JP3752782B2 - 半導体装置の保護回路 - Google Patents

半導体装置の保護回路 Download PDF

Info

Publication number
JP3752782B2
JP3752782B2 JP13324997A JP13324997A JP3752782B2 JP 3752782 B2 JP3752782 B2 JP 3752782B2 JP 13324997 A JP13324997 A JP 13324997A JP 13324997 A JP13324997 A JP 13324997A JP 3752782 B2 JP3752782 B2 JP 3752782B2
Authority
JP
Japan
Prior art keywords
field effect
effect transistor
insulated gate
gate field
protection circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP13324997A
Other languages
English (en)
Other versions
JPH10321806A (ja
Inventor
博文 角
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP13324997A priority Critical patent/JP3752782B2/ja
Publication of JPH10321806A publication Critical patent/JPH10321806A/ja
Application granted granted Critical
Publication of JP3752782B2 publication Critical patent/JP3752782B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Semiconductor Integrated Circuits (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、半導体装置の保護回路に関し、特には拡散層表面にセルフアラインシリサイド法によって得られたシリサイド層を有する内部回路を保護するための保護回路に関する。
【0002】
【従来の技術】
図13は、半導体装置における保護回路を説明するための等価回路図である。この図に示す保護回路9は、電極パッド2と内部回路3との間に設けられ、絶縁ゲート型電界効果トランジスタ11、抵抗素子12、ダイオード13及び抵抗体90で構成されている。以下、絶縁ゲート型電界効果トランジスタを、このタイプのトランジスタとして代表的なMOS(Metal Oxide Semiconductor)トランジスタと記載する。上記MOSトランジスタ(絶縁ゲート型電界効果トランジスタ)11はNチャンネル型であり、ドレイン11aが内部回路3及び電極パッド2に接続され、ソース11bが半導体装置の基準電位Vssに接続されている。また、上記抵抗素子12は、MOSトランジスタ11のゲートと上記基準電位Vssとの間に配置されている。さらに、ダイオード13は、N型領域が内部回路3及び電極パッド2に接続され、P型領域が上記基準電位Vssに接続されている。そして、特に上記抵抗体90は、拡散層または多結晶シリコンからなるものであり、電極パッド2とMOSトランジスタ11のドレイン11aとの間に配置されている。
【0003】
上記構成の保護回路9では、電極パッド2に負の過電圧が印加されるとダイオード13が導通して電荷が基準電位Vssに放電される。また、抵抗素子12を設けたことによって、電極パッド2に正の過電圧が印加された場合には、MOSトランジスタ11のゲート11c,ソース11a・ドレイン11b間のカップリングでMOSトランジスタ11が一時的にオンされ、MOSトランジスタ11のソース11a・ドレイン11b間が導通して電荷が基準電位Vssに放電される。一方、電極パッド2に通常の動作電圧を印加した場合には、MOSトランジスタ11のゲート11cが基準電位Vssレベルに保持されてMOSトランジスタ11のオフ状態が保持される。したがって、電極パッド2から内部回路3に動作電圧を印加した際に、リーク電流が発生することが防止される。また、抵抗体90を設けたことによって、MOSトランジスタ11自体が過電圧の印加によって破壊されることが防止される。
【0004】
【発明が解決しようとする課題】
しかし、上記構成の保護回路を有する半導体装置においては、半導体装置を通常動作させる際に電極パッドに印加された信号波型は、抵抗体及びMOSトランジスタのドレインに存在するドレイン抵抗のインピーダンスの容量の影響で、RC時定数により鈍った波型となって保護回路から内部回路側へ出力される。このため、上記構成の保護回路を有する半導体装置では、上記抵抗体の存在が当該半導体装置の高速動作に悪影響を及ぼしてしまう。
【0005】
そこで、第2557980号特許に記載の半導体入力保護装置では、上記MOSトランジスタのドレインを延在させて当該ドレインと一体に形成された拡散抵抗を上記抵抗体として保護回路に設けた構成にすることで、信号の高速伝搬を可能としている。
【0006】
ところが、高集積化が進行した半導体装置においては、MOSトランジスタのソース・ドレインのシート抵抗を低減するために、上記ソース・ドレインの表面層に低抵抗のシリサイド層が設けられている。このシリサイド層は、セルフアラインシリサイド法によって、拡散層の表面層に自己整合的に形成される。このため、上記抵抗体をMOSトランジスタのドレインと一体の拡散抵抗とした場合には、この抵抗体の表面層にもシリサイド層が形成され、過電圧の印加によるMOSトランジスタの静電破壊を防止することができなくなる。
【0007】
また、上記セルフアラインシリサイド法を適用して形成される半導体装置の静電耐性を向上させることを目的として、International Electron Devices Meeting(1996)(米)p.889−892には、素子構造を櫛状にする構成が提案されている。さらに、International Electron Devices Meeting(1996)(米)p.893−896には、シリサイド層の膜厚に対してソース及びドレインの接合深さを深くすることが提案されている。しかし、これらの半導体装置では、素子構造が複雑化して半導体装置の高集積化が妨げられたり、シリサイド層の膜厚の制御性がばらつくと安定した素子特性が得られないといった問題がある。
【0008】
以上のように、内部回路を構成する拡散層表面にセルフアラインシリサイド法によってシリサイド層を形成してなる半導体装置においては、素子構造を複雑化させることなくかつ安定した素子特性を有した状態で、十分な耐圧特性を有しかつ半導体装置の高速動作を確保できる保護回路を得ることができなかった。
【0009】
【課題を解決するための手段】
上記課題を解決するための半導体装置の保護回路は、電極パッドと内部回路との間に設けられる保護回路であり、第1の拡散層電極が当該電極パッドと当該内部回路とに接続され第2の拡散層電極が基準電位に接続されたMOSトランジスタを有している。そして、第1の発明の保護回路は、上記電極パッドと上記第1の拡散層電極との間に、当該電極パッドに接続されたシリサイド層と上記内部回路に接続された多結晶シリコンとからなる抵抗素子を設けたことを特徴としている。
【0010】
上記第1の発明の保護回路では、電極パッドに印加された過電圧は抵抗素子からMOSトランジスタに印加される。そして、上記抵抗素子は、電極パッド側のシリサイド層とMOSトランジスタ側の多結晶シリコンとで構成されている。このため、抵抗値の高い多結晶シリコンを介してMOSトランジスタに過電圧が印加されて上記MOSトランジスタの静電破壊が防止されると共に、抵抗値の低いシリサイド層からこの抵抗素子に過電圧が印加されることで当該抵抗素子に存在する抵抗インピーダンスの容量が低くなり、内部回路へのRC時定数の影響が低く押さえられる。
【0011】
また、第2の発明の保護回路は、上記電極パッドと上記第1の拡散層電極との間に、入力端が当該電極パッドに接続され出力端が上記内部回路に接続された高耐圧のCMOSトランジスタで構成された抵抗素子を設け、かつ上記抵抗素子の入力端側の接続部分にシリサイド層を設けたことを特徴としている。
【0012】
上記第2の発明の保護回路では、電極パッドに印加された過電圧は高耐圧のCMOSトランジスタで構成された抵抗素子から上記MOSトランジスタに印加される。そして、上記抵抗素子の入力端を構成する接続部分にはシリサイド層が設けられている。このため、高耐圧のCMOSトランジスタを介してMOSトランジスタに過電圧が印加されて上記MOSトランジスタの静電破壊が防止されると共に、抵抗値の低いシリサイド層からこのCMOSトランジスタに過電圧が印加されて当該抵抗素子に存在する抵抗インピーダンスの容量が低くなり、内部回路へのRC時定数の影響が低く押さえられる。
【0013】
【発明の実施の形態】
以下、本発明を適用した半導体装置の保護回路の実施の形態を図面に基づいて説明する。尚、以下に示す各実施形態はあくまでも一例として示されるものである。このため、基準電位としては負の電源電圧(Vss) を用いているが、正の電源電圧VDDを用いても良く、この場合には各保護回路を構成する素子の導電型が逆になることとする。また、図13を用いて説明した従来の保護回路と同一の構成要素には同一の符号を付し、重複する説明は省略する。
【0014】
(第1実施形態)
図1は第1実施形態の保護回路の要部断面図であり、図2は第1実施形態の保護回路の等価回路図であり、図3は第1実施形態の保護回路のレイアウト図である。尚、図1は図3のA−A’断面になっている。これらの図に示すように、保護回路1は、電極パッド2と内部回路3との間に設けられ、MOSトランジスタ(MIS型も含む)11、第1の抵抗素子12、ダイオード13及び第2の抵抗素子(請求項における抵抗素子)14で構成されている。
【0015】
上記MOSトランジスタ11はNチャンネル型であり、ドレイン(請求項における第1の拡散層電極)11aが内部回路3及び電極パッド2に接続され、ソース(請求項における第2の拡散層電極)11bが半導体装置の基準電位(ここではVss)に接続されている。また、上記第1の抵抗素子12は、MOSトランジスタ11のゲート11cと上記基準電位Vssとの間に配置されている。そして、ダイオード13は、N型領域が内部回路3及び電極パッド2に接続され、P型領域が上記基準電位Vssに接続されている。ここでは、例えば上記P型領域は半導体基板であり、上記N型領域はMOSトランジスタ11のドレイン11aを共有している。さらに、上記第2の抵抗素子14は、電極パッド2とMOSトランジスタ11のドレイン11aとの間に配置されている。
【0016】
そして、第1実施形態の保護回路1では、上記第2の抵抗素子14がシリサイド層14aとこのシリサイド層14aと接合された多結晶シリコン14bとで構成されたこと(図1参照)を特徴としている。上記シリサイド層14aは電極パッド2側における第2の抵抗素子14と配線15との接続部に設けられ、多結晶シリコン14bは内部回路3側における第2の抵抗素子14と配線15との接続部に設けられる。
【0017】
また、上記シリサイド層14aは多結晶シリコン14bの表面層の一部分をシリサイド化して得られたものであり、この多結晶シリコン14bは例えばMOSトランジスタ11のゲート電極11cと同一工程で形成されたものである。また、シリサイド層14aは、MOSトランジスタ11のソース11b、ドレイン11a及びゲート電極11cの表面層をセルフアラインシリサイド法によってシリサイド化させる工程で、上記多結晶シリコン14bの表面層をシリサイド化して得られる。
【0018】
上記構成の保護回路1では、電極パッド2に印加された正または負の過電圧は第2の抵抗素子14を介してMOSトランジスタ11またはダイオード13から基準電位Vssに上記過電圧が放電される。ここで、上記第2の抵抗素子14は、電極パッド2側のシリサイド層14aとMOSトランジスタ11側の多結晶シリコン14bとで構成されている。このため、抵抗値の高い多結晶シリコン14bを介してMOSトランジスタ11に上記過電圧が印加され、当該MOSトランジスタ11の静電破壊が防止される。さらに、抵抗値の低いシリサイド層14aからこの第2の抵抗素子14に過電圧が印加されることで、当該第2の抵抗素子14に存在する抵抗インピーダンスの容量が低くなる。したがって、第2の抵抗素子14を介して電極パッド2からの動作電圧が印加される内部回路3へのRC時定数の影響が低く押さえられる。
【0019】
以上のように、上記保護回路1では、内部回路3を構成する拡散層表面や上記MOSトランジスタ11の拡散層表面にセルフアラインシリサイド法によってシリサイド層を形成してなる半導体装置において、素子構造を複雑化させることなくかつ安定した素子特性を有した状態で、過電圧の印加による保護回路自体の静電破壊を防止しかつ半導体装置の高速動作を確保できる。
しかも、上記保護回路1では、第2の抵抗素子が拡散層を用いていないため、上記第2の抵抗素子を拡散層で形成した場合に上記拡散層との接続部分で発生するショート不良を懸念する必要はない。
【0020】
図4には、上記図1を用いて説明した第1実施形態の保護回路の変形例を示す。この図4に示す保護回路1’と上記図1を用いて説明した保護回路(1)との異なる所は、第2の抵抗素子の構成にある。すなわち、この第2の抵抗素子14’は、半導体基板10の表面層の一部に形成したシリサイド層14a’とこのシリサイド層14a’の一部分上に重ねる状態で半導体基板10上に形成した多結晶シリコン14bとで構成されている。このシリサイド層14a’は、MOSトランジスタ11のソース11b、ドレイン11a及びゲート電極11cの表面層をセルフアラインシリサイド法によってシリサイド化させる工程で、上記半導体基板10の表面層をシリサイド化して得られる。また、多結晶シリコン14bは、ここでは図示しない内部回路を構成する第2の多結晶シリコン層で形成されたものとする。
【0021】
このような構成の保護回路1’であっても、第2の抵抗素子14’がシリサイド層14a’と多結晶シリコン14bとからなり、シリサイド層14a’が電極パッド(2)側に接続され多結晶シリコン14bが内部回路(3)側に接続されていることから、上記図1を用いて説明した保護回路(1)と同様の効果を得ることができる。
【0022】
図5(1)〜図5(3)は、上記図1を用いて説明した保護回路の形成工程の一例を示す断面工程図である。以下に、これらの図に基づいて内部回路の形成工程中において上記保護回路を形成する場合の手順を説明する。
先ず、図5(1)に示すように、半導体基板10の表面側に素子分離領域502を形成する。その後、上記保護回路を構成するMOSトランジスタのゲート電極11cや、ここでは図示を省略した内部回路(図示省略)を構成するMOSトランジスタのゲート電極を、多結晶シリコンで形成する。またここでは、素子分離領域502上に、第2の抵抗素子を構成する多結晶シリコン14bのパターンを同時に形成する。上記ゲート電極11c及び多結晶シリコン14bには、不純物が導入されていることとする。この不純物は、これらを構成する多結晶シリコン膜をパターニングする前に、イオン注入によって導入したり、また、予め多結晶シリコン膜の成膜時に当該多結晶シリコン膜に導入されたものでも良い。
【0023】
次に、LDD拡散層503を形成するためのイオン注入を行った後、多結晶シリコン14b上の一部分上に酸化膜パターン504を形成する。ここでは、半導体基板10上の全面に成膜した酸化シリコン膜をパターニングすることによって上記酸化膜パターン504を得る。
【0024】
上記酸化シリコン膜の成膜条件の一例を以下に示す。成膜ガス及び流量:TEOS(tetraethoxysilane)ガス=300sccm、成膜雰囲気内ガス圧力:93Pa、成膜温度:700℃、成膜膜厚:150nm。
上記パターニングの際のエッチング条件の一例を以下に示す。エッチングガス及び流量:C4 8 (8フッ化シクロブタン)=50sccm、RFパワー:1200W、エッチング雰囲気内ガス圧力:2Pa。
【0025】
次に、ゲート電極11cの側壁に酸化シリコンからなるサイドウォール505を形成する。ここでは、半導体基板10上の全面に成膜した酸化シリコン膜をエッチバックすることによって上記サイドウォール505を得る。このため、ゲート電極11cの側壁だけではなく酸化膜パターン504及び多結晶シリコン14bの側壁にもサイドウォール505が形成される。この工程における酸化シリコン膜の成膜条件及びエッチバックの際のエッチング条件は、例えば上記酸化膜パターン504の形成と同様とする。
【0026】
その後、MOSトランジスタ(内部回路を構成するMOSトランジスタも含む)のソース11b及びドレイン11aを形成するためのイオン注入を行う。
この際、先ず、半導体基板10上の全面に、10nmの膜厚の酸化シリコン膜(図示省略)を成膜する。ここでは、4slmの流量で供給されるO2 (酸素ガス)雰囲気下で800℃、10分の熱処理を行うことによって酸化シリコン膜を得る。
【0027】
次に、P型不純物として、例えはBF2 (2フッ化ホウ素)イオンを40keVの注入エネルギーで3×1015個/cm2 程度注入する。この際、BF2 のF(フッ素)が上記酸化シリコン膜内に取り込まれ、B(ホウ素)のみが半導体基板10中に導入される。次いで、フッ酸溶液を用いたエッチングによって上記熱処理によって得た酸化シリコン膜を除去した後、N型不純物として、例えばAs(ヒ素)イオンを50keVの注入エネルギーで3×1015個/cm2 程度注入する。
【0028】
その後、上記のイオン注入で半導体基板10、ゲート電極11c及び多結晶シリコン14b内に導入された不純物の活性化熱処理を行う。ここでは、窒素雰囲気中において1000℃で10秒の熱処理を行い、LDD拡散層503を有するソース11b及びドレイン11aを形成すると共に、多結晶シリコン14b及びゲート電極11cの導電性を得る。
【0029】
次に、図5(2)に示すように、セルフアラインシリサイド法によって、ソース11b、ドレイン11a、ゲート電極11c及び多結晶シリコン14bの露出表面層にシリサイド層14aを形成する。ここでは、先ずフッ酸溶液で半導体基板10、ゲート電極11c及び多結晶シリコン14bの表面の自然酸化膜を除去した後、半導体基板10上の全面に金属膜を成膜する。この金属膜としては、Ti(チタン)、Co(コバルト)、Ni(ニッケル)、Zr(ジルコニウム)、Ru(ルテリウム)、Pd(パラジウム)、Hf(ハフニウム)、W(タングステン)、Pt(プラチナ)、Co/Ti、Ti/Co、TiN/Co等を用いる。
【0030】
以下に、Coからなる上記金属膜の成膜条件の一例を示す。スパッタリングガス及び流量:Ar(アルゴン)=100sccm、成膜雰囲気内ガス圧力:0.47Pa、成膜温度:150℃、成膜膜厚:30nm、パワー:1kW。
【0031】
その後、第1回目の熱処理を行い、単結晶及び多結晶のシリコン表面にCoSi2 からなるシリサイド層14aを選択的に成長させる。熱処理の一例としては、5000cm3 /分の流量で供給される窒素(N2 )雰囲気中において550℃で30秒のRTA(Rapid Thermal Annealing )を行う。次に、硫酸過水をエッチング溶液に用いて未反応の金属膜(Co)を選択的にエッチング除去する。
【0032】
しかる後、第2回目の熱処理を行い、シリサイド層14aをさらに安定な相に転移させる。この際の熱処理の一例としては、5000cm3 /分の流量で供給されるN2 雰囲気中において800℃で30秒のRTAを行う。
【0033】
次に、図5(3)に示すように、半導体基板10上の全面に酸化シリコン膜または窒化シリコン膜とBPSG(ホウ素−リンシリケートガラス)膜との積層構造からなる層間絶縁膜506を成膜する。以下に、上記層間絶縁膜の成膜条件の一例を示す。
酸化シリコン膜の成膜条件としては、成膜ガス及び流量:SiH4 (シラン)/O2 =0.03slm/0.54slm、成膜雰囲気内ガス圧力:10.2Pa、成膜温度:400℃、成膜膜厚:100nm。
窒化シリコン膜の成膜条件としては、成膜ガス及び流量:SiH2 Cl2 (2塩化シラン)/NH3 (アンモニア)/N2 =0.05slm/0.2slm/0.2slm、成膜雰囲気内ガス圧力:70Pa、成膜温度:760℃、成膜膜厚:50nm。
【0034】
BPSG膜の成膜条件としては、成膜ガス及び流量:TEOS=50sccm、成膜雰囲気内ガス圧力:40Pa、成膜温度:720℃、成膜膜厚:500nm。
尚、上記BPSG膜を成膜した後に、平坦化のためのCMP(Chemical Mechanical Polishing)を行っても良い。
【0035】
次に、ここでは図示を省略したレジストパターンをマスクに用いたエッチングによって、上記層間絶縁膜506及び酸化膜パターン504に接続孔507を形成する。この際の層間絶縁膜のエッチング条件の一例を示す。エッチングガス及び流量:C4 8 /50sccm、RFパワー:1200W、エッチング雰囲気内ガス圧力:2Pa。
【0036】
上記工程の後、接続孔507のマスクずれに対応させるために、コンタクトイオン注入を施す。この際、P型不純物の導入条件の一例としては、BF2 イオンを50keVの注入エネルギーで3×1015個/cm2 程度導入する。また、N型不純物の導入条件の一例としては、Asイオンを50keVの注入エネルギーで3×1015個/cm2 程度導入する。
【0037】
その後、N2 雰囲気中において850℃で30秒間の活性化熱処理を行う。
【0038】
次に、図5(4)に示すように、接続孔507内にプラグ508を形成する。この際先ず、硫酸過水溶液への侵漬とArイオンによるドライエッチングとによって接続孔507底面の自然酸化膜を除去した後、上記ドライエッチングに続けて密着層(図示省略)の成膜を行う。この密着層は、例えばTi(チタン)膜上にTiN(窒化チタン)膜を積層してなり、以下に上記各膜の成膜条件の一例を示す。
Ti膜の成膜条件としては、スパッタリングガス及び流量:Ar=100sccm、成膜雰囲気内ガス圧力:0.47Pa、成膜温度:150℃、成膜膜厚:10nm、パワー:8kW。
TiN膜の成膜条件としては、スパッタリングガス及び流量:Ar/N2 =40sccm/20sccm、成膜雰囲気内ガス圧力:0.47Pa、成膜膜厚:70nm、パワー:5kW。
【0039】
次に、上記密着層上にブランケットW膜を成膜する。成膜条件の一例を以下に示す。
成膜ガス及び流量:Ar/N2 /H2 (水素ガス)/WF6 (6フッ化タングステン)=2200sccm/300sccm/500sccm/75sccm、成膜雰囲気内ガス圧力:10640Pa、成膜温度:450℃、成膜膜厚:400nm。
【0040】
次に、接続孔507内にのみW膜が残る状態にこのW膜をエッチバックし、当該W膜からなるプラグ508を形成する。W膜をエッチバックする際のエッチング条件の一例を以下に示す。
エッチングガス及び流量:SF6 (6フッ化硫黄)=50sccm、RFパワー:150W、エッチング雰囲気内ガス圧力:1.33Pa。
【0041】
次に、層間絶縁膜506及びプラグ508上に配線15を形成する。ここでは、一例としてTi膜上にAl(アルミニウム)膜を積層させてなる配線材料膜を成膜した後、この配線材料膜をパターニングすることによって配線15を得る。以下に、上記配線材料膜の成膜条件及びこの配線材料膜をパターニングする際のエッチング条件の一例を示す。
【0042】
Ti膜の成膜条件としては、スパッタリングガス及び流量:Ar=100sccm、成膜雰囲気内ガス圧力:0.47Pa、成膜温度:150℃、成膜膜厚:30nm、パワー:4kW。
Al膜の成膜条件としては、スパッタリングガス及び流量:Ar=50sccm、成膜雰囲気内ガス圧力:0.47Pa、成膜温度:150℃、成膜膜厚:0.5μm、パワー:22.5kW。
エッチング条件としては、エッチングガス及び流量:BCl3 (3塩化ホウ素)/Cl2 (塩素ガス)=60sccm/90sccm、マイクロ波パワー:1000W、RFパワー:50W、エッチング雰囲気内ガス圧力:0.016Pa。
【0043】
以上によって、内部回路の形成工程において工程数を増加させることなく、また、素子構造を複雑化させることなく、上記図1〜図3を用いて説明した保護回路1が形成される。
【0044】
尚、上記形成工程におけるRTAの熱処理シーケンスは、500℃の昇温までは100℃/sec.程度で昇温を施すが、500℃〜1000℃までは10℃/sec.で処理を行う。また、降温時も1000℃〜500℃までは−10℃/sec.で処理を行い、500℃以下で−100℃/sec.程度の急速降温を実施する。これによって、スループットを上昇させると共に、熱ストレスによる結晶欠陥の発生を防止する。
【0045】
(第2実施形態)
図6は第2実施形態の保護回路の要部断面図であり、図7は第2実施形態の保護回路の等価回路図であり、図8は第2実施形態の保護回路のレイアウト図である。尚、図6は図8のA−A’断面になっている。以下に、これらの図を用いて第2実施形態の保護回路を説明する。尚、上記第1実施形態の保護回路と同一の構成要素には同一の符号を付し、重複する説明は省略することとする。
【0046】
これらの図に示す保護回路6は、上記第1実施形態で説明した保護回路の第2の抵抗素子を高耐圧のCMOSトランジスタ(以下、CMOSと記す)からなる第2の抵抗素子61と置き換えたものである。そして、その他の構成要素、すなわち、MOSトランジスタ11、第1の抵抗素子12及びダイオード13は、上記第1実施形態と同様である。
【0047】
上記CMOS構成の第2の抵抗素子61は、ソース61a及びゲート電極61bを入力端として電極パッド2に接続させ、ドレイン61cを出力端として当該内部回路3に接続させた状態で設けられている。そして、特に、ゲート電極61b及びソース61aの表面層にシリサイド層61dを有し(図6参照)、これらのシリサイド層61dが電極パッド2側の配線15との接続部分になっている。また、この第2の抵抗素子61においては、ソース61aのチャネル長方向におけるLDD拡散層の長さを長くすることによって高耐圧特性を得ている。
【0048】
上記構成の保護回路6では、電極パッド2に印加された正または負の過電圧は第2の抵抗素子61を介してMOSトランジスタ11及びダイオード13に印加され、このMOSトランジスタ11またはダイオード13から基準電位Vssに上記過電圧が放電される。ここで、上記第2の抵抗素子61は、高耐圧のCMOSで構成されている。このため、高耐圧の第2の抵抗素子61を介してMOSトランジスタ11に上記過電圧が印加され、当該MOSトランジスタ11の静電破壊が防止される。さらに、抵抗値の低いシリサイド層61dからこの第2の抵抗素子に過電圧が印加されることで、当該第2の抵抗素子に存在する抵抗インピーダンスの容量が低くなる。したがって、第2の抵抗素子を介して電極パッド2からの動作電圧が印加される内部回路3へのRC時定数の影響が低く押さえられる。
【0049】
以上のように、上記第2の抵抗素子61を設けた保護回路6では、内部回路を構成する拡散層表面や上記MOSトランジスタ11の拡散層表面にセルフアラインシリサイド法によってシリサイド層を形成してなる半導体装置において、素子構造を複雑化させることなくかつ安定した素子特性を有した状態で、過電圧の印加による保護回路自体の静電破壊を防止しかつ半導体装置の高速動作を確保できる。
【0050】
図9(1)〜図9(5)は、上記図6、図7及び図8を用いて説明した保護回路の形成工程の一例を示す断面工程図であり、以下にこれらの図に基づいて保護回路の形成を説明する。尚、図9は図8のA−A’断面になっている。
先ず、図9(1)に示すように、半導体基板10の表面側に素子分離領域502を形成する。その後、上記保護回路を構成するMOSトランジスタのゲート電極及びCMOSのゲート電極61bや、ここでは図示を省略した内部回路(図示省略)を構成するMOSトランジスタのゲート電極を、多結晶シリコンで形成する。上記ゲート電極61bには、不純物が導入されていることとする。この不純物は、これらを構成する多結晶シリコン膜をパターニングする前に、イオン注入によって導入したり、また、予め多結晶シリコン膜の成膜時に当該多結晶シリコン膜に導入されたものでも良い。
【0051】
次に、LDD拡散層503を形成するためのイオン注入を行った後、ゲート電極61bの側壁に酸化シリコンからなるサイドウォール505を形成する。
【0052】
次いで、図9(2)に示すように、ゲート電極61bの一部分上から半導体基板10上にかけて膜厚200nmの酸化膜パターン901を形成する。この酸化膜パターン901の形成は、上記第1実施形態で図5(1)を用いて説明した酸化膜パターン(504)と同様にして形成する。
【0053】
その後、図9(3)に示す工程では、上記第1実施形態で図5(1)を用いて説明したと同様にして、CMOS(保護回路のMOSトランジスタや内部回路を構成するMOSトランジスタも含む)のソース61a及びドレイン61cを形成する。
【0054】
次に、図9(4)に示す工程では、上記第1実施形態で図5(2)を用いて説明したと同様のセルフアラインシリサイド法によって、ソース61a、ドレイン61c及びゲート電極61bの露出表面層にシリサイド層61dを形成する。
【0055】
以上の後、図9(5)に示す工程では、上記第1実施形態で図5(3)及び図5(4)を用いて説明したと同様にして、層間絶縁膜506、接続孔507、プラグ508及び配線15を形成する。
【0056】
以上によって、内部回路の形成工程において工程数を増加させることなく、また、素子構造を複雑化させることなく、図6〜図8を用いて説明した保護回路6が形成される。
【0057】
図10は、上記図6〜図8を用いて説明した第2実施形態の保護回路の変形例を示す要部断面図であり、図11はこの保護回路のレイアウト図である。尚、図10は図11のA−A’断面になっている。これらの図に示す保護回路6’と上記図6〜図8を用いて説明した保護回路(6)との異なる所は、第2の抵抗素子を構成するCMOSのレイアウトにある。すなわち、第2の抵抗素子61’を構成するCMOSは、LOCOS(Local Oxidation of Silicon) からなる素子分離領域502と同一工程で形成した酸化膜層502aに重ねてゲート電極61b及びLDD拡散層503を設けた構成にすることによって高耐圧特性を得ている。
【0058】
図12(1)〜図12(4)は、上記図10及び図11を用いて説明した保護回路の形成工程の一例を示す断面工程図である。尚、図12は図11のA−A’断面になっている。
【0059】
先ず、図12(1)に示すように、半導体基板10の表面側に素子分離領域502及び酸化膜層502aを形成する。その後、保護回路を構成するCMOSのソース/ドレインと同様の不純物を、イオン注入によって当該CMOSの形成領域の酸化膜層502a下に導入する。
【0060】
次に、上記保護回路を構成するMOSトランジスタのゲート電極及びCMOSのゲート電極61bや、ここでは図示を省略した内部回路(図示省略)を構成するMOSトランジスタのゲート電極を、多結晶シリコンで形成する。この際、上記CMOSのゲート電極61bは、酸化膜層502aの一部分上から半導体基板10上にかけて設けられる。また、上記ゲート電極61bには、不純物が導入されていることとする。この不純物は、これらを構成する多結晶シリコン膜をパターニングする前に、イオン注入によって導入したり、また、予め多結晶シリコン膜の成膜時に当該多結晶シリコン膜に導入されたものでも良い。その後、LDD拡散層503を形成するためのイオン注入を行う。
【0061】
次に、図12(2)に示す工程では、上記第1実施形態で図9(1)を用いて説明したと同様にして、ゲート電極61bの側壁に酸化シリコンからなるサイドウォール505を形成し、さらにCMOS(保護回路のMOSトランジスタや内部回路を構成するMOSトランジスタも含む)のソース61a及びドレイン61cを形成する。
【0062】
次に、図12(3)に示す工程では、上記第1実施形態で図5(2)を用いて説明したと同様のセルフアラインシリサイド法によって、ソース61a、ドレイン61c、及びゲート電極61bの露出表面層にシリサイド層61dを形成する。
【0063】
以上の後、図12(4)に示す工程では、上記第1実施形態で図5(3)及び図5(4)を用いて説明したと同様にして、層間絶縁膜506、接続孔507、プラグ508及び配線15を形成する。
【0064】
以上によって、内部回路の形成工程において工程数を増加させることなく、また、素子構造を複雑化させることなくこの内部回路を保護する上記保護回路6’が形成される。
【0065】
【発明の効果】
以上説明したように、本発明の請求項1及び請求項2記載の半導体装置の保護回路によれば、内部回路に接続されたMOSトランジスタ(絶縁ゲート型電界効果トランジスタ)の拡散層電極と電極パッドとの間に、入力端側の接続部分にシリサイド層を有する抵抗値の高い抵抗素子を設けたことで、上記MOSトランジスタに印加される過電圧を緩和することができると共に抵抗素子に存在する抵抗インピーダンスの容量を低くして内部回路へのRC時定数の影響を低く押さえることができる。したがって、内部回路を構成する拡散層表面や上記MOSトランジスタの拡散層表面にセルフアラインシリサイド法によってシリサイド層を形成してなる半導体装置において、素子構造を複雑化させることなくかつ安定した素子特性を有した状態で、十分な耐圧特性を有しかつ半導体装置の高速動作を確保できる保護回路を得ることが可能になる。
【図面の簡単な説明】
【図1】第1実施形態の保護回路の要部断面図である。
【図2】第1実施形態の保護回路を説明する等価回路図である。
【図3】第1実施形態の保護回路のレイアウト図である。
【図4】第1実施形態の保護回路の変形例を示す要部断面図である。
【図5】第1実施形態の保護回路の形成工程の一例を示す断面工程図である。
【図6】第2実施形態の保護回路の要部断面図である。
【図7】第2実施形態の保護回路を説明する等価回路図である。
【図8】第2実施形態の保護回路のレイアウト図である。
【図9】第2実施形態の保護回路の形成工程の一例を示す断面工程図である。
【図10】第2実施形態の保護回路の変形例を示す要部断面図である。
【図11】第2実施形態の保護回路の変形例を示すレイアウト図である。
【図12】第2実施形態の変形例の形成工程の一例を示す断面工程図である。
【図13】従来の保護回路を説明する等価回路図である。
【符号の説明】
1,1’,6,6’ 保護回路 2 電極パッド 3 内部回路
11 MOSトランジスタ(絶縁ゲート型電界効果トランジスタ)
11a ドレイン(第1の拡散層電極)
11b ソース(第2の拡散層電極)
14,14’,61,61’ 第2の抵抗素子(抵抗素子)
14a,61d シリサイド層 14b 多結晶シリコン層
61a ソース(入力端) 61b ゲート電極(入力端)
61c ドレイン(出力端)

Claims (3)

  1. 電極パッドと内部回路との間に設けられ、第1の拡散層電極が当該電極パッドと当該内部回路とに接続され第2の拡散層電極が基準電位に接続された絶縁ゲート型電界効果トランジスタを有する半導体装置の保護回路において、
    前記電極パッドと前記第1の拡散層電極との間には、当該電極パッドに接続されたシリサイド層と前記内部回路に接続された多結晶シリコンとからなる抵抗素子が設けられ、
    前記抵抗素子は、シリサイド層と、当該シリサイド層の一部分上に重ねる状態で設けられた多結晶シリコンとで構成されていること、
    を特徴とする半導体装置の保護回路。
  2. 電極パッドと内部回路との間に設けられ、第1の拡散層電極が当該電極パッドと当該内部回路とに接続され第2の拡散層電極が基準電位に接続された絶縁ゲート型電界効果トランジスタを有する半導体装置の保護回路において、
    前記電極パッドと前記第1の拡散層電極との間には、ソースおよびゲートが当該電極パッドに接続されドレインが前記内部回路に接続された高耐圧のnチャンネル絶縁ゲート型電界効果トランジスタ及び高耐圧のpチャンネル絶縁ゲート型電界効果トランジスタで構成された抵抗素子が設けられ、
    前記抵抗素子を構成するnチャンネル絶縁ゲート型電界効果トランジスタ及びpチャンネル絶縁ゲート型電界効果トランジスタにおけるソースおよびゲートの接続部分にはシリサイド層が設けられ、
    前記抵抗素子を構成するnチャンネル絶縁ゲート型電界効果トランジスタ及びpチャンネル絶縁ゲート型電界効果トランジスタのソースにおけるチャネル長方向のLDD拡散層の長さを長くすることにより、当該nチャンネル絶縁ゲート型電界効果トランジスタ及びpチャンネル絶縁ゲート型電界効果トランジスタの高耐圧特性を得ていること、
    を特徴とする半導体装置の保護回路。
  3. 電極パッドと内部回路との間に設けられ、第1の拡散層電極が当該電極パッドと当該内部回路とに接続され第2の拡散層電極が基準電位に接続された絶縁ゲート型電界効果トランジスタを有する半導体装置の保護回路において、
    前記電極パッドと前記第1の拡散層電極との間には、ソースおよびゲートが当該電極パッドに接続されドレインが前記内部回路に接続された高耐圧のnチャンネル絶縁ゲート型電界効果トランジスタ及び高耐圧のpチャンネル絶縁ゲート型電界効果トランジスタで構成された抵抗素子が設けられ、
    前記抵抗素子を構成するnチャンネル絶縁ゲート型電界効果トランジスタ及びpチャンネル絶縁ゲート型電界効果トランジスタにおけるソースおよびゲートの接続部分にはシリサイド層が設けられ、
    前記抵抗素子を構成するnチャンネル絶縁ゲート型電界効果トランジスタ及びpチャンネル絶縁ゲート型電界効果トランジスタのゲート電極の一部とソースにおけるLDD拡散層とを酸化層を介して重ねて設けた構成とすることにより、当該nチャンネル絶縁ゲート型電界効果トランジスタ及びpチャンネル絶縁ゲート型電界効果トランジスタの高耐圧特性を得ていること、
    を特徴とする半導体装置の保護回路。
JP13324997A 1997-05-23 1997-05-23 半導体装置の保護回路 Expired - Fee Related JP3752782B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13324997A JP3752782B2 (ja) 1997-05-23 1997-05-23 半導体装置の保護回路

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13324997A JP3752782B2 (ja) 1997-05-23 1997-05-23 半導体装置の保護回路

Publications (2)

Publication Number Publication Date
JPH10321806A JPH10321806A (ja) 1998-12-04
JP3752782B2 true JP3752782B2 (ja) 2006-03-08

Family

ID=15100202

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13324997A Expired - Fee Related JP3752782B2 (ja) 1997-05-23 1997-05-23 半導体装置の保護回路

Country Status (1)

Country Link
JP (1) JP3752782B2 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100510541B1 (ko) * 2003-08-11 2005-08-26 삼성전자주식회사 고전압 트랜지스터 및 그 제조 방법
JP4901096B2 (ja) * 2004-12-08 2012-03-21 株式会社東芝 半導体記憶装置
JP5070693B2 (ja) * 2005-11-11 2012-11-14 サンケン電気株式会社 半導体装置
JP5104878B2 (ja) * 2007-12-14 2012-12-19 富士電機株式会社 集積回路および半導体装置
CN116779662A (zh) * 2023-08-22 2023-09-19 深圳芯能半导体技术有限公司 一种抗静电的igbt芯片及其制作方法

Also Published As

Publication number Publication date
JPH10321806A (ja) 1998-12-04

Similar Documents

Publication Publication Date Title
JP2643870B2 (ja) 半導体記憶装置の製造方法
JP3781666B2 (ja) ゲート電極の形成方法及びゲート電極構造
US7371646B2 (en) Manufacture of insulated gate type field effect transistor
JPH1117181A (ja) 半導体装置の製造方法
JPH0992728A (ja) 相補型mos電界効果トランジスタおよびその製造方法
JP2925416B2 (ja) 半導体集積回路装置の製造方法
JPH09129752A (ja) Cmos集積回路の製造方法
JP3752782B2 (ja) 半導体装置の保護回路
JP3684849B2 (ja) Mis型電界効果トランジスタを含む半導体装置及びその製造方法
JPH1022461A (ja) 静電気放電保護用トランジスターおよびその製造方法
TWI258805B (en) Bipolar transistor, semiconductor device comprising the bipolar transistor and process for fabricating them
JPH02271673A (ja) 半導体装置
JP3394022B2 (ja) 半導体装置及びその製造方法
JP3750285B2 (ja) 半導体装置の保護回路
JP3282172B2 (ja) BiMOS半導体装置の製造方法
US6342440B1 (en) Method for forming low-leakage impurity regions by sequence of high-and low-temperature treatments
JPH04234162A (ja) 高信頼性半導体装置
JP3263941B2 (ja) 半導体装置の製造方法
JP3061027B2 (ja) 半導体装置の製造方法
JP2001036078A (ja) Mos型トランジスタ及びその製造方法
JPH0964349A (ja) 高融点シリサイドを持つ半導体装置とその製造方法
JPH0982812A (ja) 半導体装置の製造方法
JPH065696B2 (ja) 半導体装置の製造方法
JP2008166560A (ja) 半導体装置及びその製造方法
JP3769832B2 (ja) 半導体装置の製造方法

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050111

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050310

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050726

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050916

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051205

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091222

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees