JP3735646B2 - 交直変換器の制御装置 - Google Patents

交直変換器の制御装置 Download PDF

Info

Publication number
JP3735646B2
JP3735646B2 JP08727097A JP8727097A JP3735646B2 JP 3735646 B2 JP3735646 B2 JP 3735646B2 JP 08727097 A JP08727097 A JP 08727097A JP 8727097 A JP8727097 A JP 8727097A JP 3735646 B2 JP3735646 B2 JP 3735646B2
Authority
JP
Japan
Prior art keywords
active power
voltage
converter
power
coefficient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP08727097A
Other languages
English (en)
Other versions
JPH10271687A (ja
Inventor
宏和 鈴木
健一 鈴木
幸治 坂本
みどり 大槻
淳之 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Tokyo Electric Power Co Inc
Original Assignee
Toshiba Corp
Tokyo Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Electric Power Co Inc filed Critical Toshiba Corp
Priority to JP08727097A priority Critical patent/JP3735646B2/ja
Publication of JPH10271687A publication Critical patent/JPH10271687A/ja
Application granted granted Critical
Publication of JP3735646B2 publication Critical patent/JP3735646B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/60Arrangements for transfer of electric power between AC networks or generators via a high voltage DC link [HVCD]

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)
  • Rectifiers (AREA)
  • Control Of Electrical Variables (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は電力系統における直流送電システムに利用される交直変換器の制御装置に関する。
【0002】
【従来の技術】
従来,異なる交流電力系統間で相互に電力を融通し合う場合、各交流電力系統端に交直変換器を接続し、これら交直変換器の直流端子相互間を直流送電線で接続してなる直流送電システムが用いられている。
【0003】
図55はかかる直流送電システムとその制御装置を示したものであり、さらに具体的には電圧型自励式変換器を使用した2端子直流送電システムの構成を示す図である。
【0004】
交流電力系統につながる第1および第2の交流系統母線101A,101Bにはそれぞれ個別に変換器用変圧器102A,102Bを介して自励式変換器103A,103Bが接続されている。各自励式変換器103A,103Bは、各アームがGTO(ゲートターンオフ)サイリスタとそれに並列接続されるダイオードとからなる,6相または12相のブリッジ回路で構成されている。これら自励式変換器103A,103Bの直流側端子間にはそれぞれ個別にコンデンサ104A,104Bが並列に接続され、これら自励式変換器103Aと自励式変換器103Bとの直流側間に直流送電線105が接続され、相互に電力を融通し合う構成となっている。
【0005】
この2端子直流送電システムにおいては、潮流方向に応じて変換器103Aおよび103Bのうちの一方(給電側)が順変換器として運転され、他方(受電側)が逆変換器として運転される。
【0006】
なお、交直変換器103Aおよび交直変換器103Bに関連する各種の検出器群およびこれら検出器群の検出結果に基づいて交直変換器103A,103Bを制御する制御装置106は、交直変換器103Aおよび交直変換器103Bとも同じ構成であるので、以下、図55では交直変換器103Aの関連部分のみについて説明する。
【0007】
変換器103A側の直流側には直流電圧検出器107が設けられ、直流送電線105の電圧,すなわち直流電圧Edを検出する。また、交流母線101Aと変圧器102Aとの間に変流器1081 が設けられ、この変流器1081 で検出される交流電流(三相)Iaと交流母線101Aに接続される計器用変圧器109で検出される系統電圧Eaとを有効電力検出器110、無効電力検出器111に導入し、有効電力検出器110にて変換器103Aの有効電力Paを検出し、また無効電力検出器111にて無効電力Qaを検出する。
【0008】
前記直流電圧検出器107の直流電圧Edは直流電圧設定値Ed refとの間で直流電圧偏差(=Ed ref−Ed)が求められ、この直流電圧偏差が直流電圧/有効電力制御回路106の第1の入力端に入力される。この直流電圧/有効電力制御回路106の第2の入力端には有効電力Paと有効電力設定値P refとから得られる有効電力偏差(=P ref−Pa)が入力される。また、無効電力Qaと無効電力設定値Q refとの無効電力偏差(=Q ref−Qa)が無効電力制御回路112に入力される。これら直流電圧/有効電力制御回路106、無効電力制御回路112はそれぞれ有効電力偏差,無効電力偏差を零とするための制御信号を出力する。
【0009】
これら直流電圧/有効電力制御回路106の出力値および無効電力制御回路112の出力値は、それぞれ交流電圧制御回路113に対して交流電流の有効電力成分の設定値Id refおよび無効電力成分の設定値Iq refとして与える。また、変流器1081 で検出される交流電流Iaは三相/二相変換回路114に入力され、ここで有効電力成分Idと無効電力成分Iqとに分離され、交流電圧制御回路113に与えられる。
【0010】
この交流電圧制御回路113は、交流電流Iaの有効電力成分Idおよび無効電力成分Iqをそれぞれ直流電圧/有効電力制御回路106の出力である交流電流の有効電力成分の設定値Id refおよび無効電力制御回路112の出力である交流電流の無効電力成分の設定値Iq refに等しくなるようなPWM制御信号のための位相角φと制御角Cmとを演算し、PWM制御回路115に与える。
【0011】
このPWM制御回路115には、位相角φおよび制御角Cmの他、交流母線101Aに接続される計器用変圧器109から位相検出回路116を介して得られる交流母線101Aの電圧位相θが入力され、ここで各信号φ,Cmおよびθに基づいて、PWM制御のための搬送波信号および三相正弦波のPWM制御信号を作成し、これら2つの信号の突き合わせによってオンパルス、オフパルスの発生タイミングを決定する。そして、このPWM制御回路115の出力信号に基づいて、パルス発生回路117は、変換器103Bの各アームに対するオンパルスおよびオフパルスを発生し、変換器103Bに与える。従って、この変換器103Bはこのパルスによって各アームのGTOサイリスタがオン/オフを行うことにより所望の運転を行う。
【0012】
以上のようにして直流送電システムは、有効電力設定値P refどおりの電力を順変換器運転の変換器103A側から、逆変換器運転の変換器103B側へと融通し、また各変換器によって無効電力設定値Q refどおりの無効電力を出力する運転が行われる。ここで、無効電力は各変換器出独自の設定値を有しそれぞれ独立に制御されるが、有効電力は両変換器で共通の値に制御される。具体的な制御では、両端の変換器103A,103Bにより直流電圧と有効電圧とを分担し制御することにより、直流電圧を一定に保ちながら順変換器側から逆変換器側へ設定値どうりの有効電力を融通する。
【0013】
図56は以上のような制御を実現するための従来の1つの直流電圧/有効電力制御回路106の構成を示す図である(電気学会論文誌B、112巻1号19〜26頁)。
【0014】
この直流電圧/有効電力制御回路106は、直流電圧検出値Edと直流電圧設定値Ed refとの偏差を零とするような制御値を出力する直流電圧制御器121と、有効電力検出値Paと有効電力設定値P refとの偏差を零とするような制御値を出力する有効電力制御器122とが設けられている。この有効電力制御器122の出力値は、直流電圧制御器121の出力に対する最小リミット値として使用する。ここで、順変換器側(変換器103A)では、直流電圧設定値Ed refとして直流電圧定格値を与え、逆変換器側(変換器103B)では、定格値より10%程度小さな値を与えることにより、逆変換器側では直流電圧制御器121の出力が最小リミットにかかった状態となり、最小リミット値として与えられている有効電力制御器122の出力が最終的な出力Id refとなる。このような構成の直流電圧/有効電力制御回路106を使用することにより、順変換器側で直流電圧を定格値どおりに制御し、順変換器側で必要な融通電力を制御できる。
【0015】
図57は従来のもう1つの直流電圧/有効電力制御回路106の構成を示す図である(電気学会電力技術研究会PE−95−120)。
【0016】
この直流電圧/有効電力制御回路106では、有効電力設定値P refと有効電力検出値Paとの差分を増幅器123で所定の増幅率で増幅した後、この増幅出力を、直流電圧設定値Ed refと直流電圧検出値Edとの差分に加算することにより、補正した直流電圧の差分△Ed′を取り出し、直流電圧制御器121に入力する。
【0017】
この直流電圧制御器121は、補正した直流電圧の差分△Ed′が零になるように制御することにより、交流出力電流の有効電力成分のId refとして出力し、交流電流制御回路113に供給する。
【0018】
このような構成の制御装置106を使用すると、図58に示すような直流電圧と有効電力との関係が得られる。すなわち、有効電力検出値Paが有効電力設定値P refと等しい場合は、直流電圧が設定値Ed refどおりの値となるように制御され、有効電力検出値と有効電力設定値とに差が生じると、その差に比例して直流電圧が変化し、図58に示すように右下がりの特性となる。
【0019】
従って、このような直流送電システムを構成する変換器に制御装置106を用いると、直流送電システム全体の有効電力設定値の和が零の場合には、各変換器は設定値どおりの有効電力を融通し、それに伴って直流電圧は当初与えられた直流電圧設定値どおりの値に制御される。一方、事故などにより、各変圧器に与えられる有効電力設定値に不平衡が生じたとき、すなわち、各変圧器の有効電力設定値の和が零でなくなると、不平衡分を各変換器が増幅率rに応じて分担し補償する。これによって、有効電力設定値P refと有効電力検出値Paとに差が生じ、直流電圧は当初与えられたEd refとは異なる値で制御される。
【0020】
【発明が解決しようとする課題】
ところで、以上のような2つの直流電圧/有効電力制御回路106のうち、後者の図57の制御回路106では、増幅率rの値が大きいほど有効電力設定値P refに近い値の有効電力を得ることができる。すなわち、増幅率rを大きく設定するということは、直流電圧制御に対する有効電力制御の割合を高めるという意味合いがある。通常,有効電力制御を行う場合と直流電圧制御を行う場合とでは、適した増幅率が異なっているので、増幅率rの設定を変更した場合には直流電圧/有効電力制御回路106の増幅率が適切で無くなり、制御不安定になるといった課題がある。
【0021】
また、直流送電システムの直流送電線105に大きな抵抗分があったとき、電力融通時に生ずる直流電流によって電圧降下が生ずる。
【0022】
よって、従来の2つの変換器103A,103Bに制御装置においては、検出された直流電圧に依存して有効電力制御を行うために、直流送電線105の抵抗による電圧降下の影響を受け、設定値どおりの有効電力が得にくく、また変換器103A,103B間で相互に干渉が発生するという課題がある。
【0023】
本発明は上記実情に鑑みてなされたもので、有効電力制御および直流電圧制御時に増幅率を変更した場合でも、制御の安定化を確保する交直変換器の制御装置を提供することにある。
【0024】
また、本発明の他の目的は、長距離直流送電時の直流回路に大きな抵抗分をもっている場合でも、設定値どおりの有効電力を融通する交直変換器の制御装置を提供することにある。
【0025】
【課題を解決するための手段】
上記課題を解決するために、請求項1に対応する発明は、異なる交流電力系統にそれぞれ設置される交直変換器の直流側を直流送電線で接続し電力を融通し合う直流送電システムに用いられる交直変換器の制御装置において、有効電力を融通する変換器の有効電力設定値と交流電力系統の有効電力検出値との差に係数を乗算した値を用いて直流電圧設定値を補正する電圧設定値補正手段と、係数に応じて増幅率が変化する演算項を有し、前記設定値補正手段で補正された直流電圧設定値と変換器直流側の直流電圧検出値との差が零に近づくように制御演算を実行する直流電圧制御系とを設け、係数を変えて有効電力制御の比率を高めた場合でも、直流電圧制御系の増幅率を制御対象に対し自動的に適切な値に設定し、制御の安定化を確保する。
【0026】
請求項2に対応する発明は、直流電圧設定値と変換器直流側の直流電圧検出値との差に係数を乗算して得られる値を用いて有効電力を融通する変換器の有効電力設定値を補正する電力設定値補正手段と、前記係数に応じて増幅率が変化する演算項を有し、電力設定値補正手段で補正された有効電力設定値と交流電力系統の有効電力検出値との差が零に近づくように制御演算を実行する有効電力制御系とを設けることにより、係数を変えて直流電圧制御の比率を高めた場合でも、有効電力制御系の増幅率を制御対象に対し自動的に適切な値に設定し、制御の安定化を確保する。
【0027】
請求項3に対応する発明は、有効電力を融通する変換器の有効電力設定値と交流電力系統から検出される有効電力検出値との差に第1の係数を乗算する第1の乗算演算手段と、直流電圧設定値と変換器直流側の直流電圧検出値との差に第2の係数を乗算する第2の乗算演算手段と、第1の乗算演算手段の出力と第2の乗算演算手段の出力とを加算する加算演算手段と、前記第1の係数と前記第2の係数との比率に応じて増幅率が変化する演算項を有し、前記加算演算手段の加算出力が零に近づくように制御演算を実行する直流電圧制御系とを設け、係数が1で最大で完全な有効電力制御のみの状態から係数が0で最小で完全な直流電圧制御のみの状態でも、直流電圧制御系の増幅率を制御対象に対し自動的に適切な値に設定し、制御の安定化を確保する。
【0028】
また、請求項4に対応する発明は、有効電力を融通する変換器の有効電力設定値と交流電力系統の有効電力検出値との差に第1の係数を乗算する第1の係数手段と、前記有効電力設定値に直流送電線の直流回路の抵抗値に比例する第2の係数を乗算する第2の係数手段と、これら第1および第2の係数手段の出力を用いて直流電圧設定値を補正する補正手段と、この補正手段で補正される直流電圧設定値と前記変換器直流側の直流電圧検出値との差が零に近づくように制御演算を実行する直流電圧制御系とを設けることにより、直流送電線の直流回路の抵抗分で生ずる電圧降下分を補償でき、有効電力設定値どおりの有効電力を融通できる。
【0029】
請求項5に対応する発明は、有効電力を融通する変換器の有効電力設定値と交流電力系統から検出される有効電力検出値との差に第1の係数を乗算する第1の係数手段と、前記有効電力検出値に前記直流送電線の直流回路の抵抗値に比例する第2の係数を乗算する第2の係数手段と、これら第1および第2の係数手段の出力を用いて直流電圧設定値を補正する補正手段と、この補正手段で補正される直流電圧設定値と前記変換器直流側の直流電圧検出値との差が零に近づくように制御演算を実行する直流電圧制御系とを設けたことにより、請求項4に対応する発明と同様の作用を有する。
【0030】
また、請求項6に対応する発明は、有効電力を融通する変換器の有効電力設定値と交流電力系統の有効電力検出値との差に第1の係数を乗算する第1の係数手段と、変換器直流側の直流電流検出値に直流送電線の直流回路の抵抗値に比例する第2の係数を乗算する第2の係数手段と、これら第1および第2の係数手段の出力を用いて直流電圧設定値を補正する補正手段と、この補正手段で補正される直流電圧設定値と直流電圧検出値との差が零に近づくように制御演算を実行する直流電圧制御系とを設けたことにより、請求項4に対応する発明と同様の作用を有する。
【0031】
請求項7に対応する発明は、直流電圧設定値と変換器直流側の直流電圧検出値との差に第1の係数を乗算する第1の係数手段と、有効電力を融通する変換器の有効電力設定値の2乗に直流送電線の直流回路の抵抗値に比例する第2の係数を乗算する第2の係数手段と、これら第1、第2の係数手段の出力を用いて前記有効電力設定値を補正する電力設定値補正手段と、この補正手段で補正される有効電力設定値と交流電力系統からの有効電力検出値との差が零に近づくように制御演算を実行する有効電力制御系とを設け、直流送電線の直流回路の抵抗分による有効電力損失分の補償を行い、有効電力設定値どおりの有効電力を融通できる。
【0032】
請求項8に対応する発明は、直流電圧設定値と変換器直流側の直流電圧検出値との差に第1の係数を乗算する第1の係数手段と、交流電力系統の有効電力検出値の2乗に直流送電線の直流回路の抵抗値に比例する第2の係数を乗算する第2の係数手段と、これら第1および第2の係数手段の出力を用いて前記有効電力設定値を補正する電力設定値補正手段と、この補正手段で補正された有効電力設定値と有効電力検出値との差が零に近づくように制御演算を実行する有効電力制御系とを設けたことにより、請求項7に対応する発明と同様の作用を有する。
【0033】
請求項9に対応する発明は、直流電圧設定値と変換器直流側の直流電圧検出値との差に第1の係数を乗算する第1の係数手段と、変換器直流側の直流電流検出値の2乗に直流送電線の直流回路の抵抗値に比例する第2の係数を乗算する第2の係数手段と、これら第1および第2の係数手段の出力を用いて前記有効電力設定値を補正する電力設定値補正手段と、この補正手段で補正される有効電力設定値と前記交流電力系統の有効電力検出値との差が零に近づくように制御演算を実行する有効電力制御系とを設けたことにより、請求項7に対応する発明と同様の作用を有する。
【0034】
請求項10に対応する発明は、有効電力を融通する変換器の有効電力設定値と交流電力系統の有効電力検出値との差に係数を乗算し直流電圧設定値を補正する第1の電圧設定値補正手段と、前記有効電力設定値または前記有効電力検出値に前記直流送電線の直流回路の抵抗値に比例する係数を乗算する係数手段と、前記有効電力設定値から前記変換器が順変換運転または逆変換運転の運転状態を判断し、所要の運転状態の時,前記第1の電圧設定値補正手段によって補正された直流電圧設定値に前記係数手段の出力を用いてさらに補正する第2の電圧設定値補正手段と、この第2の電圧設定値補正手段で補正される直流電圧設定値と前記変換器直流側の直流電圧検出値との差が零に近づくように制御演算を実行する直流電圧制御系とを設けたことにより、直流送電線の直流回路の抵抗分で生ずる電圧降下分を補償し、有効電力設定値どおりの有効電力を融通できる。
【0035】
請求項11に対応する発明は、有効電力を融通する変換器の有効電力設定値と交流電力系統の有効電力検出値との差に係数を乗算し直流電圧設定値を補正する第1の電圧設定値補正手段と、変換器直流側の直流電流検出値に直流送電線の直流回路の抵抗値に比例する係数を乗算する係数手段と、前記有効電力設定値から変換器が順変換運転または逆変換運転の運転状態を判断し、所要の運転状態の時,前記第1の電圧設定値補正手段によって補正された直流電圧設定値に前記係数手段の出力を用いてさらに補正する第2の電圧設定値補正手段と、この第2の電圧設定値補正手段で補正される直流電圧設定値と前記変換器直流側の直流電圧検出値との差が零に近づくように制御演算を実行する直流電圧制御系とを設け、直流送電線の直流回路の抵抗分で生ずる電圧降下分を補償し、有効電力設定値どおりの有効電力を融通でき、適切な直流電圧の運転も可能である。
【0036】
請求項12に対応する発明は、直流電圧設定値と変換器直流側の直流電圧検出値との差に係数を乗算し有効電力設定値を補正する第1の電力設定値補正手段と、前記有効電力設定値の2乗または交流電力系統の有効電力検出値の2乗に直流送電線の直流回路の抵抗値に比例する係数を乗算する係数手段と、前記有効電力設定値から前記変換器が順変換運転または逆変換運転の運転状態を判断し、所要の運転状態の時,前記第1の電力設定値補正手段によって補正される有効電力設定値に前記係数手段の出力を用いてさらに補正する第2の電力設定値補正手段と、この第2の有効電力設定値補正手段で補正される有効電力設定値と前記有効電力検出値との差が零に近づくように制御演算を実行する有効電力制御系とを設け、直流送電線の直流回路の抵抗分で生ずる有効電力損失分を補償し、有効電力設定値どおりの有効電力を融通できる。
【0037】
請求項13に対応する発明は、直流電圧設定値と変換器直流側の直流電圧検出値との差に係数を乗算し有効電力設定値を補正する第1の電力設定値補正手段と、前記変換器直流側の直流電流検出値の2乗に直流送電線の直流回路の抵抗値に比例する係数を乗算する係数手段と、前記有効電力設定値から前記変換器が順変換運転または逆変換運転の運転状態を判断し、所要の運転状態の時,前記第1の電力設定値補正手段によって補正された有効電力設定値に前記係数手段の出力を用いてさらに補正する第2の有効電力設定値補正手段と、この第2の有効電力設定値補正手段で補正される有効電力設定値と前記交流電力系統から検出される有効電力検出値との差が零に近づくように制御演算を実行する有効電力制御系とを設け、直流送電線の直流回路の抵抗分で生ずる有効電力損失分を補償し、有効電力設定値どおりの有効電力を融通できる。
【0038】
【発明の実施の形態】
(第1の実施の形態)
図1は請求項1に係わる交直変換器の制御装置の一実施の形態を示す要部構成図であって、詳細には図55に示す交直変換器の制御装置に用いられている直流電圧/有効電力制御回路106に代わる本発明の要部となる直流電圧/有効電力制御回路1Aの構成を示す図である。
【0039】
この直流電圧/有効電力制御回路1Aは、有効電力を融通する変換器の有効電力設定値P refと交流系統母線から検出する有効電力検出値Paとの差分を取り出す差分演算手段2と、この差分演算手段2の出力に所定の係数rを乗算する係数手段3と、この係数手段3の出力を直流電圧設定値Ed refに加算し補正された直流電圧設定値Ed refx を出力する加算演算手段(電圧設定値補正手段)4と、この加算演算手段4で得られる補正された直流電圧設定値Ed refx と変換器直流側から検出される直流電圧検出値Edとの差分を取り出す差分演算手段5と、直流電圧制御系6Aとによって構成されている。
【0040】
この直流電圧制御系6Aは、比例・積分(PI)演算機能を有し、具体的には比例演算項Pをもつ増幅器61と、積分演算項Iをもつ積分器62と、直流電圧設定値Ed refx と直流電圧検出値Edとの差分に基づいてそれぞれ比例演算および積分演算を実行し、得られる比例演算出力および積分演算出力とを加算する加算演算手段63とを有し、前記差分が零となるような制御信号,つまり交流電流の有効電力成分の設定値Id refを出力する構成となっている。
【0041】
この直流電圧/有効電力制御回路1Aをもつ制御装置においては、直流電圧制御に対する有効電力制御の比率は係数手段3の係数rによって決定される。今、有効電力設定値P refと有効電力検出値Paとの差分を△Pとし、また直流電圧設定値Ed refx と直流電圧検出値Edとの差分を△Edとすると、直流電圧制御系6Aに入力される値は、△Ed+△P×rとなる。この直流電圧制御系6Aを構成する増幅器61の増幅率はPI,P2、また積分器62の増幅率はI1,I2なるそれぞれ2つの値の関数によって設定される。これは、一般に、直流電圧制御に適した増幅率と有効電力制御に適した増幅率とが異なることに起因し、増幅率P1およびI1には有効電力制御に適した値が、また増幅率P2およびI2には直流電圧制御に適した値が設定される。その結果、増幅器61の最終的な増幅率は、(P2+r×P1)/(1+r)から自動的に算出され、係数手段3の係数rに依存した値となる。積分器62の増幅率も、(I2+r×I1)/ (1+r)から算出され、同様に係数rに依存して変化する値となっている。
【0042】
従って、以上のような実施の形態によれば、係数手段3の係数rに応じて直流電圧制御系6Aの増幅率が変化するので、例えば係数rが小さく有効電力制御の比率が小さい場合には直流電圧制御系6Aの制御定数はほぼP2+I2/Sとなり、直流電圧制御に適した値が使用される。一方、係数rが大きくなり、有効電力制御の比率が大きくなるに従い、直流電圧制御系6の制御定数はP1+I1/Sに近づき、有効電力制御に適した値に近づいていく。このように係数rの値を変動させ、有効電力制御の比率を高めた場合でも、制御系6Aの増幅率が適切な値に設定される。
【0043】
(第1の他の実施の形態)
図1に示す直流電圧/有効電力制御回路1Aでは、加算演算手段4が係数手段3の出力と直流電圧設定値Ed refとを加算し直流電圧設定値を補正する構成としたが、例えば図2に示すような構成の直流電圧/有効電力制御回路1A1であってもよい。
【0044】
この直流電圧/有効電力制御回路1A1は、例えば直流電圧設定値Ed refと直流電圧検出値Edとの差分を演算する差分演算手段7および当該差分演算手段7の出力側に加算演算手段4を設け、この加算演算手段4にて差分演算手段7の出力と係数手段3の出力とを加算することにより、直流電圧設定値の補正を行う場合でも、図1の実施形態と同様の効果を奏する。
【0045】
また、以上の実施の形態では、電圧型自励式変換器103A,103Bにより構成される直流送電システムを前提として説明したが、他励式変換器を使用した直流送電システム、或いは電流型自励式変換器を使用した直流送電システム、またはこれらの変換器が2種類以上混在した直流送電システムでも、同様の制御ブロックを用いて、直流電圧と有効電力との制御を行うことにより、同様の効果を奏することができる。
【0046】
(第2の実施の形態)
図3は請求項2に係わる交直変換器の制御装置の一実施の形態の要部構成を示す図であって、詳細には図55に示す交直変換器の制御装置に用いられている直流電圧/有効電力制御回路106に代わる本発明の要部となる直流電圧/有効電力制御回路1Aの構成を示す図である。
【0047】
この直流電圧/有効電力制御回路1Bは、直流電圧設定値Ed refと変換器直流側から検出される直流電圧検出値Edとの差分を取り出す差分演算手段2aと、この差分演算手段2aの出力に所定の係数rを乗算する係数手段3と、この係数手段3の出力と変換器が融通する有効電力設定値P refとを加算し補正された有効電力設定値P refx を出力する加算演算手段4aと、この加算演算手段4aの補正された有効電力設定値P refx と有効電力検出器Paとの差分を求める差分演算手段5aと、有効電力制御系8Aとによって構成されている。
【0048】
この有効電力制御系8Aは、比例・積分(PI)演算機能を有し、具体的には比例演算項Pをもつ増幅器81と、積分演算項Iをもつ積分器82と、有効電力設定値と有効電力検出値との差分が零となるような制御信号,つまり交流電流の有効電力成分の設定値Id refを出力する構成となっている。
【0049】
この直流電圧/有効電力制御回路1Bをもつ制御装置は、有効電力制御に対する直流電圧制御の比率は係数手段3の係数rによって決定される。今、有効電力設定値P refと有効電力検出値Paとの差分を△Pとし、また直流電圧設定値Ed refと直流電圧検出値Edとの差分を△Edとすると、有効電力制御系8Aに入力される値は、△P+△Ed×rとなる。ここで、有効電力制御系8Aを構成する増幅器81の増幅率はPI,P2、また積分器82の増幅率はI1,I2なるそれぞれ2つの関数の値で設定される。これは、一般に、直流電圧制御に適した増幅率と有効電力制御に適した増幅率とが異なることに起因し、増幅率P1およびI1には有効電力制御に適した値、また増幅率P2およびI2には直流電圧制御に適した値が設定される。その結果、増幅器81の最終的な増幅率は、(P1+r×P2)/(1+r)から自動的に算出され、係数手段3の係数rに依存して変化する値となる。積分器82の増幅率も、(I1+r×I2)/(1+r)から算出され、同様に係数rに依存して変化する。
【0050】
従って、以上のような実施の形態によれば、係数手段3の係数rに応じて有効電力制御系8Aの増幅率が変化するので、例えば係数rが小さく直流電圧制御の比率が小さい場合には有効電力制御系8Aの制御定数はほぼP1+I1/Sとなり、有効電力制御に適した値が使用される。一方、係数rが大きくなり、直流電圧制御の比率が大きくなるに従い、有効電力制御系8Aの制御定数はP2+I2/Sに近づき、直流電圧制御に適した値に近づいていく。このように係数rの値を変動させ、直流電圧制御の比率を高めた場合でも、制御系8Aの増幅率を適切な値に設定できる。
【0051】
(第2の他の実施の形態)
図3に示す直流電圧/有効電力制御回路1Bでは、加算演算手段4aが係数手段3の出力と有効電力設定値P refとを加算し有効電力設定値を補正する構成としたが、例えば図4に示すような構成の直流電圧/有効電力制御回路1B1であってもよい。この直流電圧/有効電力制御回路1B1は、例えば有効電力設定値P refと有効電力検出値Paとの差分を演算する差分演算手段9および当該差分演算手段9の出力側に加算演算手段4aを設け、この加算演算手段4aにて差分演算手段9の出力と係数手段3の出力とを加算し有効電力設定値の補正を行う構成でも、図3の実施形態と同様の効果を奏する。
【0052】
また、以上の実施の形態では、電圧型自励式変換器103A,103Bによって構成された直流送電システムを前提として説明したが、他励式変換器を使用した直流送電システム、或いは電流型自励式変換器を使用した直流送電システム、またはこれらの変換器が2種類以上混在した直流送電システムにおいても、直流電圧と有効電力との制御を同様の制御ブロックを用いて行うことにより、同様の効果を得ることができる。
【0053】
(第3の実施の形態)
図5は請求項3に係わる交直変換器の制御装置の一実施の形態の要部構成を示す図であって、詳細には図55に示す交直変換器の制御装置に用いられている直流電圧/有効電力制御回路106に代わる本発明の要部となる直流電圧/有効電力制御回路1Cの構成を示す図である。
【0054】
この直流電圧/有効電力制御回路1Cは、変換器が融通する有効電力設定値P refと交流系統母線側から検出される有効電力検出値Paとの差分を求める差分演算手段2と、図6に示すごとく手動等で設定される係数rをリミッタ回路12および加算器13を通して係数r1,r2を出力する係数設定部10と、前記差分演算手段2で得られる出力に係数設定部10の係数r1を乗算する乗算演算手段14Aと、直流電圧設定値Ed refと直流電圧検出値Edとの差分を取り出す差分演算手段7と、この差分演算手段7の差分出力に係数設定部18の係数r2を乗算する乗算演算手段14Bと、これら乗算演算手段14Aの出力と乗算演算手段14Bの出力とを加算する加算演算手段4と、直流電圧制御系6Bとで構成されている。
【0055】
この直流電圧制御系6Bは、比例・積分(PI)演算機能を有し、具体的には比例演算項Pをもつ増幅器61aと、積分演算Iをもつ積分器62bと、2つの乗算演算手段14A,14Bの出力の差分に基づいてそれぞれ比例演算および積分演算を実行し、得られる比例演算出力と積分演算出力とを加算する加算演算手段63aとからなり、直流電圧設定値と直流電圧検出値との差分が零となるような制御信号,つまり交流電流の有効電力成分の設定値Id refを出力する構成となっている。
【0056】
この直流電圧/有効電力制御回路1Cをもつ制御装置においては、交流電流の有効電力成分設定値Id refにおける有効電力制御対直流電圧制御の比は手動設定等で与えられる係数設定部10の係数rにより、r:(1−r)の比率となる。ここで、係数rはリミッタ回路12によって0〜1の間の値に制限されるので、rおよび(1−r)はそれぞれ0〜1の値となる。
【0057】
一方、直流電圧制御系6Bを構成する増幅器61aの増幅率はP1,P2、また積分器62aの増幅率はI1,I2となるそれぞれ2つの関数の値で設定される。これは、一般に直流電圧制御に適した増幅率と有効電力制御に適した増幅率とが異なることに起因し、増幅率P1およびI1には有効電力制御に適した値、増幅率P2およびI2には直流電圧制御に適した値が設定される。
【0058】
よって、増幅器61aの最終的な増幅率は、(1−r)P2+rP1から自動的に算出され、前記係数手段3の係数rに依存した値となる。また、積分器62aの増幅率も、{(1−r)I2+r×I1}から算出され、同様に係数rに依存して変化する。
【0059】
従って、以上のような実施の形態によれば、係数設定部10の設定係数rに応じて直流電圧制御系6Bの増幅率が変化するが、係数rが小さく有効電力制御の比率が小さい場合には直流電圧制御系6Bの制御定数はほぼP2+I2/Sとなり、直流電圧制御に適した値となり、一方、係数rが大きくなり、有効電力制御の比率が大きくなるに従い、直流電圧制御系6Bの制御定数はP1+I1/Sに近づき、有効電力制御に適した値に近づいていく。
【0060】
その結果、図1または図3の直流電圧/有効電力制御回路を適用した場合、係数rが0〜1程度の値のとき良好な制御特性が得られるが、例えば図1の制御回路を用いて有効電力制御を支配しようとする場合には、r》1とする必要がある。この場合には、△P×rが大きくなり、等価的に全体の増幅率が大きくなって不安定になる可能性がある。
【0061】
それに対し、図5に示す制御回路1Cを適用した場合、係数rの値が1、すなわち完全な有効電力制御のみの状態からrの値が0すなわち完全な直流電圧制御のみの状態まで変動させた状態でも、制御系6Bの増幅率が適切な値に設定することができる。
【0062】
(第3の他の実施の形態)
図5に示す第3の実施の形態例では、有効電力設定値P refと有効電力検出値Paとの差分に係数設定部10の出力である係数r1を乗算し、また直流電圧設定値Ed refと直流電圧検出値Edとの差分に係数設定部10の出力である係数r2,すなわち(1−r)を乗算したが、例えば図7に示すように直流電圧設定値Ed refと直流電圧検出値Edとの差分に係数設定部10の出力r1を乗算し、有効電力設定値P refと有効電力検出値Paとの差分に係数設定部10の出力r2を乗算する一方、有効電力制御系8Bについては、増幅率{(1−r)P1+r×P2}をもつ増幅器81aおよび増幅率{(1−r)I1+r×I2}/Sをもつ積分器82aとで構成することにより、図5の実施の形態と同様の効果を得ることができる。この場合には、係数rは第1の実施の形態とは逆に直流電圧の比率を表す値となる。
【0063】
また、図1の直流電圧制御系6Aに代えて図8に示すような直流電圧制御系6Cのような構成でもよい。この直流電圧制御系6Cは、増幅器61および積分器62の入力側に増幅率1/(1−r)をもつ係数手段64を追加することにより、r》1となった場合でも、全体の増幅率が大きくなるのを防止し、図5の実施の形態と同様の効果を得ることができる。
【0064】
また、以上の形態では、電圧型自励式変換器103A,103Bによって構成された直流送電システムを前提として説明したが、他励式変換器を使用した直流送電システム、或いは電流型自励式変換器を使用した直流送電システム、またはこれらの変換器が2種類以上混在した直流送電システムにおいても、直流電圧と有効電力との制御を同様の制御ブロックを用いることにより、同様の効果を得ることができる。
【0065】
(第4の実施の形態)
図9は請求項4に係わる交直変換器の制御装置の一実施の形態の要部構成を示す図であって、詳細には図55に示す交直変換器の制御装置に用いられている直流電圧/有効電力制御回路106に代わる本発明の要部となる直流電圧/有効電力制御回路1Dの構成を示す図である。
【0066】
この直流電圧/有効電力制御回路1Dは、有効電力設定値P refと有効電力検出値Paとの差分を求める差分演算手段2と、この差分に係数rを乗算する係数手段3と、この係数手段3の出力に直流電圧設定値Ed refを加算し補正された直流電圧設定値Ed refx を出力する加算演算手段4と、前記有効電力設定値P refに係数Raを乗算する係数手段21とが設けられている。なお、係数Raは、変換器例えば103Aに接続される直流送電線105の直流回路の抵抗値に比例する係数が用いられる。
【0067】
また、直流電圧/有効電力制御回路1Dには、係数手段21の出力を加算演算手段4からの直流電圧設定値Ed refx に加算し、最終的な直流電圧設定値Ed refy を得る加算演算手段22と、この加算演算手段22の出力Ed refy と直流電圧検出値Edとの差分を求める差分演算手段23とを有し、この差分演算手段23によって得られる差分を、例えば比例・積分項をもつ直流電圧制御系6に導入し、ここで出力Ed refy と直流電圧検出値Edとの差分を零にするような制御信号,つまり交流電流の有効電力成分の設定値Id refを出力する構成である。
【0068】
従って、交直変換器の制御装置に以上のような図9に示す制御回路1Dを適用すれば、係数手段21の係数Raによって直流線路の抵抗分による電圧降下分の補償を行うことができる。
【0069】
すなわち、図55に示す第2の従来装置では、2台の変換器(順変換器,逆変換器)103A,103Bの間に長距離直流送電線105などの直流抵抗分の大きい直流回路を接続した直流送電システムであるが、このようなシステムでは図10に示すような制御特性が得られる。つまり、両変換器には、図56,図57に示すように共通の直流電圧設定値Ed refと、互いに符号逆で値が等しい有効電力設定値P refとが与えられるが、直流回路の抵抗分が小さい場合には図10のR1,I1で示す設定どおりで運転が行われるが、直流回路の抵抗Rdcが大きい場合には、順変換器側と逆変換器側との直流電圧に回路抵抗分の電圧降下分△Ed(=Idc・Rdc;Idcは直流電流)が生じるので、各変換器の運転点はR2,I2で示すような点となり、設定どおりの有効電力が得られなくなる。
【0070】
これに対し、例えば順変換器側の制御装置に図9に示す直流電圧/有効電力制御回路1Dを適用すれば、係数手段21の係数Raとして直流回路抵抗分Rdcを設定すれば、順変換機側の直流電圧設定値Rdc×P refだけ高めた値となる。直流分の電圧降下は、直流線路の抵抗Rdcおよび直流電流Idcによって算出できるが、電圧型自励式変換器においては、直流電圧Edがほぼ1.0puに保たれて運転されているので、直流電流Idcと有効電力設定値P refとをほぼ等しくできる。
【0071】
この場合には、2台の変換器103A,103Bの運転点は、図11に示すように設定値P refどおりの有効電力Pが得られる点に補正することができる。
【0072】
また、順変換器側および逆変換器側の両方に図9に示す制御回路1Dを適用すれば、直流送電線の中間点までの抵抗分について補償を行えばよい。この中間点までの抵抗分をRdc2 とすると、直流送電線の中間点に対する電圧降下分は、直流送電線の中間点までの抵抗分Rdc2 ×有効電力設定値P refで求められる。よって、係数手段21の係数RaとしてRdc2 を設定すれば、直流電圧設定値Ed
ref を補償できる。
【0073】
従って、以上のような実施の形態によれば、図9に示す制御回路1Dを用いることにより、係数手段21の係数Raとして例えば図55の直流送電線105の直流回路の抵抗分Rdcを設定すれば、電圧降下分の補償を行うことができ、与えられた有効電力設定値どおりの有効電力の融通を行うことができる。
【0074】
(第4の他の実施の形態)
図9に示す実施の形態では、加算演算手段22を用いて直流電圧設定値Ed refx に係数手段21の出力を加算し、直流電圧設定値Ed refx の補正を行うようにしたが、例えば図12に示すように有効電力設定値P refに係数手段21の係数Raを乗算した後、直流電圧設定値Ed refに対して直接加算し補正する構成であっても、図9と同様の効果を得ることができる。
【0075】
また、図13に示すように、直流電圧設定値Ed refx と直流電圧設定値Edとの差分を得た後、この差分を対して最終的に係数手段21の出力を加算し補正する構成であっても、図9と同様な効果を奏する。
【0076】
さらに、以上の実施の形態では、電圧形自励式変換器103A,103Bによって構成される直流送電システムを前提として説明したが、他励式変換器を使用した直流送電システム、或いは電流型自励式変換器を使用した直流送電システム、またはこれらの変換器が2種類以上混在した直流送電システムにおいても、直流電圧と有効電力との制御を同様の制御ブロックを用いて行うことにより、同様の効果を得ることができる。
【0077】
(第5の実施の形態)
図14は請求項5に係わる交直変換器の制御装置の一実施の形態の要部構成を示す図であって、詳細には図55に示す交直変換器の制御装置に用いられている直流電圧/有効電力制御回路106に代わる本発明の要部となる直流電圧/有効電力制御回路1Eの構成を示す図である。
【0078】
この直流電圧/有効電力制御回路1Eは、有効電力設定値P refと有効電力検出値Paとの差分を求める差分演算手段2と、この差分演算手段2の出力に所定の係数rを乗算する係数手段3と、直流電圧設定値Ed refに係数手段3の出力を加算し補正された直流電圧設定値Ed refx を出力する加算演算手段4と、有効電力検出値Paに対して変換器に接続される直流送電線の直流回路の抵抗分に比例する係数Raを乗算する係数手段21と、前記加算演算手段4の補正された直流電圧設定値Ed refに係数手段21の出力を加算し最終的な直流電圧設定値Ed refy を取り出す加算演算手段22とが設けられている。
【0079】
さらに、最終的な直流電圧設定値Ed refy と変換器直流側から検出される直流電圧検出値Edとの差分を差分演算手段23で求めた後、直流電圧制御系6に供給し、当該差分を零とするような制御信号,つまり交流電流の有効電力成分の設定値Id refを出力する構成である。
【0080】
従って、交直変換器の制御装置に以上のような図14の制御回路1Eを適用することにより、係数手段21に所望の係数を設定することにより、直流線路抵抗分による電圧降下分の補償を行うことが可能である。
【0081】
具体的には、第4の実施の形態と同様に順変換器側の制御回路1Dに代えて図14に示す実施の形態の制御回路1Eを適用し、係数手段21の係数Raとして直流回路の抵抗分Rdc2 を設定すれば、順変換器側の直流電圧設定値Rdc×Paだけ高めた値となる。なお、直流分の電圧降下は直流線路の抵抗分Rdcおよび直流電流Idcから算出できるが、電圧型自励式変換器においては直流電圧Edはほぼ1.0puに保たれて運転されているので、直流電流Idcと有効電力設定値P
refとをほぼ等しくできる。
【0082】
また、有効電力検出値Paは、直流送電システムが運転を開始した直後はゼロで補正は行われないが、与えられた有効電力設定値P refに追従して電力が融通され始めるに従い、有効電力設定値P refに近い値となって補正が行われるようになり、最終的な運転点はP refによって補正を行った場合と同じになる。このことから、図55に示す交直変換器の制御装置における直流電圧/有効電力制御回路106に図14に示す制御回路1Eを適用すれば、第4の実施の形態と同様の作用を有することになる。
【0083】
従って、以上のような実施の形態によれば、交直変換器の制御装置に図14に示す制御回路1Eを設けることにより、係数手段21の係数Raとして図55の直流送電線105の直流回路抵抗分Rdcを設定すれば、電圧降下分の補償を行うことができ、与えられた有効電力設定値どおりの有効電力を融通できる。
【0084】
(第5の他の実施の形態)
図14に示す実施の形態では、加算演算手段22を用いて直流電圧設定値Ed refx に係数手段21の出力を加算し、直流電圧設定値Ed refx の補正を行うようにしたが、例えば図15に示すように、有効電力検出値Paに係数手段21の係数Raを乗算した後、直流電圧設定値Ed refに対して直接加算し補正する構成であっても、図14と同様の効果を得ることができる。
【0085】
また、図16に示すように直流電圧設定値Ed refx と直流電圧検出値Edとの差分を求めた後、この差分に対して最終的に係数手段21の出力を加算し補正を行う場合でも、図14と同様な効果を奏する。
【0086】
さらに、以上の実施の形態では、電圧型自励式変換器103A,103Bによって構成される直流送電システムを前提として説明したが、他励式変換器を使用した直流送電システム、或いは電流型自励式変換器を使用した直流送電システム、またはこれらの変換器が2種類以上混在した直流送電システムにおいても、直流電圧と有効電力との制御を同様の制御ブロックを用いて行うことにより、同様の効果を得ることができる。
【0087】
(第6の実施の形態)
図17は請求項6に係わる交直変換器の制御装置の一実施の形態の要部構成を示す図であって、詳細には図55に示す交直変換器の制御装置に用いられている直流電圧/有効電力制御回路106に代わる本発明の要部となる直流電圧/有効電力制御回路11Aの構成を示す図である。
【0088】
この直流電圧/有効電力制御回路11Aは、直流送電システムを構成する変換器の出力側である直流送電線105に直流電圧検出器107の他、新たに直流電流検出器31を追加し、その直流電流検出器31で検出される直流電流検出値Idcを直流電圧/有効電力制御回路11(11A)に入力し、交流電流の有効電力成分の設定値Id refを取り出す構成である。
【0089】
この直流電圧/有効電力制御回路11Aは、具体的には有効電力設定値P refと有効電力検出値Paとの差分を求める差分演算手段2と、この差分演算手段2の出力に所定の係数rを乗算する係数手段3と、係数手段3の出力を直流電圧設定値Ed refに加算し補正された直流電圧設定値Ed refx を出力する加算演算手段4と、直流電流検出器31で検出される直流電流検出値Idcに対して変換器に接続される直流送電線105の直流回路の抵抗分に比例する係数Raを乗算する係数手段21と、この係数手段21の出力を前記加算演算手段4で補正された直流電圧設定値Ed refx に加算し最終的な直流電圧設定値Ed refy を取り出す加算演算手段22と、この加算演算手段22の出力である最終的な直流電圧設定値Ed refy と直流電圧検出値Edとの差分を求める差分演算手段23とを設け、この差分演算手段23の差分を直流電圧制御系6に供給し、当該差分を零とするような制御信号,つまり交流電流の有効電力成分の設定値Id refを出力する構成である。
【0090】
従って、交直変換器の制御装置に以上のような図17の制御回路11Aを用い、かつ、係数手段21に所望の係数を設定すれば、直流線路の抵抗分による電圧降下分を補償できる。
【0091】
具体的には、順変換器側の制御回路に図17に示す実施の形態の制御回路11Aを適用し、係数手段21の係数Raとして直流回路の抵抗分Rdc2 を設定すれば、順変換器側の直流電圧設定値Rdc×Idcだけ高めの値となる。直流分の電圧降下は直流線路の抵抗分Rdcおよび直流電流Idcから算出できる。このことから、図18に示す交直変換器の制御装置の直流電圧/有効電力制御回路11に図17に示す直流電圧/有効電力制御回路11Aを適用すれば、検出された直流電流の大きさに応じて、図18に示す直流送電線105の抵抗分による電圧降下分の補償を行うことにより、与えられた有効電力設定値どおりの有効電力の融通を図ることができる。
【0092】
(第6の他の実施の形態)
図17に示す実施の形態では、係数手段21の出力を加算演算手段22に導入し、係数手段21の出力を直流電圧設定値Ed refに加算することにより当該直流電圧設定値の補正を行うようにしたが、例えば図19に示すように直流電流検出値Idcに係数手段21の係数Raを乗算した後、直流電圧設定値Ed refに対して直接加算し補正する構成であっても、図17と同様の効果を有する。
【0093】
また、図20に示すように直流電圧設定値Ed refx と直流電圧検出値Edとの差分を求めた後、この差分に対して最終的に係数手段21の出力を加算し補正する構成でも、図17と同様の効果を奏する。
【0094】
さらに、以上の実施の形態では、電圧型自励式変換器103A,103Bによって構成される直流送電システムを前提として説明したが、他励式変換器を使用した直流送電システム、或いは電流型自励式変換器を使用した直流送電システム、またはこれらの変換器が2種類以上混在した直流送電システムにおいても、同様の制御ブロックを用いて直流電圧と有効電力との制御を行うことにより、同様の効果を得ることができる。
【0095】
(第7の実施の形態)
図21は請求項7に係わる交直変換器の制御装置の一実施の形態の要部構成を示す図であって、詳細には図55に示す交直変換器の制御装置に用いられている直流電圧/有効電力制御回路106に代わる本発明の要部となる直流電圧/有効電力制御回路1Fの構成を示す図である。
【0096】
この直流電圧/有効電力制御回路1Fは、直流電圧設定値Ed refx と直流電圧検出値Edとの差分を求める差分演算手段2aと、この差分演算手段2aの出力に所定の係数rを乗算する係数手段3と、この係数手段3の出力を直流電力設定値P refに加算し補正された直流電力設定値P refx を出力する加算演算手段4aと、直流電力設定値P refを2乗演算する2乗演算手段32と、この2乗演算出力に変換器に接続される直流回路の抵抗分に比例する係数Raを乗算する係数手段33と、前記加算演算手段4aから出力される補正された直流電力設定値P refx と係数手段33の出力とを加算し、最終的な有効電力設定値Prefyを求める加算演算手段22と、この加算演算手段22で得られる最終的な有効電力設定値Prefyと有効電力検出値Paとの差分を求める差分演算手段23とを設け、この差分演算手段23の差分を有効電力制御系8に入力し、当該差分を零とするような制御信号,つまり交流電流の有効電力成分の設定値Id refを出力する構成である。
【0097】
この制御回路1Fをもった制御装置においては、係数手段33に所望の係数を設定し直流線路抵抗分による有効電力損失分の補償を行うものである。すなわち、図55に示す第2の従来装置は、2台の変換器(順変換器,逆変換器)103A,103Bの間に長距離直流送電線105などの直流抵抗分の大きい直流回路を接続した直流送電システムでは、第4の実施の形態の作用で説明した通り、図10に示すような制御特性が得られ、設定値どおりの有効電力が得られなくなる。
【0098】
これに対し、例えば順変換器側の制御装置に図21に示す直流電圧/有効電力制御回路1Fを適用すれば、係数手段33の係数Raとして直流回路抵抗分Rdcを設定すれば、順変換機側の有効電力設定値P ref+Rdc×(P ref)2 という値になる。直流分の有効電力損失は、直流線路の抵抗分Rdcおよび直流電流Idcにより算出できるが、電圧型自励式変換器においては、直流電圧はほぼ1.0puに保たれて運転されるので、直流電流Idcと有効電力設定値P refとをほぼ等しくすることができる。
【0099】
この場合には、2台の変換器103A,103Bの運転点は、図22に示すように設定値P refどおりの有効電力Pが得られる点に補正できる。また、順変換器側および逆変換器側の両方に図21の制御回路1Fを適用すれば、直流送電線の中間点までの抵抗分について補償を行えばよい。この中間点までの抵抗分をRaとすると、直流送電線の中間点に対する電圧降下分は、直流送電線の中間点までの抵抗分Ra×(有効電力設定値P ref)2 から求められる。よって、係数手段33に係数Raを設定すれば、有効電力設定値P refを補償できる。
【0100】
従って、以上のような実施の形態によれば、図21に示す制御回路1Fを設けることにより、融通する有効電力の大きさに応じて、図55に示す直流送電線105の抵抗分による有効電力損失分の補償を行うことにより、与えられた有効電力設定値どおりの有効電力の融通を行うことができる。
【0101】
(第7の他の実施の形態)
図21に示す交直変換器の制御装置では、係数手段33の出力を加算演算手段22に導入し、ここで係数手段33の出力と有効電力設定値P refx とを加算することにより、有効電力設定値P refx を補正するようにしたが、例えば図23に示すように有効電力設定値設定値P refに、係数手段33の出力である(P ref)2 ×Raを直接加算し補正する構成であっても、図21と同様の効果を有する。
【0102】
また、図24に示すように有効電力設定値P refx と有効電力検出値Paとの差分を求めた後、この差分に対して最終的に係数手段33の出力を加算演算手段23で加算し補正を行う構成であっても、図21と同様の効果を奏する。
【0103】
さらに、以上の実施の形態では、電圧型自励式変換器103A,103Bによって構成される直流送電システムを前提として説明したが、他励式変換器使用の直流送電システム、或いは電流型自励式変換器使用の直流送電システム、またはこれらの変換器が2種類以上混在した直流送電システムにおいても、直流電圧と有効電力との制御を同様の制御ブロックを用いて行うことにより、同様の効果を得ることができる。
【0104】
(第8の実施の形態)
図25は請求項8に係わる交直変換器の制御装置の一実施の形態の要部構成を示す図であって、詳細には図55に示す交直変換器の制御装置に用いられている直流電圧/有効電力制御回路106に代わる本発明の要部となる直流電圧/有効電力制御回路1Gの構成を示す図である。
【0105】
この直流電圧/有効電力制御回路1Gは、直流電圧設定値Ed refx と直流電圧検出値Edとの差分を求める差分演算手段2aと、この差分演算手段2aの出力に所定の係数rを乗算する係数手段3と、この係数手段3の出力を直流電力設定値P refに加算し補正された直流電力設定値P refx を出力する加算演算手段4aと、有効電力検出値Paを2乗演算する2乗演算手段32と、この2乗演算出力に変換器に接続される直流回路の抵抗分に比例する係数Raを乗算する係数手段33と、補正された直流電力設定値P refx と係数手段33の出力とを加算し最終的な有効電力設定値Prefyを求める加算演算手段22と、この加算演算手段22で得られる最終的な有効電力設定値Prefyと有効電力検出値Paとの差分を求める差分演算手段23とを設け、この差分演算手段23の差分を有効電力制御系8に入力し、当該差分を零とするような制御信号,つまり交流電流の有効電力成分の設定値Id refを出力する構成である。
【0106】
この制御回路1Gをもった制御装置においては、係数手段33を設け、この係数手段33に所望の係数を設定し直流線路の抵抗分による有効電力損失分の補償を行うものである。すなわち、この実施の形態においても、例えば順変換器側の制御装置に図25に示す直流電圧/有効電力制御回路1Gを適用し、係数手段33の係数Raとして直流回路抵抗分Rdcを設定すれば、順変換機側の有効電力設定値P ref+Rdc×(Pa)2 という値となる。直流分の有効電力損失は、直流線路の抵抗分Rdcおよび直流電流Idcにより算出できるが、電圧型自励式変換器においては、直流電圧Edはほぼ1.0puに保たれて運転されるので、直流電流Idcと有効電力設定値Paとをほぼ等しくすることができる。
【0107】
また、有効電力検出値Paは、直流送電システムの運転開始直後はゼロであって補正が行われないが、与えられた設定値P refに追従して電力が融通され始めるに従い、有効電力設定値P refに近い値となって補正が行われるようになり、最終的な運転点は有効電力設定値P refにより補正を行った場合と同じになる。このことから、図55に示す交直変換器の制御装置における直流電圧/有効電力制御回路106に図25に示す制御回路1Gを用いたとしても、第7の実施の形態と同等の作用を有する。
【0108】
従って、以上のような実施の形態によれば、図25に示す制御回路1Gを設けることにより、融通する有効電力の大きさに応じて、図55に示す直流送電線105の抵抗分による有効電力損失分の補償を行うことにより、与えられた有効電力設定値どおりの有効電力の融通を行うことができる。
【0109】
(第8の他の実施の形態)
図25に示す交直変換器の制御装置では、係数手段33を設け、この係数手段33の出力と有効電力設定値P refx とを加算し有効電力設定値P refx の補正を行うようにしているが、例えば図26に示すように有効電力設定値設定値P refに、係数手段33の出力である(Pa)2 ×Raを直接加算して補正する構成であっても、図25と同様の効果を有する。
【0110】
また、図27に示すように有効電力設定値P refx と有効電力検出値Paとの差分を求めた後、この差分に対して最終的に係数手段33の出力を加算演算手段23で加算し補正を行う場合でも、図25と同様の効果を奏する。
【0111】
さらに、以上の実施の形態では、電圧型自励式変換器103A,103Bによって構成される直流送電システムを前提として説明したが、他励式変換器使用の直流送電システム、或いは電流型自励式変換器使用の直流送電システム、またはこれらの変換器が2種類以上混在した直流送電システムにおいても、直流電圧と有効電力との制御を同様の制御ブロックを用いて行うことにより、同様の効果を得ることができる。
【0112】
(第9の実施の形態)
図28は請求項9に係わる交直変換器の制御装置の一実施の形態の要部構成を示す図であって、詳細には図55に示す交直変換器の制御装置に用いられている直流電圧/有効電力制御回路106に代わる本発明の要部となる直流電圧/有効電力制御回路11Bの構成を示す図である。
【0113】
この直流電圧/有効電力制御回路11Bは、具体的には直流電圧設定値Ed refと直流電圧検出値Edとの差分を求める差分演算手段2aと、この差分演算手段2aの出力に所定の係数rを乗算する係数手段3と、この係数手段3の出力を有効電力設定値P refに加算し補正された有効電力設定値P refx を出力する加算演算手段4aと、直流電流検出器31で検出される直流電流検出値Idcを2乗する2乗演算手段32と、この2乗演算手段32の出力に対して変換器に接続される直流回路の抵抗分に比例する係数Raを乗算する係数手段33と、前記補正された有効電力設定値P refx に係数手段33の出力を加算し最終的な有効電力設定値P refy を取り出す加算演算手段22と、この有効電力設定値P refy と有効電力検出値Paとの差分を求める差分演算手段23とを設け、この差分演算手段23の差分を有効電力制御系8に供給し、当該差分を零とするような制御信号,つまり交流電流の有効電力成分の設定値Id refを出力する構成である。
【0114】
従って、交直変換器の制御装置に以上のような図28の制御回路11Bを用い、かつ、係数手段33に所望の係数を設定すれば、直流線路抵抗分による電圧降下分の補償を行うことができる。すなわち、順変換器側の制御回路に図28に示す実施の形態の制御回路11Bを適用し、係数手段33の係数Raとして直流回路の抵抗分Rdcを設定すれば、順変換器側の直流電力設定値はP ref+Rdc×(Idc)2 となる。直流分の有効電力損失分は、直流線路の抵抗分Rdcおよび直流電流Idcから算出できる。このことから、図18に示す交直変換器の制御装置の直流電圧/有効電力制御回路11に図28に示す直流電圧/有効電力制御回路11Bを適用すれば、検出された直流電流の大きさに応じて、図18に示す直流送電線105の直流回路抵抗分による有効電力損失分を補償でき、与えられた有効電力設定値どおりの有効電力を融通することができる。
【0115】
(第9の他の実施の形態)
図28に示す実施の形態では、直流電流検出値Idcを2乗する2乗演算手段32の出力に変換器に接続される直流回路の抵抗分に比例する係数Raを乗算する係数手段33を設け、有効電力設定値Pref と係数手段33の出力とを加算し設定値Pref の補正を行うようにしたが、例えば図29に示すように、直流電流検出値Idcの2乗出力に係数手段33の係数Raを乗算した後、この乗算後の出力を有効電力設定値P refに直接加算し補正する構成であっても、図28と同様の効果を有する。
【0116】
また、図30に示すように有効電力設定値P refx と有効電力検出値Paとの差分を求めた後、この差分に対して最終的に係数手段33の出力を加算し補正を行う構成であっても、図28と同様の効果を奏する。
【0117】
さらに、以上の実施の形態では、電圧型自励式変換器103A,103Bによって構成される直流送電システムを前提として説明したが、他励式変換器を使用した直流送電システム、或いは電流型自励式変換器を使用した直流送電システム、またはこれらの変換器が2種類以上混在した直流送電システムにおいても、直流電圧と有効電力との制御を同様の制御ブロックを用いて行うことにより、同様の効果を得ることができる。
【0118】
(第10の実施の形態)
図31は請求項10に係わる交直変換器の制御装置の一実施の形態の要部構成を示す図であって、詳細には図55に示す交直変換器の制御装置に用いられている直流電圧/有効電力制御回路106に代わる本発明の要部となる直流電圧/有効電力制御回路1Hの構成を示す図である。
【0119】
この直流電圧/有効電力制御回路1Hは、有効電力設定値P refと有効電力検出値Paとの差分を求める差分演算手段2と、この差分に係数rを乗算する係数手段3と、係数手段3の出力を直流電圧設定値Ed refに加算し補正された直流電圧設定値Ed refx を出力する加算演算手段4と、前記有効電力設定値P refに変換器に接続される直流回路の抵抗値に比例した係数Raを乗算する係数手段33と、前記有効電力設定値P refがゼロよりも小さいか否かを検出するレベル検出器34と、このレベル検出器34によってP refがゼロよりも小さいときにオンし係数手段33の出力を通すスイッチ回路35と、前記補正された直流電圧設定値Ed refx に係数手段33の出力を加算する加算演算手段22と、この加算演算手段22の出力と直流電圧検出値Edとの差分を求める差分演算手段23とを備え、この差分演算手段23の差分出力を例えば比例・積分項をもつ直流電圧制御系6に入力し、ここで差分を零にするような制御信号,つまり交流電流の有効電力成分の設定値Id refを出力する構成となっている。
【0120】
よって、交直変換器の制御装置に以上のように図31に示す制御回路1Hを用い、かつ、係数手段33に係数Raを設定することにより、この係数Raにより直流線路の抵抗分による電圧降下分の補償を行うが、レベル検出器34によってP refがゼロよりも小さいときにスイッチ回路35をオンし、変換器の融通電力が負のとき、すなわち逆変換器の運転のときのみ補正を行う。ここで、行われる補正の作用については、第4の実施の形態の作用ですでに説明した通り、補正の行われた変換器の直流電圧設定値は、Ed refx +Rdc×P refという値となるが、補正により当該変換器の直流電圧を上昇させたくない場合、変換器の運転状態が逆変換器運転の時のみスイッチ回路35を投入するようにレベル検出回路34のレベルを設定すれば、Rdc×P refの値が負となり、直流電圧が低めの運転となる。一方、順変換器運転中の変換器側の直流電圧はEd refx どおりの値に制御されるので、直流電圧の上昇を防ぐことができる。
【0121】
従って、以上のような実施の形態によれば、交直変換器の制御装置に図31のような制御回路1Hを設けることにより、変換器の運転状態によって、融通する有効電力の大きさに応じた、図55に示す直流送電線105の抵抗分による電圧降下分の補償を行うことにより、与えられた有効電力設定値どおりの有効電力の融通を行うことができ、適切な直流電圧での運転を行うことができる。
【0122】
(第10の他の実施の形態1)
図31に示す実施の形態では、直流電圧設定値Ed refx に係数手段33の出力を加算し、直流電圧設定値Ed refx の補正を行うようにしたが、例えば図32に示すように係数手段33の出力を直流電圧設定値Ed refに直接補正する構成であっても、図31の実施の形態と同様な効果を奏する。また、図33に示すように直流電圧設定値Ed refx と直流電圧検出値Edとの差分Ed refy に対して係数手段33の出力を補正する構成であっても、図31の実施の形態と同様な効果を奏する。
【0123】
また、図31の実施の形態では、レベル検出器34によってP refがゼロよりも小さいときスイッチ回路35がオンし、逆変換器運転時のみ補正を行う構成としたが、図34に示すように係数手段33の出力に対し、最大リミット値をゼロに設定したリミッタ回路36を追加する構成であっても、図31の実施の形態と同様の効果を得ることができる。
【0124】
さらに、図31に示す実施の形態では、P ref<0,すなわち逆変換器運転時のみ補正を行うようにしたが、逆にP ref>0すなわち順変換器運転時のみ補正を行う構成でもよい。直流回路の過電圧が問題になるシステムでは、直流電圧の上昇を抑えるように制御する必要があるが、過電圧レベルに十分な余裕をもつ機器設計が行われている場合には、逆に直流電圧を高めとする運転を行った方が変換器の出力できる無効電力の領域を多くとることができる。そのようなシステムでは、レベル検出器34の設定をP ref>0の検出に変更することにより、順変換器側の電圧を高めで運転し、逆変換器側での直流電圧設定値Ed refどおりの直流電圧で運転することができる。
【0125】
(第10の他の実施の形態2)
図35は第10の実施の形態の他の構成例を示す図である。すなわち、図31では有効電力設定値P refに係数Raを乗算する構成としたが、図35では有効電力Paに係数を乗算する構成をもった直流電圧/有効電力制御回路1Jである。
【0126】
この直流電圧/有効電力制御回路1Jは、具体的には,有効電力設定値P refと有効電力検出値Paとの差分を求める差分演算手段2と、この差分に係数rを乗算する係数手段3と、この係数手段3の出力を直流電圧設定値Ed refに加算し補正された直流電圧設定値Ed refx を出力する加算演算手段4と、前記有効電力検出値Paに変換器に接続される直流回路の抵抗値に比例した係数Raを乗算する係数手段33と、前記有効電力設定値P refがゼロよりも小さいか否かを検出するレベル検出器34と、このレベル検出器34によってP refがゼロよりも小さいときにオンし係数手段33の出力を通すスイッチ回路35と、前記補正された直流電圧設定値Ed refx に係数手段33の出力を加算する加算演算手段22と、この加算演算手段22の出力と直流電圧検出値Edとの差分を求める差分演算手段23とを備え、この差分演算手段23の差分出力を例えば比例・積分項をもつ直流電圧制御系6に入力し、ここで差分を零にするような制御信号,つまり交流電流の有効電力成分の設定値Id refを出力する構成である。
【0127】
このような図35に示す制御回路1Jによれば、係数手段33が設け、この係数手段33の係数Raによって直流線路の抵抗分による電圧降下分の補償を行うが、レベル検出器34によってP refがゼロよりも小さいときにスイッチ回路35をオンし、変換器の融通電力が負のとき、すなわち逆変換器の運転のときのみ補正を行う。ここで、行われる補正の作用は、第5の実施の形態の作用ですでに説明した通り、補正の行われた変換器の直流電圧設定値は、Ed refx +Rdc×Paという値となるが、補正により当該変換器の直流電圧を上昇させたくない場合、変換器の運転状態が逆変換器運転の時のみスイッチ回路35を投入するようにレベル検出回路34のレベルを設定すれば、Pa×Rdcの値が負となり、直流電圧が低めの運転となる。一方、順変換器運転中の変換器側の直流電圧はEd refどおりの値に制御されるので、直流電圧の上昇を防ぐことができる。
【0128】
従って、以上のような実施の形態によれば、交直変換器の制御装置に図35のような制御回路1Jを設けることにより、変換器の運転状態によって、融通する有効電力の大きさに応じた、図55に示す直流送電線105の抵抗分による電圧降下分の補償を行うことにより、与えられた有効電力設定値どおりの有効電力の融通を行うことができ、適切な直流電圧での運転を行うことができる。
【0129】
(第10の他の実施の形態3)
図35に示す実施の形態では、直流電圧設定値Ed refx に係数手段33の出力を加算し直流電圧設定値Ed refx の補正を行うようにしたが、例えば図36に示すように係数手段33の出力を直流電圧設定値Ed refに直接補正する構成であっても、図35の実施の形態と同様の効果を有する。また、図37に示すように、直流電圧設定値Ed refx と直流電圧検出値Edとの差分に対して係数手段33の出力を補正する構成であっても、図35の実施の形態と同様の効果を奏する。
【0130】
また、図35の実施の形態では、レベル検出器34によってP refがゼロよりも小さいときスイッチ回路35がオンし、逆変換器運転時のみ補正を行う構成としたが、例えば図38に示すように有効電力検出値Paに係数Raを乗じた係数手段33の出力に対し、最大リミット値をゼロに設定したリミッタ回路36を追加する構成であっても、図35の実施の形態と同様の効果を得ることができる。
【0131】
さらに、図35に示す実施の形態では、P ref<0,すなわち逆変換器運転時のみ補正を行うようにしたが、逆にP ref>0すなわち順変換器運転時のみ補正を行うようにすることもできる。直流回路の過電圧が問題になるシステムでは、直流電圧の上昇を抑えるように制御する必要があるが、過電圧レベルに十分な余裕をもつ機器設計が行われている場合には、逆に直流電圧を高めとする運転を行った方が変換器の出力できる無効電力の領域を多くとることができる。そのようなシステムでは、レベル検出器34の設定をP ref>0の検出に変更することにより、順変換器側の電圧を高めで運転し、逆変換器側での設定値Ed refどおりの直流電圧で運転することができる。
【0132】
さらに、以上の実施の形態では、電圧型自励式変換器103A,103Bによって構成される直流送電システムを前提として説明したが、他励式変換器を使用した直流送電システム、或いは電流型自励式変換器を使用した直流送電システム、またはこれらの変換器が2種類以上混在した直流送電システムにおいても、直流電圧と有効電力との制御を同様の制御ブロックを用いて行うことにより、同様の効果を得ることができる。
【0133】
(第11の実施の形態)
図39は請求項12に係わる交直変換器の制御装置の一実施の形態の要部構成を示す図であって、詳細には図55に示す交直変換器の制御装置に用いられている直流電圧/有効電力制御回路106に代わる本発明の要部となる直流電圧/有効電力制御回路11Cの構成を示す図である。
【0134】
この直流電圧/有効電力制御回路11Cは、有効電力設定値P refと有効電力検出値Paとの差分を求める差分演算手段2と、この差分に対して係数rを乗算する係数手段3と、係数手段3の出力を直流電圧設定値Ed refに加算し補正された直流電圧設定値Ed refx を出力する加算演算手段4と、直流電流検出値Idcに変換器に接続される直流回路の抵抗値に比例した係数Raを乗算する係数手段33と、前記有効電力設定値P refがゼロよりも小さいか否かを検出するレベル検出器34と、このレベル検出器34によってP refがゼロよりも小さいときにオンし、直流電流検出値Idcに係数Raを乗算した係数手段33の出力を通すスイッチ回路35と、前記補正された直流電圧設定値Ed refx と係数手段33の出力とを加算する加算演算手段22と、この加算演算手段22の出力と直流電圧検出値Edとの差分を求める差分演算手段23とを備え、この差分演算手段23の差分出力を例えば比例・積分項を有する直流電圧制御系6に入力し、ここで差分を零にするような制御信号,つまり交流電流の有効電力成分の設定値Id refを出力する構成となっている。
【0135】
よって、交直変換器の制御装置に図39に示す制御回路11Cを用い、かつ、係数Raをもつ係数手段33を設け、この係数Raによって直流線路の抵抗分による電圧降下分の補償を行うが、レベル検出器34によってP refがゼロよりも小さいときにスイッチ回路35をオンし、変換器の融通電力が負のとき、すなわち逆変換器の運転のときのみ補正を行うものである。ここで、行われる補正の作用は、第6の実施の形態の動作ですでに説明した通り、補正の行われた変換器の直流電圧設定値は、Ed refx +Rdc×Idcという値となるが、補正により当該変換器の直流電圧を上昇させたくない場合、変換器の運転状態が逆変換器運転の時のみスイッチ回路35を投入するようにレベル検出回路34のレベルを設定すれば、Idc×Rdcの値が負となり、直流電圧が低めの運転となる。一方、順変換器運転中の変換器側の直流電圧はEd refどおりの値に制御されるので、直流電圧の上昇を防ぐことができる。
【0136】
従って、以上のような実施の形態によれば、交直変換器の制御装置に図39のような制御回路11Cを設けることにより、変換器の運転状態によって、融通する有効電力の大きさに応じた、図55に示す直流送電線105の抵抗分による電圧降下分の補償を行うことにより、与えられた有効電力設定値どおりの有効電力の融通を行うことができ、適切な直流電圧での運転を行うことができる。
【0137】
(第11の他の実施の形態)
図39に示す実施の形態では、係数手段33の出力を直流電圧設定値Ed refx に加算し直流電圧設定値Ed refx を補正するようにしたが、例えば図40に示すように直流電流検出値Idcに係数を乗算した係数手段33の出力を直流電圧設定値Ed refに直接補正する構成であっても、図39の実施の形態と同様の効果を有する。また、図41に示すように補正された直流電圧設定値Ed refx と直流電圧検出値Edとの差分に対し係数手段33の出力を補正する構成であっても、図39の実施の形態と同様の効果を有する。
【0138】
また、図39の実施の形態では、レベル検出器34によってP refがゼロよりも小さいときスイッチ回路35をオンし、逆変換器運転時のみ補正を行う構成としたが、例えば図42に示すように直流電流検出値Idcに係数Raを乗じた係数手段33の出力に対し、最大リミット値をゼロに設定したリミッタ回路36を追加し、補正された直流電圧設定値Ed refx をさらに補正する構成であっても、図39の実施の形態と同様の効果を得ることができる。
【0139】
さらに、図39に示す実施の形態では、P ref<0,すなわち逆変換器運転時のみ補正を行うようにしたが、逆にP ref>0すなわち順変換器運転時のみ補正を行う方式とすることもできる。直流回路の過電圧が問題となるシステムでは、直流電圧の上昇を抑えるように制御する必要があるが、過電圧レベルに十分な余裕をもつ機器設計が行われている場合には、逆に直流電圧を高めとする運転を行った方が変換器の出力できる無効電力の領域を多くとることができる。このようなシステムでは、レベル検出器34の設定をP ref>0の検出に変更することにより、順変換器側の電圧を高めで運転し、逆変換器側での設定値Ed refどおりの直流電圧で運転することができる。
【0140】
さらに、以上の実施の形態では、電圧型自励式変換器103A,103Bによって構成される直流送電システムを前提として説明したが、他励式変換器を使用した直流送電システム、或いは電流型自励式変換器を使用した直流送電システム、またはこれらの変換器が2種類以上混在した直流送電システムにおいても、直流電圧と有効電力との制御を同様の制御ブロックを用いて行うことにより、同様の効果を得ることができる。
【0141】
(第12の実施の形態)
図43は請求項12に係わる交直変換器の制御装置の一実施の形態の要部構成を示す図であって、詳細には図55に示す交直変換器の制御装置に用いられている直流電圧/有効電力制御回路106に代わる本発明の要部となる直流電圧/有効電力制御回路1Kの構成を示す図である。
【0142】
この直流電圧/有効電力制御回路1Kは、直流電圧設定値Ed refと直流電圧検出値Edとの差分を求める差分演算手段2aと、この差分に対して係数rを乗算する係数手段3と、係数手段3の出力を有効電力設定値P refに加算し補正された有効電力設定値P refx を出力する加算演算手段4aと、有効電力設定値P refを2乗演算する2乗演算手段32と、この2乗演算手段32の出力に変換器に接続される直流回路の抵抗値に比例した係数Raを乗算する係数手段33と、前記有効電力設定値P refがゼロよりも小さいか否かを検出するレベル検出器34と、このレベル検出器34によってP refがゼロよりも小さいときにオンし、係数手段33の出力を通すスイッチ回路35と、係数手段33の出力を前記補正された有効電力設定値P refx に加算しさらに補正された有効電力設定値P refy を出力する加算演算手段22と、この加算演算手段22の出力と有効電力検出値Pdとの差分を求める差分演算手段23とを備え、この差分演算手段23の差分出力を例えば比例・積分項を有する有効電力制御系8に入力し、ここで差分を零にするような制御信号,つまり交流電流の有効電力成分の設定値Id refを出力する構成となっている。
【0143】
従って、交直変換器の制御装置に以上のような図43に示す制御回路1Kを用い、かつ、係数手段33に直流回路の抵抗値に比例した係数Raを設定すれば、この係数Raにより直流線路の抵抗分による有効電力損失分の補償を行うことができるが、レベル検出器34によってP refがゼロよりも小さいときにスイッチ回路35をオンし、変換器の融通電力が負のとき、すなわち逆変換器の運転のときのみ補正を行うようにする。ここで、行われる補正の動作は、第7の実施の形態の動作ですでに説明した通り、補正の行われた変換器の有効電力設定値は、P refx +Rdc×(P ref)2 という値となるが、補正により当該変換器の有効電力を上昇させたくない場合、変換器の運転状態が逆変換器運転の時のみスイッチ回路35を投入するようにレベル検出回路34のレベルを設定すれば、逆変換器側の有効電力設定値は(P ref)2 ×Rdc−P refx という値となり、与えられた有効電力設定値よりも直流線路の抵抗分による有効電力損失分だけ小さい値となる。一方、順変換器運転中の変換器側の有効電力はP refどおりの値に制御され、有効電力の上昇を防ぐことができる。
【0144】
従って、以上のような実施の形態によれば、交直変換器の制御装置に図43のような制御回路1Kを設けることにより、変換器の運転状態によって、融通する有効電力の大きさに応じた、図55に示す直流送電線105の抵抗分による電圧降下分の補償を行うことにより、適切な有効電力の融通を行うことができる。
【0145】
(第12の他の実施の形態1)
図43に示す実施の形態では、係数手段33の出力を有効電力設定値P refx に加算し有効電力設定値P refx を補正するようにしたが、例えば図44に示すように有効電力設定値P refに係数手段33の出力を直接補正する構成であっても、図43の実施の形態と同様の効果を有する。また、図45に示すように有効電力設定値P refx と有効電力検出値Paとの差分に対して係数手段33の出力を補正する構成であっても、図43の実施の形態と同様の効果を有する。
【0146】
また、図43の実施の形態では、レベル検出器34によってP refがゼロよりも小さいときスイッチ回路35をオンし、逆変換器運転時のみ補正を行う構成としたが、例えば図46に示すように有効電力設定値P refを2乗演算後、係数Raを乗じた係数手段33の出力に対し、最大リミット値をゼロに設定したリミッタ回路36を追加し、補正された有効電力設定値P refx をさらに補正する構成であっても、図43の実施の形態と同様の効果を得ることができる。
【0147】
さらに、図43に示す実施の形態では、P ref<0,すなわち逆変換器運転時のみ補正を行うようにしたが、逆にP ref>0すなわち順変換器運転時のみ補正を行うこともできる。第1の実施の形態では、逆変換器側の融通電力は、有効電力設定値より直流線路の抵抗分の損失分だけ少ない値となるが、逆変換器側の融通電力を有効電力設定値どおりに確保したい場合、レベル検出器34をPref >0となるように設定すれば、順変換器側の有効電力設定値は直流線路の抵抗分の損失分だけ高めの運転となり、逆変換機側は有効電力設定値どおりの運転をすることができる。
【0148】
(第12の他の実施の形態2)
図47は請求項12に係わる交直変換器の制御装置の一実施の形態の要部構成を示す図であって、詳細には図55に示す交直変換器の制御装置に用いられている直流電圧/有効電力制御回路106に代わる本発明の要部となる直流電圧/有効電力制御回路1Lの構成を示す図である。
【0149】
すなわち、図43では有効電力設定値P refの2乗算演算後に係数Raを乗算する構成であるが、図47では有効電力検出値Paを2乗算演算後に係数Raを乗算する構成である。
【0150】
この直流電圧/有効電力制御回路1Lは、具体的には,直流電圧設定値Ed refと直流電圧検出値Edとの差分を求める差分演算手段2aと、この差分に対して係数rを乗算する係数手段3と、係数手段3の出力を有効電力設定値P refに加算し補正された有効電力設定値P refx を出力する加算演算手段4aと、有効電力検出値Paを2乗演算する2乗演算手段32と、この2乗演算手段32の出力に変換器に接続される直流回路の抵抗値に比例した係数Raを乗算する係数手段33と、前記有効電力設定値P refがゼロよりも小さいか否かを検出するレベル検出器34と、このレベル検出器34によってP refがゼロよりも小さいときにオンし、係数手段33の出力を通すスイッチ回路35と、係数手段33の出力を補正された有効電力設定値P refx に加算しさらに補正する加算演算手段22と、この加算演算手段22の出力と有効電力検出値Paとの差分を求める差分演算手段23とを備え、この差分演算手段23の差分出力を例えば比例・積分項を有する有効電力制御系8に入力し、ここで差分を零にするような制御信号,つまり交流電流の有効電力成分の設定値Id refを出力する構成となっている。
【0151】
このような図47に示す制御回路1Lをもつ交直変換器の制御装置においては、係数Raをもつ係数手段33を設け、この係数Raで直流線路の抵抗分による有効電力損失分の補償を行うが、レベル検出器34によってP refがゼロよりも小さいときにスイッチ回路35をオンし、変換器の融通電力が負のとき、すなわち逆変換器の運転のときのみ補正を行うものである。ここで、行われる補正の動作は、第8の実施の形態の動作ですでに説明した通り、補正の行われた変換器の有効電力設定値は、P refx +Rdc×(Pa)2 という値となるが、補正により当該変換器の有効電力を上昇させたくない場合、変換器の運転状態が逆変換器運転の時のみスイッチ回路35を投入するようにレベル検出回路34のレベルを設定すれば、逆変換器側の有効電力設定値は(Pa)2 ×Rdc−P refx という値となり、与えられた有効電力設定値よりも直流線路の抵抗分による有効電力損失分だけ小さい値となる。一方、順変換器運転中の変換器側の有効電力はP refどおりの値に制御され、有効電力の上昇を防ぐことができる。
【0152】
従って、以上のような実施の形態によれば、交直変換器の制御装置に図47のような制御回路1Lを設けることにより、変換器の運転状態によって、融通する有効電力の大きさに応じた、図55に示す直流送電線105の抵抗分による有効電力損失分の補償を行うことにより、適切な有効電力の融通を行うことができる。
【0153】
(第12の他の実施の形態3)
図47に示す実施の形態では、係数手段33の出力を有効電力設定値P refx に加算し有効電力設定値P refx を補正するようにしたが、例えば図48に示すように係数手段33の出力を有効電力設定値P refに直接補正する構成であっても、図47の実施の形態と同様の効果を有する。また、図49に示すように有効電力設定値P refx と有効電力検出値Paとの差分に対して係数手段33の出力を補正する構成であっても、図47の実施の形態と同様の効果を有する。
【0154】
また、図47の実施の形態では、レベル検出器34によってP refがゼロよりも小さいときスイッチ回路35をオンし、逆変換器運転時のみ補正を行う構成としたが、例えば図50に示すように有効電力検出値Paを2乗演算後、係数Raを乗じた係数手段33の出力に対し、最大リミット値をゼロに設定したリミッタ回路36を追加する構成であっても、図47の実施の形態と同様の効果を得ることができる。
【0155】
さらに、図47に示す実施の形態では、P ref<0,すなわち逆変換器運転時のみ補正を行うようにしたが、逆にP ref>0すなわち順変換器運転時のみ補正を行うこともできる。第1の実施の形態では、逆変換器側の融通電力は、有効電力設定値より直流線路の抵抗分の損失分だけ少ない値となるが、逆変換器側の融通電力を有効電力設定値どおりに確保したい場合、レベル検出器34をPref >0となるように設定すれば、順変換器側の有効電力設定値は直流線路の抵抗分の損失分だけ高め運転となり、逆変換器側は有効電力設定値どおりの運転となる。
【0156】
また、以上の実施の形態では、電圧型自励式変換器103A,103Bによって構成される直流送電システムを前提として説明したが、他励式変換器を使用した直流送電システム、或いは電流型自励式変換器を使用した直流送電システム、またはこれらの変換器を2種類以上混在した直流送電システムにおいても、直流電圧と有効電力との制御を同様の制御ブロックを用いて行うことにより、同様の効果を得ることができる。
【0157】
(第13の実施の形態)
図51は請求項13に係わる交直変換器の制御装置の一実施の形態の要部構成を示す図であって、詳細には図55に示す交直変換器の制御装置に用いられている直流電圧/有効電力制御回路106に代わる本発明の要部となる直流電圧/有効電力制御回路11Dの構成を示す図である。
【0158】
この直流電圧/有効電力制御回路11Dは、直流電圧設定値Ed refと直流電圧検出値Edとの差分を求める差分演算手段2aと、この差分に対して係数rを乗算する係数手段3と、係数手段3の出力を有効電力設定値P refに加算し補正された有効電力設定値P refx を出力する加算演算手段4aと、直流電流検出値Idcを2乗演算する2乗演算手段32と、この2乗演算手段32の出力に変換器に接続される直流回路の抵抗値に比例した係数Raを乗算する係数手段33と、前記有効電力設定値P refがゼロよりも小さいか否かを検出するレベル検出器34と、このレベル検出器34によってP refがゼロよりも小さいときにオンし、係数手段33の出力を通すスイッチ回路35と、前記補正された有効電力設定値P refx と係数手段33の出力とを加算する加算演算手段22と、この加算演算手段22の出力と有効電力検出値Paとの差分を求める差分演算手段23とを備え、この差分演算手段23の差分出力を例えば比例・積分項を有する有効電力制御系8に入力し、ここで差分を零にするような制御信号,つまり交流電流の有効電力成分の設定値Id refを出力する構成となっている。
【0159】
このような図51に示す制御回路11Dをもつ交直変換器の制御装置においては、係数手段33に直流回路の抵抗値に比例した係数Raを設定すれば、この係数Raで直流線路の抵抗分による有効電力損失分の補償を行うが、レベル検出器34によってP refがゼロよりも小さいときにスイッチ回路35をオンし、変換器の融通電力が負のとき、すなわち逆変換器の運転のときのみ補正を行うものである。ここで、行われる補正の動作は、第9の実施の形態の動作ですでに説明した通り、補正の行われた変換器の有効電力設定値は、P refx +Rdc×(Idc)2 という値となるが、補正により当該変換器の有効電力を上昇させたくない場合、変換器の運転状態が逆変換器運転の時のみスイッチ回路35を投入するようにレベル検出回路34のレベルを設定すれば、逆変換器側の有効電力設定値は(Idc)2 ×Rdc−P refx という値となり、与えられた有効電力設定値よりも直流線路の抵抗分による有効電力損失分だけ小さい値となる。一方、順変換器運転中の変換器側の有効電力はP refどおりの値に制御され、有効電力の上昇を防ぐことができる。
【0160】
従って、以上のような実施の形態によれば、交直変換器の制御装置に図51のような制御回路11Dを設けることにより、変換器の運転状態によって、融通する有効電力の大きさに応じた、図18に示す直流送電線105の抵抗分による有効電力損失分の補償を行うことにより、適切な有効電力の融通を行うことができる。
【0161】
(第13の他の実施の形態)
図51に示す実施の形態では、係数手段33の出力を有効電力設定値P refx に加算し有効電力設定値P refx を補正するようにしたが、例えば図52に示すように係数手段33の出力を有効電力設定値P refに直接補正する構成であっても、図51の実施の形態と同様の効果を有する。また、図53に示すように有効電力設定値P refx と有効電力検出値Paとの差分に対して係数手段33の出力を補正する構成であっても、図51の実施の形態と同様の効果を有する。
【0162】
また、図51の実施の形態では、レベル検出器34によってP refがゼロよりも小さいときスイッチ回路35をオンし、逆変換器運転時のみ補正を行う構成としたが、例えば図54に示すように直流電流検出値Idcを2乗演算後、係数Raを乗じた係数手段33の出力に対し、最大リミット値をゼロに設定したリミッタ回路36を追加する構成であっても、図51の実施の形態と同様の効果を得ることができる。
【0163】
さらに、図51に示す実施の形態では、P ref<0,すなわち逆変換器運転時のみ補正を行うようにしたが、逆にP ref>0すなわち順変換器運転時のみ補正を行うこともできる。第1の実施の形態では、逆変換器側の融通電力は、有効電力設定値より直流線路の抵抗分の損失分だけ少ない値となるが、逆変換器側の融通電力を有効電力設定値どおりに確保したい場合、レベル検出器34をPref >0となるように設定すれば、順変換器側の有効電力設定値は直流線路の抵抗分の損失分だけ高め運転となり、逆変換器側は有効電力設定値どおりの運転となる。
【0164】
また、以上の実施の形態では、電圧型自励式変換器103A,103Bによって構成される直流送電システムを前提として説明したが、他励式変換器を使用した直流送電システム、或いは電流型自励式変換器を使用した直流送電システム、またはこれらの変換器を2種類以上混在した直流送電システムにおいても、直流電圧と有効電力との制御を同様の制御ブロックを用いて行うことにより、同様の効果を得ることができる。
【0165】
【発明の効果】
請求項1ないし請求項3に係わる交直変換器の制御装置によれば、有効電力設定値と有効電力検出値との偏差に乗算する係数手段の係数を変えて有効電力制御または直流電圧制御の比率を変えた場合でも、直流電圧制御系または有効電力制御系の制御定数を適切な値に設定でき、安定な運転を確保できる。
【0166】
請求項4ないし請求項6に係わる交直変換器の制御装置によれば、有効電力設定値、有効電力検出値および直流電流検出値の何れかに直流送電線の直流回路の抵抗分に比例する係数を乗算し、この乗算値を用いて直流電圧設定値と直流電圧検出値との偏差,ひいては直流電圧設定値を補正するようにしたので、複数変換器間の直流送電線の抵抗分による電圧降下が生じた場合でも、当該変換器の直流電圧設定値を適切に補正でき、与えられた有効電力設定値どおりの有効電力の融通を行うことができる。
【0167】
請求項7ないし請求項9に係わる交直変換器の制御装置によれば、有効電力設定値,有効電力検出値および直流電流検出値の何れかを2乗演算した後、直流送電線の直流回路の抵抗分に比例する係数を乗算し、この乗算値を用いて有効電力設定値を補正するようにしたので、複数変換器間の直流送電線の抵抗分による有効電力損失が生じた場合でも、当該変換器の有効電力設定値を適切に補正でき、与えられた有効電力設定値どおりの有効電力の融通を行うことができる。
【0168】
請求項10および請求項11に係わる交直変換器の制御装置によれば、有効電力設定値,有効電力検出値および直流電流検出値の何れかに直流送電線の直流回路の抵抗分に比例する係数を乗算し、この乗算値を用いて有効電力設定値が所定のレベル以下または以上のとき、つまり逆変換器運転時または順変換器運転時に補正を行うようにしたので、複数変換器間の直流送電線の抵抗分による電圧降下が生じた場合でも、逆変換器側或いは順変換器側の直流電圧設定値を適切に補正でき、与えられた有効電力設定値どおりの有効電力の融通を行うことができる。
【0169】
請求項12および請求項13に係わる交直変換器の制御装置によれば、有効電力設定値,有効電力検出値および直流電流検出値の何れかを2乗演算した後、さらに直流送電線の直流回路の抵抗分に比例する係数を乗算し、この乗算値を用いて有効電力設定値が所定のレベル以下または以上のとき、つまり逆変換器運転時または順変換器運転時に補正を行うようにしたので、複数変換器間の直流送電線の抵抗分による有効電力損失が生じた場合でも、逆変換器側或いは順変換器側の有効電力設定値を適切に補正でき、与えられた有効電力設定値どおりの有効電力の融通を行うことができる。
【図面の簡単な説明】
【図1】 本発明の請求項1に係わる交直変換器の制御装置の中の直流電圧/有効電力制御回路の一実施形態を示すブロック構成図。
【図2】 図1の直流電圧/有効電力制御回路の他の実施形態を示すブロック構成図。
【図3】 本発明の請求項2に係わる交直変換器の制御装置の中の直流電圧/有効電力制御回路の一実施形態を示すブロック構成図。
【図4】 図3の直流電圧/有効電力制御回路の他の実施形態を示すブロック構成図。
【図5】 本発明の請求項3に係わる交直変換器の制御装置の中の直流電圧/有効電力制御回路の一実施形態を示すブロック構成図。
【図6】 図1に示す係数設定部の内部構成図。
【図7】 図5の直流電圧/有効電力制御回路の他の実施形態を示すブロック構成図。
【図8】 図5の直流電圧/有効電力制御回路のさらに他の実施形態を示すブロック構成図。
【図9】 本発明の請求項4に係わる交直変換器の制御装置の中の直流電圧/有効電力制御回路の一実施形態を示すブロック構成図。
【図10】 従来の直流電圧/有効電力制御回路を適用し、かつ、直流送電線に抵抗分がある場合の直流電圧と有効電力との関係を説明する特性図。
【図11】 本発明の請求項4ないし請求項6に係わる直流電圧/有効電力制御回路を適用し、かつ、直流送電線に抵抗分がある場合の直流電圧と有効電力との関係を説明する特性図。
【図12】 図9の直流電圧/有効電力制御回路の他の実施形態を示すブロック構成図。
【図13】 図9の直流電圧/有効電力制御回路のさらに他の実施形態を示すブロック構成図。
【図14】 本発明の請求項5に係わる交直変換器の制御装置の中の直流電圧/有効電力制御回路の一実施形態を示すブロック構成図。
【図15】 図14の直流電圧/有効電力制御回路の他の実施形態を示すブロック構成図。
【図16】 図14の直流電圧/有効電力制御回路のさらに他の実施形態を示すブロック構成図。
【図17】 本発明の請求項6に係わる交直変換器の制御装置の中の直流電圧/有効電力制御回路の一実施形態を示すブロック構成図。
【図18】 複数の交直変換器から構成された直流送電システムにおける交直変換器の制御装置に直流電圧検出器の他に、直流電流検出器を設けた構成図。
【図19】 図17の直流電圧/有効電力制御回路の他の実施形態を示すブロック構成図。
【図20】 図17の直流電圧/有効電力制御回路のさらに他の実施形態を示すブロック構成図。
【図21】 本発明の請求項7に係わる交直変換器の制御装置の中の直流電圧/有効電力制御回路の一実施形態を示すブロック構成図。
【図22】 本発明の請求項7ないし請求項9に係わる直流電圧/有効電力制御回路を適用し、かつ、直流送電線に抵抗分がある場合の直流電圧と有効電力との関係を説明する特性図。
【図23】 図21の直流電圧/有効電力制御回路の他の実施形態を示すブロック構成図。
【図24】 図21の直流電圧/有効電力制御回路のさらに他の実施形態を示すブロック構成図。
【図25】 本発明の請求項8に係わる交直変換器の制御装置の中の直流電圧/有効電力制御回路の一実施形態を示すブロック構成図。
【図26】 図25の直流電圧/有効電力制御回路の他の実施形態を示すブロック構成図。
【図27】 図25の直流電圧/有効電力制御回路のさらに他の実施形態を示すブロック構成図。
【図28】 本発明の請求項9に係わる交直変換器の制御装置の中の直流電圧/有効電力制御回路の一実施形態を示すブロック構成図。
【図29】 図28の直流電圧/有効電力制御回路の他の実施形態を示すブロック構成図。
【図30】 図28の直流電圧/有効電力制御回路のさらに他の実施形態を示すブロック構成図。
【図31】 本発明の請求項10に係わる交直変換器の制御装置の中の直流電圧/有効電力制御回路の一実施形態を示すブロック構成図。
【図32】 図31の直流電圧/有効電力制御回路の他の実施形態を示すブロック構成図。
【図33】 図31の直流電圧/有効電力制御回路のさらに他の実施形態を示すブロック構成図。
【図34】 図31の直流電圧/有効電力制御回路のさらに他の実施形態を示すブロック構成図。
【図35】 図31の直流電圧/有効電力制御回路のさらに他の実施形態を示すブロック構成図。
【図36】 図31の直流電圧/有効電力制御回路のさらに他の実施形態を示すブロック構成図。
【図37】 図31の直流電圧/有効電力制御回路のさらに他の実施形態を示すブロック構成図。
【図38】 図31の直流電圧/有効電力制御回路のさらに他の実施形態を示すブロック構成図。
【図39】 本発明の請求項11に係わる交直変換器の制御装置の中の直流電圧/有効電力制御回路の一実施形態を示すブロック構成図。
【図40】 図39の直流電圧/有効電力制御回路の他の実施形態を示すブロック構成図。
【図41】 図39の直流電圧/有効電力制御回路のさらに他の実施形態を示すブロック構成図。
【図42】 図39の直流電圧/有効電力制御回路のさらに他の実施形態を示すブロック構成図。
【図43】 本発明の請求項12に係わる交直変換器の制御装置の中の直流電圧/有効電力制御回路の一実施形態を示すブロック構成図。
【図44】 図43の直流電圧/有効電力制御回路の他の実施形態を示すブロック構成図。
【図45】 図43の直流電圧/有効電力制御回路のさらに他の実施形態を示すブロック構成図。
【図46】 図43の直流電圧/有効電力制御回路のさらに他の実施形態を示すブロック構成図。
【図47】 図43の直流電圧/有効電力制御回路のさらに他の実施形態を示すブロック構成図。
【図48】 図43の直流電圧/有効電力制御回路のさらに他の実施形態を示すブロック構成図。
【図49】 図43の直流電圧/有効電力制御回路のさらに他の実施形態を示すブロック構成図。
【図50】 図43の直流電圧/有効電力制御回路のさらに他の実施形態を示すブロック構成図。
【図51】 本発明の請求項13に係わる交直変換器の制御装置の中の直流電圧/有効電力制御回路の一実施形態を示すブロック構成図。
【図52】 図51の直流電圧/有効電力制御回路の他の実施形態を示すブロック構成図。
【図53】 図51の直流電圧/有効電力制御回路のさらに他の実施形態を示すブロック構成図。
【図54】 図51の直流電圧/有効電力制御回路のさらに他の実施形態を示すブロック構成図。
【図55】 複数の交直変換器から構成される従来の一般的な直流送電システムを示す構成図。
【図56】 第1の従来例を説明する直流電圧/有効電力制御回路の内部構成図。
【図57】 第2の従来例を説明する直流電圧/有効電力制御回路の内部構成図。
【図58】 第2の従来例における直流電圧/有効電力制御回路における直流電圧と有効電力との関係を説明する特性図。
【符号の説明】
1A〜1L(106)…直流電圧/有効電力制御回路
11A〜11D(106)…直流電圧/有効電力制御回路
2,2a…差分演算手段
3…係数手段
4,4a…加算演算手段
5…差分演算手段
6,6A〜6C…直流電圧制御系
7…差分演算手段
8,8A,8B…有効電力制御系
9…差分演算手段
10…係数設定部
14A,14B…乗算演算手段
21,33…係数手段
22…加算演算手段
23…差分演算手段
31…直流電流検出器
32…2乗演算手段
34…レベル検出器
35…スイッチ回路
36…リミッタ回路
101A,101B…交流系統母線
103A,103B…自励式交直変換器
105…直流送電線
106…直流電圧/有効電力制御回路
107…直流電圧検出器
110…有効電力検出器

Claims (13)

  1. 異なる交流電力系統にそれぞれ設置される交直変換器の直流側を直流送電線で接続し電力を融通し合う直流送電システムに用いられる交直変換器の制御装置において、
    有効電力を融通する前記変換器の有効電力設定値と前記交流電力系統から検出される有効電力検出値との差に係数を乗算して得られる値を用いて直流電圧設定値を補正する電圧設定値補正手段と、前記係数に応じて増幅率が変化する演算項を有し、前記設定値補正手段で補正された直流電圧設定値と前記変換器直流側の直流電圧検出値との差が零に近づくように制御演算を実行する直流電圧制御系とを備え、この直流電圧制御系から交流電流の有効電力成分の設定値を出力することを特徴とする交直変換器の制御装置。
  2. 異なる交流電力系統にそれぞれ設置される交直変換器の直流側を直流送電線で接続し電力を融通し合う直流送電システムに用いられる交直変換器の制御装置において、
    直流電圧設定値と前記変換器直流側の直流電圧検出値との差に係数を乗算して得られる値を用いて有効電力を融通する前記変換器の有効電力設定値を補正する電力設定値補正手段と、前記係数に応じて増幅率が変化する演算項を有し、前記電力設定値補正手段で補正された有効電力設定値と前記交流電力系統から検出される有効電力検出値との差が零に近づくように制御演算を実行する有効電力制御系とを備え、この有効電力制御系から交流電流の有効電力成分の設定値を出力することを特徴とする交直変換器の制御装置。
  3. 異なる交流電力系統にそれぞれ設置される交直変換器の直流側を直流送電線で接続し電力を融通し合う直流送電システムに用いられる交直変換器の制御装置において、
    有効電力を融通する前記変換器の有効電力設定値と前記交流電力系統から検出される有効電力検出値との差に第1の係数を乗算する第1の乗算演算手段と、直流電圧設定値と前記変換器直流側の直流電圧検出値との差に第2の係数を乗算する第2の乗算演算手段と、前記第1の乗算演算手段の出力と第2の乗算演算手段の出力とを加算する加算演算手段と、前記第1の係数と前記第2の係数との比率に応じて増幅率が変化する演算項を有し、前記加算演算手段の加算出力が零に近づくように制御演算を実行する直流電圧制御系とを備え、この直流電圧制御系から交流電流の有効電力成分の設定値を出力することを特徴とする交直変換器の制御装置。
  4. 異なる交流電力系統にそれぞれ設置される交直変換器の直流側を直流送電線で接続し電力を融通し合う直流送電システムに用いられる交直変換器の制御装置において、
    有効電力を融通する前記変換器の有効電力設定値と前記交流電力系統から検出される有効電力検出値との差に第1の係数を乗算する第1の係数手段と、前記有効電力設定値に前記直流送電線の直流回路の抵抗値に比例する第2の係数を乗算する第2の係数手段と、これら第1および第2の係数手段の出力を用いて直流電圧設定値を補正する補正手段と、この補正手段で補正される直流電圧設定値と前記変換器直流側の直流電圧検出値との差が零に近づくように制御演算を実行する直流電圧制御系とを備え、この直流電圧制御系から交流電流の有効電力成分の設定値を出力することを特徴とする交直変換器の制御装置。
  5. 異なる交流電力系統にそれぞれ設置される交直変換器の直流側を直流送電線で接続し電力を融通し合う直流送電システムに用いられる交直変換器の制御装置において、
    有効電力を融通する前記変換器の有効電力設定値と前記交流電力系統から検出される有効電力検出値との差に第1の係数を乗算する第1の係数手段と、前記有効電力検出値に前記直流送電線の直流回路の抵抗値に比例する第2の係数を乗算する第2の係数手段と、これら第1および第2の係数手段の出力を用いて直流電圧設定値を補正する補正手段と、この補正手段で補正される直流電圧設定値と前記変換器直流側の直流電圧検出値との差が零に近づくように制御演算を実行する直流電圧制御系とを備え、この直流電圧制御系から交流電流の有効電力成分の設定値を出力することを特徴とする交直変換器の制御装置。
  6. 異なる交流電力系統にそれぞれ設置される交直変換器の直流側を直流送電線で接続し電力を融通し合う直流送電システムに用いられる交直変換器の制御装置において、
    有効電力を融通する前記変換器の有効電力設定値と前記交流電力系統から検出される有効電力検出値との差に第1の係数を乗算する第1の係数手段と、前記変換器直流側の直流電流検出値に前記直流送電線の直流回路の抵抗値に比例する第2の係数を乗算する第2の係数手段と、これら第1および第2の係数手段の出力を用いて直流電圧設定値を補正する補正手段と、この補正手段で補正される直流電圧設定値と前記直流電圧検出値との差が零に近づくように制御演算を実行する直流電圧制御系とを備え、この直流電圧制御系から交流電流の有効電力成分の設定値を出力することを特徴とする交直変換器の制御装置。
  7. 異なる交流電力系統にそれぞれ設置される交直変換器の直流側を直流送電線で接続し電力を融通と合う直流送電システムに用いられる交直変換器の制御装置において、
    前記直流電圧設定値と前記変換器直流側の直流電圧検出値との差に第1の係数を乗算する第1の係数手段と、有効電力を融通する前記変換器の有効電力設定値の2乗に前記直流送電線の直流回路の抵抗値に比例する第2の係数を乗算する第2の係数手段と、これら第1および第2の係数手段の出力を用いて前記有効電力設定値を補正する電力設定値補正手段と、この補正手段で補正される有効電力設定値と前記交流電力系統から検出される有効電力検出値との差が零に近づくように制御演算を実行する有効電力制御系とを備え、この有効電力制御系から交流電流の有効電力成分の設定値を出力することを特徴とする交直変換器の制御装置。
  8. 異なる交流電力系統にそれぞれ設置される交直変換器の直流側を直流送電線で接続し電力を融通し合う直流送電システムに用いられる交直変換器の制御装置において、
    直流電圧設定値と前記変換器直流側の直流電圧検出値との差に第1の係数を乗算する第1の係数手段と、前記交流電力系統から検出される有効電力検出値の2乗に前記直流送電線の直流回路の抵抗値に比例する第2の係数を乗算する第2の係数手段と、これら第1および第2の係数手段の出力を用いて前記有効電力設定値を補正する電力設定値補正手段と、この補正手段で補正された有効電力設定値と有効電力検出値との差が零に近づくように制御演算を実行する有効電力制御系とを備え、この有効電力制御系から交流電流の有効電力成分の設定値を出力することを特徴とする交直変換器の制御装置。
  9. 異なる交流電力系統にそれぞれ設置される交直変換器の直流側を直流送電線で接続し電力を融通し合う直流送電システムに用いられる交直変換器の制御装置において、
    直流電圧設定値と前記変換器直流側の直流電圧検出値との差に第1の係数を乗算する第1の係数手段と、前記変換器直流側の直流電流検出値の2乗に前記直流送電線の直流回路の抵抗値に比例する第2の係数を乗算する第2の係数手段と、これら第1および第2の係数手段の出力を用いて前記有効電力設定値を補正する電力設定値補正手段と、この補正手段で補正される有効電力設定値と前記交流電力系統から検出される有効電力検出値との差が零に近づくように制御演算を実行する有効電力制御系とを備え、この有効電力制御系から交流電流の有効電力成分の設定値を出力することを特徴とする交直変換器の制御装置。
  10. 異なる交流電力系統にそれぞれ設置される交直変換器の直流側を直流送電線で接続し電力を融通し合う直流送電システムに用いられる交直変換器の制御装置において、
    有効電力を融通する前記変換器の有効電力設定値と前記交流電力系統から検出される有効電力検出値との差に係数を乗算し直流電圧設定値を補正する第1の電圧設定値補正手段と、前記有効電力設定値または前記有効電力検出値に前記直流送電線の直流回路の抵抗値に比例する係数を乗算する係数手段と、前記有効電力設定値から前記変換器が順変換運転または逆変換運転の運転状態を判断し、所要の運転状態の時,前記第1の電圧設定値補正手段によって補正された直流電圧設定値に前記係数手段の出力を用いてさらに補正する第2の電圧設定値補正手段と、この第2の電圧設定値補正手段で補正される直流電圧設定値と前記変換器直流側の直流電圧検出値との差が零に近づくように制御演算を実行する直流電圧制御系とを備え、この直流電圧制御系から交流電流の有効電力成分の設定値を出力することを特徴とする交直変換器の制御装置。
  11. 異なる交流電力系統にそれぞれ設置される交直変換器の直流側を直流送電線で接続し電力を融通し合う直流送電システムに用いられる交直変換器の制御装置において、
    有効電力を融通する前記変換器の有効電力設定値と前記交流電力系統から検出される有効電力検出値との差に係数を乗算し直流電圧設定値を補正する第1の電圧設定値補正手段と、前記変換器直流側の直流電流検出値に前記直流送電線の直流回路の抵抗値に比例する係数を乗算する係数手段と、前記有効電力設定値から前記変換器が順変換運転または逆変換運転の運転状態を判断し、所要の運転状態の時,前記第1の電圧設定値補正手段によって補正された直流電圧設定値に前記係数手段の出力を用いてさらに補正する第2の電圧設定値補正手段と、この第2の電圧設定値補正手段で補正される直流電圧設定値と前記変換器直流側の直流電圧検出値との差が零に近づくように制御演算を実行する直流電圧制御系とを備え、この直流電圧制御系から交流電流の有効電力成分の設定値を出力することを特徴とする交直変換器の制御装置。
  12. 異なる交流電力系統にそれぞれ設置される交直変換器の直流側を直流送電線で接続し電力を融通し合う直流送電システムに用いられる交直変換器の制御装置において、
    直流電圧設定値と前記変換器直流側の直流電圧検出値との差に係数を乗算し有効電力設定値を補正する第1の電力設定値補正手段と、前記有効電力設定値の2乗または前記交流電力系統から検出される有効電力検出値の2乗に前記直流送電線の直流回路の抵抗値に比例する係数を乗算する係数手段と、前記有効電力設定値から前記変換器が順変換運転または逆変換運転の運転状態を判断し、所要の運転状態の時,前記第1の電力設定値補正手段によって補正される有効電力設定値に前記係数手段の出力を用いてさらに補正する第2の電力設定値補正手段と、この第2の有効電力設定値補正手段で補正される有効電力設定値と前記有効電力検出値との差が零に近づくように制御演算を実行する有効電力制御系とを備え、この有効電力制御系から交流電流の有効電力成分の設定値を出力することを特徴とする交直変換器の制御装置。
  13. 異なる交流電力系統にそれぞれ設置される交直変換器の直流側を直流送電線で接続し電力を融通し合う直流送電システムに用いられる交直変換器の制御装置において、
    直流電圧設定値と前記変換器直流側の直流電圧検出値との差に係数を乗算し有効電力設定値を補正する第1の電力設定値補正手段と、前記変換器直流側の直流電流検出値の2乗に前記直流送電線の直流回路の抵抗値に比例する係数を乗算する係数手段と、前記有効電力設定値から前記変換器が順変換運転または逆変換運転の運転状態を判断し、所要の運転状態の時,前記第1の電力設定値補正手段によって補正された有効電力設定値に前記係数手段の出力を用いてさらに補正する第2の有効電力設定値補正手段と、この第2の有効電力設定値補正手段で補正される有効電力設定値と前記交流電力系統から検出される有効電力検出値との差が零に近づくように制御演算を実行する有効電力制御系とを備え、この有効電力制御系から交流電流の有効電力成分の設定値を出力することを特徴とする交直変換器の制御装置。
JP08727097A 1997-03-24 1997-03-24 交直変換器の制御装置 Expired - Fee Related JP3735646B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08727097A JP3735646B2 (ja) 1997-03-24 1997-03-24 交直変換器の制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08727097A JP3735646B2 (ja) 1997-03-24 1997-03-24 交直変換器の制御装置

Publications (2)

Publication Number Publication Date
JPH10271687A JPH10271687A (ja) 1998-10-09
JP3735646B2 true JP3735646B2 (ja) 2006-01-18

Family

ID=13910082

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08727097A Expired - Fee Related JP3735646B2 (ja) 1997-03-24 1997-03-24 交直変換器の制御装置

Country Status (1)

Country Link
JP (1) JP3735646B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7098416B2 (ja) * 2018-05-24 2022-07-11 東芝エネルギーシステムズ株式会社 制御装置、電力変換器の制御方法、およびプログラム

Also Published As

Publication number Publication date
JPH10271687A (ja) 1998-10-09

Similar Documents

Publication Publication Date Title
KR910009763B1 (ko) 교류출력변환기의 병렬운전시스템
JP2679411B2 (ja) 交流出力変換器の並列運転制御装置
JP4448855B2 (ja) 電力変換装置
US6777907B2 (en) Current ripple reduction by harmonic current regulation
JPH04325893A (ja) 交流電動機制御装置
JPH09149700A (ja) Ipmモータの制御方法及び制御装置
WO2005018080A1 (ja) 電圧形インバータの制御方法
JP2002233180A (ja) 電力変換装置
JP3735646B2 (ja) 交直変換器の制御装置
JP2708648B2 (ja) 並列運転制御装置
JP4493432B2 (ja) インバータ制御装置
JP3222028B2 (ja) 電動機駆動システム
JPH09294380A (ja) 偏磁抑制制御装置
JPH0956170A (ja) 系統連系用インバータの制御装置
JP2912316B2 (ja) エレベータの速度制御装置
CN110854844B (zh) 交直流柔性互联配电网及其控制方法、计算机设备、介质
JP3764031B2 (ja) コンバータの電流制御方法および電流制御装置およびこの電流制御装置を用いたpwmコンバータ
JP3824206B2 (ja) リニアインダクションモータ電気車の制御装置
JP3221807B2 (ja) インバータの並列運転装置
JP3323901B2 (ja) リニアモータ電気車の制御装置
JP2000060137A (ja) 電力変換装置
JP2003264907A (ja) 鉄道車両駆動用リニア誘導電動機の制御装置
JPH03135389A (ja) 電圧形インバータの制御方法及びその装置
JP3379130B2 (ja) サイクロコンバータの並列運転装置
JP3238024B2 (ja) 自励式変換器の制御装置

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20040119

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20040119

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040205

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050817

TRDD Decision of grant or rejection written
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20050822

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050823

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050825

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050822

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081104

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091104

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101104

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101104

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111104

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121104

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees