラス基板の表裏面に前記配線層を形成する配線層形成工程と、結晶化された前記ガラス基板の前記貫通孔の内壁面に前記導体膜を形成して前記ガラス基板の表裏面を導通可能とする導体膜形成工程と、を有することを特徴とする両面配線板の製造方法が提供される(請求項1)。
【0011】
このような両面配線板の製造方法によれば、その基板材料として感光性ガラスを用い、感光性ガラスを部分的に露光して貫通孔を形成するので、小径の貫通孔を形成することが可能になる。また、感光性ガラスを用いることにより、ガラス基板とその貫通孔内壁面に形成される導体膜或いはガラス基板表裏面に形成される配線層との間の熱膨張係数差が小さくなる。これにより、断線等の不具合を回避して微細な配線パターンを形成することが可能になる。さらに、貫通孔の形成後にガラス基板を加熱して結晶化させることにより、そのガラス基板の機械的強度、耐熱性を向上させ、また、熱膨張係数の制御やイオンマイグレーションの抑制などを図ることもできるようになる。これにより、熱履歴による膨張・収縮の繰返し等に起因する断線等の欠陥発生を抑制して微細な配線パターンを形成することが可能になる。
【0012】
また、本発明では、前記配線層と前記導体膜とは連続した膜であり、かつ前記導体膜の膜厚が1μm〜20μmであることを特徴とする請求項1記載の両面配線板の製造方法が提供される(請求項2)。
【0013】
さらに、本発明では、前記配線層に形成された配線パターンの線幅が、3μm〜50μmであることを特徴とする、請求項1乃至2のいずれかに記載の両面配線板の製造方法が提供される(請求項3)。
【0014】
【発明の実施の形態】
以下、本発明の実施の形態を図面を参照して説明する。
まず、第1の実施の形態について説明する。
【0015】
図1は、本形態における両面配線板の断面図である。
両面配線板50には、そのコアを構成するガラス基板である感光性ガラス2、感光性ガラス2の表裏面を貫通する貫通孔であるスルーホール3、感光性ガラス2からのアルカリ金属イオン等の漏洩を抑制するイオンブロッキング層4が設けられている。
【0016】
本形態では、イオンブロッキング層4は、スパッタ酸化シリコン層4a及びスパッタ窒化シリコン層4bから構成されている。また、配線層であり同時に感光性ガラス2の表裏面を導体接続する導体膜でもある銅膜層6、銅膜層6の膜密着力を保持・向上させる密着力強化層5が設けられており、この密着力強化層5はスパッタクロム層5a、スパッタクロム銅層5b及びスパッタ銅層5cにより構成されている。さらに、スルーホール3内部の銅膜層6は、保護層である樹脂8で被覆されている。
【0017】
なお、この図1に示した両面配線板50は、後述の図6(c)に示す多層プリント基板1の基本構造であり、両面配線板50として製造される場合には、多層プリント基板1と同様、銅膜層6の表面導通部は表面処理層12で被覆され、表面導通部以外の両面配線板50表面はカバーコート13で被覆される。
【0018】
ここで使用するガラス基板は、その平滑性、硬質性、絶縁性の面からコア基板の材料として最適であり、その特性は本形態で例示する感光性ガラスのみならず、ソーダライムガラス等の化学強化ガラス、結晶化ガラス、無アルカリガラス、アルミノシリケートガラス等でも同様である。
【0019】
スパッタ窒化シリコン層4bは感光性ガラス2の表裏面に構成され、スパッタ酸化シリコン層4aは、このスパッタ窒化シリコン層4bの外面に構成される。さらに、スパッタ酸化シリコン層4aの外面には、スパッタクロム層5aが構成され、スパッタクロム層5aの外面にはスパッタクロム銅層5bが、スパッタクロム銅層5bの外面にはスパッタ銅層5cがそれぞれ構成される。銅膜層6は、スパッタ銅層5cの外側及びスルーホール3の内壁面に構成され、スパッタ銅層5cの外側に構成される銅膜層6の一部とスルーホール3の内壁面に構成される銅膜層6は導体接続される。樹脂8は、スルーホール3内壁面の銅膜層6に囲まれたスルーホール3内部に充填される。そして、両面配線板50最外面にカバーコート13及び表面処理層12が構成されるようになる。
【0020】
次に、両面配線板50の製造工程について説明する。
本発明の両面配線板50の製造工程は、スルーホール形成工程、イオンブロッキング層形成工程、配線層及び導体膜形成工程、導体膜被覆工程、エッチング工程によって構成される。
【0021】
また、必要に応じて、ガラス基板を改質させる工程を付加することができる。改質させるガラスの特性としては、ガラスの硬度、曲げ強度、熱膨張係数などの物理的特性や、透過率、屈折率等の光学的特性等、さらには、イオンマイグレーション性等の化学的特性、誘電率や誘電正接等の電気的特性などが挙げられる。
【0022】
ガラス基板の改質は、例えば、ガラス基板全体を結晶化させることにより行なうことができる。結晶化を行なうことにより、ガラス基板の曲げ強度、熱膨張係数や、透過率などの特性を所望に改質することができる。
【0023】
さらに、ガラス基板の改質は、基板表面状態、例えば平滑性、清浄性、濡れ性等の調整を目的として行なわれるものであってもよい。
図2は、感光性ガラス2にスルーホール3を構成するスルーホール形成工程を示した断面図である。
【0024】
スルーホール形成工程では、まず、感光性ガラス2の表面にマスクを配置し、感光性ガラス2上のスルーホール3形成部分のみに選択的に紫外線を照射する。ここで用いられる感光性ガラス2の材料としては、感光性成分を含有し、感光性を示すものであれば特に制限なく使用可能である。この感光性成分は、Au、Ag、Cu2O又はCeO2のうち少なくとも1種を含むことが好ましく、これらのうち2種以上を含むことは更に好ましい。
【0025】
本発明においては、ガラス基板として、例えば重量%で、SiO2:55〜85%、Al23:2〜20%、Li2O:5〜15%、SiO2+Al23+Li2O>85%を基本成分とし、Au:0.001〜0.05%、Ag:0.001〜0.5%、Cu2O:0.001〜1%を感光性金属成分とし、更にCeO2:0.001〜0.2%を光増感剤として含有する感光性ガラスを用いることが特に好ましい。
【0026】
また、スルーホール形成のために用いられるマスクとしては、スルーホールを形成する位置に開口部を有し、感光性ガラス2に密着し、感光性ガラス2の選択的な露光を可能にするものであれば特に制限なく使用可能である。このようなマスクとしては、例えば、透明な薄板ガラスにクロム膜等の実質的に紫外線などの露光光を通さない膜からなるパターンを形成したものを用いることができる。
【0027】
スルーホール3形成部分にマスクを通して選択的に紫外線を照射された感光性ガラス2は、図2の(a)に示すように、その照射によりスルーホール3形成部分に露光結晶化部2aを形成する。
【0028】
次に、露光結晶化部2aが形成されたガラス基板を熱処理する。この熱処理は、用いられるガラスの転移点と屈伏点との間の温度で行なわれることが好ましい。転移点未満の温度では熱処理効果が十分に得られず、一方、屈伏点を超える温度では、収縮が起こり、寸法精度が低下するおそれがあるからである。熱処理時間としては、30分〜5時間程度とすることが好ましい。
【0029】
続いて、このように熱処理された感光性ガラス2を希フッ化水素酸に浸漬させ、露光結晶化部2aのみをエッチングする。このエッチングにより、図2の(b)に示すように感光性ガラス2からスルーホール形成部のみが選択的に溶解除去され、スルーホール3が形成されることとなる。感光性ガラス2を用いたフォトリソグラフィーによるスルーホール形成では、アスペクト比10程度のスルーホール3を所望の数だけ同時に形成することが可能であり、例えば、厚み0.3〜1.5mm程度の感光性ガラス2を用いた場合、30〜150μm程度の小径のスルーホールを所望の位置に複数同時に形成することができる。これにより、配線パターンの微細化、スルーホール形成工程の時間の短縮を図ることができる。
【0030】
さらに、配線パターンの高密度化のために、ランド幅を極めて小さく、或いはランド幅をゼロとしたランドレス構造とした場合、スルーホール間スペースを十分広く確保することができ、スルーホールの間にも配線を設けることが可能となる等、配線設計の自由度がより拡大する。
【0031】
また、狭ピッチでスルーホールが形成でき、配線密度の向上を図ることができる。
なお、基板上に配線層等の薄膜を形成する前に、ガラス基板全体の結晶化などのガラス基板改質工程を付加することもできる。
【0032】
このような工程を付加することにより、ガラス基板の特性が改善・向上され、もとの感光性ガラス等よりも機械的強度、耐熱性の向上、熱膨張係数の制御やイオンマイグレーションの抑制などを図ることができる。
【0033】
例えば、ガラス基板全体を結晶化した場合、結晶化ガラス基板の熱膨張係数を、配線層を構成する金属材料の熱膨張係数と近似させたとき、例えばランドレス構造として狭ピッチ・高密度配線パターンを形成しても、熱履歴による膨張・収縮の繰返し等に起因する、断線やランド切れなどの欠陥発生を抑制することができる。
【0034】
ガラス基板全体の結晶化は、スルーホールを形成した後、紫外線を基板全体に照射し、ついで熱処理を施すことにより行なうことができる。ここでの結晶化条件は、得られる結晶化ガラス基板の特性に応じて、析出する結晶の種類、大きさ、量等を調節するべく適宜選択される。
【0035】
図3の(a)は、感光性ガラス2の表裏面にスパッタ酸化シリコン層4a及びスパッタ窒化シリコン層4bのイオンブロッキング層形成工程における断面図である。
【0036】
感光性ガラス2がLi+、Na+等のアルカリ金属イオンを有する場合、イオンマイグレーションによる短絡不良の対策を講じる必要がある。イオンマイグレーションとは、長時間の電圧印加によりアルカリ金属イオンが絶縁物上を移動し、最終的に電極間の短絡を引き起こす現象であり、両面配線板50或いは多層プリント基板1の信頼性を低下させる1つの要因となる。本形態では、このイオンマイグレーションによる短絡不良を抑制するため、感光性ガラス2の表裏面にスパッタ酸化シリコン層4a及びスパッタ窒化シリコン層4bのイオンブロッキング層4を形成し、感光性ガラス2から銅膜層6、絶縁層10等へのアルカリ金属イオンの漏洩を抑制する。これにより、イオン性不純物を含むガラスについてもイオンマイグレーションについて十分な抑制効果を発揮し、さらに膜厚が小さくても十分な絶縁抵抗を有する。
【0037】
イオンブロッキング層4を形成する場合、まず、感光性ガラス2の表裏面に含有されるアルカリ金属イオンを除去する脱アルカリ処理を施す。この脱アルカリ処理は、例えば硫酸溶液等の電解溶媒中に感光性ガラス2を浸し、感光性ガラス2に電界を与えることにより、感光性ガラス2の表裏面に含有されるアルカリ金属イオンを電界溶媒中に溶かし出すことによって行なう。
【0038】
この脱アルカリ処理の終了後、感光性ガラス2の表裏面にイオンブロッキング層4を形成する。イオンブロッキング層4に用いられる材質は、有機系、無機系どちらでもよく、絶縁特性を有し、ガラスとの膨張係数差が小さく、できれば耐熱性、耐湿性、電気特性に優れているものが好ましい。このようなものとして、例えばSiO2、Si34、Al23等があるが、ピンホールなどの欠陥がなく、絶縁膜としての完全性が高く、絶縁耐圧が高いという観点からSiO2及びSi34がより好ましい。
【0039】
これらの成膜方法は、スパッタ、真空蒸着、CVD等、特に限定されないが、良好な密着性が得られるという面からスパッタを用いることがより好ましい。本形態の場合、図3(a)に示すように感光性ガラス2の表裏面にスパッタ窒化シリコン層4bを構成し、さらにその外面にスパッタ酸化シリコン層4aを構成する。なお、本形態では、感光性ガラス2の脱アルカリ処理を行なった後に、イオンブロッキング層4を形成することとしたが、脱アルカリ処理或いはイオンブロッキング層4の形成いずれか一方のみを行なうこととしてもよい。また、本発明におけるガラス基板とは、イオンブロッキング層4が形成されたものを含むものとする。
【0040】
イオンブロッキング層形成工程が終了すると、配線層及び導体膜形成工程に移る。図3の(b)及び(c)は、この配線層及び導体膜形成工程における断面図である。
【0041】
両面配線板50の配線層形成はメッキ等により行なうこととなるが、ここで、配線層に使用される材質と配線層が構成されるイオンブロッキング層4に使用される材質との膜密着性が悪い場合、配線層とイオンブロッキング層4の間に密着力強化層5を設け、配線層の膜密着強度の向上を図る。密着力強化層5に用いる材質としては、配線層及びイオンブロッキング層4の双方と膜密着力が良いもの、例えばクロム、タンタル、チタン等を用い、それをスパッタ、真空蒸着、CVD等でイオンブロッキング層4の表面に製膜して形成する。また、配線層と膜密着力が良い材質、イオンブロッキング層4と膜密着力が良い材質、及びそれらを混合した材質を用い、配線層と膜密着力が良い材質とイオンブロッキング層4と膜密着力が良い材質の間にそれらを混合した材質を介在させた3層構造をとることにより密着力強化層5を構成することとしてもよい。また、イオンブロッキング層を形成しない場合、密着力強化層5には、配線層に使用される材質及びコア基板に使用される材質の双方と膜密着力が良いものを用いる。この場合においても、イオンブロッキング層を形成する場合と同様に、密着力強化層5を3層構造とすることとしてもよい。
【0042】
本実施の形態では配線層の材質として銅を用い、密着力強化層5は、スパッタ酸化シリコン層4aと膜密着力の良いスパッタクロム層5a、配線層である銅膜層6と膜密着力の良いスパッタ銅層5c、及びそれらの間に介在させたスパッタクロム銅層5bによる3層構造によって構成される。図3の(b)は、このように構成された密着力強化層5を示した断面図である。本形態では密着力強化層5の形成にスパッタを用い、図3の(b)に示すように、スパッタ酸化シリコン層4aの外面にスパッタクロム層5aを構成し、その外面にスパッタクロム銅層5bを構成し、さらにその外面にスパッタ銅層5cが形成される。ここで、密着力強化層5を構成する各層の厚さは、後述するエッチングによる配線層のパターン形成時におけるサイドエッチング量を考慮して極力薄く構成されることが望ましい。しかし、密着力強化層5を構成する各層の厚さが薄すぎると、その後に行なう銅膜層6形成の前処理によって、密着力強化層5が除去されてしまうため注意が必要である。例えば密着力強化層5としてクロムを用いる場合、そのスパッタクロム層5aの厚さは0.04μm〜0.1μm程度が望ましい。また、中間層であるスパッタクロム銅層5bの厚みは、0.04μm〜0.1μm程度が望ましい。スパッタ銅層5cの厚みについては、0.5μm〜1.5μm程度が望ましい。この工程により、合計で2μm以下の非常に薄い密着力強化層5を形成する。
【0043】
次に、配線層及び導体膜の形成を行なう。本形態では、図3の(c)に示すように配線層及び導体膜を同一層である銅膜層6とし、銅膜層6は、密着力強化層5の表面及びスルーホール3の内壁面に連続して一様に構成される。これにより、この銅膜層6がスルーホール3を介して両面配線板50の表裏面を導体接続することとなる。ここで、銅膜層6の形成は電解メッキ及び無電解メッキ等のメッキにより行なうこととなるが、電解メッキ及び無電解メッキは互いに利点、欠点を併せ持つ。電解メッキは、無電解メッキに比べメッキ生成時間が短いという利点を持つが、メッキ膜の均一性、定着性の面で劣るという欠点を持つ。一方、無電解メッキは、電解メッキに比べてメッキ膜の均一性、定着性の面で優れているという利点を持つが、メッキ生成時間が長いという欠点を持つ。そこで、まず無電解メッキによって1μm以下の銅メッキ層を形成し、その上に電解メッキによって銅メッキを厚付けする方法がより好ましい。
【0044】
ここで形成される銅膜層6の厚みは、上述した密着力強化層5の場合と同様に、サイドエッチング量を考慮して極力薄く構成されることが望ましい。しかし、その使用環境により両面配線板50の温度変化が繰り返された場合、銅膜層6の熱膨張係数と感光性ガラス2の熱膨張係数との差が、銅膜層6の金属疲労を引き起こす結果となる。そのため、この金属疲労に対する銅膜層6の接続信頼性を確保するために、銅膜層6をある程度の厚みにしておく必要がある。本発明に用いた感光性ガラス2の熱膨張係数は、熱膨張係数80ppm/℃(Z方向)を有するガラスエポキシをコア基板とした場合に比べて銅の熱膨張係数に近い。例えば、感光性ガラス2の厚み方向の熱膨張係数は8.4ppm/℃程度であり、銅膜層6の熱膨張係数16ppm/℃の半分程度に収まっている。そのため、ガラスエポキシ等を使用した場合に比べ、銅膜層6に加わる応力の変化を小さく抑えることができ、結果として、銅膜層6を薄く形成しても十分な接続信頼性を確保することができる。本形態では、銅膜層6の厚みを1μm〜20μm程度とすることが望ましく、さらには4μm〜7μm程度とすることがより好ましい。ここで、銅膜層6の厚みを1μm以下とすると、上記に述べた金属疲労により銅膜層6の断線が生じる危険性が高く、一方、銅膜層6の厚みを20μm以上とすると配線層のパターンの微細化を図ることが難しくなる。
【0045】
銅膜層6の形成後、次に導体膜被覆工程に移る。図4は、導体膜被覆工程における断面図である。
導体膜被覆工程では、まずバリア層の構成を行なう。このバリア層は、スルーホール3の内壁面を除いた銅膜層6の外面に構成され、後述する研磨時に研磨から銅膜層6を保護する。これにより、非常に薄く構成された銅膜層6にダメージを与えることなく研磨を行なうことができる。バリア層に用いられる材質としては、研磨に耐え得るだけの機械的強度を有し、また、このバリア層は研磨後に除去する必要があるため、容易に銅膜層6から除去できるものを使用する。このような特性を有する材料としては、クロム、タンタル、チタン等が望ましく、このような材料をスパッタ、真空蒸着、CVD、メッキ等によって膜構成することによりバリア層を形成する。図4の(a)は、バリア層の材料としてクロムを用い、スパッタによってバリア層であるスパッタクロム層7を構成した場合の断面図を示している。このバリア層の厚みは、バリア層に使用される材料の種類、研磨剤の種類、研磨条件により異なるが、研磨後におけるバリア層の剥離時を考慮してできるだけ薄くしたほうが望ましい。例えば、バリア層の材料としてクロムを用い、バフ材を使用しロール研磨で不要な樹脂を研磨した場合、バリア層の厚みは0.1μm程度が望ましい。
【0046】
次に、図4の(b)に示すように、スクリーン印刷等を用い、樹脂8をスルーホール3に選択的に充填する。ここで使用する樹脂8は絶縁樹脂及び導電性樹脂のどちらでもよい。樹脂8の充填後、図4の(c)に示すように、スルーホール3からはみ出した樹脂8をバフ材等を用い研磨機で除去する。研磨後、スパッタクロム層7のみを選択的に除去し、図4の(d)に示すように、銅膜層6を表面に出す。この樹脂8の充填により、スルーホール3内壁面に形成される銅膜層6を保護できるため、銅膜層6を薄く構成することが可能となる。また、スルーホール3の表面部を平坦化できるため、レジストパターンを形成するレジスト膜や、後のカバーコート13の形成が容易になる。さらに、充填によりスルーホール3内部の空気を排除することができるため、環境温度の変化による空気の膨張が引き起こす絶縁層10等のクラック等の不具合を排除することが可能となり、信頼性の向上を図ることができる。
【0047】
次に、エッチング工程について説明する。図5の(a)は、エッチング処理によりエッチング部9が除去された両面配線板50の断面図である。エッチング工程では、図4の(d)に示した両面配線板50の外面に配線層のパターンに応じたレジストパターンを形成し、レジストに被覆されていない部分の銅膜層6、スパッタ銅層5c、スパッタクロム銅層5b、スパッタクロム層5aをエッチングで除去して配線層のパターンを形成する。すべてのスルーホール3は樹脂8により充填されているため、ここで用いられるレジストは、液状レジストでもドライフィルムレジストでも電着レジストでもよい。また、レジストタイプとしては、ポジ型、ネガ型どちらでもかまわないが、ポジ型レジストのほうが一般的に解像性が高いため、微細配線パターンの形成に適している。
【0048】
エッチングによるパターン形成を行なう場合、レジストが配置されている上面付近では、ほぼレジストパターン通りのエッチングが可能となるが、このエッチング部が深くなりレジストから離れれば離れるほど、そのレジストパターンとエッチングにより形成される配線パターンの形状誤差が大きくなっていく。つまりエッチングする金属層の膜厚が厚ければ厚いほど、その金属層の下層付近におけるエッチング形状の誤差が大きくなっていく。配線パターンの微細化のためには、この誤差を小さく抑える必要があり、誤差を小さくするためには、できるだけ金属層の厚みを小さく抑える必要がある。本形態では、上述したようにコア基板として銅と熱膨張係数の近い感光性ガラス2を用いることとしたため、銅膜層6を1〜20μm程度に薄く構成でき、結果として、配線パターンをも微細化することが可能となる。一般に、この金属層の厚みとエッチングで形成する配線パターン幅とは1:2の関係にあるため、スパッタクロム層5a、スパッタクロム銅層5b、スパッタ銅層5cの合計の厚みを、0.5μm〜5μm程度とすると、銅膜層6を含めた金属層の厚みの合計は、1.5μm〜25μm程度となり、形成できる配線パターン幅は、3μm〜50μm程度となる。なお、銅膜層6の厚みを4μm〜7μmとし、スパッタクロム層5a、スパッタクロム銅層5b、スパッタ銅層5cの合計の厚みを、0.58μm〜1.7μmとすることで、9μm〜20μm程度の幅の配線パターンを形成することがより望ましい。
【0049】
また、スルーホールランド幅(ランド幅)は10μm以下が好ましく、8μm以下がより好ましく、5μm以下がより好ましい。スルーホールランド幅が小さいほど、スルーホール間スペースをより広く確保することができ、そこに新たに配線を設けることも可能となる等、配線設計の自由度がより拡大する。
【0050】
さらに、スルーホールを狭いピッチで設けることもでき、配線パターンの高密度化を図ることができる。
なお、このエッチング工程後に、後述の多層プリント基板1形成における表面処理工程と同様の工程を経て、両面配線板50の配線層の表面導通部を表面処理層12で被覆し、それ以外の部分をカバーコート13で被覆することができる。
【0051】
また、エッチング工程後に、両面配線板50の片面或いは表裏面に絶縁層を形成し、配線層形成工程、エッチング工程及び絶縁層形成工程を繰り返して配線パターンを積層し、その後に表面処理層12及びカバーコート13を形成することにより、多層プリント基板1の製造が可能である。
【0052】
次に、多層プリント基板1製造におけるエッチング工程後の絶縁層形成工程について説明する。図5の(b)は、絶縁層が形成された多層プリント基板1の断面図を示している。
【0053】
絶縁層形成工程では、図5の(a)までで構成されたエッチング後の両面配線板50の片面或いは表裏面に絶縁層10を形成する。この絶縁層10に用いられる材料としては、感光性ガラス2と熱膨張係数が比較的近く、耐熱性及び耐湿性に優れたものが適している。このような材料としては、有機系であればポリイミド樹脂、耐熱性エポキシ樹脂、ポリアミド樹脂等が適しており、無機系であればガラス(SOG)、SiO2、Si34、Al23等が適している。有機系材料の場合、一般にその熱膨張係数は感光性ガラス2に比べ大きいが、有機系材料を10μm程度形成しても、その膨張係数は感光性ガラス2に引っ張られほぼ感光性ガラス2と同じになるため問題ない。
【0054】
有機系の材料を絶縁層10として用いる場合、この絶縁層10の形成は、スピンコート、カーテンコート、スロットコート等により行なう。ここで、本形態ではコア基板として透明な感光性ガラス2を使用しているため、片面の露光の光が透明な感光性ガラス2を透過し、もう片面のパターン形成に影響を与えてしまうことを考慮し、絶縁層10の形成は片面ずつ行なうことが望ましい。なお、コア基板として不透明な感光性ガラスを用いる場合には、絶縁層10形成の際、露光光がもう片側に影響を及ぼすことがないため、両面同時露光も可能である。
【0055】
一方、無機系の材料を絶縁層10として用いる場合には、上述のコート法等の他に、スパッタ、真空蒸着、CVD等によって形成することとしてもよい。このように絶縁層10を形成した後、後の工程で積層される配線層との導電接続部が位置する絶縁層10の部分のみを選択的に除去する。ここで、この絶縁層10の除去部分(以下バイアホール)の形状をすり鉢状とすることが他層の導体金属とのつき回り性向上の点より好ましい。
【0056】
図5の(b)のようにバイアホールが形成されると、次は、その外面に再び配線層を構成する配線層形成工程に移る。図6の(a)は、この配線層形成工程により配線層が形成された多層プリント基板1を示した断面図である。
【0057】
配線層形成工程では、絶縁層10及び銅膜層6の外面に絶縁層10と膜密着性の良い膜、例えばクロム、タンタル、チタン等をスパッタ、真空蒸着、CVD等で成膜し、さらにその外面に導電性の良い膜、例えば銅膜等を成膜する。ここで、絶縁層10と膜密着性の良い膜と、その外面に成膜される導電性の良い膜とで界面の密着性が悪い場合、絶縁層10と膜密着性の良い膜を構成する材料と、その外面に成膜される導電性の良い膜を構成する材料とを混合した混合材料からなる中間層をそれらの間に介在させ多層構造とすること等により、密着性の向上を図ることができる。
【0058】
図6の(a)では、絶縁層10と膜密着性の良い膜の材料としてクロムを用い、スパッタ法によって成膜することによりスパッタクロム層5aを形成し、その外面にスパッタクロム銅層5bを形成し、さらにその外面には、導電性の良い銅を用い、スパッタにより銅膜層11を形成する。絶縁層と密着性の良い膜の厚さ(例えばスパッタクロム層5a)としては、0.04μm〜0.1μm程度が好ましく、この厚みで十分な密着強度が得られる。また、導電性の良い膜として銅を用いた場合(例えば銅膜層11)、その厚みは1μm〜20μm程度あれば十分バイアホールとの接続信頼性が得られ、電気抵抗値も低い。多層構造とした場合における混合材料層(例えばスパッタクロム銅層5bなどの中間層)の厚さは0.04μm〜0.1μmで十分な界面の膜密着強度を得ることができる。
【0059】
配線層形成工程が終了すると、図6の(b)に示すように再びエッチング工程及び絶縁層形成工程を行ない配線層のパターン形成を行なう。そして、以後同様に配線層の形成工程、エッチング工程及び絶縁層形成工程を繰り返し、配線パターンを積層していく。
【0060】
配線パターンの積層形成が終了した後、表面処理工程に移る。
表面処理工程では、図6の(c)に示すように、最外層における配線層の表面導通部を表面処理層12で被覆し、それ以外の最外層をカバーコート13で被覆する。表面処理層12には導電性の良い材料を用い、例えば半田、耐熱プリフラックス、水溶性プリフラックス、ニッケル、金メッキ等を用いる。カバーコート13には、絶縁層10に使用した無機系材料或いは有機系材料でもよいし、一般的なソルダーレジスト等を用いてもよい。
【0061】
このように、両面配線板50及び多層プリント基板1においては、銅膜層6と熱膨張係数が近い感光性ガラス2をコア基板として用い、スルーホール3内壁面の銅膜層6の厚みを1〜20μmと薄く形成することとしたため、それと一体的に形成される配線層における銅膜層6の膜厚を小さくすることが可能となり、配線パターンの微細化を図ることが可能となる。
【0062】
また、スルーホール3の内壁面に形成された銅膜層6を樹脂8で被覆することとしたため、この銅膜層6を薄く形成した場合であっても、その樹脂8の保護によって十分な接続信頼性を確保でき、この銅膜層6と一体的に形成される配線層における銅膜層6の厚みを薄くすることができるため、配線パターンの微細化を図ることが可能となる。
【0063】
さらに、コア基板として感光性ガラス2を用い、スルーホール形成部に選択的に紫外線を照射し、その照射による露光部をエッチングすることによりスルーホールを形成することとしたため、小径のスルーホールを精度よく形成することが可能である。また、ガラス基板の改質を行なうことによって、熱膨張係数を所望に制御することができ、断線やランド切れなどの発生を抑えることができるため、ランド幅も小さくすることが可能となって配線パターンの高密度化を図ることができる。
【0064】
また、銅膜層6と熱膨張係数が近い感光性ガラス2にスルーホール3を設け、スルーホール3の内壁面及び配線層に銅膜層6を形成し、スルーホール3内部を樹脂で被覆し、絶縁層10を形成することとしたため、微細な配線パターンを有する両面配線板50及び多層プリント基板1を製造することが可能となる。
【0065】
なお、スルーホール3の内壁面の銅膜層6と配線層の銅膜層6とを同一工程において形成することとしたが、それぞれを別工程で形成することとしてもよい。また、スルーホール3の内部に樹脂8を充填することとしたが、充填を行なわず、樹脂8が少なくともスルーホール3の内壁面の銅膜層6を被覆するよう形成されていてもよい。
【0066】
さらに、イオンブロッキング層4を形成することとしたが、アルカリ金属イオンを含有しないガラス基板を用いるか、或いはガラス基板全体を結晶化させる等の改質を行なうことによってイオンマイグレーションを抑制可能にした場合、イオンブロッキング層4を設けない構成としてもよい。
【0067】
【実施例1】
次に、第1の実施の形態における実施例について、多層プリント基板の製造を例にして説明する。
【0068】
本実施例では、ガラス基板としてとして下記の組成を有する感光性ガラス(商品名:HOYA株式会社製PEG3)を用いた。
Figure 0003761862
(スルーホール形成工程)
1)上記感光性ガラス上にマスクを密着させ、該マスクを通してスルーホール部分にUV光を照射し、露光部分に対応する潜像を形成した。マスクは、石英ガラスをクロム/酸化クロムでパターニングしたものを使用した。その後、400℃で熱処理を行ない、露光部分のみを結晶化させた。
2)薄いフッ化水素酸(10%溶液)を感光性ガラスの表裏にスプレーし、結晶化したスルーホール部分のガラスを溶解除去し、φ0.05mm(50μm)径のスルーホールを形成した。
(イオンブロッキング層形成工程)
3)このスルーホールが形成された感光性ガラスを20vol%の硫酸水溶液の中に入れ、プラス電圧を20Vで10分間加えた。このときのマイナス電極にはステンレスを用いた。
4)スパッタ装置を使用し、膜厚0.05μmのSi34膜の上に、SiO2膜(膜厚0.05μm)を成膜し、イオンブロッキング層とした。
(配線層及び導体膜形成工程)
5)スパッタ装置を使用し、膜厚0.05μmのクロム膜を成膜した。
6)スパッタ装置を使用し、クロム・銅合金膜(クロム;4%/銅;96%)(膜厚:0.05μm)を成膜した。
7)スパッタ装置を使用し、銅膜(膜厚1.5μm)を成膜した。ここで5)〜7)の各工程は、各金属膜間での酸化物生成を防ぐため、すべて空気を遮断した環境で連続処理された。
8)次に、無電解メッキにより、銅膜(膜厚0.3μm)を形成し、続いて、電気メッキにより膜厚5μmの銅膜を積層することにより、配線層及び導体膜を連続膜として一体形成した。
(導体膜被覆工程)
9)スパッタ装置を使用し、配線層表面にバリア層として膜厚0.1μmのクロム薄膜を成膜した。
10)スルーホール部分のみ開口されたスクリーン版を使用し、スクリーン印刷機によって感光性エポキシ樹脂(サンワ化学社製SPBR−8000)を充填し保護層を設けた。
11)熱風乾燥機を用いて90℃の温度で30分間、この樹脂を仮乾燥させた後、UV光にてスルーホールの表裏より1000mj/cm2の光量を与えさらに硬化させた。
12)ロールバフ研磨機を使用しスルーホールの開口部より上又は周囲に広がったエポキシ樹脂を研磨除去した。
13)熱風乾燥機を用い150℃の温度で60分間、この樹脂を完全硬化させた。
14)次に、バリア層であるクロム層のみを選択的に剥離した。このときの剥離剤としてフェリシアン化カリを主成分とした薬品を使用した。
(エッチング工程)
15)ポジ型の液状レジスト(シプレー社製マイクロポジットSJR5440)をスピンナーで約10μmの厚さで塗布した後、ガラスマスクを使い、平行光露光機で1000mj/cm2露光を行なった。続いて現像液(シプレー社製現像液2500)により1分間室温でディップ現像し、レジストパターンを形成した。
16)レジストパターンが形成された上記配線層に40ボーメの塩化第二鉄溶液をスプレーして銅エッチングを行なった後、レジストをアセトンにより除去した。続いて、銅パターンを金属レジストとしてクロム層をエッチングして、線幅20μm、間隙20μm、スルーホールランド幅120μmの配線パターンを形成した。
【0069】
なお、クロムエッチング液として、フェリシアン化カリを主成分とする薬品を使用した。
(絶縁層形成工程)
17)ここまで作成されたガラス両面配線板にスピンナーを使い、層間絶縁層(シプレー社製マルチポジット9500)を約10μm片面に形成した。
18)ガラスマスクを使用し、露光機で1300mj/cm2の光量で露光した後、熱風乾燥機で80℃で10分間乾燥させた。その後、専用現像液で現像した。
19)再度もう片面に層間絶縁層(シプレー社製マルチポジット9500)をスピンナーで約10μm形成し、露光、現像によりφ20μmのビアホールを形成した後、170℃の窒素雰囲気中で4時間熱風乾燥させ完全硬化させた。
【0070】
ここで片面ずつ絶縁層のパターン形成を行なった理由は、透光性を有するガラスが基板として使用されているため、露光時の光がガラス基板を透過し、裏面に達してしまうからである。
(配線層形成工程)
20)1層目の配線層の形成工程と同様にして、スパッタ装置を使用し、膜厚0.05μmのクロム層を成膜した。
21)続いて、スパッタ装置を使用し、膜厚0.05μmのクロム・銅合金層(クロム;4%/銅;96%)を成膜した。
22)スパッタ装置を使用し、銅膜(膜厚:5μm)を成膜した。ここで、20)〜21)の各工程は、各金属間での酸化物生成を防ぐため、すべて空気を遮断した環境で連続処理された。
(エッチング工程)
23)ポジ型の液状レジスト(シプレー社製マイクロポジットSJR5440)をスピンナーで約10μmの厚さで塗布し、その後ガラスマスクを使い、平行光露光機で1000mj/cm2露光を行なった。最後に現像液(シプレー社製現像液2500)により1分間室温でディップ現像してレジストパターンを形成した。
24)レジストパターンが形成された上記配線層に40ボーメの塩化第二鉄溶液をスプレーして銅エッチングを行なった後、レジストをアセトンにより除去した。最後に銅パターンを金属レジストとしてクロム層をエッチングして、線幅20μm、間隙20μm、50μm幅のビアランドを有する2層目配線パターンを形成した。
【0071】
なお、クロムエッチング液として、フェリシアン化カリを主成分とする薬品を使用した。
(表面処理工程)
25)これまでの工程で作成されたガラス4層配線板の片面にスピンナーで絶縁膜(シプレー社製マルチポジット9500)を約10μm形成し、カバーコートとした。
26)ガラスマスクを使用し、露光機で1300mj/cm2の光量で露光し、熱風乾燥機で80℃で10分乾燥させた後、専用現像液で現像した。
27)再度もう片面に層間絶縁層(シプレー社製マルチポジット9500)をスピンナーで約10μm形成し、露光現像後、170℃の窒素雰囲気中で4時間熱風乾燥させた。
28)表面処理として、無電解ニッケル・金メッキ処理を施した。
【0072】
以上のようにして、ガラス基板の片面に配線パターンが2層ずつ形成された高密度の両面多層プリント配線板が得られた。
次に、第2の実施の形態について説明する。
【0073】
本実施形態は上述の第1実施形態の変形例であり、コア基板としてアルカリ金属イオンを含有しない無アルカリガラスを用い、スルーホール形成工程をレーザ加工に代えた以外は、第1実施形態と同様にして両面配線板、多層プリント配線板が作成される。
【0074】
図7及び図8は、本実施形態におけるスルーホール形成工程を示した断面図である。
本実施形態におけるスルーホール形成は、レーザ照射によって行なう。用いられ得るレーザの種類は特に限定されず、例えばエキシマレーザ、イットリウム−アルミニウム−ガーネットレーザ、炭酸ガスレーザ、アルゴンガスレーザ等を用いることができる。下記に、使用するレーザの一例として、HOYAコンテニュアム株式会社製ファムト秒レーザ(CPA−2000)のレーザ特性を示す。
【0075】
Figure 0003761862
レーザによるスルーホール形成は、レーザ光の照射をコア基板の片面ずつ行なうこととしてもよいし、両面からレーザ光を同時に照射して行なうこととしてもよい。
【0076】
図7は、レーザ光を片面ずつ照射してスルーホールを形成する工程を示した断面図である。この場合、図7の(a)に示すように、まず無アルカリガラス20の片面からレーザ光を照射し、原点の位置決めを行なうための原点位置決め用スルーホール21を形成する。次に、図7の(b)に示すようにスルーホールを形成する部分に片面からレーザ光を照射し、無アルカリガラス20の途中までスルーホール22を形成する。次に、図7の(c)に示すように、もう片方側からレーザ光を照射しスルーホール22を貫通させる。
【0077】
図8は、レーザ光を両面から同時に照射してスルーホールを形成する工程を示した断面図である。この方法でも、まず、図8の(a)に示すように原点位置決め用スルーホール21の形成を行なう。次に、レーザ光を無アルカリガラスの両面から同時に照射し、図8の(b)に示すようにスルーホール22を形成する。
【0078】
スルーホール形成工程が終了した後、第1実施形態と同様に配線層及び導体膜形成工程、導体膜被覆工程、エッチング工程を行なって両面配線板50を形成し、或いはエッチング工程後に絶縁層形成工程、配線層形成工程、表面処理工程を行なって多層プリント基板1を作成した。
【0079】
なお、本実施形態ではアルカリ金属イオンを含まない無アルカリガラス20をコア基板として使用しているため、イオンブロッキング層の形成を行なわなくてもよい。そのため、本形態における密着力強化層5は、無アルカリガラス20と膜密着性の良い材質を選択する必要がある。
【0080】
このように、第2実施形態では、無アルカリガラス20を基板材料として使用したが、第1実施形態と同様の両面配線板、多層プリント配線板が作成された。また、基板材料として感光性ガラス2を用い、レーザ加工によりスルーホールを形成することも可能である。この場合でも、小径のスルーホールを精度よく形成することが可能であり、さらにその小径のスルーホールの開口周囲を囲むランド幅も小さくすることができるため、配線パターンの高密度化を図ることができる。
【0081】
なお、本実施形態では、無アルカリガラスをレーザ加工してスルーホールを形成することとしたが、レーザ加工によるスルーホールの形成は、無アルカリガラスに限られず、感光性ガラス等その他のガラスにも適用可能である。
【0082】
次に、第3の実施の形態について説明する。
基板材料として、実施例1と同様の感光性ガラス材料(商品名:HOYA株式会社製PEG3)を用い、スルーホールを形成した後、ガラス全体を結晶化により改質することにより、もとの感光性ガラスの諸特性をより向上させた以外は、実施例1とほぼ同様にして両面配線板或いは多層配線基板を作成した。以下、詳細に説明する。
(スルーホール形成工程)
実施例1の場合と同様にしてスルーホール33(φ50μm径)を形成した(図9(a)、(b))。
(結晶化工程)
スルーホール33が形成された感光性ガラス32全体に、紫外線を30秒間照射した。続いて、当該ガラスの屈伏点温度よりも高い温度で約2時間熱処理を行なうことにより基板全体を結晶化させた(図9(c))。
【0083】
このような工程を付加したことにより、例えば、イオンブロッキング効果を高め、実施例1で形成されたイオンブロッキング層を不要とした。
また、ガラス基板の曲げ強度値をもとの感光性ガラスよりも倍以上にすることができ、さらには、熱膨張係数もLSIチップと代表的なプリント配線基板銅張りしたガラスエポキシ(FR4)のほぼ中間値とすることができた。
(配線層及び導体膜形成工程)
次に、実施例1と同様にして、厚さ0.05μmのクロム薄膜を形成し(スパッタクロム層35a)、ついで、厚さ0.05μmのクロム・銅合金(クロム;4%/銅;96%)薄膜(スパッタクロム銅層35b)、さらに、膜厚1.5μmの銅薄膜(スパッタ銅層35c)を成膜した。
【0084】
なお、これらの工程は、実施例1と同様、各金属間での酸化物生成を防ぐため空気を遮断した環境で連続的に行なった。
続いて、無電解メッキにより銅薄膜(膜厚:0.3μm)形成し、その後電気メッキにより銅薄膜(膜厚:5μm)を積層することにより、導体膜及び配線層を連続膜として一体形成した(銅膜層36)(図9(d))。
(導体膜被覆工程)
次に、実施例1と同様にして配線層表面にバリア層としてクロム薄膜(0.1μm)を形成した。この後、スクリーン印刷機を用いて、スルーホール内に感光性エポキシ樹脂(サンワ化学社製SPBR−8000)を充填し、熱風乾燥機を用いて90℃の温度で30分間、樹脂を仮乾燥させた後、UV光照射により樹脂を硬化させて、導体膜を被覆した。
【0085】
その後、ロールバフ研磨機を使用し、図4(b)に示されるようなスルーホールの開口から上又は周囲に広がったエポキシ樹脂を研磨除去した。続いて熱風乾燥機を用い150℃の温度で60分間、この樹脂を完全硬化させ、導体膜の保護層(樹脂38)を形成した(図10(a))。
【0086】
次に、実施例1と同様にして、バリア層であるクロム薄膜のみを選択的に剥離した。
(レジストパターン形成工程)
ポジ型の液状レジスト(シプレー社製マイクロポジットSJR5440)をスピンナーで約10μmの厚さで塗布した後、ガラスマスクを使い、平行光露光機で1000mj/cm2露光を行なった。次に現像液(シプレー社製現像液2500)により1分間室温でディップ現像し、レジストパターン(レジスト34)を形成した(図10(b))。
(エッチング工程)
実施例1と同様にして、レジストパターンが形成された配線層に40ボーメの塩化第二鉄溶液をスプレーして銅エッチングを行なった後、レジストをアセトンにより除去した。続いて、銅パターンを金属レジストとしてクロム層をエッチングし、ライン幅20μm、間隙20μm、ランド幅ゼロの配線パターンを形成した(図11(a)、図13)。
(絶縁層形成工程)
次に、これまでの工程で作成されたガラス両面配線板に、スピンナーを使用して層間絶縁層(シプレー社製マルチポジット9500)を約10μm片面に形成した。続いて、ガラスマスクを使用し、露光機で1300mj/cm2の光量で露光した後、熱風乾燥機で80℃で10分乾燥させた。その後、専用現像液で現像し絶縁層40を形成した(図11(b))。
【0087】
もう片面に、先の工程と同様にして層間絶縁層(シプレー社製マルチポジット9500)をスピンナーで約10μm形成し、露光現像でφ20μmのビアホールを形成した。その後、170℃の窒素雰囲気中で4時間熱風乾燥させ完全硬化させた。
【0088】
このとき、結晶化させたガラス基板が露光光に対して不透明なものである場合、両面一度に絶縁層のパターン形成を行なうことも可能である。
(配線層形成工程)
再び、1層目の配線層と同様の工程を繰り返し、クロム薄膜(厚さ0.05μm)(スパッタクロム層35a)、膜厚0.05μmのクロム・銅合金薄膜(クロム;4%/銅;96%)(スパッタクロム銅層35b)、膜厚5μmの銅薄膜(銅膜層41)をそれぞれスパッタリング法により成膜した(図12(a))。
(エッチング工程)
次に、ポジ型の液状レジスト(シプレー社製マイクロポジットSJR5440)をスピンナーで約10μmの厚さで塗布した後、ガラスマスクを使い、平行光露光機で1000mj/cm2露光を行なった。最後に現像液(シプレー社製 現像液2500)により1分間室温でディップ現像し、レジストパターンを形成した。
【0089】
レジストパターンが形成された上記配線層に、実施例1と同様にして、40ボーメの塩化第二鉄溶液をスプレーして銅エッチングを行なった後、レジストをアセトンにより除去した。最後に銅パターンを金属レジストとし、クロムをエッチングし、ライン幅20μm、間隙20μm、50μm径のビアランドを有する2層目配線パターンを形成した。
(表面処理工程)
この後、作成された4層の両面多層配線板の片面にスピンナーで層間絶縁(シプレー社製マルチポジット9500)を約10μm形成し、カバーコート43を設けた。次に、ガラスマスクを使用し、露光機で1300mj/cm2の光量で露光した後、熱風乾燥機で80℃10分乾燥させた。その後専用現像液で現像した。
【0090】
もう片面にも層間絶縁層(シプレー社製マルチポジット9500)をスピンナーで約10μm形成し、露光現像後、170℃の窒素雰囲気中で4時間熱風乾燥させた。
【0091】
最後に、無電解ニッケル・金メッキにて表面処理を施して(表面処理層42)、ガラス基板の片面に配線パターンが2層ずつ形成された高密度4層プリント配線板を作成した(図12(b))。
【0092】
次に、実施例2において結晶化させたガラス基板について、ガラス特性の改質の効果を検証した。
まず、配線層と同様の銅を主体とする金属膜構成で、図14のように、ライン部とみたてた一対の櫛形パターン(40μm間隔、計125本)の櫛部対向させ、片方をプラス電極に接続し、もう片方をマイナス電極に接続して櫛部を互い違いにかみ合わせた。かみ合った部分の隣の櫛間の距離(スペース部とみたてる)を櫛の幅と同じく40μmとした典型的なイオンマイグレーション加速試験用配線パターンを形成した。
【0093】
これを85℃、85%雰囲気中で500時間連続して5Vの電圧をかけた。
この結果、実施例2の結晶化されたガラス基板は、イオンマイグレーションによる電極ショートもしくはリークタッチによる電圧降下等が観測されず、優れたイオンマイグレーション耐性を有することが確認できた。
【0094】
したがって、ガラス基板を結晶化させることでガラス表面及び内部に含まれるアルカリイオン等がもとの感光性ガラスに比して移動しにくくなったため、イオンブロッキング層を設ける必要がなく、両面配線板及び多層プリント基板作製工程の簡略化ができることがわかった。
【0095】
また、結晶化したガラス基板の曲げ強度を測定したが、感光性ガラスの曲げ強度よりも2倍以上の値を示し、物理的特性に優れたものであった。
誘電率及び誘電正接についても測定したが、これらはいずれももとの感光性ガラスよりも小さく、電気特性に優れ多層プリント基板の基板材料として、より適するものになることがわかった。
【0096】
第3の実施の形態の両面配線板及び多層プリント配線板は、スルーホールのランド幅をゼロとし、ビアホールの径をより小さくしたため、スルーホール間スペースを十分広く確保することができ、スルーホールの間にも配線を設けることが可能であり、配線設計の自由度がより拡大した。また、ライン間隔や線幅をより小さくすることも可能であって、配線パターンの高密度化という観点から非常に優れたものであった。
【0097】
さらに、第3の実施の形態では、ランドレスのスルーホール径を50μmとし、2層目の配線パターンのビアランドの径を50μmとして両者を同じ径としたことにより、配線の引回しによるランド迂回の条件が1層目と2層目とで同様であり、配線パターン設計の自由度が向上したといえる。
【0098】
また、各実施例で作成された多層プリント基板について、ヒートサイクル試験(125℃〜−65℃各30分を1000サイクル)を行なったところ、いずれも断線やランド切れの欠陥発生は全くみられず、スルーホール及びビアホールの接続信頼性が全く損なわれることはなかった。
【0099】
特に第3の実施の形態の多層プリント基板については、2000サイクルを超えても断線やランド切れなどの欠陥は全くみられなかった。
【0100】
【発明の効果】
以上説明したように本発明では、両面配線板の製造方法において、その基板材料として感光性ガラスを用い、感光性ガラスを部分的に露光して貫通孔を形成し、貫通孔形成後の感光性ガラスを結晶化させ、この結晶化された感光性ガラスの貫通孔及び表裏面にそれぞれ導体膜及び配線層を形成するようにした。これにより、感光性ガラスに小径の貫通孔を形成することができるとともに、感光性ガラスとその貫通孔内壁面に形成される導体膜或いは表裏面に形成される配線層との間の熱膨張係数差を小さくすることができ、断線等の不具合を回避して微細な配線パターンを形成することができる。
【0101】
さらに、両面配線板の感光性ガラスを結晶化することにより、その機械的強度や耐熱性向上、熱膨張係数の制御やイオンマイグレーションの抑制等を図ることができる。また、イオンマイグレーションが抑制されることによって、感光性ガラスにイオンブロッキング層を形成する必要がなくなり、工程が簡略化される。
【0102】
また、両面配線板の感光性ガラスを結晶化して、その熱膨張係数を、配線層を構成する金属材料の熱膨張係数と近似させることにより、例えばランドレス構造として狭ピッチ・高密度配線パターンが形成されても、熱履歴による膨張・収縮の繰返し等に起因する断線やランド切れ等の欠陥発生を抑制することができる。
【図面の簡単な説明】
【図1】両面配線板の断面図である。
【図2】感光性ガラスにスルーホールを構成するスルーホール形成工程を示した断面図である。
【図3】イオンブロッキング層形成工程、及び配線層及び導体膜形成工程における断面図である。
【図4】導体膜被覆工程における断面図である。
【図5】エッチング部が除去された両面配線板の断面図及び絶縁層が形成された多層プリント基板の断面図である。
【図6】配線層形成工程により配線層が形成された多層プリント基板を示した断面図、再びエッチング工程及び絶縁層形成工程を行ない配線層のパターン形成を行なった多層プリント基板を示した断面図、及び表面処理工程を示した断面図である。
【図7】スルーホール形成工程を示した断面図である。
【図8】スルーホール形成工程を示した断面図である。
【図9】スルーホール形成工程、結晶化工程、配線層及び導体膜形成工程を示した断面図である。
【図10】導体膜被覆工程、及びレジストパターン形成工程を示した断面図である。
【図11】エッチング工程、及び絶縁層形成工程を示した断面図である。
【図12】配線層形成工程、エッチング工程、及び表面処理工程を示した断面図である。
【図13】ランドレス構造の配線パターンの一例を示す平面図である。
【図14】イオンマイグレーション加速試験用に形成された櫛形パターンの概略図である。
【符号の説明】
1 多層プリント基板
2、32 感光性ガラス
3、33 スルーホール
4 イオンブロッキング層
4a スパッタ酸化シリコン層
4b スパッタ窒化シリコン層
5 密着力強化層
5a、35a スパッタクロム層
5b、35b スパッタクロム銅層
5c、35c スパッタ銅層
6、36 銅膜層
7 スパッタクロム層
8、38 樹脂
10、40 絶縁層
11、41 銅膜層
12、42 表面処理層
13、43 カバーコート
50 両面配線板

Claims (3)

  1. 表裏面を連通するように形成された貫通孔を備えるガラス基板と、
    前記ガラス基板の表裏面上に形成された配線層と、
    前記貫通孔の内壁面に導体膜が形成され、前記ガラス基板の表裏面を導体接続してなる導通部とを備え、
    かつ前記ガラス基板が感光性ガラスからなる両面配線板の製造方法において、
    前記ガラス基板にマスクを通して前記貫通孔を形成する部分に潜像が形成されるように露光し、該露光した部分に熱処理を行ない結晶化させ、結晶化した部分を溶解除去して前記貫通孔を形成する貫通孔形成工程と、
    前記貫通孔形成工程についで、前記貫通孔が形成された前記ガラス基板を加熱して結晶化させる結晶化工程と、
    結晶化された前記ガラス基板の表裏面に前記配線層を形成する配線層形成工程と、
    結晶化された前記ガラス基板の前記貫通孔の内壁面に前記導体膜を形成して前記ガラス基板の表裏面を導通可能とする導体膜形成工程と、
    を有することを特徴とする両面配線板の製造方法。
  2. 前記配線層と前記導体膜とは連続した膜であり、かつ前記導体膜の膜厚が1μm〜20μmであることを特徴とする請求項1記載の両面配線板の製造方法。
  3. 前記配線層に形成された配線パターンの線幅が、3μm〜50μmであることを特徴とする、請求項1乃至2のいずれかに記載の両面配線板の製造方法。
JP2002377945A 1999-05-27 2002-12-26 両面配線板の製造方法 Expired - Fee Related JP3761862B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002377945A JP3761862B2 (ja) 1999-05-27 2002-12-26 両面配線板の製造方法

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP11-147811 1999-05-27
JP14781199 1999-05-27
JP2002377945A JP3761862B2 (ja) 1999-05-27 2002-12-26 両面配線板の製造方法

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2000149570A Division JP3756041B2 (ja) 1999-05-27 2000-05-22 多層プリント配線板の製造方法

Publications (2)

Publication Number Publication Date
JP2003204152A JP2003204152A (ja) 2003-07-18
JP3761862B2 true JP3761862B2 (ja) 2006-03-29

Family

ID=27666030

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002377945A Expired - Fee Related JP3761862B2 (ja) 1999-05-27 2002-12-26 両面配線板の製造方法

Country Status (1)

Country Link
JP (1) JP3761862B2 (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100552926C (zh) * 2004-05-21 2009-10-21 日本电气株式会社 半导体器件、配线基板及其制造方法
JP4622359B2 (ja) * 2004-07-22 2011-02-02 コニカミノルタホールディングス株式会社 インクジェットヘッドの製造方法
US7494920B2 (en) * 2005-10-14 2009-02-24 Honeywell International Inc. Method of fabricating a vertically mountable IC package
US7462784B2 (en) 2006-05-02 2008-12-09 Ibiden Co., Ltd. Heat resistant substrate incorporated circuit wiring board
JP4776555B2 (ja) * 2007-01-23 2011-09-21 古河電気工業株式会社 金属コア多層プリント配線板
JP2009179518A (ja) * 2008-01-30 2009-08-13 Hoya Corp 結晶化ガラス基板の製造方法及び両面配線基板の製造方法
JP5827166B2 (ja) 2012-04-09 2015-12-02 新光電気工業株式会社 配線基板及び配線基板の製造方法
KR20150024093A (ko) * 2013-08-26 2015-03-06 삼성전기주식회사 인쇄회로기판 및 인쇄회로기판 제조 방법
CN112822870B (zh) * 2020-12-22 2022-03-22 珠海市沃德科技有限公司 Fpc双面板加工工艺

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63128699A (ja) * 1986-11-19 1988-06-01 株式会社日立製作所 感光性ガラス−セラミツク多層配線基板
JPH081987B2 (ja) * 1987-09-30 1996-01-10 日立化成工業株式会社 配線板の製造法
JPH02209799A (ja) * 1989-02-09 1990-08-21 Fujitsu Ltd 多層回路基板の製造方法
JPH06180443A (ja) * 1992-12-11 1994-06-28 Alps Electric Co Ltd 基板およびその製造方法
JPH06204659A (ja) * 1992-12-28 1994-07-22 Canon Inc 回路基板の製造方法及び前記回路基板と電気回路部品との接続方法
JP3102192B2 (ja) * 1993-03-18 2000-10-23 株式会社日立製作所 多層配線基板の製造方法
JPH09252180A (ja) * 1996-03-18 1997-09-22 Fujitsu Ltd 回路基板の製造方法
JPH10335837A (ja) * 1997-04-02 1998-12-18 Ibiden Co Ltd 多層プリント配線板の製造方法

Also Published As

Publication number Publication date
JP2003204152A (ja) 2003-07-18

Similar Documents

Publication Publication Date Title
JP3756041B2 (ja) 多層プリント配線板の製造方法
JP4134172B2 (ja) 両面配線ガラス基板の製造方法
JP7083600B2 (ja) キャパシタ内蔵ガラス回路基板及びその製造方法
US6459047B1 (en) Laminate circuit structure and method of fabricating
US11516911B2 (en) Glass circuit board and stress relief layer
JP3761862B2 (ja) 両面配線板の製造方法
JP2022159478A (ja) キャパシタ内蔵ガラス回路基板及びキャパシタ内蔵ガラス回路基板の製造方法
JP2024061693A (ja) 貫通電極基板、貫通電極基板を備える実装基板並びに貫通電極基板の製造方法
KR20130031592A (ko) 비아 및 미세 회로를 가진 인쇄회로기판을 제조하는 방법 및 그 방법에 의한 인쇄회로기판
JP2005150552A (ja) 配線基板の製造方法
JP2005086026A (ja) 両面配線ガラス基板およびその製造方法
JPH0481877B2 (ja)
JP2024009740A (ja) 多層配線基板およびその製造方法
JP6486211B2 (ja) 高周波伝送装置およびその製造方法
JP4775753B2 (ja) 誘電体薄膜キャパシタの製造方法
CN116403913A (zh) Fcbga封装芯板、封装基板及其制备方法
JP2006173650A (ja) 多層配線基板
JPS61269396A (ja) 多層配線基板の製造方法
KR20170001310A (ko) 글라스 코어 기판, 그의 제조 방법 및 그를 이용한 회로기판
JP2005191244A (ja) ビルドアップ多層配線基板及びその製造方法
JP2004055593A (ja) 配線基板およびその製造方法
JP2002217554A (ja) 多層プリント配線板

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060111

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090120

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100120

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100120

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110120

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120120

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120120

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130120

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130120

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140120

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees